WO1989000305A1 - Method of optimizing operation of articulated industrial robot - Google Patents

Method of optimizing operation of articulated industrial robot Download PDF

Info

Publication number
WO1989000305A1
WO1989000305A1 PCT/JP1988/000656 JP8800656W WO8900305A1 WO 1989000305 A1 WO1989000305 A1 WO 1989000305A1 JP 8800656 W JP8800656 W JP 8800656W WO 8900305 A1 WO8900305 A1 WO 8900305A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
time constant
speed condition
torque
drive motor
Prior art date
Application number
PCT/JP1988/000656
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Toyoda
Nobutoshi Torii
Ryo Nihei
Mitsuhiro Yasumura
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Publication of WO1989000305A1 publication Critical patent/WO1989000305A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4181Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by direct numerical control [DNC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to an operation control method for controlling the operation of an industrial articulated robot in accordance with a program, and more particularly to a plurality of mouth robot movable parts each of which operates by receiving an output torque of a driving motor.
  • An industrial articulated robot has a plurality of robot movable parts, and has a structure in which these robot workable parts are articulated.
  • Each robot movable part is, for example, an electric motor such as a DC servo motor. With the motor as the drive source, it receives the drive torque via an appropriate transmission mechanism, performs a turning operation around each joint ⁇ , and As a result of the comprehensive operation of the movable part, the end effector is moved or displaced between various positions in the robot operation area or positioned.
  • the first arm of the robot is pivotally attached to the upper end of the robot upright shaft, and the second arm is pivotally attached to the tip of the first arm.
  • the second arm When the arm receives the torque of the drive motor and turns around the joint, the second arm also receives acceleration around the joint ⁇ in the acceleration / deceleration region of the movement path. Therefore, when this turning operation is unnecessary, it is necessary for the driving motor of the second arm to output a reverse torque for canceling. In other words, the drive motor of the second arm of the robot must output extra torque to maintain the posture and positional relationship of the second arm with the movement of the first arm. . This torque is generally called interference torque.
  • each robot working part does not always operate under the above-mentioned limit conditions, but also considers torque interference.
  • the torque that each shaking motor actually needs to generate is often under non-critical conditions that are smaller than its maximum load torque and can be good.
  • the relationship between output torque and speed is determined by several linear equations, and when the speed value exceeds a certain value, the output torque value tends to decrease. It is known. Therefore, under the non-limit conditions as described above, each drive motor can sufficiently perform a predetermined robot operation only by generating an output torque smaller than the maximum food load torque under the limit conditions. And set the speed condition to a larger value to execute at high speed. You may get. Nevertheless, there is a problem in that the robot often does not exhibit sufficient performance as a result of being constrained by constant speed conditions and time constants. Disclosure of the invention
  • the present invention is to solve the problems in the conventional method of controlling the motion of the articulated robot.
  • the operation of an industrial articulated robot in which a plurality of robot movable parts are articulated and each movable part is operated by a drive motor to move the robot tip to successive target positions.
  • the load torque applied to each drive motor of the robot working part is calculated as a function of the load peak condition set in the storage means and the four conditions of the position displacement condition, theoretical speed condition, and theoretical time constant of each movable part.
  • the maximum torque that can be output by each of the driving modes is calculated by the arithmetic and control unit as a predetermined function of the theoretical speed condition of each of the movable parts, and then the maximum torque is calculated with respect to the torque value of the former. That the latter obtains the absolute value ratio of the torque value of, and without exceeding the 1 as much as possible is the absolute value ratio
  • the speed condition and the time constant by the drive motor of each of the above-mentioned robot movable parts are optimized from the theoretical speed condition and the theoretical time constant based on the variable condition stored in advance in the storage unit so that the value becomes close to 1.
  • the driving conditions are adjusted to the speed condition and the optimum time constant, and the respective drive motors are operated based on the adjusted optimum speed condition and the time constant.
  • An optimal control method for the operation of an industrial articulated robot characterized in that the robot is moved at approximately the maximum torque output so that the front end of the robot is moved to the next position at a high speed.
  • the optimal control method of the operation of the industrial articulated robot controls the operation of the movable part of the mouth bot in the industrial articulated mouth bot in which the occurrence of torque interference is inevitable.
  • the speed condition and time constant in the operation of each robot movable part are variable without restricting and setting to constant values, and the optimum speed condition and time constant are calculated, and the calculated values are calculated. Based on this, an operation command is issued to each motor system of each robot movable unit. Simple sharps of the drawing
  • FIG. 1 shows an example of an industrial articulated robot to which the optimal movement control method according to the present invention is applied, and the overall structure of an operation control mechanism thereof.
  • Fig. 2 is a block diagram showing the process of calculating the load torque applied to each drive motor of the robot movable part and the maximum torque that each drive motor can output.
  • Fig. 3 is a flowchart explaining the calculation process of determining the speed condition and the time constant.
  • Fig. 4 is a parameter set stored as a variable condition for variably controlling the speed condition and the time constant. The figure which showed the table. BEST MODE FOR CARRYING OUT THE INVENTION
  • a multi-joint robot having two robot arms and a robot wrist is shown as an example of an industrial articulated robot.
  • the first arm 16, the second arm 18 of the robot which is attached to the end of the first arm 16 of the robot and can pivot in the direction of the arrow ⁇ 2 , the tip of the second arm 18 of the same robot is pivotally secured coupled to arrow theta 3 direction ⁇ and a ethene operation friendly blind mouth bot wrist 2 0 as a movable part, in the previous Miss the robot wrist 2 0, the illustrated example robot Tohan C. 22
  • Various other end effectors are interchangeably mounted.
  • the turning operation of the first robot arm 16 is generated using the drive motor # 1 as a work source, and its position information is detected by the detector # 1.
  • Robot second arm 1 8 Similarly, the drive motor Micromax 2 perform the above theta 2 direction ⁇ to Ri joint ⁇ in the drive source, the robot first The position information of the two arms 18 is obtained from the detector E2. Further, the robot wrist 20 operates using the drive motor M3 as a drive source, and the position information is detected and output by the detector E3.
  • the robot hand attached to 20 For example, the robot hand attached to 20
  • each of the above-described robot movable parts performs a combined operation.
  • the body 14 is also configured so as to turn with respect to the base 12 as required in the vertical axis line as necessary, thereby expanding the operation area.
  • the displacement of the robot 10 is caused by the control command of the robot control unit 30 shown in FIG. 1 being applied through the servo device 50, and the servo device 5 is moved as shown in the figure.
  • the robot control unit 30 includes an arithmetic processing unit 32 and a storage device.
  • the former processing unit 32 reads out the programs and various setting data stored in the latter storage device 3, and creates a robot operation command based on the readout program and the servo device. 50 is sent.
  • a teaching setting means 52 is provided as a means for teaching and setting a program of the robot work in the storage device 34 of the mouth robot control unit 30 and a peripheral auxiliary storage means (not shown). It is configured so that control data can be input.
  • the storage device 34 holds the robot operation program taught by the teaching setting means 52, mainly the first memory means 36 for storing the target position data to be moved and displaced, and is held by the end effector tip ⁇ .
  • the theoretical parameters of the speed conditions and the time constant when the parts are operated by the corresponding drive motors M1 to M3, in other words, for each robot movable part, the load torque acting on it is determined by the other robots.
  • the present invention is applied to the industrial articulated robot having the above-described configuration, and each drive motor is efficiently made in consideration of the torque interference between a plurality of ⁇ -bot workable parts, and the robot Optimal movement control of the present invention for moving the end-fuctor between various positions with high speed and high accuracy The method will be described.
  • each robot movable part is moved to achieve its work.
  • a control action is performed to adjust and select the optimal speed condition and time constant for performing each operation.
  • the load condition applied to the end effector at the time of the moving operation the information of the target position for moving and displacing from the current position
  • the first robot arm 16 of the robot 10 from the program stored in the storage device 34 of the robot controller 30 in advance, such as the theoretical speed condition and the theoretical time constant, and from the planting.
  • the actual load torque applied to the movable parts of the mouth bot of the mouth bot wrist 20 when performing its operation is stored in a well-known lag radian (for example, in the second memory one means 38 of the storage device 3).
  • the torque processing unit 32 calculates the torque planting based on the equation stored in the storage unit 34 as a well-known motor torque determination equation. Then, a ratio value between the absolute value of the former actual load torque value of each of the mouth bot movable parts and the maximum torque that can be generated by the corresponding drive motor M1, M2, M3 is calculated. In other words, division is performed with the former as the numerator and the latter as the denominator.
  • the flowchart in FIG. 3 shows the process of determining the optimal speed condition and time constant based on the ratio value calculated through the calculation process shown in FIG. 2. It goes without saying that the optimum speed condition and the time constant are also determined in the arithmetic processing device 32 of the ⁇ -bot control device 30 during the determination process while performing the determination process.
  • the flowchart of FIG. 3 will be described.
  • the optimum speed is determined in accordance with the ratio planting for each robot movable part calculated in the calculation process of FIG.
  • the calculation process for determining the condition and the time constant is repeated.
  • the process (1) in Fig. 3 is based on the speed condition and time constant so that the ratio value of the operation of the first robot arm 16 does not exceed 1 and becomes as close to 1 as possible. Shows the process of adjusting and determining At this time, it is natural that the first speed condition and the time constant start the calculation using the theoretical speed and the theoretical time constant described above as initial values.
  • the ratio between the food torque and the maximum output torque of the drive motor under the initial planting If is close to 1 or close to 1, the first robot arm 16 will be activated based on its initialized theoretical speed conditions and theoretical time constant. On the other hand, when the ratio value exceeds 1, if the variable condition in the parameter table shown in FIG. 4 determined in advance experimentally, for example, condition (A) is selected, the ratio value is calculated again. By performing the judgment, the magnitude of the value 1 is determined, and the optimal speed condition and the time constant when the first robot arm 16 operates with the corresponding drive motor M 1 are determined. Of course, if the ratio value exceeds 1 even in condition (A), the condition is changed to (B) or another condition, and the judgment is repeated the next time.
  • the time constant t 1 of condition (A) means that the time constant of t 1 seconds is relaxed from the theoretical time constant to a larger value, and the speed condition means that the speed condition is relaxed to 0.5 times the value of the theoretical speed.
  • the time constants (t2 to t4, 0) and the speed conditions (X0.5, 0.6, x0.8, etc.) in other conditions (B) to (G) have the same meaning.
  • the second robot arm 18 and its corresponding drive motor ⁇ 2 are combined with the first robot arm 16 described above.
  • the adjustment of the optimal speed condition and the time constant, and the selection process are performed as shown in steps (2) and (3) in FIG.
  • the robot wrist 20 and its corresponding drive motor ⁇ 3 are processed in the same manner as in steps (4) to (4).
  • the selection of optimal speed conditions and time constants was performed. You. Here, since the robot wrist 20 receives torque drought from the operations of the first and second robot arms 16 and 18, it is necessary to adjust and select the optimal speed condition and time constant.
  • the up-and-down drive motor is not used. Since the wrist is not affected, it is not necessary to use the optimal movement control method according to the present invention for the vertical movement of the wrist by such an automatic motor.
  • the optimal speed condition and time constant are adjusted and selected, so that the drive motor can generate its substantially maximum output torque and move the corresponding mouth-port movable part.
  • Each robot The movable part always operates by receiving the substantially maximum output torque of the drive motor. Therefore, even if it receives torque interference, it can achieve the transfer operation most efficiently under the conditions of the torque drought, Therefore, high-speed operation can be ensured, and ultimately, an effect can be obtained in which the speed of the robot operation can be increased.
  • the fact that the mouth-port movable ⁇ operates at the maximum output torque that can be exhibited by the drive motor under each operating condition means that the robot is moving at an ideal working speed, and therefore the robot is moving. There is an advantage that the accuracy of the movement displacement between the two positions of the end embroider can be maintained at a high level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

A method of optimizing the operation of an articulated industrial robot (10) having many moving parts (14, 16, 18, 20) that are articulated together. When programmed control is employed to drive the moving parts by their corresponding motors to move an end effector (22) from one position to another position, the speed condition and time constant during the operation of the moving parts (14 to 20) are not maintained constant but are allowed to vary by taking the torque interference into consideration. The optimum speed condition and time constant are calculated by a robot control unit (30), and the operation instruction is issued to the drive motor system of each of the moving parts (14 to 20) based upon the calculated values.

Description

明 細 害  Harm
産業用多関節ロボッ トの動作の最適制御方法 技術分野  Optimal control method of motion of industrial articulated robot
本発明は、 産業用多関節ロボッ トの動作をプログラムに 従って制御する動作制御方法に関し、 特に各々が駆勤モ— タの出力 トルクを受けて動作する複数の口ボッ ト可動部 The present invention relates to an operation control method for controlling the operation of an industrial articulated robot in accordance with a program, and more particularly to a plurality of mouth robot movable parts each of which operates by receiving an output torque of a driving motor.
(ロボッ ト铀体、 ロボッ ト腕 (複数) 、 ロボッ ト手首、 1 つのエン ドエフヱクタ と してのロボッ トハン ド) を有した 多関節ロボッ トにおける食荷ワークを保持したェン ドエフ ュクタの先嬸が、 一位置から他の一位置に移動するロボッ ト動作毎に、 上記複数のロボッ ト可動部の相互動作に伴つ て生ずる夫々の駆動モータ間における トルク干渉を考慮し ながら各駆動モータの出力 トルクを夫々の駆動モータの定 格性能と速度条件とに従って定まる理論出力 トルク以内の 最適出力 トルク伏態に調節し、 上記ェン ドエフ クタ先端 を理想的な高速度で夫々の位置間を移動変位させるように する最適移動制御方法に関する。 背景技術 The end of an end effector holding a load in an articulated robot having a robot body, a plurality of robot arms, a robot wrist, and a robot hand as one end effector. However, each time the robot moves from one position to another position, the output of each drive motor is considered while considering the torque interference between the drive motors caused by the mutual operation of the plurality of robot movable parts. Theoretical output determined according to the rated performance and speed conditions of each drive motor Optimum output within the torque Adjusted to the torque state, the end effector tip moves between each position at ideal high speed The present invention relates to an optimal movement control method for causing the movement. Background art
産業用多関節ロボッ トは複数のロボッ ト可動部を有し、 これらのロボッ ト可勤部が関節結合された構造を備え、 各 ロボッ ト可動部が、 例えば、 直流サーボモータ等の電動モ —タを駆動源にして適宜の伝動機構を経て駆動トルクを受 け、 各々の関節铀の回りに旋回動作を行い、 夫々のロボッ ト可動部の総合動作の結果として、 エンドェフユクタ先端 をロボッ ト動作領域の種々の位置間で移動変位させ、 或い は位置決めするようにしている。 このとき、 例えば、 ロボ ッ トの第 1 の腕がロボッ ト直立軸の上端に枢着され、 その 第 1 の腕の先端に第 2の腕が枢着した多関節構造におき、 第 1 の腕がその駆動モータの トルクを受けて、 その関節輸 の回りに旋回動作をすると、 その動作通程の加 · 減速領域 では、 第 2の腕もその関節铀の回りに加速度を受けて旋回 動作を行うから、 この旋回動作が不要のものであるときは、 打ち消しを行う逆トルクを該第 2の腕の铤動モータが出力 することが必要である。 つまり、 ロボッ トの第 2の腕の駆 勤モータは第 1 の腕の動作に伴い、 第 2の腕の姿勢や位置 関係の維持のための余分な トルクを出力しなければならな いのである。 この トルクを一般に干渉トルクと称する。 An industrial articulated robot has a plurality of robot movable parts, and has a structure in which these robot workable parts are articulated. Each robot movable part is, for example, an electric motor such as a DC servo motor. With the motor as the drive source, it receives the drive torque via an appropriate transmission mechanism, performs a turning operation around each joint 铀, and As a result of the comprehensive operation of the movable part, the end effector is moved or displaced between various positions in the robot operation area or positioned. At this time, for example, the first arm of the robot is pivotally attached to the upper end of the robot upright shaft, and the second arm is pivotally attached to the tip of the first arm. When the arm receives the torque of the drive motor and turns around the joint, the second arm also receives acceleration around the joint 铀 in the acceleration / deceleration region of the movement path. Therefore, when this turning operation is unnecessary, it is necessary for the driving motor of the second arm to output a reverse torque for canceling. In other words, the drive motor of the second arm of the robot must output extra torque to maintain the posture and positional relationship of the second arm with the movement of the first arm. . This torque is generally called interference torque.
また、 上記の関節構造で、 第 1 の腕の旋回動作過程に同期 して第 2 の腕も第 1 の腕とは反対の方向に旋回動作する口 ボッ ト動作モ一ドが採られるときには、 第 2の腕の駆動モ —タは第 1 の腕の動作に伴う逆トルクと共に反対方向に第 2 の腕を旋回動作させるための出力 トルクを発生する必要 があり、 この 果、 第 2の腕の ¾動モータは非常に大きな 岀カ トルクを発生するしければならない。 つまり、 このと きも、 第 1 の腕の動作が、 第 2の腕に トルク干浚の影響を 及ぽしているのである。 Further, in the above joint structure, when the mouth-bottom operation mode is adopted in which the second arm also pivots in the opposite direction to the first arm in synchronization with the pivoting operation of the first arm, The drive motor of the second arm needs to generate an output torque for turning the second arm in the opposite direction together with the reverse torque associated with the movement of the first arm, and as a result, the second arm These motors must generate very large torques. In other words, again, the movement of the first arm has the effect of the torque dredge on the second arm.
このような トルク干浚の存在は従来から知られているが、 一方、 従来の多関節ロボッ トでは、 各ロボッ ト可動部の駆 動モータは、 その可動部に掛かる負荷の最大値を予測して その最大食荷値に見合うモ一タ出力性能を有するものが設 計、 選択されていた。 しかも、 ロボッ ト動作のプログラム においては、 トルク干渉を考慮してその負荷 トルクが略最 大植となる限界条件を予想して教示された動作プログラム を遂行するように各ロボッ ト可動部の速度条件、 時定数 (その速度条件に達するまでの時間値) を一定値にロボッ ト制御装置内に設定し、 どのような動作条件下でも各駆動 モータに通負荷が作用してァラーム状態が出現しないよう にしていた。 故に上記の一定値は速度条件の場合には比較 的低速度の植に設定され、 時定数は大きな時間値に設定さ れていた。 The existence of such a torque dredger has been known for a long time. On the other hand, in a conventional articulated robot, the driving of each robot movable part is performed. The dynamic motor was designed and selected to have a motor output performance that predicted the maximum load applied to the movable part and matched the maximum load value. In addition, in the robot operation program, the speed condition of each robot movable part is set so as to execute the operation program taught in anticipation of the limit condition under which the load torque becomes substantially maximum in consideration of the torque interference. The time constant (time value until the speed condition is reached) is set to a constant value in the robot controller so that no load is applied to each drive motor and an alarm condition does not appear under any operating conditions. I was Therefore, in the case of the speed condition, the above constant value was set to a relatively low speed plant, and the time constant was set to a large time value.
然るに、 上述した従来のロボッ トの動作制御方法では、 実際のロボッ ト動作に当たっては、 各ロボッ ト可勤部が常 に上述した限界条件で作動するのではな く 、 トルク干渉を 考慮しても、 各翳動モータが実際に発生する必要の有る ト ルク值は、 その最大負荷 トルクより も小さ く て良い非限界 条件下に有る場合が多い。 ここで、 駆動モータの一般的特 性として、 出力 トルク と速度との関係は、 幾つかの直線式 で定まり、 速度値が一定値を越えて増加すると、 出力 トル ク値は減少する傾向があることが知られている。 従って、 上記のような非限界条件下では、 各々の駆動モータは、 限 界条件下の最大食荷 トルクより も小さな出力 トルクを発生 するだけで、 充分に所定のロボッ ト動作を遂行させ得るの で、 速度条件をもっ と大きな値に設定して高速で遂行させ 得る場合がある。 それにも関わらず、 一定の速度条件と時 定数とに拘束された結果、 ロボッ トが充分に性能を発揮す るに至っていない場合が多々有ると言う問題点がある。 発明の開示 However, in the conventional robot operation control method described above, in the actual robot operation, each robot working part does not always operate under the above-mentioned limit conditions, but also considers torque interference. However, the torque that each shaking motor actually needs to generate is often under non-critical conditions that are smaller than its maximum load torque and can be good. Here, as a general characteristic of the drive motor, the relationship between output torque and speed is determined by several linear equations, and when the speed value exceeds a certain value, the output torque value tends to decrease. It is known. Therefore, under the non-limit conditions as described above, each drive motor can sufficiently perform a predetermined robot operation only by generating an output torque smaller than the maximum food load torque under the limit conditions. And set the speed condition to a larger value to execute at high speed. You may get. Nevertheless, there is a problem in that the robot often does not exhibit sufficient performance as a result of being constrained by constant speed conditions and time constants. Disclosure of the invention
依って、 本発明は斯る従来の多関節ロボッ トの動作制御 方法における問題点を解決せんとするものである。  Therefore, the present invention is to solve the problems in the conventional method of controlling the motion of the articulated robot.
また、 本発明の他の目的は、 産業用多関節ロボッ トにお ける各ロボッ ト可動部が、 常にその駆勤モータの略最大出 カ トルクを受けて動作することができるようにした最適動 作制御方法を提供することにある。  Another object of the present invention is to provide an optimal articulated robot in which each robot movable part in an industrial articulated robot can always operate by receiving substantially the maximum output torque of its driving motor. Another object of the present invention is to provide a work control method.
本発明によれば、 複数のロボッ ト可動部が関節結合され ると共に各可動部を駆動モータにより作動させて次々の目 的位置へロボッ トの先端を移動させる産業用多関節ロボッ トの動作の最適制御方法において、 前記複数のロボッ ト可 勤部の各部の作動に従ってロボッ ト動作範囲の一位置から 他の一位置に前記ロボッ トの先鵡を移動させる動作毎に、 その動作における前記複数のロボッ ト可勤部の各駆動モー タに掛かる負荷トルクを、 記憶手段に設定された負荷ヮー ク条件及び夫々の可動部の位置変位条件、 理論速度条件、 理論時定数の 4条件の関数として、 また、 該各々の駆動モ 一夕が出力可能な最大 トルクを、 前記夫々の可勖部の理論 速度条件の所定関数として、 演算制御手段によ 算出し、 次いで、 前者の トルク値に対する後者の トルク値の絶対値 比を求め、 該絶対値比が可及的に 1を越えることなくかつ 1 に近い値となるように前記各ロボッ ト可動部の駆動モ— タによる速度条件と時定数とを夫々予め記憶部に記憶させ た可変条件に基づいて前記理論速度条件と理論時定数から 最適速度条件および最適時定数に調節し、 その調節した最 適の速度条件と時定数とに基づいて前記各駆動モータを動 作させ、 前記ロボツ ト可動部の各々の勤作が、 常に対応の 駆動モータの略最大 トルク出力で遂行されるようにして、 前記ロボッ トの先嬸を頃次の位置に高速移動させるように したことを特徴とした産業用多関節ロボッ 卜の動作の最適 制御方法を提供するものである。 According to the present invention, the operation of an industrial articulated robot in which a plurality of robot movable parts are articulated and each movable part is operated by a drive motor to move the robot tip to successive target positions. In the optimum control method, each time the robot moves from one position to another position in accordance with the operation of each of the plurality of robot working units, The load torque applied to each drive motor of the robot working part is calculated as a function of the load peak condition set in the storage means and the four conditions of the position displacement condition, theoretical speed condition, and theoretical time constant of each movable part. Further, the maximum torque that can be output by each of the driving modes is calculated by the arithmetic and control unit as a predetermined function of the theoretical speed condition of each of the movable parts, and then the maximum torque is calculated with respect to the torque value of the former. That the latter obtains the absolute value ratio of the torque value of, and without exceeding the 1 as much as possible is the absolute value ratio The speed condition and the time constant by the drive motor of each of the above-mentioned robot movable parts are optimized from the theoretical speed condition and the theoretical time constant based on the variable condition stored in advance in the storage unit so that the value becomes close to 1. The driving conditions are adjusted to the speed condition and the optimum time constant, and the respective drive motors are operated based on the adjusted optimum speed condition and the time constant. An optimal control method for the operation of an industrial articulated robot characterized in that the robot is moved at approximately the maximum torque output so that the front end of the robot is moved to the next position at a high speed. To provide.
上述のように、 本発明による産業用多関節ロボッ トの動 作の最適制御方法は、 トルク干渉の発生が不可避な産業用 多関節口ボッ トにおける口ボッ ト可動部の動作をブログラ ム制御するときに、 夫々のロボッ ト可動部の動作における 速度条件、 時定数を一定値に拘束、 設定することな く 、 可 変とし、 最適の速度条件と時定数とを算出して、 その算出 値に基づいて夫々のロボッ ト可動部の各 - 動モータ系に作 用指令を発するようにするものである。 図面の簡単な鋭明  As described above, the optimal control method of the operation of the industrial articulated robot according to the present invention controls the operation of the movable part of the mouth bot in the industrial articulated mouth bot in which the occurrence of torque interference is inevitable. Sometimes, the speed condition and time constant in the operation of each robot movable part are variable without restricting and setting to constant values, and the optimum speed condition and time constant are calculated, and the calculated values are calculated. Based on this, an operation command is issued to each motor system of each robot movable unit. Simple sharps of the drawing
本発明の上記及びその他の目的、 特徴、 利点等を以下に おいて、 添付図面を参照した本発明の実旌例の記載により 明らかにするが、 添付図面において、  The above and other objects, features, advantages, and the like of the present invention will be clarified below by the description of the embodiments of the present invention with reference to the accompanying drawings.
第 1図は、 本発明による最適移動制御方法が適用される 産業用多関節ロボッ 卜の一例とその動作制御機構の全体構 成を示した略示機構図、 第 2図は、 ロボッ ト可動部の各駆 動モータに掛かる食荷 トルクと、 各々の駆動モータが出力 可能な最大トルク との算岀過程を示したブロ ック図、 第 3 図は、 速度条件および時定数の決定演算通程を説明するフ ローチャー ト、 第 4図は、 速度条件と時定数とを可変制御 するための可変条件として記憶されるバラメタ一テーブル を示した図。 発明を実施するための最良の態様 FIG. 1 shows an example of an industrial articulated robot to which the optimal movement control method according to the present invention is applied, and the overall structure of an operation control mechanism thereof. Fig. 2 is a block diagram showing the process of calculating the load torque applied to each drive motor of the robot movable part and the maximum torque that each drive motor can output. Fig. 3 is a flowchart explaining the calculation process of determining the speed condition and the time constant. Fig. 4 is a parameter set stored as a variable condition for variably controlling the speed condition and the time constant. The figure which showed the table. BEST MODE FOR CARRYING OUT THE INVENTION
さて、 第 1図を参照、すると、 産業用多関節ロボッ トの 1 例として 2つのロボッ ト腕とロボッ ト手首とを有した多関 節ロボッ トが示されており、 同ロボッ ト 1 0 は、 基台 1 2 に立設されたロボッ ト縦铀体 1 4、 同ロボッ ト縦 ¾体 1 4 の先端に枢着結合されて矢印 Θ i で示す俯抑方向に旋回動 作可能なロボッ ト第 1腕 1 6、 そのロボッ ト第 1腕 1 6 の 先端に抠着結合されて矢印 θ 2 方向に旋回動作可能なロボ ッ ト第 2腕 1 8、 同ロボッ ト第 2腕 1 8の先嬙に枢着結合 されて矢印 Θ 3 方向に画転動作可簾な口ボッ ト手首 2 0 と を可動部として有し、 このロボッ ト手首 2 0の先嬢には、 例えは図示のロボッ トハン ド 2 2その他の種々のエン ドェ フ クタが交換可能に取付けられる。 そして、 ロボッ ト第 1腕 1 6 の旋回動作は、 駆動モータ Μ 1を ¾勤源として生 起され、 その位置情報は検出器 Ε 1により検出される。 同 様にロボッ ト第 2腕 1 8 は、 駆動モータ Μ 2を駆動源にし て関節铀回りに上記 θ 2 方向の锭回を行い、 該ロボッ ト第 2腕 1 8 の位置情報は検出器 E 2から得られるように成つ ている。 更に、 ロボッ ト手首 2 0 は、 駆動モータ M 3を駆 動源として動作し、 位置情報は検出器 E 3により検出、 出 力される。 Referring to FIG. 1, a multi-joint robot having two robot arms and a robot wrist is shown as an example of an industrial articulated robot. , A robot vertical body 14 erected on the base 12, and a robot pivotally connected to the end of the robot vertical body 14, and capable of pivoting in a downward restraining direction indicated by an arrow Θi. The first arm 16, the second arm 18 of the robot, which is attached to the end of the first arm 16 of the robot and can pivot in the direction of the arrow θ 2 , the tip of the second arm 18 of the same robot is pivotally secured coupled to arrow theta 3 direction嬙and a ethene operation friendly blind mouth bot wrist 2 0 as a movable part, in the previous Miss the robot wrist 2 0, the illustrated example robot Tohan C. 22 Various other end effectors are interchangeably mounted. Then, the turning operation of the first robot arm 16 is generated using the drive motor # 1 as a work source, and its position information is detected by the detector # 1. Robot second arm 1 8 Similarly, the drive motor Micromax 2 perform the above theta 2 direction锭回to Ri joint铀回in the drive source, the robot first The position information of the two arms 18 is obtained from the detector E2. Further, the robot wrist 20 operates using the drive motor M3 as a drive source, and the position information is detected and output by the detector E3.
上述したロボッ ト 1 0の先端、 つまり、 ロボッ ト手首 The tip of the robot 10 described above, that is, the robot wrist
2 0に装着された例えばロボッ トハン ドがこの口ボッ トFor example, the robot hand attached to 20
1 0 の勤作領域内で或る一位置から別の位置に移動変位す るときは、 上述した夫々のロボッ ト可動部が複合動作する ことにより、 .達成されるもので、 ロボッ ト縱铀体 1 4 も必 要に応じて基台 1 2に対して縦軸線画りに旋回し、 動作領 域を拡大するように構成されている。 ロボッ ト 1 0 の移動 変位は、 第 1図に示されたロボッ ト制攞部 3 0の制御指令 がサ―ボ装置 5 0を経て印加されることにより生起され、 図示のようにサーボ装置 5 0内には上記 ¾動モータ M 1〜 M 3の夫々と結合されたサーボ機構 S 1、 S 2、 S 3が具 備されている。 When the robot moves and displaces from one position to another position in the work area of No. 10, each of the above-described robot movable parts performs a combined operation. The body 14 is also configured so as to turn with respect to the base 12 as required in the vertical axis line as necessary, thereby expanding the operation area. The displacement of the robot 10 is caused by the control command of the robot control unit 30 shown in FIG. 1 being applied through the servo device 50, and the servo device 5 is moved as shown in the figure. In 0, there are provided servo mechanisms S1, S2, and S3 coupled to each of the driving motors M1 to M3.
ロボッ ト制御部 3 0 は、 演算処理装置 3 2 と、 記憶装置 The robot control unit 30 includes an arithmetic processing unit 32 and a storage device.
3 4 とを具備しており、 後者の記憶装置 3 に記憶された プログラムや種々の設定データを前者の演算処理装置 3 2 が読み出して、 それらに基づいてロボッ ト動作指令を作成 してサーボ装置 5 0に送出する構成に成っている。 この口 ボッ ト制御部 3 0 の記憶装置 3 4にロボッ ト勤作のプログ ラム等を教示、 設定する手段として教示設定手段 5 2が設 けられ、 また図示されていない周辺補助記憶手段からも制 御データを入力し得るように構成されている。 上記記憶装置 3 4には教示設定手段 5 2 によって教示さ れるロボッ ト動作のプログラム、 主に、 移動変位する目的 位置データを記憶する第 1 メモリ ー手段 3 6、 エン ドエフ ュクタ先嬙に把持されて作業処理される食荷ヮーク Wの重 量、 この食荷ワーク Wの重量中心とロボッ ト手首 2 0 の lg 動モータ M 3の出力铀線とのずれ量 (オフセッ ト距離) 、 角度ずれ (オフセ ッ ト角度) 等の変動条件を書き替え可能 に記憶する第 2 メモリ —手段 3 8、 第 1、 第 2 ロボッ ト腕 1 6、 1 8及びロボッ ト手首 2 0等の夫々のロボッ ト可動 部を对応の駆動モータ M 1〜M 3で作動させる際の速度条 件と時定数との理論バラメ ータ、 換言すれば、 各ロボッ ト 可動部に関して、 それに作用する負荷トルクは他のロボツ ト可動部の動作による トルク干浚を考慮せずに、 単純に対 応の駆動モータ M l、 M 2、 または M 3の設計上の性能条 件から箅岀決定されるとした速度条件、 時定数の値を上記 理論パラメ ータとして予め記憶する第 3 メモリ 一手段 0, 上記理論バラメ ータを種々変更して、 トルク干浚を考慮し た最適の速度条件、 時定数を作成するための変化条件をテ 一ブルにして記憶する第 4メモリ 一手段 4 2 の少なく とも 4つの記憶手段を有して構成されている。 The former processing unit 32 reads out the programs and various setting data stored in the latter storage device 3, and creates a robot operation command based on the readout program and the servo device. 50 is sent. A teaching setting means 52 is provided as a means for teaching and setting a program of the robot work in the storage device 34 of the mouth robot control unit 30 and a peripheral auxiliary storage means (not shown). It is configured so that control data can be input. The storage device 34 holds the robot operation program taught by the teaching setting means 52, mainly the first memory means 36 for storing the target position data to be moved and displaced, and is held by the end effector tip 嬙. Weight of the workpiece W to be processed and processed, the amount of deviation (offset distance) between the center of weight of the workpiece W and the output line of the lg moving motor M3 of the robot wrist 20, the angle deviation ( The second memory that can rewritably store the fluctuation conditions such as the offset angle) etc.-Means 38, 1st, 2nd robot arms 16 and 18, and each robot movable such as robot wrist 20 The theoretical parameters of the speed conditions and the time constant when the parts are operated by the corresponding drive motors M1 to M3, in other words, for each robot movable part, the load torque acting on it is determined by the other robots. Consider the torque dredging by the operation of the movable part Instead, simply set the speed conditions and time constant values determined to be determined from the design performance conditions of the corresponding drive motor M1, M2, or M3 as the theoretical parameters above. Third memory to be stored One means 0, the above-mentioned theoretical parameters are variously changed, and the optimum speed conditions taking into account the torque drought and the changing conditions for creating the time constant are tabulated and stored. It is configured to have at least four storage means of four memories one means 4 2.
次に上述した構成を有した産業用多関節ロボッ 卜に適用 され、 複数の αボッ ト可勤部の相互における トルク干渉を 考慮して夫々の駆動モータを効率良く作 させ、 ロボッ ト 先嬙のェン ドエフユクタを高速度でかつ高精度の下に種々 の位置間を移動せしめるようにする本発明の最適移動制御 方法に就いて説明する。 Next, the present invention is applied to the industrial articulated robot having the above-described configuration, and each drive motor is efficiently made in consideration of the torque interference between a plurality of α-bot workable parts, and the robot Optimal movement control of the present invention for moving the end-fuctor between various positions with high speed and high accuracy The method will be described.
本発明による最適移動制御方法においては、 ロボッ ト 1 0 の先端のェン ドエフヱクタが一位置から他の位置に移 動する動作毎に、 その勤作を達成するために夫々のロボッ ト可動部が夫々の動作を遂行するための最適の速度条件と 時定数とを調節、 選定する制御作用が行われる。  In the optimal movement control method according to the present invention, each time the end effector at the tip of the robot 10 moves from one position to another position, each robot movable part is moved to achieve its work. A control action is performed to adjust and select the optimal speed condition and time constant for performing each operation.
この最適の速度条件と時定数とを選定、 調節する制御作 用を行う ときには、 先ず、 移動動作の時点におけるェン ド ェフ クタに掛かる負荷条件、 現在位置から移動変位する 目的位置の情報、 理論速度条件、 理論時定数等の予めロボ ッ ト制御装置 3 0の記憶装置 3 4 に記憶されたプログラム や ¾定植からロボッ ト 1 0 の第 1 ロボッ ト腕 1 6、 第 2 口 ボッ ト腕 1 8、 口ボッ ト手首 2 0 の各口ボッ ト可動部にそ の動作の遂行の際に掛かる実際の負荷 トルクを周知のラグ ラジアン (記憶装置 3 の例えば第 2 メモリ 一手段 3 8 に 記憶されている。 ) に従って演算処理装置 3 2により算出- 決定し、 同時に、 その動作を夫々のロボッ ト可動部が上記 プログラム値、 設定值により遂行する時の各対応の駆動モ ータ M 1〜M 3が発生し得る最大出力 トルク植を同じく周 知のモータ トルク決定式として記憶装置 3 4に記憶された 式に基づいて演箅処理装置 3 2が算出する。 そして、'各口 ボッ ト可動部に関する前者の実際の負荷トルク値の絶対値 に対する各対応の駆勖モータ M 1、 M 2、 M 3が発生し得 る最大 トルク との比率値を算出する。 つまり、 前者を分子 とし、 後者を分母とした割り算を行う。 そして、 この比率 値の計算結果が、 値 1を趨えているときは、 負荷トルクが 駆動モータの発生し得る最大トルクを越えることを意味す るから、 速度条件及び時定数を変えて、 上述の計算過程を 繰り返し、 上記の比率値が 1を越えず、 且つ 1 に可及的に 近い値と成るような最適の速度条件と時定数とを最終的に 決定する。 第 2図に示したブロ ック図は、 上述した実際の 各ロボッ ト可勤部の食荷トルク と各駆動モータの最大出力 トルクとを計算する過程を示している。 When performing a control operation for selecting and adjusting the optimum speed condition and time constant, first, the load condition applied to the end effector at the time of the moving operation, the information of the target position for moving and displacing from the current position, The first robot arm 16 of the robot 10, the second arm of the robot 10 from the program stored in the storage device 34 of the robot controller 30 in advance, such as the theoretical speed condition and the theoretical time constant, and from the planting. 18, the actual load torque applied to the movable parts of the mouth bot of the mouth bot wrist 20 when performing its operation is stored in a well-known lag radian (for example, in the second memory one means 38 of the storage device 3). ) Are calculated and determined by the arithmetic processing unit 32 according to the above, and at the same time, the corresponding drive motors M 1 to M 1 when the respective robot movable parts perform the above operations according to the above-mentioned program value and setting 值. Maximum power that M3 can generate The torque processing unit 32 calculates the torque planting based on the equation stored in the storage unit 34 as a well-known motor torque determination equation. Then, a ratio value between the absolute value of the former actual load torque value of each of the mouth bot movable parts and the maximum torque that can be generated by the corresponding drive motor M1, M2, M3 is calculated. In other words, division is performed with the former as the numerator and the latter as the denominator. And this ratio If the calculation result of the value tends to the value 1, it means that the load torque exceeds the maximum torque that can be generated by the drive motor, so repeat the above calculation process by changing the speed condition and time constant. Finally, optimal speed conditions and time constants are determined so that the above ratio value does not exceed 1 and is as close to 1 as possible. The block diagram shown in FIG. 2 shows the process of calculating the actual food torque of each robot work section and the maximum output torque of each drive motor described above.
また、 第 3図のフローチヤ一 トは、 第 2図に示した計算 過程を経て算出した比率値に基づいて、 最適の速度条件と 時定数とを決定して行く過程を示したもので、 このような 決定過程も αボッ ト制攞装置 3 0 の演算処理装置 3 2にお いて、 判断処理を行いながら、 最適速度条件と時定数との 決定が成されることは言うまでもない。  The flowchart in FIG. 3 shows the process of determining the optimal speed condition and time constant based on the ratio value calculated through the calculation process shown in FIG. 2. It goes without saying that the optimum speed condition and the time constant are also determined in the arithmetic processing device 32 of the α-bot control device 30 during the determination process while performing the determination process.
ここで、 第 3図のフローチャー トに就いて説明すると、 この判断、 決定においては、 第 2図の計算過程で算出した 夫々のロボッ ト可動部に関する比率植に従って、 頓次に最 適の速度条件と時定数とを決定する演算過程が繰り返され る。 第 3図の過程 ( 1 ) は、 第 1 のロボッ ト腕 1 6 の動作 に就いて比率値が 1を越えることなく、 且つ 1に可及的に 近い値となるように速度条件と時定数とを調節、 決定する 過程を示している。 このとき、 最初の速度条件と時定数と は前述した理論速度と理論時定数とを初期値として演算を スター トさせることは当然である。 そして、 その初期植の 下で食荷 トルク と駆動モータの最大出力 トルクとの比率値 が 1 ないし 1 に近い値であれば、 第 1 のロボッ ト腕 1 6 は その初期設定された理論速度条件と理論時定数とに基づい て作動されることとなる。 他方、 比率値が 1を越えていた ときは、 予め、 実験的に定められた第 4図のバラメ ータテ —ブルにおける可変条件の例えば、 条件 (A) を選択して 再度、 比率値の計算を遂行し、 値 1 に対する大小の判断を 行って、 第 1 のロボッ ト腕 1 6がその対応の駆動モータ M 1 で動作する際の最適の速度条件と時定数とを決定する のである。 勿論、 条件 (A) でも比率値が 1 を越えるとき は、 条件を (B ) またはその他の条件に変更して頃次に判 断を繰り返すのである。 なお、 条件 (A) の時定数 t 1 は 理論時定数から t 1秒時定数を大きな植に緩和し、 また速 度条件は理論速度の値の 0.5 倍に速度条件を緩和すること を意味しており、 他の条件 ( B ) 〜 (G) における時定数 ( t 2〜 t 4、 0 ) と速度条件 ( X 0.5 、 0.6 、 x 0.8 等) も同様の意昧を有している。 Here, the flowchart of FIG. 3 will be described. In this judgment and determination, the optimum speed is determined in accordance with the ratio planting for each robot movable part calculated in the calculation process of FIG. The calculation process for determining the condition and the time constant is repeated. The process (1) in Fig. 3 is based on the speed condition and time constant so that the ratio value of the operation of the first robot arm 16 does not exceed 1 and becomes as close to 1 as possible. Shows the process of adjusting and determining At this time, it is natural that the first speed condition and the time constant start the calculation using the theoretical speed and the theoretical time constant described above as initial values. Then, the ratio between the food torque and the maximum output torque of the drive motor under the initial planting If is close to 1 or close to 1, the first robot arm 16 will be activated based on its initialized theoretical speed conditions and theoretical time constant. On the other hand, when the ratio value exceeds 1, if the variable condition in the parameter table shown in FIG. 4 determined in advance experimentally, for example, condition (A) is selected, the ratio value is calculated again. By performing the judgment, the magnitude of the value 1 is determined, and the optimal speed condition and the time constant when the first robot arm 16 operates with the corresponding drive motor M 1 are determined. Of course, if the ratio value exceeds 1 even in condition (A), the condition is changed to (B) or another condition, and the judgment is repeated the next time. The time constant t 1 of condition (A) means that the time constant of t 1 seconds is relaxed from the theoretical time constant to a larger value, and the speed condition means that the speed condition is relaxed to 0.5 times the value of the theoretical speed. The time constants (t2 to t4, 0) and the speed conditions (X0.5, 0.6, x0.8, etc.) in other conditions (B) to (G) have the same meaning.
第 1 のロボッ ト腕 1 6に関する最適速度条件と時定数の 決定が終わると、 第 2の αボッ ト腕 1 8 とその対応の駆動 モータ Μ 2に関して、 上記の第 1 ロボッ ト腕 1 6 と同様に して最適の速度条件と時定数との調節、 選定通程が第 3図 の遇程 ( 2 ) 、 ( 3 ) で示すように遂行される。 そして、 第 2 ロボッ ト腕 1 8に関する最適速度条件と時定数との調 節、 選定が終了すると、 次にロボッ ト手首 2 0 とその対応 の駆動モータ Μ 3 に関して同様に過程 ( 4 ) 〜 ( 7 ) で示 すように最適速度条件と時定数との鑭節、 選定が遂行され る。 ここで、 ロボッ ト手首 2 0 は、 第 1、 第 2のロボッ ト 腕 1 6、 1 8の夫々の動作から トルク干浚を受けるから、 最適速度条件と時定数の調節、 選定には多数の過程 ( 4 ) 〜 ( 7 ) を要することを、 第 3図は示している。 同様の意 味で第 2のロボッ ト腕 1 8の調節、 選定過程は、 第 1 の口 ボッ ト腕 1 6の調節、 選定過程より多く なることが予想さ れるのである。 以上のようにして、 ロボッ ト 1 0が備える 各々のロボッ ト可動部に就き、 それが、 他のロボッ ト可動 部の動作により、 トルク干渙をうけるときには、 上述の最 適速度 件と時定数との調節、 決定を行った上で、 選定さ れた最適速度条件と最適時定数とにより、 夫々 の駆動モー タ M 1〜M 3を駆動して各ロボッ ト可動部を移動動作させ る指令を、 第 1図に示したサーボ装置 5 0へ送出する。 After the determination of the optimum speed condition and the time constant for the first robot arm 16 is completed, the second robot arm 18 and its corresponding drive motor と 2 are combined with the first robot arm 16 described above. Similarly, the adjustment of the optimal speed condition and the time constant, and the selection process are performed as shown in steps (2) and (3) in FIG. When the adjustment and selection of the optimal speed condition and time constant for the second robot arm 18 are completed, the robot wrist 20 and its corresponding drive motor Μ3 are processed in the same manner as in steps (4) to (4). As shown in 7), the selection of optimal speed conditions and time constants was performed. You. Here, since the robot wrist 20 receives torque drought from the operations of the first and second robot arms 16 and 18, it is necessary to adjust and select the optimal speed condition and time constant. FIG. 3 shows that steps (4) to (7) are required. In the same sense, the adjustment and selection process of the second robot arm 18 is expected to be more than the adjustment and selection process of the first mouth robot arm 16. As described above, when each of the robot movable parts included in the robot 10 receives torque due to the operation of the other robot movable parts, the above-mentioned optimum speed condition and time constant are obtained. Command that drives each of the drive motors M1 to M3 to move each robot movable part according to the selected optimal speed condition and optimal time constant. Is sent to the servo device 50 shown in FIG.
なお、 例えはロボツ ト手首 2 0が駆動モータにより、 上 下に可動な構造を備えていても、 その上下駆動用モータは. 他の口ボッ ト可動部が旋回動作することにより、 直接トル ク干涉は受けないから、 そのような齄動モータによる手首 の上下動作に関しては、 本発明による最適移動制御方法の 通用は不要となる。 ' 以上の説明から理解できるように、 本発明によれば、 産 業用多闋節型ロボッ トの複数のロボッ ト可動部を驩動モー タで駆動して移動動作させる際に、 各動作毎にその勤作の 遂行に先立って最適の速度条件と時定数とを調節、 選定し、 駆動モータがその略最大出力 トルクを発生して対応の口ボ ッ ト可動部を ¾動し得るようにしたから、 夫々のロボッ ト 可動部は、 常に、 駆動モータの略最大出力 トルクを受けて 動作することになり、 従って、 トルク干渉を受けても、 そ の トルク干溱条件下で最も効率良く 、 移勤動作を達成でき、 故に動作の高速性が確保でき、 究極的には、 ロボッ ト作業 の高速化が可能となる効果を得ることができる。 なお、 動 作の都度、 その動作条件下で駆動モータが発揮できる最大 出力 トルクで口ボッ ト可動^が動作することは、 理想的な 勤作速度で移動していることを意味し、 故にロボッ ト先繍 のェ ン ドヱフ クタの 2位置間の移動変位の精度も高レべ ルに維持し得る利点がある。 Even if the robot wrist 20 has a movable structure above and below with a drive motor, the up-and-down drive motor is not used. Since the wrist is not affected, it is not necessary to use the optimal movement control method according to the present invention for the vertical movement of the wrist by such an automatic motor. 'As can be understood from the above description, according to the present invention, when a plurality of robot movable parts of an industrial multi-articulated robot are driven by a rotatable motor to perform a moving operation, each operation is performed. Prior to the performance of the work, the optimal speed condition and time constant are adjusted and selected, so that the drive motor can generate its substantially maximum output torque and move the corresponding mouth-port movable part. Each robot The movable part always operates by receiving the substantially maximum output torque of the drive motor. Therefore, even if it receives torque interference, it can achieve the transfer operation most efficiently under the conditions of the torque drought, Therefore, high-speed operation can be ensured, and ultimately, an effect can be obtained in which the speed of the robot operation can be increased. In addition, the fact that the mouth-port movable ^ operates at the maximum output torque that can be exhibited by the drive motor under each operating condition means that the robot is moving at an ideal working speed, and therefore the robot is moving. There is an advantage that the accuracy of the movement displacement between the two positions of the end embroider can be maintained at a high level.

Claims

1 . 複数のロボッ ト可勤部が関節結合されると共に各可 動部を駆動モータにより作動させて次々の目的位置へロボ ッ ト先嬙を移動させる産業用多関節ロボッ トの移動制御方 法において、 前記複数のロボッ ト可動部の各部の作動に従 つてロボッ ト動作範囲の一位置から他の位置に前記ロボッ ト先绻を移動する動作毎に、 その動作における前記複数の ロボッ ト可動部の各 ¾動モータに掛かる食荷トルクを、 記 憶部に設定された食荷ワーク条件及び夫々の可動部の位置 変位条件、 理論速度条件、 理論時定数の 4条件の蘭数とし て、 また、 該各々の駆動モータが出力可能な最大トルクを 前記夫々のロボッ ト可動部の理論速度条件の所定関数とし て、 演算制御手段により算出して前者に対する後者の絶対 値比を求め、 該絶対植比が可及的に 1を越えることなくか つ 1 に近い値となるように前記各ロボッ ト可動部の駆動モ ータによる速度条件と時定数とを夫々予め記憶部に記憶さ せた可変条件に基づいて前記理論速度条件と理綸時定数か ら最適速度条件と最邁時定数とに調節し、 その調節した最 適の速度条袢と時定数とに基づいて前記各駆動モータを作 動させ、 前記ロボッ ト可動部の各々の诈動が、 常に対応の 駆動モータの最大トルク岀力で遂行されるようにして、 前 記ロボッ ト先端を頗次の位置に高速移動させるようにした ことを特徴とした産業用多関節 σボッ トの勖作の最邁制御 方法。 1. A method of controlling the movement of an industrial multi-joint robot in which a plurality of robot movable parts are articulated and each movable part is actuated by a drive motor to move the robot head to successive target positions. In each of the above operations, each time the robot tip is moved from one position to another position in the robot operation range according to the operation of each of the plurality of robot movable units, the plurality of robot movable units in the operation The load torque applied to each of the motors described above is the orchid number of the 4 conditions of the load work condition set in the storage unit, the position displacement condition of each movable unit, the theoretical speed condition, and the theoretical time constant, and The maximum torque that can be output by each of the drive motors is calculated by arithmetic and control means as a predetermined function of the theoretical speed condition of each of the robot movable parts, and the absolute value ratio of the latter to the former is obtained. Ratio possible The speed condition and the time constant of each of the above-mentioned robot movable parts by the drive motor are stored based on the variable conditions stored in the storage unit in advance so that the values do not exceed 1 and are close to 1. From the theoretical speed condition and the rinsing time constant, the optimum speed condition and the best time constant are adjusted, and each of the drive motors is operated based on the adjusted optimum speed condition and time constant. It is characterized in that the movement of each of the robot movable parts is always performed with the maximum torque of the corresponding drive motor, and the robot tip is moved at a very high speed to the very next position. Industrial multi-joint sigma-bot operation.
2 . 前記予め記憶部に記憶させた可変条件は、 前記理論 速度条件を 1 とした比率値として、 又前記理論時定数に対 する時間増分植として、 予め前記記憶部にパラメ一タテー ブルとして記憶し、 読み出すようにしたことを特徴とした 請求の範囲 1 . に記載の産業用多闋節ロボッ トの動作の最 適制御方法。 2. The variable condition stored in the storage unit in advance is based on the theoretical The method according to claim 1, wherein the parameter is stored in advance in the storage unit as a parameter table as a ratio value with the speed condition set to 1 and as a time increment relative to the theoretical time constant. Optimum control method for the operation of the industrial multi-joint robot described in (1).
3 . 前記記憶装置は、 教示設定手段によって教示される ロボッ ト動作のプログラム及び移勤変位する目的位置デー タを記憶する第 1 メモリ ー手段と、 エ ン ドエフヱクタ先端 に把持されて作業処理される負荷ヮークの重量及び該負荷 ワークの重量中心と前記ロボッ ト可動部におけるロボッ ト 手首の駆動モータの出力铀線とのオフセ ッ ト距離及びオフ セ ッ ト角度等の変動条件を害き替え可能に記憶する第 2 メ モリ 一手段と、 前記ロボッ ト可動部を対応の駆動モータで 作勤させる際の速度条件と時定数との理論パラメ一タを予 め記憶する第 3 メモリ 一手段と、 前記理 パラメ一タを種 々変更して、 トルク干渉を考慮した最適の速度条件、 時定 数を作成するための変化条件をパラメ 一夕テーブルにして 記憶する第 4メ モリ ー手段との少なく とも 4つを有して構 成されている請求の範囲 2 . に記載の産業用多関節ロボッ トの動作の最適制御方法。  3. The storage device is a first memory device for storing a robot operation program taught by the teaching setting device and a target position data for transfer, and is processed by being gripped by the end of the end effector. It is possible to change the weight of the load workpiece and the fluctuation conditions such as the offset distance and the offset angle between the center of weight of the load workpiece and the output line of the drive motor of the robot wrist in the robot movable part. A second memory means for storing; a third memory means for previously storing theoretical parameters of a speed condition and a time constant when the robot movable section is operated by a corresponding drive motor; Fourth memory means for changing the parameters in various ways and storing the changing conditions for creating the optimal speed condition and time constant taking into account the torque interference in a parameter overnight table At least the claims have four and consists 2. Industrial articulated robot optimum control method of operation as set forth in the.
4 . 前記記憶手段と前記演算手段はロボッ ト制御装置を 形成し、 前記夫々の铤動モータのサーボ機構を有したサー ボ装置に結合されている請求の範囲 1 . に記載の産業用多 関節ロボッ トの動作の最適制御方法。  4. The industrial multi-joint according to claim 1, wherein said storage means and said calculation means form a robot control device, and are coupled to a servo device having a servo mechanism of each of the driving motors. Optimal control method for robot operation.
5 . 前記ロボッ ト可動部は、 水平軸線回りに旋回可能に 設けられた第 1 ロボッ ト腕と、 該第 1 ロボッ ト腕の先端に 水平铀線画りに旋回可能に闋節結合された第 2 ロボツ ト腕 と、 前記第 2 ロボッ ト腕の先绻に闋節結合されたロボッ ト 手首とを具備して構成され、 前記ロボッ ト手首の先端にェ ン ドエフ クタが闋節結合される請求の範囲 1 . に記載の 産業用多関節ロポッ トの動作の最適制御方法。 5. The robot movable part can rotate around the horizontal axis. A first robot arm provided, a second robot arm pivotally connected to a tip of the first robot arm so as to be rotatable in a horizontal line, and a tip of the second robot arm. 2. The industrial articulated robot according to claim 1, wherein the robot wrist is provided with an articulated robot wrist, and an end effector is articulated at an end of the robot wrist. Control method.
PCT/JP1988/000656 1987-06-30 1988-06-30 Method of optimizing operation of articulated industrial robot WO1989000305A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62161120A JPH0820893B2 (en) 1987-06-30 1987-06-30 Optimal movement control method for industrial articulated robot
JP62/161120 1987-06-30

Publications (1)

Publication Number Publication Date
WO1989000305A1 true WO1989000305A1 (en) 1989-01-12

Family

ID=15728982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1988/000656 WO1989000305A1 (en) 1987-06-30 1988-06-30 Method of optimizing operation of articulated industrial robot

Country Status (2)

Country Link
JP (1) JPH0820893B2 (en)
WO (1) WO1989000305A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5779829A (en) * 1995-08-24 1998-07-14 The Goodyear Tire & Rubber Company Pneumatic tire having a single carcass ply reinforced with metallic cords, a high ending ply, turnup and locked bead construction

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796192B2 (en) * 1988-12-01 1995-10-18 株式会社クボタ Expansion and contraction control device for articulated arm of harvesting machine
JPH11277468A (en) * 1998-03-30 1999-10-12 Denso Corp Control device for robot
JP6339534B2 (en) 2015-07-17 2018-06-06 ファナック株式会社 ROBOT CONTROL METHOD AND ROBOT CONTROL DEVICE HAVING HAND HOLDING MAXIMUM TWO WORKS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114317A (en) * 1984-11-08 1986-06-02 Matsushita Electric Ind Co Ltd Teaching method of industrial robot
JPS62143104A (en) * 1985-12-17 1987-06-26 Matsushita Electric Ind Co Ltd Method for controlling position of robot

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677910B2 (en) * 1984-12-28 1994-10-05 ソニー株式会社 Control method for industrial robot
JPS6280706A (en) * 1985-10-04 1987-04-14 Matsushita Electric Ind Co Ltd Method for controlling position of robot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114317A (en) * 1984-11-08 1986-06-02 Matsushita Electric Ind Co Ltd Teaching method of industrial robot
JPS62143104A (en) * 1985-12-17 1987-06-26 Matsushita Electric Ind Co Ltd Method for controlling position of robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5779829A (en) * 1995-08-24 1998-07-14 The Goodyear Tire & Rubber Company Pneumatic tire having a single carcass ply reinforced with metallic cords, a high ending ply, turnup and locked bead construction

Also Published As

Publication number Publication date
JPS647105A (en) 1989-01-11
JPH0820893B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
JP2021053802A (en) Industrial robot and operation method thereof
JP5013024B2 (en) Numerical controller
EP0075916B1 (en) Industrial robot control apparatus
JP4922584B2 (en) Robot system
KR20150051892A (en) Method for programming motion-sequences of a redundant industry robot and associated industry robot
JP4423719B2 (en) Robot and robot control method
JPH01252340A (en) Machining control device employing force sensor
JP5144035B2 (en) Industrial robot tool position / posture control method and control system
JP7336215B2 (en) Robot system, control method, article manufacturing method, program, and recording medium
JPWO2002066210A1 (en) Robot controller
WO1989000305A1 (en) Method of optimizing operation of articulated industrial robot
JP4392251B2 (en) Feed drive system controller
JPH0916241A (en) Method for setting acceleration/deceleration operation of robot
JP2771458B2 (en) Industrial robot deflection correction method
JP5443782B2 (en) Robot, current limiting device and current limiting method
JP5633268B2 (en) Robot control device
JP3811027B2 (en) Control device for parallel mechanism machine
JP4134644B2 (en) Positioning control device
JPH0255803B2 (en)
JP2014159066A (en) Robot control device and robot control method
JPH0957671A (en) Control device of articulated moving body and its control method
JP7424097B2 (en) Robot control device and robot control method
JPS6239152A (en) Robot
JPS62285110A (en) Industrial robot controller
JP3194829B2 (en) Robot motion program generation device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT