JPS61114317A - Teaching method of industrial robot - Google Patents

Teaching method of industrial robot

Info

Publication number
JPS61114317A
JPS61114317A JP23553984A JP23553984A JPS61114317A JP S61114317 A JPS61114317 A JP S61114317A JP 23553984 A JP23553984 A JP 23553984A JP 23553984 A JP23553984 A JP 23553984A JP S61114317 A JPS61114317 A JP S61114317A
Authority
JP
Japan
Prior art keywords
motor
speed
robot
acceleration
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23553984A
Other languages
Japanese (ja)
Inventor
Yasuo Sakurai
康雄 桜井
Takashi Ichiyanagi
一柳 高畤
Toru Nakagawa
亨 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23553984A priority Critical patent/JPS61114317A/en
Publication of JPS61114317A publication Critical patent/JPS61114317A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To shorten the teaching time required for an industrial robot by setting the driving torque and the rotational frequency of a motor at specific values against the set speed at the tip of a robot hand and the set acceleration and setting automatically both said hand tip speed and acceleration in comparison with the basic characteristic value of the motor. CONSTITUTION:The holding weight of a robot hand is supplied and then an end point position is supplied manually via a start point position and an intermediate position. Then the start point and the end point are connected with a prescribed interpolation curve to set a shift locus of the robot hand. Based on this shift locus data, both the driving torque which affects a motor and the rotational frequency of the motor are calculated by means of a dynamics model of the robot. These calculated values are compared with a torque-speed characteristic curve which is decided by the motor. Then the speed and acceleration are calculated for the robot hand tip so that the maximum performance is secured with the motor. Then these speed and acceleration are set automatically. This method eliminates a conventional trial-and-error operation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は産業用ロボットの教示方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a method for teaching industrial robots.

従来例の構成とその問題点 従来の産業用ロボットの教示方法は第1図にその70−
チャートを示すように、ロボットハンド先端の始点位置
を設定し更に、終点位置を設定する。始点と終点間は直
線や円弧補間などの補間曲線情報を設定し、その後、ロ
ボットハンド先端の最高速度及び加減速運動時の加速度
を設定する。
The configuration of the conventional example and its problems The conventional teaching method for industrial robots is shown in Figure 1.
As shown in the chart, set the starting point position of the tip of the robot hand, and then set the ending point position. Interpolation curve information such as straight line or circular interpolation is set between the start point and the end point, and then the maximum speed of the tip of the robot hand and the acceleration during acceleration/deceleration movement are set.

以上でロボットの駆動に必要な情報が全て設定されたの
でロボットをチェノクランさせる。仮に、設定最高速度
が大きすぎたため振動が発生する場合には最高速度を経
験的く再設定し、振動などの問題が生じないことが判明
すると、ロボットに実際の作業を行なわせる〇 しかしながら上記のような方法では、ロボットハンド先
端の始点及び終点位置設定以降の作業。
Now that all the information necessary to drive the robot has been set, let's run the robot. If vibration occurs because the set maximum speed is too high, reset the maximum speed empirically, and if it is found that no problems such as vibration occur, let the robot perform the actual work. However, if the above In this method, the work after setting the start and end points of the tip of the robot hand.

すなわち、ハンド先端の速度・加速度の設定が試行錯誤
に頼ることになる。一般に最高速度はロボット先端に把
持する作業対象物の重量が大きくなると、モータに作用
するトルクが増大するため、小さく設定することが必要
である。また、第2図に示すようにロボットのアームが
伸びている状態と縮んでいる状態で、同一先端速度に必
要となるモータの駆動トルクが変化する。そのほか、ロ
ボット先端の位置が同じであっても、その移動方向によ
ってもモータの駆動トルクは変化する。このようにロボ
ットのモータに作用する駆動トルクは、先端把握物の重
量、ロボットハンドの先端位置及びその移動方向により
大きく変化し、最高速度の設定を行なうには数多くの試
行回数を必要とする。
In other words, setting the speed and acceleration of the tip of the hand relies on trial and error. In general, the maximum speed needs to be set low because as the weight of the workpiece gripped at the tip of the robot increases, the torque acting on the motor increases. Further, as shown in FIG. 2, the motor drive torque required for the same tip speed changes depending on whether the robot arm is extended or retracted. In addition, even if the position of the robot tip remains the same, the driving torque of the motor changes depending on the direction of movement. As described above, the driving torque acting on the robot motor varies greatly depending on the weight of the object to be grasped at the tip, the position of the tip of the robot hand, and the direction of movement thereof, and many trials are required to set the maximum speed.

最高速度の設定が大きすぎてモータの仕様以上の駆動ト
ルクが作用した場合には振動などが発生し、最高速度を
小さく再設定しなくてはならないことが判断できる。し
かし、最高速度を小さく設定しすぎ、モータを非常に軽
負荷状態で使用している場合には、どれだけの余裕があ
るか判断できないため、そのまま使用するか、又は再設
定することになる。そのまま軽負荷状態で使用すること
はハンドリング時間が長くなり、再設定すると教示に要
する時間が長くなる。
If the maximum speed is set too high and a drive torque exceeding the motor specifications is applied, vibrations will occur and it can be determined that the maximum speed must be reset to a lower value. However, if the maximum speed is set too low and the motor is used under a very light load, it is not possible to determine how much margin there is, and the motor must be used as is or reset. If the device is used as it is under a light load condition, handling time will be longer, and if the device is reset, the time required for teaching will be longer.

発明の目的 本発明は上記従来の欠点を解消するものであり、産業用
ロボットの教示に要する時間を短縮すると共に、モータ
の最大能力か発揮できるよう、ロボットハンドの最大速
度、加速度を自動設定する産業用ロボットの教示方法を
提供するものである。
OBJECT OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks, and reduces the time required to teach an industrial robot, and automatically sets the maximum speed and acceleration of the robot hand so that the motor can utilize its maximum capacity. This provides a teaching method for industrial robots.

発明の構成 本発明は産業用ロボットの教示データであるロボットハ
ンド先端の把持対象物重量と、始点と終点設定情報及び
その始点・終点間の直線又は円弧補間情報に基づき、産
業用ロボットのコントローラに構築された産業用ロボッ
トの動力学モデルを用いて産業用ロボットのモータに作
用する駆動トルクをある設定されたロボットハンド先端
の速度と加速度で計算し、モータの回転角速度と駆動ト
ルクをモータの基本特性値と比較することKよシ、ハン
ド先端の速度と加速度を自動設定する産業用ロボットの
教示方法で1、産業用ロボットの教示作業時間を大幅に
短縮するという特有の効果を有している。
Structure of the Invention The present invention provides a controller for an industrial robot based on the weight of the object to be grasped at the tip of the robot hand, which is teaching data for the industrial robot, information on starting and ending points, and linear or circular interpolation information between the starting and ending points. Using the constructed dynamic model of the industrial robot, the driving torque acting on the motor of the industrial robot is calculated at a certain set speed and acceleration of the tip of the robot hand, and the rotational angular velocity and driving torque of the motor are calculated based on the basics of the motor. Compared to the characteristic values, this method of teaching industrial robots automatically sets the speed and acceleration of the tip of the hand. 1. It has the unique effect of significantly shortening the teaching time of industrial robots. .

実施例の説明 以下に本発明の方法を第3図のフローチャートに基づい
て説明する。教示作業はロボット・・ンドの把持物重量
を入力した後口ボットノ・ンド始点位置と中間位置を経
由して終点位置を手動入力し、続いて、始点と終点間を
直線又は円弧などの補間曲線により結合し、ロボット・
・ンドの移動軌跡を設定する。産業用ロボットのコント
ローラは、手動入力された移動軌跡データに基づき、ロ
ボットの動力学モデルを使用し、モータに作用する駆動
トルク、モータ回転数を計算する。この値をモータによ
シ決まるトルク−速度特性曲線と比較し、モータの性能
が最大に発揮できるように、ロボットハンド先端の速度
と加速度を自動設定する。ロボットハンドの移動軌道と
その移動速度・加速度情報が全て設定を完了したので教
示作業を終え、産業用ロボッ)K実作業を行なわせる。
DESCRIPTION OF THE EMBODIMENTS The method of the present invention will be explained below based on the flowchart of FIG. The teaching work involves inputting the weight of the object to be held by the robot, manually inputting the end point position via the robot's starting point and intermediate position, and then drawing an interpolation curve such as a straight line or circular arc between the starting point and the ending point. By combining robots and
・Set the movement trajectory of the hand. The controller of the industrial robot uses a dynamic model of the robot to calculate the drive torque acting on the motor and the motor rotation speed based on manually input movement trajectory data. This value is compared with the torque-speed characteristic curve determined by the motor, and the speed and acceleration of the tip of the robot hand are automatically set to maximize the performance of the motor. Since the movement trajectory of the robot hand and its movement speed/acceleration information have all been set, the teaching work is completed and the industrial robot ()K is made to perform actual work.

以上のような教示方法について、以下に速度・加速度の
自動設定アルゴリズムを説明する。
Regarding the above-mentioned teaching method, an algorithm for automatically setting speed and acceleration will be explained below.

まず、産業用ロボットのコントローラは教示データを動
特性計算ルーチンに送られる。動特性計算ルーチンはロ
ボット関節に作用するトルクや回転角速度などの動特性
を計算する機能を有している。関節に作用するトルクは
減速比を考慮することによシモータの駆動トルクと回転
数に変換される。ロボットハンド先端の速度と加速度の
自動設定方法は次の2つのステップによ構成る。まず、
ある速度と加速度条件で教示軌跡を運動するために必要
なモータの駆動トルクとモータ回転数を計算する。第4
図はこの計算結果をグラフ表示した図である。負の傾き
を有する破線部分はモータの特性曲線を示すもので、モ
ータの回転数が増大するにつれてモータの発生駆動トル
クは減少していく。横軸に垂直な硬線はモータに負荷す
ることのできる電流上限値を示している。従って、モー
タの使用できる特性範囲は図中0−1−2−3−0で囲
まれた台形領域である。実線は動特性計算結果であり、
ムl B +・・・・・・Fは第2図に示す各位置での
特性値を示している。
First, the industrial robot controller sends teaching data to the dynamic characteristic calculation routine. The dynamic characteristic calculation routine has the function of calculating dynamic characteristics such as torque and rotational angular velocity acting on robot joints. The torque acting on the joint is converted into the drive torque and rotational speed of the shimmotor by considering the reduction ratio. The method for automatically setting the speed and acceleration of the tip of the robot hand consists of the following two steps. first,
Calculate the motor drive torque and motor rotation speed required to move along the taught trajectory under certain speed and acceleration conditions. Fourth
The figure is a graphical representation of the calculation results. The dashed line portion with a negative slope shows the characteristic curve of the motor, and as the rotational speed of the motor increases, the drive torque generated by the motor decreases. The hard line perpendicular to the horizontal axis indicates the upper limit of the current that can be loaded on the motor. Therefore, the usable characteristic range of the motor is a trapezoidal area surrounded by 0-1-2-3-0 in the figure. The solid line is the dynamic characteristic calculation result,
Mul B+...F indicates the characteristic value at each position shown in FIG.

第2ステツプはロボットハンド先端の速度・加速度の自
動設定である。第4図において、モータの使用できる特
性範囲は図中0−1−2−3−〇で囲まれた台形領域で
らるから、実線で示される特性において点Zが使用不可
領域に入っている。
The second step is automatic setting of the speed and acceleration of the tip of the robot hand. In Figure 4, the usable characteristic range of the motor is the trapezoidal area surrounded by 0-1-2-3-○ in the figure, so point Z is in the unusable area in the characteristic shown by the solid line. .

点Eをモータの使用できる領域まで下げる方法としては
、ロボットハンド先端の速度を下げる方法と加速度を下
げる方法がある。最適条件を設定するアルゴリズムとし
て次に示す関節駆動トルクとハンド先端速度及び加速度
の関係を用いる。駆動トルクはハンド先端の速度の2乗
に比例し、ハンド先端の加速度に比例する。過負荷点X
が減速・停止動作時に発生したのであれば、速度を小さ
くするよりも加速度を小さくする。なぜなら、減速・停
止動作時に過負荷となると残留振動の原因になるからで
ある。第4図では、軌跡上の全ての点に対してモータ特
性曲線と比較を行なっているが、簡易的には加減速時に
おいて速度が零から立上がった瞬間と零に減速した瞬間
及び定速度に達した瞬間の4点について横材をし、トル
クと先端速度及び加速度の比例関係を用いて、速度・加
速度の自動設定を行なう。
Methods for lowering the point E to a range where the motor can be used include a method of lowering the speed of the tip of the robot hand and a method of lowering the acceleration. The following relationship between joint drive torque, hand tip speed, and acceleration is used as an algorithm for setting optimal conditions. The driving torque is proportional to the square of the speed of the tip of the hand, and proportional to the acceleration of the tip of the hand. Overload point X
If this occurs during deceleration or stopping, reduce the acceleration rather than reducing the speed. This is because overload during deceleration and stopping operations causes residual vibration. In Figure 4, all points on the trajectory are compared with the motor characteristic curve, but in simple terms, during acceleration/deceleration, the moment the speed rises from zero, the moment it decelerates to zero, and the constant speed. The cross members are set at the four points at the moment when , and the speed and acceleration are automatically set using the proportional relationship between torque, tip speed, and acceleration.

以上のように教示データであるロボットハンド先端の速
度・加速rを自動設定すると、従来は試行錯誤的に決め
ていた作業が短時間で遂行でき、更に、モータ効率を最
大に利用することができる。
By automatically setting the speed and acceleration r of the tip of the robot hand, which are teaching data, as described above, tasks that were previously determined by trial and error can be accomplished in a short time, and furthermore, motor efficiency can be utilized to the maximum. .

発明の効果 以上のように本発明では、産業用ロボットの教示方法と
して、ロボットの動力学モデルの計算結果よシ求めたモ
ータ駆動トルク、回転数に基づき、ロボットハンド先端
の速度・加速度を自動決定することによシ、作業教示時
間の大幅な短縮を図ることができ、その実用的効果は大
なるものがある。
Effects of the Invention As described above, in the present invention, as a teaching method for industrial robots, the speed and acceleration of the tip of the robot hand are automatically determined based on the motor drive torque and rotation speed obtained from the calculation results of the robot's dynamic model. By doing so, it is possible to significantly shorten the work teaching time, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の教示方法を示すフローチャート図、第2
図は産業用ロボット動作時の速度、駆動トルクの変化を
示す説明図、第3図は本発明による教示方法を示すフロ
ーチャート図、第4図はロボットハンド先端の速度、加
速度を自動設定する方法を説明するための説明図である
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 CI■「D 第4図 モーグ、%E、!)ルう7
Figure 1 is a flowchart showing the conventional teaching method;
The figure is an explanatory diagram showing changes in speed and drive torque during operation of an industrial robot, Figure 3 is a flowchart diagram showing the teaching method according to the present invention, and Figure 4 is a diagram showing a method for automatically setting the speed and acceleration of the tip of the robot hand. It is an explanatory diagram for explanation. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 CI ■ "D Figure 4 Moog,%E,!) Ru7

Claims (1)

【特許請求の範囲】[Claims] 産業用ロボットの教示データとして、ロボットハンド先
端の把握対象物重量と、始点と終点位置の設定情報及び
その補間情報に基づき、産業用ロボットのコントローラ
に内蔵されたロボットの動力学モデルを用いて、産業用
ロボットのモータに作用する駆動トルクとモータ回転数
をある設定されたロボットハンド先端の速度と加速度に
対して計算し、モータ基本特性値と比較することにより
、ロボットハンド先端の速度と加速度を自動設定する産
業用ロボットの教示方法。
The teaching data for the industrial robot is based on the weight of the object to be grasped at the tip of the robot hand, the setting information of the starting point and ending point position, and its interpolation information, and the dynamic model of the robot built into the controller of the industrial robot is used. The speed and acceleration of the robot hand tip can be calculated by calculating the drive torque and motor rotation speed that act on the motor of an industrial robot for a certain set speed and acceleration of the robot hand tip, and comparing them with the motor basic characteristic values. A teaching method for automatically setting industrial robots.
JP23553984A 1984-11-08 1984-11-08 Teaching method of industrial robot Pending JPS61114317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23553984A JPS61114317A (en) 1984-11-08 1984-11-08 Teaching method of industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23553984A JPS61114317A (en) 1984-11-08 1984-11-08 Teaching method of industrial robot

Publications (1)

Publication Number Publication Date
JPS61114317A true JPS61114317A (en) 1986-06-02

Family

ID=16987475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23553984A Pending JPS61114317A (en) 1984-11-08 1984-11-08 Teaching method of industrial robot

Country Status (1)

Country Link
JP (1) JPS61114317A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647105A (en) * 1987-06-30 1989-01-11 Fanuc Ltd Optimum movement control system for industrial articulated robot
JPS6448109A (en) * 1987-07-17 1989-02-22 Cincinnati Milacron Inc Moving of tool along curved path
WO1989004514A1 (en) * 1987-10-30 1989-05-18 Fanuc Ltd Motor driving method in industrial robot
WO1989006182A1 (en) * 1988-01-09 1989-07-13 Fanuc Ltd Method of confirming the operation ability of an industrial robot and an apparatus therefor
JP2012240142A (en) * 2011-05-17 2012-12-10 Fanuc Ltd Spot welding robot provided with learning control function
US8886359B2 (en) 2011-05-17 2014-11-11 Fanuc Corporation Robot and spot welding robot with learning control function
CN113510713A (en) * 2021-09-09 2021-10-19 深圳市优必选科技股份有限公司 Control method and device for robot cooperative transportation and computer equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647105A (en) * 1987-06-30 1989-01-11 Fanuc Ltd Optimum movement control system for industrial articulated robot
WO1989000305A1 (en) * 1987-06-30 1989-01-12 Fanuc Ltd Method of optimizing operation of articulated industrial robot
JPS6448109A (en) * 1987-07-17 1989-02-22 Cincinnati Milacron Inc Moving of tool along curved path
WO1989004514A1 (en) * 1987-10-30 1989-05-18 Fanuc Ltd Motor driving method in industrial robot
WO1989006182A1 (en) * 1988-01-09 1989-07-13 Fanuc Ltd Method of confirming the operation ability of an industrial robot and an apparatus therefor
US4970448A (en) * 1988-01-09 1990-11-13 Fanuc Ltd. Method of and apparatus for ascertaining motion abilities of industrial robot
JP2012240142A (en) * 2011-05-17 2012-12-10 Fanuc Ltd Spot welding robot provided with learning control function
US8886359B2 (en) 2011-05-17 2014-11-11 Fanuc Corporation Robot and spot welding robot with learning control function
CN113510713A (en) * 2021-09-09 2021-10-19 深圳市优必选科技股份有限公司 Control method and device for robot cooperative transportation and computer equipment
CN113510713B (en) * 2021-09-09 2021-12-31 深圳市优必选科技股份有限公司 Control method and device for robot cooperative transportation and computer equipment

Similar Documents

Publication Publication Date Title
JP2604698B2 (en) Angular acceleration control method
US6552507B2 (en) Motor velocity and acceleration determining method, acceleration/deceleration generating method, acceleration/deceleration controlling method, acceleration/deceleration controlling apparatus and motor controlling apparatus
JP2001525734A (en) Method and apparatus for directly commanding automatic machines
JP4423719B2 (en) Robot and robot control method
JPS61114317A (en) Teaching method of industrial robot
JP3766484B2 (en) Automatic calculation method of load weight and load center of gravity position of articulated robot
JPH01164280A (en) Acceleration or deceleration controlling system
EP0333867A1 (en) Robot controller
JPH0991025A (en) Method for controlling robot in shortest time considering operation duty
JP3125946B2 (en) Robot control method
JPH1153021A (en) Acceleration and deceleration pattern generating method for industrial robot
CN113635306B (en) Robot emergency braking method, robot and storage medium
JPH0392911A (en) Robot control method for sliding mode control
JPS6231406A (en) Positioning controller for articulated robot
JP2838428B2 (en) Robot control method
JPS61159390A (en) Method of controlling industrial robot
JP2918269B2 (en) Robot movement control method
JP2689748B2 (en) Robot control method
JP3348423B2 (en) How to determine the load direction of the robot arm
KR100198148B1 (en) Method of controlling innertia in a six axial vertical multi-knuckle robot arm
JPS6280706A (en) Method for controlling position of robot
JPH09300260A (en) Motor load reducing method for industrial robot
JPH11184512A (en) Control gain determining method for robot
JP3154268B2 (en) Robot positioning method and positioning device
JPH081561A (en) Industrial robot control method