WO1986003784A1 - Method of manufacturing unidirectional silicon steel slab having excellent surface and magnetic properties - Google Patents

Method of manufacturing unidirectional silicon steel slab having excellent surface and magnetic properties Download PDF

Info

Publication number
WO1986003784A1
WO1986003784A1 PCT/JP1984/000599 JP8400599W WO8603784A1 WO 1986003784 A1 WO1986003784 A1 WO 1986003784A1 JP 8400599 W JP8400599 W JP 8400599W WO 8603784 A1 WO8603784 A1 WO 8603784A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon steel
magnetic properties
rolling
annealing
slab
Prior art date
Application number
PCT/JP1984/000599
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Inokuchi
Shigeko Ikeda
Yoh Ito
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP58109177A external-priority patent/JPS602624A/en
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to PCT/JP1984/000599 priority Critical patent/WO1986003784A1/en
Priority to EP85900193A priority patent/EP0205619B1/en
Priority to DE8585900193T priority patent/DE3484960D1/en
Publication of WO1986003784A1 publication Critical patent/WO1986003784A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1227Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling

Definitions

  • the present invention relates to a method for producing a unidirectional silicon steel sheet having improved surface properties and magnetic properties in high silicon steel having a Si content of 3.1 wt% or more (hereinafter simply referred to as%). About the method.
  • a unidirectional electromagnetic plate mainly used as an iron plate for a transformer has a magnetization characteristic of B,. It is required to have a high magnetic flux density represented by the value and a low iron loss represented by the W17 / 5Q value, and also to have excellent surface properties of the product steel sheet. I have.
  • the original purpose of having Si in a grain-oriented silicon steel sheet is to reduce the eddy current loss by increasing the electrical resistance of the material, that is, to reduce the iron loss value.
  • Increasing the Si content is extremely effective in reducing the iron loss value.
  • the Si content is increased, there is a problem that the surface properties of the steel sheet are deteriorated. Ie
  • the invention of the present invention is based on the above-mentioned present situation, and a unidirectional silicon steel sheet having extremely excellent surface properties of a steel sheet and low iron loss is provided.
  • the purpose is to propose
  • a silicon steel material with a high Si content of 3.1 to 4.5% is essentially a material suitable for obtaining products with high magnetic flux density and low iron loss.
  • a small amount of Mo was added to the material and the slab before hot rolling was performed.
  • the inventors of the present invention have sought to obtain a unidirectional silicon steel sheet with high magnetic flux density and low iron loss with excellent surface properties even with a high Si content by devising the heat treatment of steel. It is.
  • the gist of the present invention is as follows. That is, in the present invention, C: 0.01 to 08%, Si: 3.1 to 4.5%, sol Ai: 0.005 to 0.06%> ⁇ : 0.003 to 0.1% and S One or both of Se and the sum of the two: Material for silicon steel sheet with a composition of 0.005 to 0.1%.
  • the slab weight is reduced to 1270 or more at a heating temperature of 1270 or more, and before or after heat treatment.
  • 2.7 to 5.0 % Followed by hot rolling, followed by continuous annealing in a temperature range of 950 to 1200 before final cold rolling, followed by rapid cooling, and then in a temperature range of 250 to 400.
  • the slab (A) has good magnetic properties and surface properties with a heating temperature of 1270 or more and a tanning of 2.7% or more. Particularly, when the heating temperature is in the range of 1300 to 1400'C and the bakeout is in the range of 3.0 to 4.4%. Is 1.94T or more,
  • a ⁇ Not only does it effectively act as an inhibitor together with the deposition phase, it also occurs when heating at high Si and high temperatures.
  • the heating temperature is 1150 to 1250 c in consideration of the economics associated with heat.
  • C is for fine and uniform structure control during hot rolling or cold rolling.
  • Si is an extremely effective element for increasing the electrical resistance of the material and reducing eddy current loss, so that the present invention contains 3.1% or more, but if the Si content exceeds 4.5%, The amount of Si is 3.1 because brittle cracks are likely to occur during cold rolling.
  • the amount of Si in conventional A-oriented silicon steel sheet is 2.83.0%, and as mentioned above, the surface properties of the product are significantly deteriorated when the amount of Si is increased and high-temperature heating is performed.
  • the addition of a small amount of Mo according to this method enabled prevention of surface defects even at a high Si content of 3.14.5%.
  • sol A To develop secondary recrystallization by the strong cold rolling method with a cold rolling reduction of 80 95%, sol A must be occupied in the range of 0.005 0.06%. This is because if A is less than 0.005%, the amount of A £ ⁇ fine deposits as an inhibitor will be insufficient, and secondary recrystallized grains in the ⁇ 111 ⁇ ⁇ 001> orientation will be insufficient. This is because the development of secondary recrystallized grains in the ⁇ 110 ⁇ ⁇ 001> orientation becomes worse on the other hand, when it exceeds 0.06%.
  • Mo must be in the range of 0.003 to 0.1%.
  • the present invention is not limited to other steels normally added to silicon steel.
  • when ⁇ is contained in ⁇ , it combines with S or Se
  • OMPI Solid solution becomes difficult, or the dispersed phase formed during hot rolling tends to become coarse, and the optimal size distribution as an inhibitor is impaired, resulting in deterioration of magnetic properties.
  • the content is preferably about 0.02 to 2%.
  • one or two of Sb and B as known primary recrystallized grain growth inhibitors that may be added to ordinary silicon dioxide are contained in a total amount of about 0.03% or less. It is acceptable to contain trace amounts of common unavoidable elements such as Cr, Ti, V, Zr, Nb, Ta, Co, Ni, Sn, P and As. .
  • the silicon slab obtained as described above is heated by a known method and then subjected to hot rolling.
  • the thickness of the hot rolled sheet obtained by this hot rolling differs depending on the rolling reduction in the subsequent cold rolling process, but is usually about 2 to 5 mm.
  • the hot-rolled sheet which has been hot-rolled as described above, is placed in a temperature range of 950 to 1200'c for about 30 seconds to 30 minutes in order to homogenize its structure and achieve a sufficient solid solution of A & N.
  • quenching treatment is performed. This quenching treatment after baking is necessary to form a fine precipitate phase of A & N, and it is usually desirable to quench from the temperature range of 850 to 1050 ° C to 400 to the following temperature.
  • the quenched hot-rolled sheet described above is subjected to strong cold rolling at a rolling reduction of 80 to 95% to reduce the product thickness. It is necessary to perform warm rolling in the temperature range of 200 to 400 during the cold rolling process.
  • this warm rolling as disclosed in Japanese Patent Publication No. 54-13846, solid solution C and N in silicon steel are scattered to defects formed by warm rolling, and Effectively for forming a primary recrystallization texture, which is advantageous for secondary recrystallization, by changing the deformation mechanism due to the dislocation fixation effect due to the formation of the atmosphere of the trell or the dislocation movement disturbed by the micro-projections. Contribute.
  • the cold rolled sheet having a final thickness of about 0.1 to 0.5 mm in this way is subjected to decarburization annealing which also serves as primary recrystallization in a temperature range of about 750 to 870.
  • This decarburization annealing may be performed for a few minutes in a wet hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen and nitrogen at a dew point of about +30 to 65 ° C.
  • the steel sheet after decarburization annealing is coated with an annealing separator containing gO as a main component, and is subjected to finish annealing to obtain ⁇ 110 ⁇ ⁇ 0 Develop secondary recrystallized grains of 0 1> orientation. This finish baked
  • the specific conditions of the dulling may be the same as those conventionally known, but usually the temperature is raised from 1150 to 1250 at a heating rate of 3 to 50 / h at a heating rate of 3/50.
  • Figure 1 a and b show slab (A) and slab, respectively.
  • the magnetic properties and surface properties of the obtained product were as follows.
  • a quenching treatment was applied, followed by a warm rolling at 320, to obtain a final cold-rolled sheet having a thickness of 0.3 mm.
  • decarburize in wet hydrogen at 840 and perform primary recrystallization annealing then apply an annealing separator mainly composed of MgO, and raise the temperature from 800 to 1150 at 10 ° C / h.
  • a purification calcination of 120 was performed in hydrogen.
  • the magnetic properties and surface properties of the obtained product were as follows.
  • a continuous slab containing 0.023% of Sb, 0.020% of Se and 0.073% of Mn is heat-annealed at 1340'C until the tanning becomes 3.2%, and then hot-rolled to 2.3mm thickness Hot rolled sheet.
  • a quenching treatment was performed, followed by a strong cold rolling of 87% to give a 0.3-thick final cold-rolled sheet.
  • warm rolling at 280 was performed.
  • decarburization in wet hydrogen at 840 primary recrystallization annealing was applied, then an annealing separator mainly composed of MgO was applied, and the temperature was raised from 850 to 1120 at 15 / h.
  • hydrogen was subjected to a 1230 'c, 4 h purification annealing in hydrogen.
  • the magnetic properties and surface properties of the obtained product were as follows.
  • Magnetic properties. 1.95T, W,, / 50 : 0.98 / kg Good surface properties and industrial applicability
  • excellent magnetic properties ie, high magnetic flux density and low iron loss, unidirectional silicon alloy.
  • the plate can be manufactured advantageously without deteriorating its surface properties.For example, when the plate is used as an iron core for a transformer, its size and energy saving can be reduced. Great for realization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

The material includes a great amount of Si, 3.1 to 4.5%. As an inhibitor, a mixture of a small amount of A and a trace of S or Se is employed, together with Mo. Moreover, a slab heating treatment is carried out at a temperature higher than 1,279o C until the scale loss at the time of heating becomes 2.7 to 5.0%, whereby the inhibitor is satisfactorily dissociated and formed into a solid solution. By so doing, the effect of suppressing the growth of primary recrystallization grains at the time of secondary recrystallization annealing is remarkably intensified, and the development of the secondary recrystallization grains of the AD110 BD <001> orientation is facilitated. Thus, a secondary recrystallization texture is formed which is intensely oriented in the AD110 BD <001> direction, thereby attaining increased magnetic flux density and reduced iron loss. Also, the cracking in the hot rolling step after the heating treatment is effectively prevented, thereby realizing improvements in the surface and magnetic properties.

Description

明 細 書 表面性状および磁気特性に優れた一方向性  Description Unidirectionality with excellent surface properties and magnetic properties
珪素鋼板の製造方法 技 術 分 野 この発明は、 Siを 3.1 重量% (以下単に%で示す) 以 上舍有する高珪素鐧における表面性状および磁気特性の 改善を図った一方向性珪素鋼板の製造方法に関する。 背 景 技 術 周知の如く 、 主に変圧器用鉄板と して使用される一方 向性電磁鐧板は、 磁化特性として B ,。値で代表される磁 束密度が高いこ と、 および W17/5 Q 値で代表される鉄損 が低いこ と、 さ らには製品鋼板の表面性状に優れている こ とが要求されている。 ところで上記した如き一方向性 珪素鋼板の磁気特性を向上させるためには、 製品におけ る 2次再結晶粒の < 0 0 1 >軸を圧延方向に高度に揃え る必要がある。 この目的のため今までにおびただしい改 良がなされ、 今日では B i。値が 1.89 T (テス ラ ) を超え かつ W 17/5。 値が 1.05W/kg以下の低鉄損を有する一方向 性珪素鐧板を工業的に製造する こ とが可能となっている しかしながら最近では省エネルギーの観点から変圧器な TECHNICAL FIELD The present invention relates to a method for producing a unidirectional silicon steel sheet having improved surface properties and magnetic properties in high silicon steel having a Si content of 3.1 wt% or more (hereinafter simply referred to as%). About the method. BACKGROUND ART As is well known, a unidirectional electromagnetic plate mainly used as an iron plate for a transformer has a magnetization characteristic of B,. It is required to have a high magnetic flux density represented by the value and a low iron loss represented by the W17 / 5Q value, and also to have excellent surface properties of the product steel sheet. I have. By the way, in order to improve the magnetic properties of the unidirectional silicon steel sheet as described above, the <001> axis of the secondary recrystallized grains in the product must be highly aligned in the rolling direction. Numerous improvements have been made for this purpose, today Bi. Value exceeds 1.89 T ( tesla ) and W 17/5 . It has become possible to industrially produce unidirectional silicon steel sheets with low iron loss of 1.05 W / kg or less.
WIPO どの電気機器に対しては、 従来以上に電力損失を少なく することが強く要請されるようになり、 それに伴って変 圧器などの鉄芯材料である一方向性珪素鋼板に対しても より一層鉄損値の低いものが要求されるようになってい る。 また製品の表面性状についても表面疵等の表面欠陥 を減少させるとともに良好な絶緣被膜を形成させること が要求されている。 WIPO There has been a strong demand for any electrical equipment to reduce power loss more than ever before, and with this trend, even for unidirectional silicon steel sheets, which are iron core materials for transformers and the like, more iron is required. Low loss values are now required. Also, regarding the surface properties of products, it is required to reduce surface defects such as surface flaws and to form a good insulating film.
ところで一方向性珪素鋼板において S iを舍有させる本 来の目的は、 素材の電気抵抗を高めて渦電流損を小さ く すること、 すなわち鉄損値を低滅させることにあり、 し たがって S i含有量を増大させることが鉄損値の低減に極 めて有効である。 しかしながら S i含有量を高めた場合に は、 鋼板の表面性状を劣化させる問題がある。 すなわち By the way, the original purpose of having Si in a grain-oriented silicon steel sheet is to reduce the eddy current loss by increasing the electrical resistance of the material, that is, to reduce the iron loss value. Increasing the Si content is extremely effective in reducing the iron loss value. However, when the Si content is increased, there is a problem that the surface properties of the steel sheet are deteriorated. Ie
、 一般にイ ン ヒ ビターとして A J2 N折出相を利用した一 方向性珪素鐧板の製造方法においては、 イ ン ヒ ビターと して A Nと共存させる M n Sを解離固溶させるために 熱間圧延前のスラブ加熱を通常の鐧の場合より も高温で 行う必要があるが、 このよ う な高温でのス ラブ加熱を施 せば、 スラブ加熱時あるいは熱間圧延時に熱間割れを生 じて製品に表面欠陥が発生し易く 、 と く に S iの含有量が 3 . 0 %を趦えると、 熱間加工性が急激に劣化することも 相まって製品の表面性状は著し く 劣化する。 したがって 従来は、 表面性状の良好な製品を得るためには S iを 3 . 0 %以下に抑えることを余儀な く され、 それ以上 S i含有量 を増加させて鉄損値の低減を図ることは実際上は困難と されていた 発 明 の 開 不 この発明は上に述べた現状を背景と して、 鋼板の表面 性状に極めて優れしかも鉄損が低い一方向性珪素鋼板を. きわめて安定した工程で製造し得る方法を提案する こ と を目的とする ものである。 In general, in a method for producing a unidirectional silicon steel sheet using an AJ2N deposition phase as an inhibitor, heat is required to dissolve and dissolve MnS coexisting with AN as an inhibitor. It is necessary to heat the slab before hot rolling at a higher temperature than in the case of normal 鐧. However, if slab heating is performed at such a high temperature, hot cracking will occur during slab heating or hot rolling. In particular, when the content of Si exceeds 3.0%, the hot workability rapidly deteriorates, and the surface properties of the product deteriorate significantly. I do. Therefore, in the past, in order to obtain a product with good surface properties, it was necessary to suppress Si to 3.0% or less, and to further increase the Si content to reduce the iron loss value Is actually difficult DISCLOSURE OF THE INVENTION The invention of the present invention is based on the above-mentioned present situation, and a unidirectional silicon steel sheet having extremely excellent surface properties of a steel sheet and low iron loss is provided. The purpose is to propose
さて発明者らは、 A N折出相を利用した場合 Si含有 量の高い 3.1 〜4.5 %の珪素鋼素材が本質的に高磁束密 度で低鉄損の製品を得るに適した材料である こ とに着目 し、 その場合の欠点であった表面性状の劣悪化を解決す る手段を見出すべ く 鋭意実験 , 研究を重ねた結果、 素材 中に少量の Moを添加しかつ熱延前におけるスラブの加熱 処理に工夫を加える こ とによって高 Si含有でも表面性状 に優れた高磁束密度 · 低鉄損の一方向性珪素鋼板が得ら れる こ とを究明し、 この発明を完成するに至ったのであ る。  Now, the inventor of the present invention has found that when using the AN deposition phase, a silicon steel material with a high Si content of 3.1 to 4.5% is essentially a material suitable for obtaining products with high magnetic flux density and low iron loss. In order to find a means to solve the problem of poor surface quality, which was a drawback in that case, as a result of intensive experiments and research, it was found that a small amount of Mo was added to the material and the slab before hot rolling was performed. The inventors of the present invention have sought to obtain a unidirectional silicon steel sheet with high magnetic flux density and low iron loss with excellent surface properties even with a high Si content by devising the heat treatment of steel. It is.
さてこの発明の要旨とする ところは次のとおり である すなわちこの発明は、 C : 0.01〜 08%, Si: 3.1 〜 4.5 % , sol A i : 0.005 〜0.06%> ίΐο: 0.003〜 0.1 % ならびに Sおよび Seのう ちいずれか一種または二種合計 : 0.005 〜0.1 %を舍有する組成になる珪素鋼板用素材 スラブに、 1270で以上の加熱温度でしかも焼べりすなわ ち加熱処理前後におけるスラブ重量減少率が 2.7 〜5.0 %となる加熱処理を施したのち、 熱間圧延し、 ついで最 終冷延前に 950 〜 1200での温度範囲で連繞焼鈍を施した のち急冷してから、 250 〜400 での温度範囲での温間圧 延を舍む圧下率 80〜95%の冷間圧延を施して最終板厚と したのち、 常法にしたがって脱炭を兼ねた 1次再結晶焼 鈍および 2次再結晶を含む仕上げ娆钝を施すことを特徴 とする、 表面性状および磁気特性に優れた一方向性珪素 鐧板の製造方法である。 The gist of the present invention is as follows. That is, in the present invention, C: 0.01 to 08%, Si: 3.1 to 4.5%, sol Ai: 0.005 to 0.06%> ίΐο: 0.003 to 0.1% and S One or both of Se and the sum of the two: Material for silicon steel sheet with a composition of 0.005 to 0.1%. The slab weight is reduced to 1270 or more at a heating temperature of 1270 or more, and before or after heat treatment. 2.7 to 5.0 %, Followed by hot rolling, followed by continuous annealing in a temperature range of 950 to 1200 before final cold rolling, followed by rapid cooling, and then in a temperature range of 250 to 400. Including cold rolling at a reduction rate of 80 to 95% to achieve the final thickness, followed by primary recrystallization annealing and secondary recrystallization combined with decarburization in the usual way A method for producing a unidirectional silicon steel sheet having excellent surface properties and magnetic properties, which is characterized by applying a finish.
以下この発明を由来するに至った実験結果について説 明する。  Hereinafter, the experimental results that led to the present invention will be described.
C : 0.049 %, Si :3.47 %, A £ : 0.030 % ,  C: 0.049%, Si: 3.47%, A £: 0.030%,
Mo:0.016¾, Μη:0.078 %および S : 0.026 %を舍有する 組成になる鋼ス.ラブ(A) ならびに C :0.49 % , Si :3.42 % , A £ :0.029%, Μπ :0.076 %および S :0.025%を舍む 組成になる鋼スラブ(B) を、 1150 でから 1400 'Cまでの 範囲の種々の温度で加熱したのち熱間圧延を施して 2.3 の熱延板とし、 ついで 1150で で均一化連繞焼鈍処理を施 してから急冷し、 圧延途中で 250 ての温間圧延を含む約 87%の圧下率の強冷延を行って 0.3mm 厚の最終冷延板と し、 さらに 840 で の湿水素中で脱炭焼純後、 1200。cで箱 焼鈍による仕上げ焼鈍を施して一方向性珪素鐧板を製造 した。 Mo: 0.016¾, Μη: 0.078% and S: 0.026% steel slab (A) and C: 0.49%, Si: 3.42%, A £: 0.029%, Μπ: 0.076% and S : Steel slab (B) having a composition of 0.025% is heated at various temperatures ranging from 1150 to 1400'C, hot-rolled to 2.3 hot-rolled sheet, and then After uniform homogenous annealing, quenching is performed, and in the middle of rolling, a strong cold rolling of about 87%, including 250 warm rollings, is performed to produce a final cold-rolled sheet of 0.3 mm thickness. After decarburization baking in wet hydrogen at 840, 1200. In step c, the box was subjected to finish annealing by box annealing to produce a unidirectional silicon steel sheet.
得られた各鐧板について磁気特性および表面状況につ いて調べた結果を、 ス ラ ブの焼べり と加熱温度との関係 でプロ ッ 卜 して第 1図 a , bにそれぞれ示す。 第 1 図 a から明らかなよう に、 スラブ(A) は加熱温度 が 1270で以上、 焼べりが 2, 7 %以上で磁気特性 · 表面性 状共に良好である。 と く に加熱温度が 1300〜 1400 'Cの範 囲、 焼べりが 3.0 〜4.4 %の範囲で B ,。が 1.94T以上、 The magnetic properties and surface conditions of the obtained sheets were plotted in relation to the slab bake and heating temperature, and are shown in Figs. 1a and 1b, respectively. As is evident from Fig. 1a, the slab (A) has good magnetic properties and surface properties with a heating temperature of 1270 or more and a tanning of 2.7% or more. Particularly, when the heating temperature is in the range of 1300 to 1400'C and the bakeout is in the range of 3.0 to 4.4%. Is 1.94T or more,
W 17 S Q が 1.00W/kg以下の良好な磁気特性が得られる こ とが注目される。 一方スラブ(B) については、 同図わに 示したよう に 1300 'c以上の加熱温度、 焼べりが 3.2 %以 上において B ,。が 1.92T以上、 W 17/5。 が 1.05W/kg以下 の良好な特性が得られるが、 そのときの表面性状が劣悪 である こ とがわかる。 It is noteworthy that good magnetic properties with W 17 SQ of 1.00 W / kg or less can be obtained. On the other hand, as for the slab (B), as shown in the figure, at the heating temperature of 1300'c or more and the bake-up of 3.2% or more, B, But 1.92T or more, W 17/5 . It can be seen that good characteristics of 1.05 W / kg or less were obtained, but the surface properties at that time were poor.
また、 上掲のスラブ(A) および(B) にっき、 1300での 加熱温度で焼べりがそれぞれ 3.0 %および 3.2 %となる 加熱処理を施したときの高温衝撃試験後の粒界割れにつ いて述べたところ、 次のよう な結果が得られた。  In addition, regarding the slabs (A) and (B) shown above, the grain boundary cracks after the high-temperature impact test when the heat treatment was performed at 3.0% and 3.2% at the heating temperature of 1300, respectively. As stated above, the following results were obtained.
すなわち鐧中に Moを添加したスラブ(A) は表面割れが 全く 存在しな く 表面性状は良好であつたのに対し、 oを 添加しないスラブ(B) では表面割れが多発し、 この結果 は第 1 図に示した製品の表面性状についての結果とよ く 一致した。  In other words, the slab (A) to which Mo was added in (1) had no surface cracks and had good surface properties, whereas the slab (B) to which o was not added had many surface cracks. This was in good agreement with the results for the surface properties of the product shown in Fig. 1.
このよう に素材中に少量の Moを添加し、 かつスラブ加 熱を 1270 °c以上の温度で加熱時の焼べりが 2.7 %以上の 場合において、 磁気特性 · 表面性状が共に良好である こ とがわかる。 すなわち、 素材中への少量の ίΐο添加は、  In this way, when a small amount of Mo is added to the material and the slab heating is at a temperature of 1270 ° C or more and the shrinkage during heating is 2.7% or more, both the magnetic properties and surface properties are good. I understand. That is, a small amount of ίΐο addition to the material
A Ν折出相と共にィ ンヒビタ ーと しての役割を効果的 に発揮するするだけでな く 、 高 S iで高温加熱の場合に起 A Ν Not only does it effectively act as an inhibitor together with the deposition phase, it also occurs when heating at high Si and high temperatures.
O PI る表面性状劣悪化を解決することができるのである。 前 O PI This can solve the deterioration of the surface properties. Previous
者の Mo添加によるィ ンヒ ビタ一の増強に関しては、 特公 For the enhancement of inhibitor by addition of Mo
昭 57- 14737号公報において先に発明者等が提案した Moと In the Japanese Patent Publication No. 57-14737, Mo and
Sbと Seあるいは Sの複合添加によると同様のメ カ ニズム Similar mechanism by combining Sb with Se or S
すなわち少量の Moと A の複合添加により 1次結晶粒の In other words, the addition of a small amount of Mo and A
抑制効果が非常に強められ、 2次再結晶焼鈍時に { 1 1 The suppression effect is greatly enhanced, and {1 1
0 } < 0 0 1 >方位の 2次粒の発達に当たって顕著な効 Remarkable effect on the development of secondary grains in the 0} <0 0 1> orientation
果を発揮すると考えられる。 また後者の Mo添加による表 It is thought to show fruit. In addition, the latter table
面性状の劣悪化防止に関しては、 鐧扳表面あるいは表面 Regarding prevention of deterioration of surface properties,
近傍で硫化 Mo ( おそら く Mo2S3)化合物の微細折出物が優 In the vicinity, fine precipitates of Mo sulfide (probably Mo 2 S 3 ) compounds are excellent.
先的に折出することにより、 高 Siで高温加熱を行った場 By heating first with high Si
合でも表面欠陥を効果的に防止することができるのであ Surface defects can be effectively prevented.
ろう と考えられ.る。 It is thought.
なお従来の熱間圧延に先立つ加熱処理においては、 加  In the heat treatment prior to the conventional hot rolling,
熱に伴う経済性の点を考慮して加熱温度は 1150〜 1250 c The heating temperature is 1150 to 1250 c in consideration of the economics associated with heat.
程度、 また焼べり は 1.5 〜2.5 %程度としていた。 Degree and bake-out were about 1.5-2.5%.
以下こ の発明において、 素材ス ラブの基本成分を前記  Hereinafter, in this invention, the basic components of the material slab are
のとおりに限定した理由について説明する。 The reason for limiting as described above will be described.
C : 0.01〜0.08% C: 0.01-0.08%
Cは、 熱延あるいは冷延時に微細で均一な組織制御に  C is for fine and uniform structure control during hot rolling or cold rolling.
重要な役割りを果たす元素であるが、 0.08%を超えて多 An element that plays an important role, but exceeds 0.08%
く なると 2次再結晶焼鈍前の脱炭焼鈍に長時間を要し生 As the temperature increases, it takes a long time for decarburization annealing before secondary recrystallization annealing.
産性を低下させると共に、 脱炭も不充分となって磁気特 As well as lowering productivity, decarburization becomes insufficient and
性の劣化を生じ、 一方 0.01%未満では熱延集合組織制御 Deterioration of resistance, while less than 0.01% controls hot rolled texture
が困難となつて大きな伸長粒が形成されるため磁気特性 Magnetic properties due to the formation of large elongated grains
_ΟΜΡΙ jAt、 V/IPO ,^ϊ が劣化するので、 0.01 0.08 %の範囲に限定した。 _ΟΜΡΙ jAt, V / IPO, ^ ϊ Is degraded, so the range is limited to 0.01 0.08%.
Si:3.1 4.5 ¾ Si: 3.1 4.5 ¾
Siは、 前述のよう に素材の電気抵抗を高めて渦電流損 を減少させるのにきわめて有効な元素であるため、 この 発明では 3.1 %以上を含有させるが、 Si量が 4.5 %を超 える と冷延の際脆性割れが生じ易 く なるため Si量は 3.1 As described above, Si is an extremely effective element for increasing the electrical resistance of the material and reducing eddy current loss, so that the present invention contains 3.1% or more, but if the Si content exceeds 4.5%, The amount of Si is 3.1 because brittle cracks are likely to occur during cold rolling.
4.5 %の範囲内に限定した。 なお従来の舍 A 一方向 性珪素鋼板の Si量は 2.8 3.0 %であり、 Si量を増加さ せさ らに高温加熱を行う と製品の表面性状が著し く 劣化 する こ とは前述したとおりであるが、 この点この癸明に 従う少量の Mo添加により 3.1 4.5 %の高 Si含有量にお いても表面欠陥発生防止が可能となったのである。  Limited to a range of 4.5%. The amount of Si in conventional A-oriented silicon steel sheet is 2.83.0%, and as mentioned above, the surface properties of the product are significantly deteriorated when the amount of Si is increased and high-temperature heating is performed. However, in this regard, the addition of a small amount of Mo according to this method enabled prevention of surface defects even at a high Si content of 3.14.5%.
sol A & 0.005 0.06% sol A & 0.005 0.06%
Α は、 鋼中に含まれる と Nと結合して A Nの微細 圻出物を形成し、 強力なィ ン ヒ ビタ ーと して作用する。  When と is contained in steel, it combines with N to form fine particles of A N and acts as a strong inhibitor.
と く に冷延圧下率 80 95%の強冷延法によ つて二次再結 晶を発達させるためには sol A と して 0.005 0.06% の範囲で舍有させる必要がある。 という のは A が 0.005 %未満ではィ ン ヒ ビタ ーと しての A £ Ν微細折出物の圻 出量が不足し、 { 1 1 0 } < 0 0 1 >方位の二次再結晶 粒の発達が不充分となり 、 一方 0.06%を超える とかえつ て { 1 1 0 } < 0 0 1 >方位の 2 次再結晶粒の発達が悪 く なるからである。 In particular, to develop secondary recrystallization by the strong cold rolling method with a cold rolling reduction of 80 95%, sol A must be occupied in the range of 0.005 0.06%. This is because if A is less than 0.005%, the amount of A £ Ν fine deposits as an inhibitor will be insufficient, and secondary recrystallized grains in the {111} <001> orientation will be insufficient. This is because the development of secondary recrystallized grains in the {110} <001> orientation becomes worse on the other hand, when it exceeds 0.06%.
Sおよび Ζまたは Se: 0.005 0.1 %  S and Ζ or Se: 0.005 0.1%
S , は、 それぞれ MnS も し く は MnSeの分散折出相を  S, respectively, represent the dispersed precipitation phase of MnS or MnSe.
Α 形成して A & Nとともにィ ンヒ ビター効果を増進させる。 Α Form and enhance inhibitor effect with A & N.
Sおよび Seはそれぞれ単味でもまた複合添加した場合で S and Se can be used alone or in combination
も 0.005 %より も少ないと MnS および MnSeによるイ ンヒ Is less than 0.005%, the effect of MnS and MnSe
ビター効果が弱く 、 一方添加量が 0.1 %を超えると熱間 The bitter effect is weak, while the addition amount exceeds 0.1%
および冷間加工性が著しく劣化するので、 S , Seは 1種 S and Se are one type
または 2種合計で、 0.005 〜0.1 %の範囲とする必要が Or the total of the two must be in the range of 0.005 to 0.1%
ある。 is there.
Mo:0.003〜0.1 %  Mo: 0.003-0.1%
Moは、 0.003 %より少ないと、 1次再結晶粒の成長抑  If Mo is less than 0.003%, growth of primary recrystallized grains will be suppressed.
制効果が乏し く なると同時に鐧板表面性状の劣化を招き、 一方 0.1 %より多いと鐧扳表面性状の劣化防止効果に対 At the same time, the control effect becomes poor and the surface properties of the plate are deteriorated. On the other hand, if it exceeds 0.1%, the effect of preventing the deterioration of the surface properties is reduced.
しては有効であるものの、 熱間および冷間加工性の低下 Effective, but reduces hot and cold workability
および脱炭 * 1.次再結晶焼鈍における脱炭不足が生じ易 And decarburization * 1.
いため、 Moは 0.003 〜0.1 %の範囲内にする必要がある。 Therefore, Mo must be in the range of 0.003 to 0.1%.
以上基本成分の組成範囲を限定した理由について説明  The reasons for limiting the composition range of the basic components have been described above.
したが、 こ の発明は、 珪素鋼中に通常添加されるその他 However, the present invention is not limited to other steels normally added to silicon steel.
公知の元素の存在を妨げるものではない。 It does not prevent the presence of known elements.
たとえば ϋηは鐧中に含まれると Sあるいは Seと結合し  For example, when ϋη is contained in 鐧, it combines with S or Se
て、 nS, MnSe の微細折出物を形成し、 強力なィ ン ヒ ビ To form fine precipitates of nS and MnSe,
ターとして作用する。 Mnが 0.02%未満ではィ ン ヒ ビター Acts as a Inhibitor when Mn is less than 0.02%
としての nS, >1nSe 微辄折出物の折出量が不足し、 NS,> 1nSe as a result
{ 1 1 0 } < 0 0 1 >方位の二次再結晶粒の発達が不充  Insufficient development of secondary recrystallized grains in the {1 1 0} <0 0 1> orientation
分となる。 一方 2 %を超えると、 スラブ加熱時においてMinutes. On the other hand, if it exceeds 2%,
nS 等の解離固溶が困難となり、 また仮に解離固溶が行  It becomes difficult to dissociate and dissolve nS etc.
われたとしても熱間圧延時において^ InS, MnSe 等の解離 Dissociation of ^ InS, MnSe, etc. during hot rolling
OMPI 固溶が困難となるか、 あるいは熱間圧延時に折出する分 散圻出相が粗大化し易 く 、 イ ンヒビターと しての最適な サィ ズ分布が損なわれて磁気特性が劣化する。 これらの 理由から 量は 0.02〜 2 %程度含有されている こ とが好 ま しい。 また通常の珪素鐧中に添加される こ とのある公 知の一次再結晶粒成長抑制剤と しての Sb, Bのいずか 1 種または 2種を合計量で 0.03%以下程度含有しても良い, そのほ力、 Cr, Ti , V , Zr, Nb, Ta, Co, Ni, Sn, Pおよ び Asなどの一般的な不可避的元素が微量含有される こ と は許容される。 OMPI Solid solution becomes difficult, or the dispersed phase formed during hot rolling tends to become coarse, and the optimal size distribution as an inhibitor is impaired, resulting in deterioration of magnetic properties. For these reasons, the content is preferably about 0.02 to 2%. In addition, one or two of Sb and B as known primary recrystallized grain growth inhibitors that may be added to ordinary silicon dioxide are contained in a total amount of about 0.03% or less. It is acceptable to contain trace amounts of common unavoidable elements such as Cr, Ti, V, Zr, Nb, Ta, Co, Ni, Sn, P and As. .
次にこの発明の一連の製造工程について説明する。 先ずこの発明の方法に使用される素材を溶製する手段 と しては、 L D転炉、 平炉その他の公知の製鋼炉を用い る こ とができ、 また真空処理、 真空溶解を併用してもよ いこ とは勿論である。 またスラブ作成手段と しても、 通 常の造塊 _分塊圧延法のほか、 連続铸造も好適に用いる こ とがてき る。  Next, a series of manufacturing steps of the present invention will be described. First, as a means for smelting the material used in the method of the present invention, an LD converter, a flat hearth furnace, or other known steelmaking furnaces can be used. The good news is, of course. In addition, as a slab making means, in addition to the usual ingot-bulking rolling method, continuous casting can be suitably used.
上述のよう にして得られた珪素鐧スラブは、 公知の方 法により加熱後、 熟間圧延に供される。 この熱間圧延に よって得られる熱延板の厚みは、 後続の冷延工程におけ る圧下率等によっても異なるが、 通常は 2 〜 5 mm程度と する。 この発明では上述の熱間圧延を行う前のスラブ加 熱に注意を払う必要がある。 すなわち前述したように 3.1 〜 5 %の高 Siの珪素鐧では素材中に含有されてい る nS あるいは MnSe等の解離固溶が非常に困難となるた め、 1270 'c以上の加熱温度で、 焼べり量が 2. 7 〜5 . 0 % になるように充分加熱することが肝要である。 The silicon slab obtained as described above is heated by a known method and then subjected to hot rolling. The thickness of the hot rolled sheet obtained by this hot rolling differs depending on the rolling reduction in the subsequent cold rolling process, but is usually about 2 to 5 mm. In the present invention, it is necessary to pay attention to slab heating before performing the above-mentioned hot rolling. That is, as described above, it is extremely difficult to dissolve and dissolve nS, MnSe, etc. contained in the material with high Si content of 3.1 to 5%. For this reason, it is important to sufficiently heat at a heating temperature of 1270'c or more so that the tanning amount is 2.7 to 5.0%.
上述のようにして熱間圧延を終了した熱延板は、 その 組織の均一化および A & Nの充分な固溶を図るために、 950 〜 1200 'cの温度範囲において 30秒〜 30分間程度の連 続焼鈍を施した後、 急冷処理を施す。 この焼钝後の急冷 処理は A & Nの微細析出相を形成するため必要であって 通常は 850 〜 1050 °cの温度範囲から 400 で以下の温度ま で急冷することが望ま しい。  The hot-rolled sheet, which has been hot-rolled as described above, is placed in a temperature range of 950 to 1200'c for about 30 seconds to 30 minutes in order to homogenize its structure and achieve a sufficient solid solution of A & N. After continuous annealing of, quenching treatment is performed. This quenching treatment after baking is necessary to form a fine precipitate phase of A & N, and it is usually desirable to quench from the temperature range of 850 to 1050 ° C to 400 to the following temperature.
上述の急冷処理された熱延板は 80〜 95 %の圧下率で強 冷延を施して製品扳厚とする。 こ の冷延工程途中で 200 〜400 で の温度範囲で温間圧延を施す必要がある。 この 温間圧延は特公.昭 54 - 13846号公報で明らかにされている ように、 珪素鋼中の固溶 C , Nが温間圧延により形成さ れた欠陥部に散集し、 コ ッ ト レル雰囲気形成による転位 の固着作用もしく は微細折出物による転位運動の妨害に より変形機構に変化を及ぼして 2次再結晶に有利な 1次 再結晶集合組織を形成するのに有効に寄与する。 こ のよ うにして 0 . 1 〜0 . 5 mm 程度の最終板厚とされた冷延板に 対しては、 750 〜870 で程度の温度範囲において一次再 結晶を兼ねる脱炭焼鈍を施す。 この脱炭焼鈍は通常は露 点 + 30〜 65 °c程度の湿水素ガス雰囲気あるいは水素 . 窒 素混合ガス雰囲気中で数分間行えば良い。  The quenched hot-rolled sheet described above is subjected to strong cold rolling at a rolling reduction of 80 to 95% to reduce the product thickness. It is necessary to perform warm rolling in the temperature range of 200 to 400 during the cold rolling process. In this warm rolling, as disclosed in Japanese Patent Publication No. 54-13846, solid solution C and N in silicon steel are scattered to defects formed by warm rolling, and Effectively for forming a primary recrystallization texture, which is advantageous for secondary recrystallization, by changing the deformation mechanism due to the dislocation fixation effect due to the formation of the atmosphere of the trell or the dislocation movement disturbed by the micro-projections. Contribute. The cold rolled sheet having a final thickness of about 0.1 to 0.5 mm in this way is subjected to decarburization annealing which also serves as primary recrystallization in a temperature range of about 750 to 870. This decarburization annealing may be performed for a few minutes in a wet hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen and nitrogen at a dew point of about +30 to 65 ° C.
次いで脱炭焼鈍後の鋼板に対し gO を主成分とする焼 鈍分離材を塗布し、 仕上げ焼钝を施して ί 1 1 0 } < 0 0 1 >方位の 2次再結晶粒を発達させる。 この仕上げ焼 Next, the steel sheet after decarburization annealing is coated with an annealing separator containing gO as a main component, and is subjected to finish annealing to obtain {110} <0 Develop secondary recrystallized grains of 0 1> orientation. This finish baked
鈍の具体的条件は従来公知のものと同様であれば良いが- 通常は 1150〜 1250でまで 3 〜 50で /hの异温速度で昇温し The specific conditions of the dulling may be the same as those conventionally known, but usually the temperature is raised from 1150 to 1250 at a heating rate of 3 to 50 / h at a heating rate of 3/50.
た後、 水素中で 5 〜20時間の純化焼鈍を行う こ とが望ま After that, it is desirable to perform purification annealing in hydrogen for 5 to 20 hours.
しい。 New
かく してこの発明によれば、 B t。が 1.94 T以上の高磁  Thus, according to the present invention, Bt. Is 1.94 T or higher
束密度でかつ W 1 7/5。 が 1.00W/kg以下の超低鉄損の極め Bundle density and W 17/5 . Is extremely low iron loss of 1.00W / kg or less
て優れた磁気特性を有し、 しかも表面性状にもすぐれた With excellent magnetic properties and excellent surface properties
高 Si含有一方向性珪磁鋼板を、 工業的に安定して製造す Industrially stable production of high-Si content grain-oriented silica steel sheets
る こ とができる。 図 面 の 簡 単 な 説 明 第 1 図 a , b はそれぞれ、 スラブ(A) およびスラブ I can do it. Brief explanation of drawings Figure 1 a and b show slab (A) and slab, respectively.
(B) から得られた珪素鋼板の磁気特性および表面性状を. The magnetic properties and surface properties of the silicon steel sheet obtained from (B).
焼べり と加熱温度との閬係で示したグラフである。 発 明 を 実施 す る た め の 最良 の 形態 実施例 1 4 is a graph showing the relationship between burning and heating temperature. BEST MODE FOR CARRYING OUT THE INVENTION Example 1
C 0.049 % , Si3.48¾ , A ί 0.029 % , ΜοΟ.018 %  C 0.049%, Si3.48¾, A ί 0.029%, ΜοΟ.018%
ΜηΟ.076 %および S O.026 %を含有する組成になる連铸 铸 ηΟContains a composition containing .076% and S O.026%
ス ラブを 1360 で焼べりが 3.5 %になるまでに加熱し、 Heat the slab at 1360 until the toasting is 3.5%,
その後熱間圧延して 2.3mm 厚の熱延板と した。 ついで Then, it was hot rolled into a 2.3mm thick hot rolled sheet. Incidentally
1120でで連繞焼钝後、 急冷処理を施し、 さ らに 250 で After sinter firing at 1120, quenching treatment is applied, and 250
O PI V IPO -、 の温間圧延を含む圧下率約 87%の強冷延を行って 0.3mm 厚の最終冷延板とした。 その後 840 での湿水素中で脱炭 • 1次再結晶焼钝を施したのち、 1230での箱焼钝による 仕上げ焼鈍を行った。 O PI V IPO-, Cold rolling was performed at a rolling reduction of about 87%, including warm rolling, to obtain a final cold-rolled sheet having a thickness of 0.3 mm. After that, decarburization in wet hydrogen at 840 • primary recrystallization anneal was performed, followed by finish anneal by box anneal at 1230.
得られた製品の磁気特性および表面性状は次のとおり であった。  The magnetic properties and surface properties of the obtained product were as follows.
磁気特性 。: 1.95T , W 17/50 : 0.99 W/kg Magnetic properties. : 1.95T , W 17/50 : 0.99 W / kg
表面性状 良好  Good surface properties
実施例 2 Example 2
CO.055 % , Si 3.52 %, A & 0.025%, oO.020 ¼  CO.055%, Si 3.52%, A & 0.025%, oO.020 ¼
Se 0.019%および Mn 0.070 %を舍有する組成になる連鐯 スラブを 1360。cで焼べりが 3.8 %になるまで加熱焼鈍を 施したのち、 熟.間圧延して 2.3oim 厚の熱延板とした。 1360 linked slabs having a composition of 0.019% Se and 0.070% Mn. The steel sheet was annealed by heating until the squeeze became 3.8% in c, and was then hot rolled to obtain a 2.3 mm thick hot rolled sheet.
ついで 1160での均一化焼鈍後急冷処理を施したのち、 320 てで温間圧延を施して 0.3mm 厚の最終冷延板とした。 そ の後 840 で の湿水素中で脱炭 · 1次再結晶焼鈍を施し、 ついで MgO を主成分とする焼鈍分離剤を塗布し、 800 で から 1150でまで 10°c /hで昇温して 2次再結晶させたのち、 水素中で 120(Tc , 5 h の純化焼钝を施した。 Next, after the homogenizing annealing at 1160, a quenching treatment was applied, followed by a warm rolling at 320, to obtain a final cold-rolled sheet having a thickness of 0.3 mm. After that, decarburize in wet hydrogen at 840 and perform primary recrystallization annealing, then apply an annealing separator mainly composed of MgO, and raise the temperature from 800 to 1150 at 10 ° C / h. After secondary recrystallization, a purification calcination of 120 (Tc, 5 h) was performed in hydrogen.
得られた製品の磁気特性および表面性状は次のとおり であった。  The magnetic properties and surface properties of the obtained product were as follows.
磁気特性 。: 1.96T , W , 7 / 5 0: 0.97 W/kg Magnetic properties. : 1.96T, W, 7/5 0: 0.97 W / kg
表面性状 良好  Good surface properties
実施例 3 Example 3
C O.048 ¾ , Si 3.52 ¾ , A S. 0.029 % , MoO.015 %  C O.048 ¾, Si 3.52 ¾, A S. 0.029%, MoO.015%
O PI Sb 0.023%, Se 0.020 %および Mn 0.073 %を含有する組 成になる連铸スラブを 1340 'Cで焼べりが 3.2 %になるま で加熱焼鈍を施したのち、 熱間圧延して 2.3mm 厚の熱延 板と した。 ついで 1150での均一化焼鈍後急冷処理を行つ た後、 87%の強冷延を施して 0.3關 厚の最終冷延板と し た。 なお冷延途中には 280 での温間圧延を施した。 その 後 840 での湿水素中で脱炭 · 1 次再結晶焼鈍を施し、 つ いで MgO を主成分とする焼鈍分離材を塗布し、 850 でか ら 1120でまで 15で/ hで昇温して 2 次再結晶させたのち、 水素中で 1230 'c , 4 hの純化焼鈍を施した。 O PI A continuous slab containing 0.023% of Sb, 0.020% of Se and 0.073% of Mn is heat-annealed at 1340'C until the tanning becomes 3.2%, and then hot-rolled to 2.3mm thickness Hot rolled sheet. Next, after the homogenizing annealing at 1150, a quenching treatment was performed, followed by a strong cold rolling of 87% to give a 0.3-thick final cold-rolled sheet. During cold rolling, warm rolling at 280 was performed. After that, decarburization in wet hydrogen at 840, primary recrystallization annealing was applied, then an annealing separator mainly composed of MgO was applied, and the temperature was raised from 850 to 1120 at 15 / h. After secondary recrystallization, hydrogen was subjected to a 1230 'c, 4 h purification annealing in hydrogen.
得られた製品の磁気特性および表面性状は次のとおり であった。  The magnetic properties and surface properties of the obtained product were as follows.
磁気特性 。: 1.95T , W , ,/50: 0.98 /kg 表面性状 良好 産 業 上 の 利 用 可 能 性 この発明によれば、 優れた磁気特性すなわち高磁束密 度で低鉄損の一方向性珪素鐧板を、 その表面性状の劣化 を招く こ となしに有利に製造する こ とができ るので、 た とえば変圧器用鉄心と しての用途に供した場合に、 その 小型化および省エネルギ一の実現に偉効を奏する。 Magnetic properties. : 1.95T, W,, / 50 : 0.98 / kg Good surface properties and industrial applicability According to the present invention, excellent magnetic properties, ie, high magnetic flux density and low iron loss, unidirectional silicon alloy. The plate can be manufactured advantageously without deteriorating its surface properties.For example, when the plate is used as an iron core for a transformer, its size and energy saving can be reduced. Great for realization.

Claims

の fB 囲  FB perimeter
C : 0.01〜0.08%, C: 0.01 ~ 0.08%,
Si : 3.1 〜4.5 %,  Si: 3.1 to 4.5%,
 Contract
sol A & : 0.005 ~0.06¾  sol A & : 0.005 ~ 0.06¾
Mo: 0.00求3 〜0.1 %な らびに Sおよび Seの う ちいずれか一種または 二種合計 : 0.005 〜0.1 %  Mo: 0.003 to 0.1% and one or both of S and Se: 0.005 to 0.1%
を舍有する組成になる珪素鋼板用素材ス ラブに、 1270で 以上の加熱温度でしかも焼べりが 2.7 〜5.0 %となる加 熱処理を施したのち、 熱間圧延し、 ついで最終冷延前に 950 〜 1200での温度範囲で連続焼鈍を施したのち急冷し てから、 250 〜400 で の温度範囲での温間圧延を舍む厚 下率 80〜 95%の冷間圧延を施して最終板厚としたのち、 常法に従って脱炭を兼ねた 1次再結晶焼鈍および 2次再 結晶を含む仕上げ焼鈍を施すことを特徴とする、 表面性 状および磁気特性に優れた一方向性珪素鋼板の製造方法 The material slab for silicon steel sheet, which has a composition with the following composition, is subjected to heat treatment at a heating temperature of 1270 and a heating temperature of 2.7 to 5.0%, followed by hot rolling, and then 950 before final cold rolling. After continuous annealing in the temperature range of ~ 1200, quenched, and then subjected to warm rolling in the temperature range of 250-400, cold rolling at a reduction rate of 80 ~ 95%, and final thickness Production of a unidirectional silicon steel sheet with excellent surface properties and magnetic properties characterized by subjecting it to primary recrystallization annealing combined with decarburization and finish annealing including secondary recrystallization in the usual manner. Method
PCT/JP1984/000599 1983-06-20 1984-12-14 Method of manufacturing unidirectional silicon steel slab having excellent surface and magnetic properties WO1986003784A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP1984/000599 WO1986003784A1 (en) 1983-06-20 1984-12-14 Method of manufacturing unidirectional silicon steel slab having excellent surface and magnetic properties
EP85900193A EP0205619B1 (en) 1984-12-14 1984-12-14 Method of manufacturing unidirectional silicon steel slab having excellent surface and magnetic properties
DE8585900193T DE3484960D1 (en) 1984-12-14 1984-12-14 METHOD FOR THE PRODUCTION OF RECTIFIED SILICON STEEL SLAMS WITH AN EXCELLENT SURFACE AND EXCELLENT MAGNETIC PROPERTIES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58109177A JPS602624A (en) 1983-06-20 1983-06-20 Manufacture of grain-oriented silicon steel sheet having superior surface property and magnetic characteristic
PCT/JP1984/000599 WO1986003784A1 (en) 1983-06-20 1984-12-14 Method of manufacturing unidirectional silicon steel slab having excellent surface and magnetic properties

Publications (1)

Publication Number Publication Date
WO1986003784A1 true WO1986003784A1 (en) 1986-07-03

Family

ID=26425088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1984/000599 WO1986003784A1 (en) 1983-06-20 1984-12-14 Method of manufacturing unidirectional silicon steel slab having excellent surface and magnetic properties

Country Status (1)

Country Link
WO (1) WO1986003784A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032059B2 (en) * 1971-12-24 1975-10-17
JPS5813606B2 (en) * 1974-08-14 1983-03-15 川崎製鉄株式会社 It's hard to tell what's going on.
JPS5832214B2 (en) * 1979-12-28 1983-07-12 川崎製鉄株式会社 Method for manufacturing unidirectional silicon steel sheet with extremely high magnetic flux density and low iron loss

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032059B2 (en) * 1971-12-24 1975-10-17
JPS5813606B2 (en) * 1974-08-14 1983-03-15 川崎製鉄株式会社 It's hard to tell what's going on.
JPS5832214B2 (en) * 1979-12-28 1983-07-12 川崎製鉄株式会社 Method for manufacturing unidirectional silicon steel sheet with extremely high magnetic flux density and low iron loss

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0205619A4 *

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
JP5417936B2 (en) Method for producing grain-oriented electrical steel sheet
EP0420238B1 (en) Process for preparing unidirectional silicon steel sheet having high magnetic flux density
WO2011115120A1 (en) Method for producing directional electromagnetic steel sheet
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
KR102249920B1 (en) Grain oriented electrical steel sheet method for manufacturing the same
JPH01230721A (en) Manufacture of grain-oriented silicon steel sheet having high saturation magnetic flux density
KR940008932B1 (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
US4702780A (en) Process for producing a grain oriented silicon steel sheet excellent in surface properties and magnetic characteristics
JP2639226B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2002030340A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JP2709549B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
CN111566244A (en) Oriented electrical steel sheet and method for manufacturing the same
WO1986003784A1 (en) Method of manufacturing unidirectional silicon steel slab having excellent surface and magnetic properties
JPH01301820A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
KR102319831B1 (en) Method of grain oriented electrical steel sheet
WO1991019825A1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
EP0205619B1 (en) Method of manufacturing unidirectional silicon steel slab having excellent surface and magnetic properties
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
KR100276307B1 (en) The manufacturing method of oriented electric steelsheet with thick plate
JP4267320B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2671717B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1985900193

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB SE

WWP Wipo information: published in national office

Ref document number: 1985900193

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1985900193

Country of ref document: EP