US7782643B2 - Matrix converter apparatus - Google Patents

Matrix converter apparatus Download PDF

Info

Publication number
US7782643B2
US7782643B2 US11/911,545 US91154506A US7782643B2 US 7782643 B2 US7782643 B2 US 7782643B2 US 91154506 A US91154506 A US 91154506A US 7782643 B2 US7782643 B2 US 7782643B2
Authority
US
United States
Prior art keywords
phase
voltage
matrix converter
power source
converter apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11/911,545
Other languages
English (en)
Other versions
US20090059633A1 (en
Inventor
Hidenori Hara
Eiji Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Assigned to KABUSHIKI KAISHA YASKAWA DENKI reassignment KABUSHIKI KAISHA YASKAWA DENKI ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARA, HIDENORI, YAMAMOTO, EIJI
Publication of US20090059633A1 publication Critical patent/US20090059633A1/en
Application granted granted Critical
Publication of US7782643B2 publication Critical patent/US7782643B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a matrix converter apparatus for outputting an arbitrary polyphase alternating current or direct current voltage by constituting an input thereof by a polyphase alternating current power source, which is a matrix converter apparatus having a step up/step down function of the output voltage.
  • a power converting apparatus generally signifies an apparatus of converting an alternating current power source voltage constituting a fixed voltage/a fixed frequency into a voltage/a frequency having arbitrary magnitudes.
  • a currently most generally used power converting apparatus is a PWM inverter of a voltage source type.
  • a PWM inverter subjects a direct current voltage provided by converting an alternating current power source voltage to PWM switching by using a high speed semiconductor switching element of IGBT or the like to output from alternating current voltage converted into an arbitrary voltage/frequency.
  • the matrix converter apparatus is an AC-AC direct power converting apparatus capable of converting a three phase alternating current power source directly to an arbitrary voltage/frequency.
  • the matrix converter apparatus is a new drive apparatus to which attention is paid in recent years particularly in a field in which an environment of use of energy conservation/low noise or the like is severe.
  • the matrix converter apparatus is generally constructed by a constitution in which since the alternating current power source voltage is directly subjected to high speed switching, an LC filter for smoothing an input current is provided at an input portion.
  • the matrix converter apparatus by arbitrarily selecting an alternating current power source phase and subjecting the phase to PWM control and controlling a conduction rate thereof, an arbitrary voltage output smaller than an input voltage value (accurately speaking, a terminal voltage of a filter portion capacitor C) of the phase is realized. Therefore, a step down operation is on the premise in principle, and therefore, the output voltage cannot be stepped up.
  • the general matrix converter apparatus cannot deal with such a step up use.
  • FIG. 9 specifically shows the apparatus as a background art.
  • a magnetic energy is stored to a reactor 102 having a constitution of a transformer by making, for example, both of switches S 101 and S 104 ON, successively, the magnetic energy is discharged by making the switch S 104 OFF and the discharged magnetic energy is charged to a capacitor 106 to thereby realize to step up an output voltage to thereby simultaneously realize a three phase alternating current voltage output to a motor 109 .
  • the one apparatus serves as step up type DC/DC converter apparatus and inverter apparatus.
  • Patent Reference 1 JP-A-2000-69754 (FIG. 1)
  • the reactor 102 of a transformer structure is used as a countermeasure thereagainst, for example, a path of conducting a current flowing in, for example, a winding N 1 is ensured by the switch S 101 and the capacitor 106 , and a current flowing in a winding N 2 is shut off to be zero, however, a corresponding amount of a magnetic flux amount is instantaneously shifted to the winding N 1 by using the transformer structure to thereby prevent the hazard from being brought about.
  • the invention has been carried out in view of the problem and it is an object thereof to provide a matrix converter apparatus capable of realizing to step up output voltage by using a standard reactor, restraining an abrupt change in a current flowing in a bidirectional switch, individually controlling currents flowing in respective reactors and simultaneously realizing also a step down operation.
  • a matrix converter apparatus for directly connecting respective phases of an alternating current power source and respective phases of an output side by a bidirectional switch having a self arc suppression function, controlling to output a voltage of the alternating current power source based on an output voltage instruction by a PWM control and outputting an arbitrary direct current or alternating current voltage,
  • the matrix converter apparatus including:
  • the alternating current power source is shortcircuited by way of the reactor by making the bidirectional switch ON, thereby, a magnetic energy is increased to accumulate at inside of the reactor, the magnetic energy is discharged in accordance with making the bidirectional switch OFF thereafter, and a step up voltage output of the matrix converter apparatus is realized by discharging the energy.
  • the circuit of ensuring the conduction paths ensures the conduction paths of the currents flowing in the respective reactors which have been shortcircuited even in being discharged, and therefore, a continuity of the currents flowing in the respective reactors can be ensured, and a step up operation without bringing about a surge voltage or the like can be realized.
  • the circuit of ensuring the conduction paths includes:
  • the conduction paths of the currents flowing in the respective reactors which have been shortcircuited are ensured by a cooperative operation of charging/discharging the currents to and from the capacitors constituting the first capacitor group and the switch sequence of the bidirectional switches.
  • a matrix converter apparatus for directly connecting respective phases of an alternating current power source and respective phases on an output side by a bidirectional switch having a self arc suppression function, controlling to output a voltage of the alternating current power source by a PWM control based on an output voltage instruction, and outputting an arbitrary direct current or alternating current voltage,
  • the matrix converter apparatus including:
  • a first capacitor group for connecting the respective phases of the output side of the matrix converter apparatus
  • a first connecting/disconnecting circuit capable of connecting/disconnecting a connection between capacitors constituting the first capacitor group
  • a first switching apparatus for bringing the first connecting/disconnecting circuit into an ON state when a step up voltage of the matrix converter apparatus is outputted, and for bringing the first connecting/disconnecting circuit into an OFF state when a step down voltage is outputted.
  • the first connecting/disconnecting means In stepping up, the first connecting/disconnecting means is brought into the ON state, the first capacitor group can be charged and discharged to thereby realize the step up output, in stepping down, the first connecting/disconnecting means is brought into the OFF state to cut connection between the capacitors constituting the first capacitor group and a connecting state of a normal and general matrix converter apparatus is realized.
  • the output voltage is stepped down signifies an operation when the alternating current power source phase is controlled by the PWM control and a conduction rate is controlled to thereby realize an arbitrary voltage output smaller than an input voltage value of the phase.
  • the first connecting/disconnecting circuit includes:
  • terminals thereof on the other side are connected to respective series connecting portions of the first rectifying diode group.
  • the step up operation can instantaneously be switched to the step down operation, or the step down operation can instantaneously be switched to the step up operation in actual operation.
  • a matrix converter apparatus for directly connecting respective phases of an alternating current power source and respective phases on an output side by a bidirectional switch having a self arc suppression function, controlling to output a voltage of the alternating current power source by a PWM control based on an output voltage instruction and outputting an arbitrary direct current or alternating current voltage,
  • the matrix converter apparatus including:
  • a second capacitor group for connecting respective terminals of respective reactors on a side of the bidirectional switch
  • a second switching apparatus for bringing the second connecting/disconnecting circuit into an OFF state when a step up voltage of the matrix converter apparatus is outputted, and for bringing the second connecting/disconnecting circuit into an ON state when a step down voltage is outputted.
  • the second connecting/disconnecting circuit In stepping down, the second connecting/disconnecting circuit is brought into the ON state to thereby enable to charge/discharge the second capacitor group, the step down output is realized while ensuring the continuity of the alternating current power source current, and in stepping up, the second connecting/disconnecting circuit is brought into the OFF state to thereby cut the connection between the capacitors constituting the second capacitor group. By cutting the connection between the capacitors, the operation of shortcircuitting the bidirectional switch is prevented.
  • the second connecting/disconnecting circuit includes:
  • terminals thereof on the other side are connected to respective series connecting portions of the second rectifying diode group.
  • the step up operation can instantaneously be switched to the step down operation or the step down operation can instantaneously be switched to the step up operation in actual operation.
  • a direct current power source is substituted for the alternating current power source. Because operation and effect provided to the invention are not limited to those of the case of only the alternating current power source but even in the case of the direct current power source, operation and effect similar to those of the case of the alternating current power source are achieved.
  • a direct current power source is substituted for the alternating current power source
  • a reactor inserted to be connected between either one of a positive terminal side and a negative terminal side of the direct current power source and the bidirectional switches are substituted for the respective reactors.
  • the respective reactors arranged at the respective phases of the alternating current power source are arranged only at either one of the positive terminal side and the negative terminal side of the direct current power source.
  • the matrix converter apparatus further including:
  • a detecting voltage switching apparatus for detecting the output voltage of the matrix converter apparatus when a step up voltage is outputted, and for detecting the alternating current power source voltage when a step down voltage is outputted.
  • the output voltage of the matrix converter apparatus constitutes the direct control object, and therefore, it is necessary to detect the output voltage.
  • the output voltage of the matrix converter apparatus is constituted by the pulse width modulating type voltage, and therefore, it is easier to indirectly detecting the output side voltage in accordance with the pulse width control information by detecting the input side voltage than detecting directly the output side voltage in the step down operation.
  • the matrix converter apparatus further including:
  • a detecting current switching apparatus for detecting an input current to the matrix converter apparatus when a step up voltage is outputted, and for detecting an output current from the matrix converter apparatus when a step down voltage is outputted.
  • the invention is suitable also for a vector control for directly controlling the output current of the matrix converter apparatus, and in the stepping up operation, it is necessary to control the input current for controlling the step up output voltage.
  • the matrix converter apparatus further including:
  • a gate signal outputting portion for outputting a gate signal based on an output voltage instruction
  • a gate signal switching apparatus for changing to switch respective corresponding relationships between the bidirectional switch and the gate signal when a step down voltage is outputted and when a step up voltage is outputted.
  • the invention there is achieved an effect of capable of realizing the matrix converter apparatus capable of outputting the alternating current voltage of an arbitrary voltage/arbitrary frequency realizing to step up the output voltage by using the standard reactor, further, providing both of the step up outputting function and the step down outputting function, capable of dealing with outputting the step down voltage, outputting the step up voltage and the regenerating operation to the power source side by a single piece of the matrix converter apparatus, and capable of instantaneously switching the step up and step down operations even in the actual operation.
  • the rapid change of the current flowing in the bidirectional switch can be restrained, the surge voltage can be restrained from being brought about, and therefore, there is achieved an effect of capable of reducing a current capacity of the semiconductor switching element of the IGBT transistor or the like constituting the bidirectional switch and capable of preventing destruction of the semiconductor switching element.
  • FIG. 1 is a constitution diagram of a matrix converter apparatus showing a first embodiment of the invention.
  • FIG. 3 is a constitution diagram of an electronic type switch applied to first, second connecting/disconnecting means as a second embodiment of the invention.
  • FIG. 4 is a constitution diagram of a matrix converter apparatus showing a third embodiment of the invention.
  • FIG. 5 is a constitution diagram of a matrix converter apparatus showing a fourth embodiment of the invention.
  • FIG. 6 is a constitution diagram of a matrix converter apparatus showing a fifth embodiment of the invention.
  • FIG. 7 illustrates diagrams of comparing circuit constitutions in a step down control mode and a step up control mode.
  • FIG. 8 is a diagram showing a method of distributing a specific gate signal in switching a control mode.
  • FIG. 9 is a constitution diagram of a matrix converter apparatus of a background art having a step up function.
  • FIG. 1 shows a constitution of a matrix converter apparatus including the respective reactors 2 on an input side inserted to be connected between the three phase alternating current power source 1 and the bidirectional switch group 5 constituted by IGBT transistors or the like, the first capacitor group 7 for connecting respective phases on an output side, the first connecting/disconnecting means 8 capable of connecting/disconnecting connections among the respective capacitors constituting the first capacitor group 7 , the second connecting/disconnecting means 4 capable of connecting/disconnecting connections among the respective capacitors constituting the second capacitor group 3 , the respective reactors 6 on an output side inserted to be connected between respective phases on the output side and the motor 9 , as a first embodiment of the invention.
  • the reactor 6 is inserted to be connected, a winding inductance provided to the motor can substitute therefor by eliminating the reactor 6 .
  • step up of the output voltage of the matrix converter apparatus will be explained.
  • the first connecting/disconnecting means is closed and the second connecting/disconnecting means is opened.
  • a terminal of the reactor 2 on a side of the bidirectional switch is shortcircuited by the bidirectional switch.
  • both of the bidirectional switches S 11 and S 21 are made ON.
  • S 11 and S 21 ON, at reactors 61 , 62 , a current by shortcircuit thereof flows and a magnetic energy is increased to be accumulated at the respective reactors.
  • the bidirectional switch S 21 is made OFF, the accumulated energy is discharged, the discharged magnetic energy is charged to the first capacitor group to thereby realize to step up the output voltage of the matrix converter apparatus.
  • the respective reactors used here may be general reactors constituting the LC filter.
  • the second connecting/disconnecting means is opened for preventing generation of a shortcircuit current flowing in an order of, for example, the second connecting/disconnecting means, the capacitor 31 , the bidirectional switch S 11 , the bidirectional switch S 21 , a capacitor 32 , and the second connecting/disconnecting means (there is not a current limiting element in a path in which the shortcircuit current flows), or preventing generation of a shortcircuit current flowing in an order of, for example, the second connecting/disconnecting means, the capacitor 31 , the bidirectional switch S 11 , the capacitor 71 , the first connecting/disconnecting means, the capacitor 72 , the bidirectional switch S 22 , the capacitor 32 , and the second connecting/disconnecting means (there is not a current limiting element also in the path) in accordance with ON/OFF operation of the bidirectional switch group 5 .
  • a current flowing in the reactor 61 constitutes a charge/discharge current to and from the capacitor 71 to ensure a conduction path
  • a current flowing in the reactor 62 becomes a charge/discharge current to and from the capacitor 72 or a charge/discharge current to and from the capacitor 73 to thereby ensure a conduction path, and a rapid variation in the current is restrained.
  • step up operation or a step up control mode in the following.
  • ON/OFF controlling means (not illustrated) for outputting an ON/OFF control signal to the bidirectional switches carries out a step up operation by shortcircuitting and opening the bidirectional switch in accordance with the above-described switch operation sequence to drive the matrix converter apparatus while ensuring the conduction path.
  • a control mode can also be switched between the step up operation and the step down operation by the first, the second connecting/disconnecting means, and therefore, one unit of the matrix converter apparatus can deal with all of step down voltage output, step up voltage output, and regenerating operation to the side of the power source.
  • the first, second connecting/disconnecting means are mechanical type switches 12 of relays, conductors or the like shown in FIG. 2
  • the ON/OFF operation is slow and there is also a concern of generating chattering or the like in operating.
  • the mechanical type switch it is general to switch the mechanical type switch after awaiting for nullifying currents flowing in the first, the second connecting/disconnecting means.
  • a second embodiment of the invention shown in FIG. 3 eliminates the above-described restriction by constituting the first, the second connecting/disconnecting means by an electronic type switch 13 .
  • 6 diodes are connected to constitute a full-wave rectifying circuit and an IGBT transistor is connected across two positive and negative terminals of the full-wave rectifying circuit in parallel thereof.
  • a current necessarily flows from a collector side to an emitter side of the IGBT transistor, and therefore, by making the IGBT transistor ON/OFF, the first, the second connecting/disconnecting means can be brought into a connected or a disconnected state.
  • a control mode can instantaneously be switched.
  • the control mode can instantaneously be switched immediately after making all of the bidirectional switches OFF, or when a snubber circuit is connected between the collector and the emitter of the IGBT transistor, the control mode can be switched instantaneously always in being operated regardless of presence/absence of the current.
  • FIG. 4 shows a third embodiment of the invention.
  • a direct current power source 10 is used in place of the three phase alternating current power source.
  • the magnetic energy is increased to accumulate in the reactor, thereafter, the magnetic energy is discharged by making the bidirectional switches related to the shortcircuitting OFF, and the discharged magnetic energy is charged to the first capacitor group to thereby realize the step up voltage output.
  • the step down control mode when brought into a regenerating operation state in which the power flows from the side of the motor 9 , the power source can be regenerated from the matrix converter apparatus to the side of the direct current power source 10 .
  • the modes can fully be dealt with by a single apparatus and a contribution by being simple, small-sized, highly efficient, energy saving and the like can fully be expected.
  • the reactors are arranged at both of a positive terminal side and a negative terminal side of the direct current power source, even when the reactor is arranged only either one of the positive terminal side or the negative terminal sides a similar effect is achieved.
  • the continuity can be ensured when only one of the reactors is taken into consideration, and therefore, an effect of simplifying the control is also achieved.
  • FIG. 5 shows a fourth embodiment of the invention.
  • a position of a current, a voltage (detecting position) constituting an object of detection is switched.
  • an output side voltage of the matrix converter apparatus is made to constitute an object of detection in outputting the step up voltage
  • a voltage on the side of the alternating current power source is made to constitute an object of detection in outputting the step down voltage.
  • the output side voltage of the matrix converter apparatus constitutes a direct control object, and therefore, it is necessary to detect the output side voltage, in the step down operation, the output side voltage of the matrix converter apparatus becomes a pulse width modulating type voltage, rather than directly detecting the output side voltage, it is easy to detect the input side voltage and indirectly detect the output side voltage in accordance with pulse width control information.
  • an input current to the matrix converter apparatus is made to constitute a detection object when the step up voltage is outputted and the output current from the matrix converter apparatus is made to constitute the detection object in outputting the step down voltage.
  • the input current is made to constitute the detection object in the step up operation because it is necessary to control the input current for controlling the step up output voltage.
  • notations 14 - 1 , 14 - 2 , 14 - 3 designate current detecting signals used for controlling the matrix converter apparatus and also notations 15 - 1 , 15 - 2 , 15 - 3 designate voltage detecting signals similarly.
  • the current is set to detect the input side and is set to detect the voltage on the output side
  • the setting can be realized by setting to change all of the changeover switches 16 to lower stage sides in FIG. 5 .
  • the current is set to detect the output side and is set to detect the voltage on the input side
  • the setting can be realized when all of the changeover switches 16 are set to change to upper stage sides in FIG. 4 .
  • FIG. 6 shows a fifth embodiment of the invention.
  • a changeover switch 18 in correspondence with the signal is inserted.
  • control modes of step up and step down are switched, it is necessary to switch to an operation control in accordance with respective control modes.
  • step down control mode and the step up control mode the circuit constitutions of which are totally reversed, by changing to arrange to allocate the gate signal by using the changeover switch 18 , the control modes of step up and step down can be realized to switch without needing a special control or the like.
  • the step down control mode (case of FIG. 7( a )) and the step up control mode (case of FIG. 7( b )) are constructed by circuit constitutions in which positions of capacitors and reactors are totally reversely switched. Therefore, in switching the gate signals, a gate signal group supplied to the respective bidirectional switches in view from the power source side and a gate signal group supplied to the respective bidirectional switches in view from the motor side may be switched.
  • FIG. 7 shows the respective bidirectional switches as in R-U, R-V, R-W, S-U, S-V, . . . from a view point that the respective bidirectional switches correspond to intersections of R, S, T phases on the side of the three phase alternating current power source and U, V, W phases on the output side.
  • the gate signal supplied to the bidirectional switch R-V (corresponding to S 12 of FIG. 1 ) in correspondence with the intersection of the R phase and V phase in the step down control mode is switched to the step up control mode
  • the gate signal may be outputted to bidirectional switch U-S (equivalently, S-U, corresponding to S 21 of FIG. 1 ) brought into a pairing relationship with R-V.
  • This is provided by switching a side of notation R of the bidirectional switch R-V to U of the output side in correspondence therewith and switching a side of notation V to S on the input side in correspondence therewith.
  • the changeover switch 18 shown in FIG. 6 specifically realizes signal switching based on such a relationship. When all the switches are set to upper stage sides, the switches correspond to the step down control mode and when set to lower stage sides, the switches correspond to the step up control mode.
  • the invention relates to the matrix converter apparatus for outputting an arbitrary polyphase alternating current or direct current by constituting the input by the polyphase alternating current power source, particularly relates to the matrix converter apparatus having the function of stepping up and stepping down the output voltage.
  • the invention relates to the matrix converter apparatus capable of realizing arbitrary voltage/arbitrary frequency realizing to step up the output voltage by using a standard reactor, further, capable of providing both of the step up voltage outputting function and the step down voltage outputting function, capable of realizing the regenerating function to the power source side and also capable of realizing to switch the step up operation and the step down operation even in the actual operation.
  • the rapid change of the reactor current flowing in the bidirectional switch in the step up operation can be restrained, the surge voltage can be restrained from being generated, and therefore, a current capacity of the semiconductor switching element constituting the bidirectional switch can be reduced, and an effect of capable of preventing destruction of the semiconductor switching element can also be achieved.
  • the matrix converter apparatus is applicable also to a use of requiring the voltage output higher than the input power source voltage, further, the apparatus is applicable by itself even when the two operation modes of the motor drive mode, the regenerating mode are present in the actual operation, and is applicable for a use needing to be simple, small-sized, highly efficient, energy saving or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)
US11/911,545 2005-04-15 2006-04-07 Matrix converter apparatus Active 2027-02-27 US7782643B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005-117995 2005-04-15
JP2005117995 2005-04-15
PCT/JP2006/307436 WO2006112275A1 (ja) 2005-04-15 2006-04-07 マトリクスコンバータ装置

Publications (2)

Publication Number Publication Date
US20090059633A1 US20090059633A1 (en) 2009-03-05
US7782643B2 true US7782643B2 (en) 2010-08-24

Family

ID=37115001

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/911,545 Active 2027-02-27 US7782643B2 (en) 2005-04-15 2006-04-07 Matrix converter apparatus

Country Status (8)

Country Link
US (1) US7782643B2 (de)
JP (1) JP4803177B2 (de)
KR (1) KR100963725B1 (de)
CN (1) CN101160708B (de)
DE (1) DE112006000887T5 (de)
GB (1) GB2439035B (de)
TW (1) TW200640114A (de)
WO (1) WO2006112275A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110116295A1 (en) * 2008-05-30 2011-05-19 Kabushiki Kaisha Yaskawa Denki Control device for matrix converter
US20120081939A1 (en) * 2009-06-18 2012-04-05 Jean-Philippe Hasler Arrangement For Exchanging Power
US20120287686A1 (en) * 2011-05-10 2012-11-15 Kabushiki Kaisha Yaskawa Denki Matrix converter
US8830707B2 (en) 2011-03-07 2014-09-09 Kabushiki Kaisha Yaskawa Denki Power converter
US20150070952A1 (en) * 2012-05-22 2015-03-12 Kabushiki Kaisha Yaskawa Denki Electric power converter and control method for electric power converter
US20150229227A1 (en) * 2014-02-07 2015-08-13 Abb Technology Ag Multi-phase AC/AC Step-down Converter for Distribution Systems
US9343995B2 (en) 2013-01-30 2016-05-17 Fuji Electric Co., Ltd. Power conversion device
US20170244325A1 (en) * 2016-02-22 2017-08-24 The Boeing Company Adaptable high efficiency power inverter system
US11342749B1 (en) 2019-11-22 2022-05-24 Smart Wires Inc. Integration of a power flow control unit

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4029904B2 (ja) * 2006-04-28 2008-01-09 ダイキン工業株式会社 マトリックスコンバータおよびマトリックスコンバータの制御方法
JP2007330023A (ja) * 2006-06-07 2007-12-20 Daikin Ind Ltd 電力変換装置及び圧縮機
WO2008108147A1 (ja) * 2007-03-07 2008-09-12 Kabushiki Kaisha Yaskawa Denki 電力変換装置
EP2144360B1 (de) * 2008-07-08 2018-08-29 Siemens Aktiengesellschaft Verfahren zum Betrieb eines Stromrichters und korrespondierende Vorrichtung
TWI411219B (zh) * 2008-10-17 2013-10-01 Foxnum Technology Co Ltd 馬達驅動裝置
WO2010082500A1 (ja) * 2009-01-19 2010-07-22 ダイキン工業株式会社 双方向スイッチ回路及びそれを備えた電力変換装置
US20100244773A1 (en) * 2009-03-27 2010-09-30 Gm Global Technology Operations, Inc. Unity power factor isolated single phase matrix converter battery charger
EP2328264B1 (de) * 2009-09-29 2012-04-18 ABB Schweiz AG Direktumrichter sowie System mit einem solchen Direktumrichter
CN102082514A (zh) * 2009-11-27 2011-06-01 南京理工大学 基于反激变换器的多模块组合交-交变换器
CN102082515B (zh) * 2009-11-27 2013-01-23 南京理工大学 基于反激变换器的高频隔离式交-交型三电平交-交变换器
JP5126300B2 (ja) * 2010-06-22 2013-01-23 株式会社安川電機 直流−交流電力変換装置
US8587962B2 (en) * 2010-11-08 2013-11-19 GM Global Technology Operations LLC Compensation for electrical converter nonlinearities
US8599577B2 (en) 2010-11-08 2013-12-03 GM Global Technology Operations LLC Systems and methods for reducing harmonic distortion in electrical converters
US8614564B2 (en) 2010-11-18 2013-12-24 GM Global Technology Operations LLS Systems and methods for providing power to a load based upon a control strategy
DE102011007696A1 (de) * 2011-04-19 2012-10-25 Siemens Aktiengesellschaft Matrix-Umrichter und Verfahren zum Erzeugen einer Wechselspannung in einem zweiten Wechselspannungsnetz aus einer Wechselspannung in einem ersten Wechselspannungsnetz mittels eines Matrix-Umrichters
US8860379B2 (en) 2011-04-20 2014-10-14 GM Global Technology Operations LLC Discharging a DC bus capacitor of an electrical converter system
EP2717458B1 (de) * 2011-05-26 2018-03-07 Panasonic Corporation Wechselstromumwandlungsschaltung, wechselstromumwandlungsverfahren und aufzeichnungsmedium
US8829858B2 (en) 2011-05-31 2014-09-09 GM Global Technology Operations LLC Systems and methods for initializing a charging system
US8878495B2 (en) 2011-08-31 2014-11-04 GM Global Technology Operations LLC Systems and methods for providing power to a load based upon a control strategy
JP5477408B2 (ja) * 2012-03-02 2014-04-23 株式会社安川電機 電力変換装置
JP5533945B2 (ja) 2012-06-15 2014-06-25 株式会社安川電機 電力変換装置
EP2728729A2 (de) * 2012-10-30 2014-05-07 Kabushiki Kaisha Yaskawa Denki Matrixwandler
US8947030B2 (en) * 2012-12-28 2015-02-03 Eaton Corporation Low switch count AC-to-AC power converter
CN106464145B (zh) * 2014-06-19 2019-06-25 株式会社安川电机 矩阵变换器
CN105471277B (zh) * 2014-12-26 2019-05-03 周忠民 一种交流-交流变换拓扑电路结构
TWI586065B (zh) * 2016-01-08 2017-06-01 光寶電子(廣州)有限公司 可選擇輸出電壓的電源分配裝置
DE102019119223A1 (de) * 2019-07-16 2021-01-21 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Ladegerät zur Netzeinspeisung mit einem Drei-Phasen-Transformator
CN112448594B (zh) * 2019-08-28 2022-05-31 台达电子工业股份有限公司 间接式矩阵转换器及整流模块

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206364A (ja) 1989-01-31 1990-08-16 Toyo Electric Mfg Co Ltd パルス幅制御方式電力変換装置
DE29701914U1 (de) 1997-02-04 1997-04-17 Siemens AG, 80333 München Schaltungsanordnung zum direkten Umrichten elektrischer Energie
US5852559A (en) * 1996-09-24 1998-12-22 Allen Bradley Company, Llc Power application circuits utilizing bidirectional insulated gate bipolar transistor
JPH1118489A (ja) 1997-06-19 1999-01-22 Toyo Electric Mfg Co Ltd 同期電動機の駆動制御装置
US5949672A (en) * 1996-09-27 1999-09-07 Abb Patent Gmbh Three-phase matrix converter and method for operation thereof
JP2000069754A (ja) 1998-08-20 2000-03-03 Fuji Electric Co Ltd コンバータ回路
US6166930A (en) 1999-05-12 2000-12-26 Otis Elevator Company Reduced common voltage in a DC matrix converter
DE10135337A1 (de) 2001-07-19 2003-02-06 Siemens Ag Verfahren und Vorrichtung zum Stillsetzen eines Antriebs mit einem matrixumrichter bei Netzausfall
US6566764B2 (en) 2000-05-23 2003-05-20 Vestas Wind Systems A/S, R&D Variable speed wind turbine having a matrix converter
US6654260B2 (en) * 2001-05-09 2003-11-25 Mitsubishi Denki Kabushiki Kaisha Asymmetrical power converting apparatus employing self-arc-suppressing switches
JP2004274906A (ja) 2003-03-10 2004-09-30 Fuji Electric Holdings Co Ltd 交流−交流直接変換形電力変換器
JP2005065357A (ja) 2003-08-12 2005-03-10 Hitachi Ltd マトリクスコンバータシステム
US20080285314A1 (en) * 2007-05-14 2008-11-20 Hassan Ali Kojori Advanced matrix converter and method for operation

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206364A (ja) 1989-01-31 1990-08-16 Toyo Electric Mfg Co Ltd パルス幅制御方式電力変換装置
JPH0744834B2 (ja) 1989-01-31 1995-05-15 東洋電機製造株式会社 パルス幅制御方式電力変換装置
US5852559A (en) * 1996-09-24 1998-12-22 Allen Bradley Company, Llc Power application circuits utilizing bidirectional insulated gate bipolar transistor
US5949672A (en) * 1996-09-27 1999-09-07 Abb Patent Gmbh Three-phase matrix converter and method for operation thereof
DE29701914U1 (de) 1997-02-04 1997-04-17 Siemens AG, 80333 München Schaltungsanordnung zum direkten Umrichten elektrischer Energie
JPH1118489A (ja) 1997-06-19 1999-01-22 Toyo Electric Mfg Co Ltd 同期電動機の駆動制御装置
JP2000069754A (ja) 1998-08-20 2000-03-03 Fuji Electric Co Ltd コンバータ回路
US6166930A (en) 1999-05-12 2000-12-26 Otis Elevator Company Reduced common voltage in a DC matrix converter
US6566764B2 (en) 2000-05-23 2003-05-20 Vestas Wind Systems A/S, R&D Variable speed wind turbine having a matrix converter
US6654260B2 (en) * 2001-05-09 2003-11-25 Mitsubishi Denki Kabushiki Kaisha Asymmetrical power converting apparatus employing self-arc-suppressing switches
DE10135337A1 (de) 2001-07-19 2003-02-06 Siemens Ag Verfahren und Vorrichtung zum Stillsetzen eines Antriebs mit einem matrixumrichter bei Netzausfall
JP2004274906A (ja) 2003-03-10 2004-09-30 Fuji Electric Holdings Co Ltd 交流−交流直接変換形電力変換器
JP2005065357A (ja) 2003-08-12 2005-03-10 Hitachi Ltd マトリクスコンバータシステム
US20080285314A1 (en) * 2007-05-14 2008-11-20 Hassan Ali Kojori Advanced matrix converter and method for operation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Chinese Office Action dated Jul. 24, 2009.
German Office Action dated Jul. 10, 2009.
Korean Office Action dated Aug. 21, 2009.

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8243482B2 (en) * 2008-05-30 2012-08-14 Kabushiki Kaisha Yaskawa Denki Control device for matrix converter
US20110116295A1 (en) * 2008-05-30 2011-05-19 Kabushiki Kaisha Yaskawa Denki Control device for matrix converter
US20120081939A1 (en) * 2009-06-18 2012-04-05 Jean-Philippe Hasler Arrangement For Exchanging Power
US8416595B2 (en) * 2009-06-18 2013-04-09 Abb Technology Ag Arrangement for exchanging power
US8830707B2 (en) 2011-03-07 2014-09-09 Kabushiki Kaisha Yaskawa Denki Power converter
US20120287686A1 (en) * 2011-05-10 2012-11-15 Kabushiki Kaisha Yaskawa Denki Matrix converter
US8885377B2 (en) * 2011-05-10 2014-11-11 Kabushiki Kaisha Yaskawa Denki Matrix converter
TWI505620B (zh) * 2011-05-10 2015-10-21 Yaskawa Denki Seisakusho Kk 矩陣轉換器
US9712079B2 (en) * 2012-05-22 2017-07-18 Kabushiki Kaisha Yaskawa Denki Electric power converter and control method for electric power converter
US20150070952A1 (en) * 2012-05-22 2015-03-12 Kabushiki Kaisha Yaskawa Denki Electric power converter and control method for electric power converter
US9343995B2 (en) 2013-01-30 2016-05-17 Fuji Electric Co., Ltd. Power conversion device
US20150229227A1 (en) * 2014-02-07 2015-08-13 Abb Technology Ag Multi-phase AC/AC Step-down Converter for Distribution Systems
US9800167B2 (en) * 2014-02-07 2017-10-24 Abb Schweiz Ag Multi-phase AC/AC step-down converter for distribution systems
US20170244325A1 (en) * 2016-02-22 2017-08-24 The Boeing Company Adaptable high efficiency power inverter system
US10218277B2 (en) * 2016-02-22 2019-02-26 The Boeing Company Adaptable high efficiency power inverter system
US11342749B1 (en) 2019-11-22 2022-05-24 Smart Wires Inc. Integration of a power flow control unit

Also Published As

Publication number Publication date
GB2439035A (en) 2007-12-12
CN101160708B (zh) 2011-09-07
JP4803177B2 (ja) 2011-10-26
CN101160708A (zh) 2008-04-09
GB0720130D0 (en) 2007-11-28
DE112006000887T5 (de) 2008-03-06
TWI314809B (de) 2009-09-11
JPWO2006112275A1 (ja) 2008-12-11
KR20070114211A (ko) 2007-11-29
KR100963725B1 (ko) 2010-06-14
TW200640114A (en) 2006-11-16
US20090059633A1 (en) 2009-03-05
WO2006112275A1 (ja) 2006-10-26
GB2439035B (en) 2008-10-22

Similar Documents

Publication Publication Date Title
US7782643B2 (en) Matrix converter apparatus
US6351397B1 (en) Protection apparatus and protection method of PWM cycloconverter
KR100420698B1 (ko) 전력변환장치및전력변환방법
US10128773B2 (en) Electric power conversion device and electric power system
US7622825B2 (en) Wide-voltage-range converter
US9318992B2 (en) Drive circuit for a pre-phase AC motor
JP5493902B2 (ja) 電力変換装置
US4502106A (en) Current source sine wave inverter
US20150003127A1 (en) Multilevel power conversion circuit
JPWO2009084354A1 (ja) 交流電動機の巻線切替装置およびその巻線切替システム
US20120134184A1 (en) Multi-level inverter having dual controller
US20120275202A1 (en) Series multiplex power conversion apparatus
KR20160109137A (ko) 인버터 시스템
US20180076734A1 (en) Electric power conversion device
JP5522265B2 (ja) フィルタ回路及びそれを備える双方向電力変換装置
US20150357939A1 (en) Cascaded h-bridge inverter capable of operating in bypass mode
US9859824B2 (en) Drive circuit for a brushless motor having an AC/AC boost converter
JP4059098B2 (ja) 交流−交流電力変換器のバックアップ装置
CN116238350A (zh) 一种集成交流充放电的电驱***及电动车辆
JP3937236B2 (ja) 直列多重3相pwmサイクロコンバータ装置および直列多重3相pwmサイクロコンバータ装置の運転方法および直列多重3相pwm電力変換装置
JP4872322B2 (ja) マトリクスコンバータ
Venkataramanan et al. A hybrid 4-quadrant switch for ac power conversion
JP2007082399A (ja) 直列多重3相pwmサイクロコンバータ
JP2007221969A (ja) インバータ装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA YASKAWA DENKI, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HARA, HIDENORI;YAMAMOTO, EIJI;REEL/FRAME:019960/0200

Effective date: 20071003

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12