US5472333A - Spinnerette from gold-platinum-palladium-rhodium alloy - Google Patents

Spinnerette from gold-platinum-palladium-rhodium alloy Download PDF

Info

Publication number
US5472333A
US5472333A US08/149,389 US14938993A US5472333A US 5472333 A US5472333 A US 5472333A US 14938993 A US14938993 A US 14938993A US 5472333 A US5472333 A US 5472333A
Authority
US
United States
Prior art keywords
platinum
gold
alloys
alloy
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/149,389
Inventor
Joseph M. van der Zel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elephant Edelmetaal BV
Original Assignee
Elephant Edelmetaal BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elephant Edelmetaal BV filed Critical Elephant Edelmetaal BV
Assigned to ELEPHANT EDELMETAAL B.V. reassignment ELEPHANT EDELMETAAL B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARIA, JOSEPH, ZEL, VAN DER
Application granted granted Critical
Publication of US5472333A publication Critical patent/US5472333A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/08Bushings, e.g. construction, bushing reinforcement means; Spinnerettes; Nozzles; Nozzle plates
    • C03B37/095Use of materials therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • D01D4/022Processes or materials for the preparation of spinnerettes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • This invention relates to a method for manufacturing a product from a gold-platinum-palladium-rhodium alloy, in particular a spinnerette which is suitable for use in the production of synthetic fibers.
  • Synthetic fibers are obtained by "drawing” them, with or without pressure, from a complex chemical solution through a spinnerette with fine perforations or holes. These perforations are for instance punched out with the aid of a sapphire rod.
  • German patent specification 221,572 already discloses spinnerettes, which were manufactured from pure platinum at the time. However, they are too soft (Brinell hardness 40, equivalent to Vickers hardness HV 50), which also applies to the alloys from gold and 20-32% platinum described in British patent specification 260,672.
  • Gold-platinum alloys appear to be especially suitable for making such spinnerettes in view of their resistance to corrosion.
  • spinnerettes from gold-platinum alloys are used on a large scale. They are so popular because they are corrosion-resistant and hardenable in a large concentration range--from approximately 20 to 95% platinum. The possible hardening is caused by the occurrence of separation in the solidified melt of the alloy at lower temperatures. The highest hardness, both in homogenized and in hardened condition, occurs in alloys with 60-70% platinum. In practice, these alloys with an extremely high hardness are rarely used in connection with production problems. An optimum composition is rather in the neighborhood of 30-50% platinum.
  • rhodium is added, generally in an amount of 0.5-1%. Rhodium has a grain-refining effect. Alloys with 30% platinum obtain the highest hardness with addition of 1% rhodium. The elongation at break, too, is increased by the addition of rhodium. German patent specification 691,061 discloses gold-platinum alloys from 60-80% gold and 20-40% platinum, to which up to 1% rhodium is added.
  • German patent specification 873,145 discloses gold-platinum alloys with 50-93% Pt, intended for spinnerettes, and further suggests the addition of at most 1% rhodium to Au--Pt alloys with 40-50% Pt, for instance a gold-platinum alloy with 50% Au, 49% Pt and 1% Rh.
  • Such an alloy it is true, has a high hardness in hardened form, but it also has a high hardness in annealed form, which renders it more difficult for holes to be pierced. The holes can only be pierced in thin sheets for use at low pressure.
  • Gold-platinum alloys from 80.5-90% gold, 10-19.5% platinum and additions of 0-3% rhodium, iridium, ruthenium, osmium and/or rhenium are disclosed in French patent specification 2,133,178.
  • British patent specification 1,112,766 mentions a gold-platinum alloy from 50-80% gold, 0.04-0.5% iridium and the balance platinum.
  • German patent application 1,075,838 discloses spinnerettes manufactured from a gold-platinum alloy comprising 32-39% platinum and up to 2% rhenium.
  • a gold-platinum alloy with 3% gold, 85-87% platinum and 10-12% rhodium which is suitable for use as a spinnerette for glass fibers is disclosed in German patent application 2,053,059.
  • U.S. Pat. No. 1,169,753 to Peschko proposes an alloy for the manufacture of jewelry, instruments, dental restorations and electric equipment, comprising 10 parts of platinum, 30 parts of palladium and 60 parts of gold; if an increase of the strength is desired, then 0.1-2% of a hardening element such as ruthenium, iridium, osmium, or rhodium could be added for the purpose.
  • the alloys are obtained by melting the metals together.
  • Peschko apparently assumes that hardening elements are effective when they are simply added to the mixture to be melted and that hardening occurs automatically without the necessity of performing a prior homogenization annealing step for that purpose.
  • the most used spinnerette alloy for spinning synthetic fibers is an alloy with 59.5% gold, 30% platinum and 0.5% rhodium. With this alloy, after a somewhat longer service time the metal proved to be selectively lixiviated at some points because of inhomogeneities present.
  • a polymer is pressed through a spinnerette in a medium consisting of a 40% sulfuric acid solution at 80° C. After the spinnerette has been in use, it is removed from the spinning press so as to be cleaned and treated with a bichromate/sulfuric acid solution at 90°-100° C.
  • the present invention provides a method for manufacturing a product, in particular a spinnerette, suitable for the production of synthetic fibers, from a gold-platinum-palladium-rhodium alloy which comprises 30-80 wt. % gold, 1-60 wt. % platinum, 1-50 wt. % palladium, 0.1-5 wt. % rhodium and 0-0.4 wt. % iridium and/or ruthenium, comprising preparing a melt comprising requisite amounts of the alloy elements and casting the melt so as to form an ingot, as well as the steps of homogenizing through annealing, chilling, processing and age-hardening the alloy.
  • a gold-platinum-palladium-rhodium alloy which comprises 30-80 wt. % gold, 1-60 wt. % platinum, 1-50 wt. % palladium, 0.1-5 wt. % rhodium and 0-0.4 wt. % irid
  • the alloy be composed of 50-70 wt. % Au, 20-40 wt. % Pt, 5-20 wt. % Pd, 0.3-1.5 wt. % Rh and 0-0.4 wt. % Ir and/or Ru, in particular from approximately 59 wt. % Au, approximately 30 wt. % Pt, approximately 10 wt. % Pd and approximately 1 wt. % Rh.
  • the homogenization is carried out by annealing at a temperature of 900°-1200° C., preferably at approximately 1150° C.
  • chilling is preferably carried out by rapidly cooling the annealed product with water.
  • the chilled product is processed by rolling it to a slighter thickness, preferably in several steps, with the product being annealed between these steps at 900°-1200° C., preferably at a temperature of approximately 950° C.
  • the processing of the chilled product may comprise a punching treatment whereby the product is perforated.
  • the processed product is hardened by an ageing treatment at a temperature of 400°-700° C., preferably at 500°-650° C.
  • the present invention further encompasses products, in particular spinnerettes, suitable for the production of synthetic fibers, which have been obtained by the use of the method of the present invention.
  • the present invention further provides a new gold-platinum-palladium-rhodium alloy comprising 50-70 wt. % gold, 20-40 wt. % platinum, 5-20 wt. % palladium, 0.3-1.5 wt. % rhodium and 0-0.4 wt. % iridium and/or ruthenium, in particular approximately 59 wt. % Au, approximately 30 wt. % Pt, approximately 10 wt. % Pd and approximately 1 wt. % Rh.
  • Products, in particular spinnerettes, manufactured from such an alloy are also encompassed by the invention.
  • the invention encompasses a method for producing synthetic fibers by spinning synthetic material, utilizing a spinnerette according to the invention.
  • the invention discloses that the existing ternary gold-platinum-rhodium alloys can be highly improved in physical properties by addition of palladium, without deterioration of the corrosion resistance of the alloy during the fiber production. Corrosion tests have demonstrated that the corrosion of the alloys 7, 10 and 11 was at the same level as that of the alloys 1-6. In the alloys with a higher palladium content (8 and 9), a slightly higher corrosion rate was found. In Tables 1a and 1b it can be seen how the physical and corrosion properties depend on the composition. Alloys 1-6 are existing spinnerette alloys. Alloys 7-11 are alloys according to the invention.
  • the rhodium-free alloys eventually attain a higher hardness than the rhodium-containing alloys.
  • tensile strength the same applies as what has been said about the hardness, with the exception of the alloy with 30% platinum.
  • the hardening of the alloy expressed as the difference in hardness in soft condition for piercing the holes and the hardness in hardened condition for optimum condition of use, is highest in alloy 7, being preferred most, viz. Vickers hardness number 180.
  • alloy 7 is soft enough to be punched efficiently, i.e., that the sapphire punches do not break unduly often, whilst the alloy in the hardened condition of use has a high hardness with a correspondingly high strength.
  • the soft condition makes that even thicker sheets, usable at a higher pressure during an increased production of the fibers, can yet be punched properly and efficiently, whilst the increased strength after hardening enables a higher pressure to be used during the fiber production. This implies proportionate economic advantages of the use of such an alloy.
  • the alloys with palladium additive are considerably finer grained than the palladium-free alloys, which favorably influences the piercing of the holes, the polishing and the corrosion resistance.
  • quaternary gold-platinum-palladium-rhodium alloys prepared in accordance with the invention can be hardened.
  • the improved alloys satisfy, to a greater degree than do the alloys hitherto available, the requirements that may be imposed on a spinnerette alloy.
  • the alloys according to the invention have a uniform structure, in which an occurring second phase is very finely distributed through a gold-platinum-palladium matrix.
  • the presence of rhodium in combination with palladium and platinum gives, surprisingly, a high degree of grain refinement and a good distribution of the platinum-rich hard second phase.
  • the major advantage of the alloys according to the invention is their higher elasticity modulus or Young's modulus in comparison with that of existing ternary gold-platinum-rhodium spinnerette alloys. This makes that the alloy yields to a lesser extent under the same load, which means that the spinnerette plate can be made thinner than with the existing alloys, or that, given the same thickness, a larger plate can be used, which yields a considerable production increase, than would have been possible with the existing alloys.
  • iridium and/or ruthenium can be added so as to obtain a structure of even finer grain.
  • the components used had a purity of at least 99.95%.
  • the alloy was cast in a die of pure copper.
  • the thus obtained bar was planed down on both sides, followed by annealing for 1 hour at 1150° C. and then chilled in water.
  • the 15 mm thick bar was rolled in several steps to a final thickness of 1.0 mm and annealed in the interim for 15 minutes at 950° C.
  • the plate was annealed at 1150° C. for 30 minutes and cooled very rapidly in water.
  • the hardness of the plate was measured with a micro Vickers hardness meter of Durimet (Leitz, Germany) with 1.0 kg load and showed a value of HV 160. After a hardening treatment at 600° C. for 5 hours the hardness was HV 340.
  • a sheet of a spinnerette alloy of the following composition (in percentages by weight): 69.5% gold, 30% platinum and 0.5% rhodium was produced as in Example 1.
  • the sheet was annealed for 30 minutes at 1100° C. and cooled very rapidly in water.
  • the sheet showed a hardness of HV 134.
  • the hardness was HV 316
  • the tensile strength was 82 kg/mm 2 (800 MPa)
  • the 0.2% yielding point was 72 kg/mm 2 (710 Mpa)
  • the Young's modulus was 100 GPa and the elongation at break was 2%.
  • a sheet of a spinnerette alloy of the composition as in Example 1 was produced. As a last step, however, after annealing for 30 minutes at 1150° C., the sheet was cooled in the air for a few seconds before the plate was cooled in water. The plate showed a hardness of HV 185. After a hardening treatment for 5 hours at 550° C., the hardness was only HV 240, the tensile strength 72 kg/mm 2 (707 Mpa), the 0.2% yielding point was 64 kg/mm 2 (628 Mpa), the Young's modulus was120 GPa and the elongation at break was 2%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Textile Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Inorganic Fibers (AREA)

Abstract

A spinneret consisting essentially of an alloy consisting essentially of from 30-80 wt. % gold, 1-60 wt. % platinum, 1-50 wt. % palladium, 0.1-5 wt. % rhodium and 0-0.4 wt. % iridium and/or ruthenium, said alloy having a VICKERS hardness of from 145-340 after treatment for 5 hours at a temperature of from 500 DEG -650 DEG C.

Description

FIELD OF THE INVENTION
This invention relates to a method for manufacturing a product from a gold-platinum-palladium-rhodium alloy, in particular a spinnerette which is suitable for use in the production of synthetic fibers.
Synthetic fibers are obtained by "drawing" them, with or without pressure, from a complex chemical solution through a spinnerette with fine perforations or holes. These perforations are for instance punched out with the aid of a sapphire rod.
The following is expected from a good spinnerette:
1. a long standing time in the fiber press before it must be removed to be cleaned because of clogged holes;
2. it must consist of material that is sufficiently soft and homogeneous in annealed form to allow holes to be punched in as thick a plate as possible, in an economically acceptable way and with high precision, without the punches breaking unduly often;
3. after the holes have been pierced, and after a hardening/heat treatment, an increase in hardness and strength should be attainable, such that it can remain in operation as long as possible, at the highest possible pressure, without thereby deforming;
4. it must possess a uniform structure so that corrosion is minimized.
Spinnerettes whose surface comprises as many as 15,000 holes of a diameter in the range of 40-120 μm play an important role in the production of artificial silk fibers and other synthetic fibers. There is a great need for even stronger and especially even stiffer alloys with a good corrosion resistance because with the same invested capital a higher production can be achieved with the same press through an increased allowable production pressure on the spinnerette. This gives proportionate economic advantages.
PRIOR ART
German patent specification 221,572 already discloses spinnerettes, which were manufactured from pure platinum at the time. However, they are too soft (Brinell hardness 40, equivalent to Vickers hardness HV 50), which also applies to the alloys from gold and 20-32% platinum described in British patent specification 260,672. Gold-platinum alloys appear to be especially suitable for making such spinnerettes in view of their resistance to corrosion. In the synthetic fiber industry, spinnerettes from gold-platinum alloys are used on a large scale. They are so popular because they are corrosion-resistant and hardenable in a large concentration range--from approximately 20 to 95% platinum. The possible hardening is caused by the occurrence of separation in the solidified melt of the alloy at lower temperatures. The highest hardness, both in homogenized and in hardened condition, occurs in alloys with 60-70% platinum. In practice, these alloys with an extremely high hardness are rarely used in connection with production problems. An optimum composition is rather in the neighborhood of 30-50% platinum.
Later, with 30% platinum, a Brinell hardness of at most 200 (Vickers hardness HV 220) could be attained. There were problems, however, caused by strong segregation during hardening, so that variations in hardness arose.
Mostly, to gold-platinum alloys rhodium is added, generally in an amount of 0.5-1%. Rhodium has a grain-refining effect. Alloys with 30% platinum obtain the highest hardness with addition of 1% rhodium. The elongation at break, too, is increased by the addition of rhodium. German patent specification 691,061 discloses gold-platinum alloys from 60-80% gold and 20-40% platinum, to which up to 1% rhodium is added.
German patent specification 873,145 discloses gold-platinum alloys with 50-93% Pt, intended for spinnerettes, and further suggests the addition of at most 1% rhodium to Au--Pt alloys with 40-50% Pt, for instance a gold-platinum alloy with 50% Au, 49% Pt and 1% Rh. Such an alloy, it is true, has a high hardness in hardened form, but it also has a high hardness in annealed form, which renders it more difficult for holes to be pierced. The holes can only be pierced in thin sheets for use at low pressure.
Gold-platinum alloys from 80.5-90% gold, 10-19.5% platinum and additions of 0-3% rhodium, iridium, ruthenium, osmium and/or rhenium are disclosed in French patent specification 2,133,178. British patent specification 1,112,766 mentions a gold-platinum alloy from 50-80% gold, 0.04-0.5% iridium and the balance platinum. German patent application 1,075,838 discloses spinnerettes manufactured from a gold-platinum alloy comprising 32-39% platinum and up to 2% rhenium. A gold-platinum alloy with 3% gold, 85-87% platinum and 10-12% rhodium which is suitable for use as a spinnerette for glass fibers is disclosed in German patent application 2,053,059.
U.S. Pat. No. 1,169,753 to Peschko proposes an alloy for the manufacture of jewelry, instruments, dental restorations and electric equipment, comprising 10 parts of platinum, 30 parts of palladium and 60 parts of gold; if an increase of the strength is desired, then 0.1-2% of a hardening element such as ruthenium, iridium, osmium, or rhodium could be added for the purpose. The alloys are obtained by melting the metals together. Peschko apparently assumes that hardening elements are effective when they are simply added to the mixture to be melted and that hardening occurs automatically without the necessity of performing a prior homogenization annealing step for that purpose.
When rhodium is added, however, it is necessary that the metal be homogeneously distributed first, if any hardening effect of the addition is to be obtained. If the metal is not first distributed homogeneously, rhodium even leads to a reduction of the strength and the hardness. Nor is the hardening a matter of course. Rhodium often gives a reduction of the strength and the hardness. This is evident from a comparison of Examples 1 and 3 in Tables 1a and 1b with Examples 4 and 6 in the same Tables. Only in the case of the gold-platinum alloys with 25% and 30% platinum does rhodium give an increase of the hardness. In view of the high palladium content of approx. 30% in the alloy according to Peschko, a positive effect of rhodium on the hardness is not certain because palladium has an equalizing effect on the hardening response because palladium dissolves the rhodium and thereby reduces the hardening activity of rhodium.
The most used spinnerette alloy for spinning synthetic fibers is an alloy with 59.5% gold, 30% platinum and 0.5% rhodium. With this alloy, after a somewhat longer service time the metal proved to be selectively lixiviated at some points because of inhomogeneities present.
In the spinning of synthetic fibers, a polymer is pressed through a spinnerette in a medium consisting of a 40% sulfuric acid solution at 80° C. After the spinnerette has been in use, it is removed from the spinning press so as to be cleaned and treated with a bichromate/sulfuric acid solution at 90°-100° C.
From the above it can be inferred how corrosion-resistant the material should be. Therefore the alloys of the invention were subjected to a corrosion test and the results were compared with those of the alloys from which the spinnerettes now in use are manufactured.
SUMMARY OF THE INVENTION
The present invention provides a method for manufacturing a product, in particular a spinnerette, suitable for the production of synthetic fibers, from a gold-platinum-palladium-rhodium alloy which comprises 30-80 wt. % gold, 1-60 wt. % platinum, 1-50 wt. % palladium, 0.1-5 wt. % rhodium and 0-0.4 wt. % iridium and/or ruthenium, comprising preparing a melt comprising requisite amounts of the alloy elements and casting the melt so as to form an ingot, as well as the steps of homogenizing through annealing, chilling, processing and age-hardening the alloy.
According to the invention, it is preferred that the alloy be composed of 50-70 wt. % Au, 20-40 wt. % Pt, 5-20 wt. % Pd, 0.3-1.5 wt. % Rh and 0-0.4 wt. % Ir and/or Ru, in particular from approximately 59 wt. % Au, approximately 30 wt. % Pt, approximately 10 wt. % Pd and approximately 1 wt. % Rh.
According to the invention, the homogenization is carried out by annealing at a temperature of 900°-1200° C., preferably at approximately 1150° C. According to the invention, chilling is preferably carried out by rapidly cooling the annealed product with water. The chilled product is processed by rolling it to a slighter thickness, preferably in several steps, with the product being annealed between these steps at 900°-1200° C., preferably at a temperature of approximately 950° C. The processing of the chilled product may comprise a punching treatment whereby the product is perforated. Finally, according to the invention, the processed product is hardened by an ageing treatment at a temperature of 400°-700° C., preferably at 500°-650° C.
The present invention further encompasses products, in particular spinnerettes, suitable for the production of synthetic fibers, which have been obtained by the use of the method of the present invention.
The present invention further provides a new gold-platinum-palladium-rhodium alloy comprising 50-70 wt. % gold, 20-40 wt. % platinum, 5-20 wt. % palladium, 0.3-1.5 wt. % rhodium and 0-0.4 wt. % iridium and/or ruthenium, in particular approximately 59 wt. % Au, approximately 30 wt. % Pt, approximately 10 wt. % Pd and approximately 1 wt. % Rh. Products, in particular spinnerettes, manufactured from such an alloy are also encompassed by the invention.
Finally, the invention encompasses a method for producing synthetic fibers by spinning synthetic material, utilizing a spinnerette according to the invention.
DETAILED DESCRIPTION OF THE INVENTION
The invention discloses that the existing ternary gold-platinum-rhodium alloys can be highly improved in physical properties by addition of palladium, without deterioration of the corrosion resistance of the alloy during the fiber production. Corrosion tests have demonstrated that the corrosion of the alloys 7, 10 and 11 was at the same level as that of the alloys 1-6. In the alloys with a higher palladium content (8 and 9), a slightly higher corrosion rate was found. In Tables 1a and 1b it can be seen how the physical and corrosion properties depend on the composition. Alloys 1-6 are existing spinnerette alloys. Alloys 7-11 are alloys according to the invention.
With the exception of the 25% and 30% platinum alloys, the rhodium-free alloys eventually attain a higher hardness than the rhodium-containing alloys. As regards tensile strength, the same applies as what has been said about the hardness, with the exception of the alloy with 30% platinum.
Although it could be expected that by the addition of palladium, due to the high dissolvent power of rhodium in palladium, the hardening activity of rhodium would decrease, it has now surprisingly been found that with a content of 10% palladium a very good hardening response is obtained, in spite of the fact that palladium generally reduces the separation of platinum in platinum-gold alloys. A condition for this appeared to be a rapid cooling after the homogenization treatment. In spite of the hardening response, after annealing so low a hardness can be attained that even thicker sheets, intended for production under high pressure, can still be properly pierced. Then the spinnerette can be hardened. Hardening takes place at a temperature which is mostly 50° C. higher than the prior art ternary gold-platinum-rhodium spinnerette alloys.
To achieve the desired optimum properties after hardening of these improved spinnerette alloys, it is of the utmost importance that the sheet be cooled rapidly, i.e., instantaneously, in water. If this happens too slowly, as in comparative example 2, then the hardening is very inefficient and the contemplated improvement of the properties is not achieved.
The hardening of the alloy expressed as the difference in hardness in soft condition for piercing the holes and the hardness in hardened condition for optimum condition of use, is highest in alloy 7, being preferred most, viz. Vickers hardness number 180. This means that the alloy is soft enough to be punched efficiently, i.e., that the sapphire punches do not break unduly often, whilst the alloy in the hardened condition of use has a high hardness with a correspondingly high strength. The soft condition makes that even thicker sheets, usable at a higher pressure during an increased production of the fibers, can yet be punched properly and efficiently, whilst the increased strength after hardening enables a higher pressure to be used during the fiber production. This implies proportionate economic advantages of the use of such an alloy.
Moreover, the alloys with palladium additive are considerably finer grained than the palladium-free alloys, which favorably influences the piercing of the holes, the polishing and the corrosion resistance.
Like the conventional ternary gold-platinum-rhodium alloys, quaternary gold-platinum-palladium-rhodium alloys prepared in accordance with the invention can be hardened. However, the improved alloys satisfy, to a greater degree than do the alloys hitherto available, the requirements that may be imposed on a spinnerette alloy. The alloys according to the invention have a uniform structure, in which an occurring second phase is very finely distributed through a gold-platinum-palladium matrix. The presence of rhodium in combination with palladium and platinum gives, surprisingly, a high degree of grain refinement and a good distribution of the platinum-rich hard second phase.
The major advantage of the alloys according to the invention is their higher elasticity modulus or Young's modulus in comparison with that of existing ternary gold-platinum-rhodium spinnerette alloys. This makes that the alloy yields to a lesser extent under the same load, which means that the spinnerette plate can be made thinner than with the existing alloys, or that, given the same thickness, a larger plate can be used, which yields a considerable production increase, than would have been possible with the existing alloys.
To the alloys up to 0.4% iridium and/or ruthenium can be added so as to obtain a structure of even finer grain.
EXAMPLE
A spinnerette alloy of the following composition (in percentages by weight): 59% gold, 30% platinum, 10% palladium and 1% rhodium was weighed out and melted in vacuo in an aluminum oxide crucible in a medium-frequency induction furnace until all of the components were dissolved. The components used had a purity of at least 99.95%.
Then at a bath temperature of 1600° C. the alloy was cast in a die of pure copper. The thus obtained bar was planed down on both sides, followed by annealing for 1 hour at 1150° C. and then chilled in water. Then the 15 mm thick bar was rolled in several steps to a final thickness of 1.0 mm and annealed in the interim for 15 minutes at 950° C. As a last step the plate was annealed at 1150° C. for 30 minutes and cooled very rapidly in water.
The hardness of the plate was measured with a micro Vickers hardness meter of Durimet (Leitz, Germany) with 1.0 kg load and showed a value of HV 160. After a hardening treatment at 600° C. for 5 hours the hardness was HV 340.
Then, with the aid of a tensile testing machine of Zwick (Germany) with extensometer, a tensile test was performed on a test plate. The tensile strength was 119 kg/mm2 (1168 MPa), the 0.2% yielding point was 104 kg/mm2 (1021 MPa), the Young's modulus was 140 GPa and the elongation at break was 7.8% (test sheet: width 8 mm, thickness 1.0 mm, length 30 mm).
Comparatives example 1
A sheet of a spinnerette alloy of the following composition (in percentages by weight): 69.5% gold, 30% platinum and 0.5% rhodium was produced as in Example 1. As a last step, the sheet was annealed for 30 minutes at 1100° C. and cooled very rapidly in water. The sheet showed a hardness of HV 134. After a hardening treatment at 550° C. for 5 hours, the hardness was HV 316, the tensile strength was 82 kg/mm2 (800 MPa), the 0.2% yielding point was 72 kg/mm2 (710 Mpa), the Young's modulus was 100 GPa and the elongation at break was 2%.
Comparative example 2
A sheet of a spinnerette alloy of the composition as in Example 1 was produced. As a last step, however, after annealing for 30 minutes at 1150° C., the sheet was cooled in the air for a few seconds before the plate was cooled in water. The plate showed a hardness of HV 185. After a hardening treatment for 5 hours at 550° C., the hardness was only HV 240, the tensile strength 72 kg/mm2 (707 Mpa), the 0.2% yielding point was 64 kg/mm2 (628 Mpa), the Young's modulus was120 GPa and the elongation at break was 2%.
                                  TABLE 1a                                
__________________________________________________________________________
Gold-platinum spinnerette alloys: composition,                            
hardening response and corrosion rate                                     
                  Vickers hardness, HV                                    
Composition              Hardening       Corrosion                        
in wt. %                 Temp. in °C.                              
                                         in μg/cm2                     
No  Au   Pt Pd Rh Annealing                                               
                         500 550 600 650 per day                          
__________________________________________________________________________
1   75   25 -- -- 100    160 190 160 120 1                                
2   70   30 -- -- 120    230 290 270 230 1                                
3   50   50 -- -- 200    330 360 340 250 1                                
4     74.5                                                                
         25 -- 0.5                                                        
                  125    190 250 230 190 1                                
5     69.5                                                                
         30 -- 0.5                                                        
                  134    275 316 272 215 1                                
6   50   49 -- 1.0                                                        
                  210    300 320 290 250 1                                
7   59   30 10 1.0                                                        
                  160    284 318 340 271 1                                
8   49   30 20 1.0                                                        
                  130    175 210 250 235 2                                
9   39   30 30 1.0                                                        
                  134    145 170 190 170 2                                
10  39   50 10 1.0                                                        
                  220    250 270 300 270 1                                
11    59.5                                                                
         30 10 0.5                                                        
                  220    245 260 280 260 1                                
__________________________________________________________________________
              TABLE 1b                                                    
______________________________________                                    
Gold-platinum spinnerette alloys: physical                                
properties after optimum hardening (see also Table 1a).                   
      Vickers  Young's  Tensile                                           
                               0.2%-yield                                 
                                       Elongation                         
      hardness modulus  strength                                          
                               point   at break                           
No    HV       GPa      MPa    MPa     %                                  
______________________________________                                    
1     190       90      770    640     1.0                                
2     290       90      750    610     1.5                                
3     370      100      1700   1430    2.0                                
4     250      100      750    690     1.5                                
5     316      100      800    710     2.0                                
6     320      100      1500   1250    4.0                                
7     340      140      1168   1021    7.8                                
8     250      150      1000   870     8.2                                
9     190      170      900    790     9.3                                
10    300      140      900    800     7.3                                
11    280      140      900    810     6.2                                
______________________________________                                    

Claims (2)

I claim:
1. A spinneret consisting essentially of an alloy consisting essentially of 50-70 wt. % gold, 20-40 wt. % platinum, 5-20 wt. % palladium, 0.3-1.5 wt. % rhodium and 0-0.4 wt. % of at least one selected from the group consisting of iridium and ruthenium, said alloy having a Vickers hardness of from 145-340.
2. The spinneret of claim 1, wherein the alloy consists essentially of 59 wt. % Au, 30 wt. % Pt, 10 wt. % Pd and 1 wt. % Rh.
US08/149,389 1992-11-09 1993-11-09 Spinnerette from gold-platinum-palladium-rhodium alloy Expired - Fee Related US5472333A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL9201956 1992-11-09
NL9201956A NL9201956A (en) 1992-11-09 1992-11-09 Manufacture of a spinneret or other product from a gold-platinum-palladium-rhodium alloy; the alloy; product made therefrom; production of synthetic fibers.

Publications (1)

Publication Number Publication Date
US5472333A true US5472333A (en) 1995-12-05

Family

ID=19861498

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/149,389 Expired - Fee Related US5472333A (en) 1992-11-09 1993-11-09 Spinnerette from gold-platinum-palladium-rhodium alloy

Country Status (10)

Country Link
US (1) US5472333A (en)
EP (1) EP0598431B1 (en)
JP (1) JP3383694B2 (en)
AT (1) ATE189706T1 (en)
DE (1) DE69327830T2 (en)
DK (1) DK0598431T3 (en)
ES (1) ES2145024T3 (en)
GR (1) GR3033383T3 (en)
NL (1) NL9201956A (en)
PT (1) PT598431E (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733492A (en) * 1994-01-31 1998-03-31 Akzo Nobel N.V. Spinneret of gold and platinum-containing alloy
US20040157128A1 (en) * 2002-09-12 2004-08-12 Hirohisa Seto Metal foil for current collector of secondary battery and method for producing the same
US20070162108A1 (en) * 2005-12-13 2007-07-12 Carlson James M Implantable medical device using palladium
US20090218647A1 (en) * 2008-01-23 2009-09-03 Ev Products, Inc. Semiconductor Radiation Detector With Thin Film Platinum Alloyed Electrode
RU2586175C1 (en) * 2015-06-08 2016-06-10 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Alloy based on white gold 585 sample
CN105986142A (en) * 2015-03-17 2016-10-05 斯沃奇集团研究和开发有限公司 Grey gold alloy
CN108697427A (en) * 2016-03-07 2018-10-23 田中贵金属工业株式会社 The manufacturing method of embolism spring ring and embolism spring ring
US10883162B2 (en) * 2013-12-20 2021-01-05 Tanaka Kikinzoku Kogyo K.K. Alloy for medical use, and method for producing same
US20220213576A1 (en) * 2019-09-26 2022-07-07 Tanaka Kikinzoku Kogyo K.K. MEDICAL Au-Pt-Pd ALLOY
US20230113633A1 (en) * 2019-09-26 2023-04-13 Tanaka Kikinzoku Kogyo K.K. MEDICAL Au-Pt-Pd ALLOY

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520944B2 (en) * 2003-04-08 2010-08-11 株式会社パイロットコーポレーション Method for producing white noble metal alloy
JP5221884B2 (en) * 2007-03-06 2013-06-26 株式会社徳力本店 K18 white gold alloy for decoration
DE102010026930A1 (en) * 2010-07-12 2012-01-12 C. Hafner Gmbh + Co. Kg Ideally white precious metal-jewelry alloy, useful for preparing clocks, jewelry or its articles and/or writing instruments, comprises specified amount of rhodium and platinum
CN110695612B (en) * 2018-07-09 2021-05-25 深圳市金百泰珠宝实业有限公司 Processing method for improving hardness of gold ornaments
JP2020118714A (en) 2019-01-18 2020-08-06 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Developing device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE221572C (en) *
US1169753A (en) * 1915-03-12 1916-01-25 Rudolph John Peschko Precious-metal alloy.
GB260672A (en) * 1925-08-05 1926-11-05 William Porter Dreaper Improvements in alloys and their uses
DE691061C (en) * 1935-07-24 1940-05-15 Heraeus Gmbh W C nduesen
FR898019A (en) * 1942-10-23 1945-04-09 Degussa An alloy of gold and platinum, which can be improved, intended in particular for the manufacture of spinning dies
US2566283A (en) * 1948-03-16 1951-08-28 Baker & Co Inc Spinnerette
DE873145C (en) * 1936-04-28 1953-04-13 Degussa Use of gold-platinum alloys for the production of spinnerets
DE1075838B (en) * 1960-02-18 Deutsche Gold und Silber Scheide anstalt vormals Roessler Frankfurt/M Use of gold platinum alloys for the production of spinnerets
US2938788A (en) * 1958-02-20 1960-05-31 Ruthardt Konrad Spinning nozzles
GB1112766A (en) * 1965-07-23 1968-05-08 Johnson Matthey Co Ltd An improved alloy
DE2053059A1 (en) * 1969-06-06 1971-12-09 Johnson Matthey Co Ltd Process for the production of glass fibers
FR2133178A5 (en) * 1971-04-09 1972-11-24 Louyot Comptoir Lyon Alemand Gold-based alloys - for prodn of draco plates used in mixg synthetic fibres
US4062676A (en) * 1976-07-06 1977-12-13 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Gold alloy for firing on porcelain for dental purposes
JPS62112740A (en) * 1985-11-12 1987-05-23 エレフアント エデルメタ−ル ベ−ヴエ− Tooth repairing material
EP0346595A2 (en) * 1988-06-11 1989-12-20 Degussa Aktiengesellschaft Use of a dental alloy devoid of non-precious metals for casting fixed dental prostheses

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4194907A (en) * 1978-10-20 1980-03-25 Unitek Corporation Gold alloys for fusion to porcelain
JPS6047903B2 (en) * 1982-05-21 1985-10-24 三金工業株式会社 Low karat gold alloy for casting with golden color
JPS5916943A (en) * 1982-07-16 1984-01-28 G C Dental Ind Corp Gold alloy for dental use

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE221572C (en) *
DE1075838B (en) * 1960-02-18 Deutsche Gold und Silber Scheide anstalt vormals Roessler Frankfurt/M Use of gold platinum alloys for the production of spinnerets
US1169753A (en) * 1915-03-12 1916-01-25 Rudolph John Peschko Precious-metal alloy.
GB260672A (en) * 1925-08-05 1926-11-05 William Porter Dreaper Improvements in alloys and their uses
DE691061C (en) * 1935-07-24 1940-05-15 Heraeus Gmbh W C nduesen
DE873145C (en) * 1936-04-28 1953-04-13 Degussa Use of gold-platinum alloys for the production of spinnerets
FR898019A (en) * 1942-10-23 1945-04-09 Degussa An alloy of gold and platinum, which can be improved, intended in particular for the manufacture of spinning dies
US2566283A (en) * 1948-03-16 1951-08-28 Baker & Co Inc Spinnerette
US2938788A (en) * 1958-02-20 1960-05-31 Ruthardt Konrad Spinning nozzles
GB1112766A (en) * 1965-07-23 1968-05-08 Johnson Matthey Co Ltd An improved alloy
DE2053059A1 (en) * 1969-06-06 1971-12-09 Johnson Matthey Co Ltd Process for the production of glass fibers
FR2133178A5 (en) * 1971-04-09 1972-11-24 Louyot Comptoir Lyon Alemand Gold-based alloys - for prodn of draco plates used in mixg synthetic fibres
US4062676A (en) * 1976-07-06 1977-12-13 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Gold alloy for firing on porcelain for dental purposes
JPS62112740A (en) * 1985-11-12 1987-05-23 エレフアント エデルメタ−ル ベ−ヴエ− Tooth repairing material
EP0346595A2 (en) * 1988-06-11 1989-12-20 Degussa Aktiengesellschaft Use of a dental alloy devoid of non-precious metals for casting fixed dental prostheses

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733492A (en) * 1994-01-31 1998-03-31 Akzo Nobel N.V. Spinneret of gold and platinum-containing alloy
US20040157128A1 (en) * 2002-09-12 2004-08-12 Hirohisa Seto Metal foil for current collector of secondary battery and method for producing the same
US6878458B2 (en) * 2002-09-12 2005-04-12 Matsushita Electric Industrial Co., Ltd. Metal foil for current collector of secondary battery and method of producing the same
US20070162108A1 (en) * 2005-12-13 2007-07-12 Carlson James M Implantable medical device using palladium
US20100174173A1 (en) * 2005-12-13 2010-07-08 Cook Incorporated Implantable Medical Device Using Palladium
US20090218647A1 (en) * 2008-01-23 2009-09-03 Ev Products, Inc. Semiconductor Radiation Detector With Thin Film Platinum Alloyed Electrode
US8896075B2 (en) 2008-01-23 2014-11-25 Ev Products, Inc. Semiconductor radiation detector with thin film platinum alloyed electrode
US10883162B2 (en) * 2013-12-20 2021-01-05 Tanaka Kikinzoku Kogyo K.K. Alloy for medical use, and method for producing same
US11345986B2 (en) * 2013-12-20 2022-05-31 Tanaka Kikinzoku Kogyo K.K. Alloy for medical use, and method for producing same
CN105986142A (en) * 2015-03-17 2016-10-05 斯沃奇集团研究和开发有限公司 Grey gold alloy
CN105986142B (en) * 2015-03-17 2018-09-14 斯沃奇集团研究和开发有限公司 Grey billon
US11591672B2 (en) 2015-03-17 2023-02-28 The Swatch Group Research And Development Ltd Grey gold alloy
RU2586175C1 (en) * 2015-06-08 2016-06-10 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Alloy based on white gold 585 sample
CN108697427A (en) * 2016-03-07 2018-10-23 田中贵金属工业株式会社 The manufacturing method of embolism spring ring and embolism spring ring
US20190030215A1 (en) * 2016-03-07 2019-01-31 Tanaka Kikinzoku Kogyo K.K. Embolization coil and method for producing embolization coil
US11654215B2 (en) * 2016-03-07 2023-05-23 Tanaka Kikinzoku Kogyo K.K. Embolization coil and method for producing embolization coil
US20220213576A1 (en) * 2019-09-26 2022-07-07 Tanaka Kikinzoku Kogyo K.K. MEDICAL Au-Pt-Pd ALLOY
US11453931B2 (en) * 2019-09-26 2022-09-27 Tanaka Kikinzoku Kogyo K.K. Medical Au-Pt-Pd alloy
US20230113633A1 (en) * 2019-09-26 2023-04-13 Tanaka Kikinzoku Kogyo K.K. MEDICAL Au-Pt-Pd ALLOY

Also Published As

Publication number Publication date
JP3383694B2 (en) 2003-03-04
DE69327830T2 (en) 2000-10-12
DK0598431T3 (en) 2000-07-24
NL9201956A (en) 1994-06-01
DE69327830D1 (en) 2000-03-16
GR3033383T3 (en) 2000-09-29
ATE189706T1 (en) 2000-02-15
JPH073411A (en) 1995-01-06
PT598431E (en) 2000-07-31
EP0598431B1 (en) 2000-02-09
EP0598431A1 (en) 1994-05-25
ES2145024T3 (en) 2000-07-01

Similar Documents

Publication Publication Date Title
US5472333A (en) Spinnerette from gold-platinum-palladium-rhodium alloy
KR102009755B1 (en) Copper alloy wire material and manufacturing method thereof
US4073667A (en) Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition
JP4157898B2 (en) Copper alloy sheet for electrical and electronic parts with excellent press punchability
RU2508415C2 (en) Copper-based alloy treated by cutting, and method for its production
JP5657311B2 (en) Copper alloy sheet and manufacturing method thereof
JP4534573B2 (en) Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof
KR20080007403A (en) Copper alloy, copper alloy plate, and process for producing the same
JP2008031525A (en) Copper alloy having high strength and high softening resistance
WO2007015549A1 (en) High strength copper alloy for electronic parts and electronic parts
US4388270A (en) Rhenium-bearing copper-nickel-tin alloys
JP4193171B2 (en) Method for producing Ti-containing copper alloy sheet or ingot for producing strip with excellent workability
JPH0118979B2 (en)
JPS63286557A (en) Production of article from al base alloy
EP0157711B1 (en) Process for the manufacture of objects from al-li-mg-cu alloys with high ductibility and isotropy properties
JP3767492B2 (en) Method for producing aluminum flexible foil
JPH06264202A (en) Production of high strength copper alloy
JPH11293431A (en) Production of copper alloy extra fine wire
US7172665B2 (en) Cu-based alloy and method of manufacturing high strength and high thermal conductive forged article using the same
KR20020008710A (en) Cu-ni-sn-al, si, sr, ti, b alloys for high strength wire or plate and its manufacturing method
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPS61288036A (en) Copper alloy for lead frame and its production
KR100370436B1 (en) Cu-Zn-Ce, La, Nd, Pr alloys for EDM(Energy Discharge Machine) wire
KR100644510B1 (en) High strength lead-frame material Cu-Ni-Mn-Si-Sn-Ms alloy with good hot-workability and good anti-softening and it's manufacturing method
JPH0517858A (en) Manufacture of aluminum alloy excellent in formability

Legal Events

Date Code Title Description
AS Assignment

Owner name: ELEPHANT EDELMETAAL B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARIA, JOSEPH;ZEL, VAN DER;REEL/FRAME:006770/0005

Effective date: 19931015

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20071205