US4662191A - Absorption - type refrigeration system - Google Patents

Absorption - type refrigeration system Download PDF

Info

Publication number
US4662191A
US4662191A US06/800,507 US80050785A US4662191A US 4662191 A US4662191 A US 4662191A US 80050785 A US80050785 A US 80050785A US 4662191 A US4662191 A US 4662191A
Authority
US
United States
Prior art keywords
unit
absorbent
water
refrigerant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/800,507
Other languages
English (en)
Inventor
Masaharu Furutera
Tetsuro Furukawa
Yoshiaki Matsushita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Assigned to HITACHI ZOSEN CORPORATION reassignment HITACHI ZOSEN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: FURUKAWA, TETSURO, FURUTERA, MASAHARU, MATSUSHITA, YOSHIAKI
Application granted granted Critical
Publication of US4662191A publication Critical patent/US4662191A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • This invention relates to an absorption-type refrigeration system and, more specifically, to an absorption-type refrigeration system which employs water as a refrigerant and aqueous lithium bromide (LiBr) as an absorbent.
  • An absorption refrigeration system of the type which uses water and aqueous lithium bromide is disclosed in Japanese Published Unexamined Patent Application No. 58-40468, for example.
  • This system consists chiefly of an evaporator, an absorber, a regenerator, and a condenser.
  • a chill carrier fluid is deprived of its heat and cooled by the evaporation of water (refrigerant).
  • the water vapor from the evaporator is absorbed into an aqueous solution of lithium bromide (absorbent) in the absorber with attendant heat generation.
  • the regenerator the diluted absorbent received thereinto from the absorber through a heat exchanger is heated by a heating fluid, whereby the water is evaporated from the absorbent.
  • the concentrated absorbent thus obtained through the regeneration process is returned via aforeasaid heat exchanger to the absorber, in which it is reused for water vapor absorption.
  • the condenser there are provided heat transfer tubes through which a cooling fluid flows, so that the water vapor introduced from the regenerator into the condenser will become condensed as it goes into contact with heat conduction surfaces of the tubes.
  • the prior-art system since the condensation of the water vapor produced in the regenerator is carried out in the condenser indirectly through the heat transfer tubes, it is necessary, in order to increase the rate of condensation, to make the temperature of the cooling fluid considerably lower than the condensation temperature of the water vapor and to provide a large heat conduction area as by using a large number of heat transfer tubes.
  • the prior-art system has a disadvantage that an external system to be connected to the condenser is limited to one capable of generating a low-temperature cooling fluid, otherwise it being necessary to redesign the entire refrigeration system on a case-by-case basis so as to adapt it to the external system.
  • Another difficulty is that since the condenser must provide a large heat conduction area, the cost of the overall refrigeration system becomes inevitably high.
  • This invention has as its object the provision of an absorption-type refrigeration system which is well compatible with a variety of external systems, less expensive to manufacture, and can be designed to be smaller in size.
  • this invention provides an absorption-type refrigeration system comprising an evaporating unit in which a refrigerant is caused to evaporate by depriving a chill carrier fluid of its heat, an absorbing unit in which the refrigerant vapor received from said evaporating unit is absorbed into a liquid absorbent with attendant heat generation, a regenerating unit for concentrating the diluted absorbent received from said absorbing unit by heating same with a heating fluid to evaporate the refrigerant content thereof so that the absorbent is reused in the absorbing unit, and a condensing unit for condensing the refrigerant vapor received thereinto from said regenerating unit by bringing same into direct contact with a liquid phase refrigerant supplied by spraying.
  • the single drawing is a schematic diagram showing one form of absorption-type refrigeration system embodying the invention.
  • reference numeral 1 designates an evaporator to which water as a refrigerant is supplied through a branch line 2 provided with a pressure reducing valve 3.
  • the water is caused to evaporate by receiving heat from a chill carrier fluid 4 which passes through the evaporator 1.
  • the temperature and pressure in the evaporator 1 are 5° C. and 6.5 mmHg, for example, respectively.
  • the chill carrier fluid 4 enters the evaporator 1 at an inlet temperature of 12° C., for example, and is cooled therein down to 7° C., for example, being subsequently supplied to an external utilization system 20.
  • the water vapor 5 generated in the evaporator 1 enters an absorber 6, in which it is absorbed into an absorbent consisting of an aqueous solution of lithium bromide to generate heat.
  • the pressure in the absorber 6 is also 6.5 mmHg.
  • the absorbent 7 diluted through the water vapor absorption leaves the absorber 6 at an outlet temperature of 44° C., for example, and passes through a heat exchanger 8, whereby it is heated up to 75° C., for example, being then fed into a regenerator 9.
  • Such preheating of the absorbent 7 prior to entry thereof into the regenerator 9 is intended to reduce the thermal input requirements of the regenerator 9.
  • the regenerator 9 there is a heating fluid 11 passing therethrough, the heat of which serves to evaporate the absorbed water content of the dilute absorbent 7.
  • the concentrated absorbent 10 resulting from the regeneration process leaves the regenerator 9 at an outlet temperature of 88° C., for example, and has its temperature lowered to 55° C., for example, after passing through the heat exchanger 8.
  • the absorbent 10 is subsequently fed into the absorber 6, in which it is reused for the water vapor absorption.
  • the pressure in the regenerator 9 is 55 mmHg.
  • a 110° C. steam may be used, for example, which generates condensation heat as it is condensed into water at the same temperature (110° C.), for example, whereby the diluted absorbent 7 is regenerated.
  • the water vapor 12 having a temperature of 40° C., for example, and generated in the regenerator 9 is introduced into a condenser 13, in which the water vapor 12 is condensed by direct contact with water of 38° C., for example, supplied separately by spraying through a line 14 from an external supply source 21.
  • the pressure in the condenser 13 is also 55 mmHg.
  • the collected water 15 of 40° C., for example, is partially transferred through piping 16.
  • a part of the water 15 flowing through the piping 16 is supplied as refrigerant into the evaporator 1 through the aforementioned branch line 2, while the remaining part of the water is supplied to the absorber 6, in which it is heated to 42° C., for example, by the absorption heat generated in the absorber 6, the heated water being subsequently supplied for utilization by an external utilization system 22.
  • a surplus of the collected water 15 is discharged out of the refrigeration system through a discharge valve 17.
  • the heated water obtained by flowing through the absorber 6 may be passed in a closed passage through an indirect cooler such as an air-cooled heat exchanger 18 provided with a fan 19 and returned to the condenser 13 for the condensation process.
  • an indirect cooler such as an air-cooled heat exchanger 18 provided with a fan 19
  • the condenser 13 since no additional water (refrigerant) is supplied to the condenser 13 to give rise to excess water, it is unnecessary to provide the discharge valve 17.
  • a completely closed circuit is formed for the flow of the refrigerant (water), it is possible to avoid the ingress into the refrigeration system of non-condensable gases such as air which would invite vacuum leakage and efficiency deterioration.
  • the aqueous lithium bromide (absorbent) becomes corrosive under the presence of air, and for this reason also the ingress of air must be prevented.
  • the water vapor 12 is condensed in the condenser 13 by direct contact with the sprayed water, so that not much temperature difference is required between the water vapor 12 and the condensing water (e.g., water at 38° C. against water vapor at 40° C. in the embodiment shown), there being not much limitation imposed on the ability of the external system or the air-cooled heat exchanger 18 to be connected as a supply source to the line 14.
  • the system of the invention involves no necessity of using a large number of heat transfer tubes in the condenser 13 to provide a large heat conduction area, consequently leading to simplified construction, cost saving, and good possibility of size reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
US06/800,507 1984-11-24 1985-11-21 Absorption - type refrigeration system Expired - Fee Related US4662191A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59248386A JPS61125562A (ja) 1984-11-24 1984-11-24 吸収式冷凍装置
JP59-248386 1984-11-24

Publications (1)

Publication Number Publication Date
US4662191A true US4662191A (en) 1987-05-05

Family

ID=17177329

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/800,507 Expired - Fee Related US4662191A (en) 1984-11-24 1985-11-21 Absorption - type refrigeration system

Country Status (7)

Country Link
US (1) US4662191A (de)
JP (1) JPS61125562A (de)
DE (1) DE3541375A1 (de)
FI (1) FI81903C (de)
FR (1) FR2573853B1 (de)
GB (1) GB2167847B (de)
SE (1) SE460870B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638696A (en) * 1995-11-15 1997-06-17 Cline; Calvin D. Absorption refrigeration system
US20100275645A1 (en) * 2007-11-15 2010-11-04 Jeroen Van De Rijt method and apparatus for cooling a process stream
CN102287958A (zh) * 2011-06-20 2011-12-21 沈阳化工大学 一种溴化锂溶液吸收式空调的制冷工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4415199A1 (de) * 1994-04-30 1995-11-02 Inst Luft Und Kaeltetechnik Gm Kälteanlage
US8302425B2 (en) * 2004-05-11 2012-11-06 Cyclect Singapore Pte Ltd. Regenerative adsorption system with a spray nozzle for producing adsorbate vapor and condensing desorbed vapor
CN107830657A (zh) * 2017-09-14 2018-03-23 中国科学院理化技术研究所 变温冷却吸收器以及吸收式循环***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440832A (en) * 1967-11-29 1969-04-29 Worthington Corp Absorption refrigeration system with booster cooling
US4458500A (en) * 1982-06-16 1984-07-10 The United States Of America As Represented By The United States Department Of Energy Absorption heat pump system
US4458499A (en) * 1982-06-16 1984-07-10 The United States Of America As Represented By The United States Department Of Energy Absorption heat pump system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2272856A (en) * 1937-06-25 1942-02-10 Servel Inc Refrigeration
FR840283A (fr) * 1937-07-06 1939-04-21 Perfectionnements apportés aux machines frigorifiques fonctionnant par l'affinité d'un fluide, telque la vapeur d'eau, pour d'autres substances
US3316728A (en) * 1965-12-23 1967-05-02 Wendell J Biermann Absorption refrigeration systems
FR2075236A5 (de) * 1971-01-05 1971-10-08 Schlichtig Ralph

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440832A (en) * 1967-11-29 1969-04-29 Worthington Corp Absorption refrigeration system with booster cooling
US4458500A (en) * 1982-06-16 1984-07-10 The United States Of America As Represented By The United States Department Of Energy Absorption heat pump system
US4458499A (en) * 1982-06-16 1984-07-10 The United States Of America As Represented By The United States Department Of Energy Absorption heat pump system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638696A (en) * 1995-11-15 1997-06-17 Cline; Calvin D. Absorption refrigeration system
US20100275645A1 (en) * 2007-11-15 2010-11-04 Jeroen Van De Rijt method and apparatus for cooling a process stream
CN102287958A (zh) * 2011-06-20 2011-12-21 沈阳化工大学 一种溴化锂溶液吸收式空调的制冷工艺

Also Published As

Publication number Publication date
SE460870B (sv) 1989-11-27
JPS61125562A (ja) 1986-06-13
JPH0349035B2 (de) 1991-07-26
FI81903B (fi) 1990-08-31
FI81903C (fi) 1990-12-10
GB8528097D0 (en) 1985-12-18
DE3541375C2 (de) 1992-04-23
GB2167847B (en) 1989-01-18
FR2573853B1 (fr) 1993-11-19
GB2167847A (en) 1986-06-04
SE8505531L (sv) 1986-05-25
FR2573853A1 (fr) 1986-05-30
DE3541375A1 (de) 1986-06-12
SE8505531D0 (sv) 1985-11-22
FI854638A0 (fi) 1985-11-25
FI854638A (fi) 1986-05-25

Similar Documents

Publication Publication Date Title
US20180172320A1 (en) Multi-stage plate-type evaporation absorption cooling device and method
US4672821A (en) Absorption-type heat pump
US4553409A (en) Multiple regeneration multiple absorption type heat pump
US4662191A (en) Absorption - type refrigeration system
JP3283621B2 (ja) 低温再生器と排熱回収用低温再生器とを併用した吸収冷凍機・冷温水機
JPH04116352A (ja) 吸収冷暖房機
JPS6122225B2 (de)
KR200154287Y1 (ko) 흡수식 냉·난방기
JPS58219371A (ja) 二重効用吸収式ヒ−トポンプ
JP2000088391A (ja) 吸収冷凍機
JP2787182B2 (ja) 一重二重吸収冷温水機
JP3285306B2 (ja) 排熱投入型吸収冷凍機
JPH0663672B2 (ja) 二重効用吸収冷温水機
JP3723372B2 (ja) 排熱投入型吸収冷温水機
JPS6122224B2 (de)
JPH0429339Y2 (de)
JP2806189B2 (ja) 吸収式冷凍機
JPS6024903B2 (ja) 多重効用吸収冷凍機
JPH08327175A (ja) 吸収冷凍機
JPS62225869A (ja) 多重効用吸収冷凍機
JPS59176550A (ja) 一重二重効用組合せ吸収式冷凍機
JPS5849870A (ja) ハイブリツド型吸収式ヒ−トポンプ
JPH10205908A (ja) 直焚式吸収冷凍機
JPS61268963A (ja) 排熱回収型吸収冷温水機およびその運転方法
JPS6113554B2 (de)

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI ZOSEN CORPORATION, 6-14, EDOBORI, 1-CHOME

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:FURUTERA, MASAHARU;FURUKAWA, TETSURO;MATSUSHITA, YOSHIAKI;REEL/FRAME:004554/0415

Effective date: 19860513

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19990505

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362