US4074167A - Halogen incandescent lamp - Google Patents

Halogen incandescent lamp Download PDF

Info

Publication number
US4074167A
US4074167A US05/742,343 US74234376A US4074167A US 4074167 A US4074167 A US 4074167A US 74234376 A US74234376 A US 74234376A US 4074167 A US4074167 A US 4074167A
Authority
US
United States
Prior art keywords
glass
lamp
lamp vessel
vessel
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/742,343
Other languages
English (en)
Inventor
Cornelis P. van den Broek
Johannes M. J. VAN Lieshout
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Philips Corp filed Critical US Philips Corp
Application granted granted Critical
Publication of US4074167A publication Critical patent/US4074167A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/40Leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/38Seals for leading-in conductors

Definitions

  • the invention relates to a halogen incandescent lamp having a lamp vessel of a high-melting-point transparent material which is resistant to halogen, in which at least two tungsten filaments are stretched between at least three internal current conductors of molybdenum.
  • the lamp vessel has a vacuum-tight seal in which current leadthrough conductors are incorporated which are each in electrical contact with one of the internal current conductors and with an external current conductor extending outside the lamp vessel, said lamp vessel being filled with a halogen-containing inert gas.
  • Such lamps are known inter alia from German Offenlegungsschrift No. 2,113,288 and they may be used, for example, as motorcar headlights.
  • the lamp vessel consists of quartz glass or of types of glass having an SiO 2 content of more than 96%.
  • SiO 2 content of more than 96%.
  • the glasses used have the drawback that no high-melting-point metals are available which have such a low coefficient of expansion as said glasses.
  • molybdenum foils which are incorporated in the pinch seal and which, in spite of the large difference between the coefficient of expansion of molybdenum and of the glass, enable a vacuum-tight seal due to their shape and due to the ductility of molybdenum.
  • molybdenum foils involves that for a lamp having two filaments six connections have to be made to connect the foils at one end to internal current conductors and at the other end to external current conductors. These welded joints must be checked for reliability prior to sealing the filament assembly in the lamp vessel. The making and checking of the welded joints, the manufacture and the supply to the welding machine of the components to be welded likewise constitute important cost price-raising factors.
  • the invention relates to a halogen incandescent lamp of the kind mentioned in the preamble which is characterized in that the lamp vessel consists of an alkali-alumino-borosilicate glass having a coefficient of expansion of 31 - 37 ⁇ 10 -7 ° C -1 at 0° - 300° C, the internal current conductors each with a current leadthrough conductor and an external current conductor form a molybdenum wire having a minimum diameter of 400 ⁇ m and at least the part of each of the molybdenum wires which extends within the vacuum-tight seal of the lamp vessel is surrounded in a vacuum-tight manner by a glass bead of the kind of glass from which the material of the lamp vessel is selected, the ratio between the diameter of the molybdenum wires and the wall thickness of the glass bead being larger than 2 and the angles at which the glass of the lamp vessel contacts the glass of the bead, measured through glass, being at most 90°.
  • a rotationally symmetric geometry around a sealed molybdenum wire is impossible.
  • at least three molybdenum wires are led through the seal of the lamp vessel.
  • the geometry of the seal is in general not equal for each of the wires either.
  • the lamp vessel has a cylindrical shape with at one end a sealed-off exhaust tube and at the other end the vacuum-tight seal through which the molybdenum wires are lead.
  • said wires will generally be situated in a flat plane.
  • the geometry of the seal of the outermost wires is substantially equal, that of the innermost, however, is quite different.
  • the lamp vessel during operation should have such a high temperature that tungsten-halogen compounds are volatile at the wall.
  • the filaments according to the present prescriptions each consume a power of 55 to 60 Watts during operation at nominal voltage, while the lamps should be constructed so that both filaments can be in operation at the same time. For the lamps having an operating voltage of 6 Volts this implies a current passage of 20 A and upon igniting the lamp even more.
  • the lamps according to the invention have proved to be very reliable.
  • the angle at which the glass of the lamp vessel contacts the glass of the bead on the molybdenum wires is of importance for the life of the lamp vessel seal.
  • ⁇ in FIG. 2 a value which is as small as possible is of significance.
  • Said angle is preferably 45° or smaller.
  • the length of the bead on the molybdenum wires is in practice chosen to be so that no rejects occur in the production in that non-enveloped parts of the wires become situated in the seal. As a rule, the bead will consequently extend to at least 1 mm beyond the seal.
  • the ratio between the diameter of a molybdenum wire and the wall thickness of the glass bead is larger than 2. If this ratio is made larger, smaller stresses in the seal occur. For technological reasons, however, the ratio in practice will as a rule be between 2 and 15.
  • Glasses consisting mainly of 77 - 81% by weight of SiO 2 , 12 - 15% by weight of B 2 O 3 , 3 - 5.5% by weight of Na 2 O and 1.5 - 2.5% by weight of Al 2 O 3 have proved to be particularly suitable as glass materials for the lamp vessel.
  • the glass bead on the molybdenum wires may also consist of this material.
  • the bead may be provided by heating degased molybdenum wires, after sliding a glass tube on it, in a neutral or reducing gas atmosphere above the softening temperature of the glass.
  • the glass bead may be obtained by locally coating the molybdenum wires with a glass enamel.
  • the molybdenum wires generally have a diameter of 600 to 800 ⁇ m so as to obtain a sufficient rigidity to be able to arrange the filaments in a vibration-free manner without the wires being supported against the wall of the lamp vessel.
  • the diameter may be chosen to be larger, for example 1 mm, this gives no mechanical advantages as a rule.
  • the lamps according to the invention may be provided with a non-transparent screen to stop a part of the light irradiated by one of the filaments.
  • This screen (dipping cap) may be provided on or near the wall of the lamp vessel but it is preferably situated between the molybdenum wires, secured to one of the wires.
  • the lamps preferably contain an oxygen getter although this is not always necessary, depending on the extent to which the lamp components and the glass filling are free from oxygen and water.
  • an oxygen getter may be mentioned inter alia zirconium, tantalum and niobium, and also phosphorus which may be provided in the lamp in one of the elementary modifications and also as a compound, for example, P 3 N 5 or WP 2 .
  • the lamp may be filled with an inert gas, for example, nitrogen, argon, krypton, xenon having a pressure up to a few atmospheres, for example, with 3 to 5 atmospheres of krypton.
  • the gas atmosphere contains halogen or a halogen-containing compound.
  • bromine as an active constituent, in particular hydrogen bromide as a bromine compound.
  • This substance may be provided as such in the lamp, if desired together with hydrogen, or may be formed during the starting of the lamp from a bromine-containing and hydrogen-containing compound, for example CH 2 Br 2 or CH 3 Br.
  • the partial pressure of hydrogen bromide as a rule is between 5 and 30 torr.
  • the whole of molybdenum wires, filaments and possibly dipping cap and getter may be kept together and fixed by a glass beam connected to the molybdenum wires during making the seal of the lamp vessel.
  • the wall of the lamp vessel may locally be curved so as to prevent annoying reflections (see, for example, Netherlands Patent Application No. 7,014,336 laid open to the public inspection).
  • FIG. 1 is a longitudinal sectional view through a lamp according to the invention suitable for use as a motorcar lamp.
  • FIG. 2 is a sectional view through the seal of the lamp vessel perpendicular to the plane of the drawing of FIG. 1.
  • the lamp vessel 1 in FIG. 1 comprises a vacuum-tight seal 2 through which the molybdenum wirecurrent conductors 3, 4 and 5 are passed. These conductors comprise glass beads 6. Inside the lamp vessel a glass beam 7 connects the current conductors. A driving light filament 8 is stretched between the conductors 4 and 3, an anti-dazzle light filament 9 extends between the conductor 5 and the dipping cap 10 connected to conductor 3. The dipping cap has a getter 11. The tipped-off exhaust tube is referenced 12.
  • FIG. 2 the same reference numerals are used as in FIG. 1.
  • the angles ⁇ and ⁇ shown in the drawing explain the expression "the angle at which the glass of the lamp vessel contacts the glass of the bead, measured through glass", wherein ⁇ is the "angle inside the lamp vessel”.
  • Molybdenum wires 3, 4 and 5 (FIG. 1) of 600 ⁇ m diameter were secured in a quartz glass beam 7 and then degased at 100° C in a reducing atmosphere (90% by volume of N 2 , 10% by volume of H 2 ).
  • Glass capillaries 6 (inside diameter 620 ⁇ m, outside diameter 800 ⁇ m) were slid on the wires after which the glass was sealed around the wires in a reducing atmosphere at 1000° C.
  • a molybdenum dipping cap 10 was provided with a piece of tantalum foil (2 ⁇ 1 mm) and welded to the conductor 3. The filaments 8 and 9 were then provided.
  • the assembly was provided in a cylindrical lamp vessel 1 of which the glass, as well as that of the capillaries, consisted mainly of 80.5% by weight of SiO 2 , 13% by weight of B 2 O 3 , 3.5% by weight of Na 2 O, 0.7% by weight of K 2 O and 2.3% by weight of Al 2 O 3 , which glass is commercially available as "Pyrex".
  • the lamp vessel had an outside diameter of 18 mm, a wall thickness of 1.3 mm and a length of 45 mm, was substantially spherical at one end and at that area had an exhaust tube.
  • the bead 6 on the molybdenum wires extended at one end to approximately 1 mm beyond the lamp vessel, at the other end up to the quartz glass beam 7.
  • the lamp vessel was then evacuated via the exhaust tube, filled with 5 atmosphere krypton and 5 torr, CH 2 Br 2 (pressures at 20° C) after which the exhaust tube was tipped off.
  • a similar lamp was made with the difference that the molybdenum wires were locally covered with a suspension of a powder mainly consisting of 80.3% by weight of SiO 2 , 12.9% by weight of B 2 O 3 , 3.7% by weight of Na 2 O, 0.8% by weight of K 2 O and 2.3% by weight of Al 2 O 3 in ethanol.
  • the suspension was dried after which the residue was melted in a nitrogen/hydrogen mixture (9:1).

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
US05/742,343 1975-11-18 1976-11-16 Halogen incandescent lamp Expired - Lifetime US4074167A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL7513429 1975-11-18
NL7513429A NL7513429A (nl) 1975-11-18 1975-11-18 Halogeen-gloeilamp.

Publications (1)

Publication Number Publication Date
US4074167A true US4074167A (en) 1978-02-14

Family

ID=19824869

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/742,343 Expired - Lifetime US4074167A (en) 1975-11-18 1976-11-16 Halogen incandescent lamp

Country Status (13)

Country Link
US (1) US4074167A (it)
JP (1) JPS5841624B2 (it)
AR (1) AR209000A1 (it)
BE (1) BE848363A (it)
CA (1) CA1063155A (it)
DE (1) DE2651643C3 (it)
ES (1) ES453365A1 (it)
FR (1) FR2332613A1 (it)
GB (1) GB1504228A (it)
HU (1) HU187748B (it)
IT (1) IT1064043B (it)
NL (1) NL7513429A (it)
SE (1) SE412817B (it)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221989A (en) * 1978-04-20 1980-09-09 U.S. Philips Corporation Electric lamp seal construction
US4302698A (en) * 1978-09-22 1981-11-24 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen M.B.H. Dual-filament halogen incandescent lamp, particularly sealed-beam, automotive headlight
US4305017A (en) * 1979-12-14 1981-12-08 U.S. Philips Corporation Halogen incandescent lamp
US4366409A (en) * 1979-05-24 1982-12-28 Tokyo Shibaura Denki Kabushiki Kaisha Halogen incandescent lamp
US4463277A (en) * 1980-08-11 1984-07-31 North American Philips Lighting Corporation Compact halogen-cycle incandescent lamp, and lamp unit utilizing such lamp as a light source
US4553066A (en) * 1983-08-08 1985-11-12 Gte Products Corporation Multiple filament lamp having wire grid to provide filament redundancy
US4631446A (en) * 1984-05-04 1986-12-23 Gte Products Corporation Single-ended high intensity discharge lamp
US4668204A (en) * 1984-05-04 1987-05-26 Gte Products Corporation Single-ended high intensity discharge lamp and manufacture
US4673840A (en) * 1982-04-19 1987-06-16 Gte Products Corporation Ruggedized mount structure for tungsten halogen lamp
US5077505A (en) * 1989-07-24 1991-12-31 U.S. Philips Corporation Electric lamp and seal structure therefor
US5159239A (en) * 1988-02-23 1992-10-27 U.S. Philips Corporation Electric lamp with SiO2 vessel and seal therefor
US5725298A (en) * 1996-02-23 1998-03-10 Hella Kg Hueck & Co. Vehicular headlight providing high-beam and depressed-beam illumination, and light source therefor
US5856723A (en) * 1995-11-27 1999-01-05 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Incandescent lamp with low-beam screening cap
EP0930639A1 (en) * 1997-04-11 1999-07-21 Ushio Denki Kabushiki Kaisya Seal of bulb
US20050128763A1 (en) * 2003-12-12 2005-06-16 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Incandescent lamp for vehicle headlights
US20070138929A1 (en) * 2002-12-20 2007-06-21 Koninklijke Philips Electronics N.V. Halogen incandescent lamp
CN101274816B (zh) * 2007-03-29 2011-10-19 东联光讯玻璃股份有限公司 硼硅酸盐玻璃组成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7908413A (nl) * 1979-11-19 1981-06-16 Philips Nv Electrische lamp.
NL189324C (nl) * 1983-03-03 1993-03-01 Philips Nv Halogeengloeilamp.
JPS6211036U (it) * 1985-07-06 1987-01-23

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA933577A (en) * 1971-04-19 1973-09-11 S. Vause Arthur Incandescent lamp manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1974305A (en) * 1932-09-22 1934-09-18 Fed Telegraph Co Vacuum tube construction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA933577A (en) * 1971-04-19 1973-09-11 S. Vause Arthur Incandescent lamp manufacture

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221989A (en) * 1978-04-20 1980-09-09 U.S. Philips Corporation Electric lamp seal construction
US4302698A (en) * 1978-09-22 1981-11-24 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen M.B.H. Dual-filament halogen incandescent lamp, particularly sealed-beam, automotive headlight
US4366409A (en) * 1979-05-24 1982-12-28 Tokyo Shibaura Denki Kabushiki Kaisha Halogen incandescent lamp
US4305017A (en) * 1979-12-14 1981-12-08 U.S. Philips Corporation Halogen incandescent lamp
US4463277A (en) * 1980-08-11 1984-07-31 North American Philips Lighting Corporation Compact halogen-cycle incandescent lamp, and lamp unit utilizing such lamp as a light source
US4673840A (en) * 1982-04-19 1987-06-16 Gte Products Corporation Ruggedized mount structure for tungsten halogen lamp
US4553066A (en) * 1983-08-08 1985-11-12 Gte Products Corporation Multiple filament lamp having wire grid to provide filament redundancy
US4631446A (en) * 1984-05-04 1986-12-23 Gte Products Corporation Single-ended high intensity discharge lamp
US4668204A (en) * 1984-05-04 1987-05-26 Gte Products Corporation Single-ended high intensity discharge lamp and manufacture
AU588805B2 (en) * 1984-05-04 1989-09-28 Gte Products Corporation Single-ended high intensity discharge lamp and manufacture
US5159239A (en) * 1988-02-23 1992-10-27 U.S. Philips Corporation Electric lamp with SiO2 vessel and seal therefor
US5077505A (en) * 1989-07-24 1991-12-31 U.S. Philips Corporation Electric lamp and seal structure therefor
US5856723A (en) * 1995-11-27 1999-01-05 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Incandescent lamp with low-beam screening cap
US5725298A (en) * 1996-02-23 1998-03-10 Hella Kg Hueck & Co. Vehicular headlight providing high-beam and depressed-beam illumination, and light source therefor
EP0930639A1 (en) * 1997-04-11 1999-07-21 Ushio Denki Kabushiki Kaisya Seal of bulb
EP0930639A4 (en) * 1997-04-11 2000-01-19 Ushio Electric Inc GASKET OF A LAMP PISTON
US6271627B1 (en) 1997-04-11 2001-08-07 Ushiodenki Kabushiki Kaisha Sealing body having a shielding layer for hermetically sealing a tube lamp
US20070138929A1 (en) * 2002-12-20 2007-06-21 Koninklijke Philips Electronics N.V. Halogen incandescent lamp
US7391146B2 (en) 2002-12-20 2008-06-24 Koninklijke Philips Electronics N.V. Halogen incandescent lamp
US20050128763A1 (en) * 2003-12-12 2005-06-16 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Incandescent lamp for vehicle headlights
CN101274816B (zh) * 2007-03-29 2011-10-19 东联光讯玻璃股份有限公司 硼硅酸盐玻璃组成物

Also Published As

Publication number Publication date
DE2651643B2 (de) 1978-12-07
AR209000A1 (es) 1977-03-15
GB1504228A (en) 1978-03-15
SE412817B (sv) 1980-03-17
DE2651643A1 (de) 1977-06-02
BE848363A (fr) 1977-05-16
SE7612737L (sv) 1977-05-19
FR2332613A1 (fr) 1977-06-17
ES453365A1 (es) 1977-12-01
DE2651643C3 (de) 1979-08-16
HU187748B (en) 1986-02-28
FR2332613B1 (it) 1979-07-27
IT1064043B (it) 1985-02-18
CA1063155A (en) 1979-09-25
NL7513429A (nl) 1977-05-23
JPS5841624B2 (ja) 1983-09-13
JPS5262988A (en) 1977-05-24

Similar Documents

Publication Publication Date Title
US4074167A (en) Halogen incandescent lamp
US3211826A (en) Quartz to metal seal
US3668391A (en) Tungsten halogen lamp having improved seal of molybdenum aluminide
JPS6213792B1 (it)
US5159239A (en) Electric lamp with SiO2 vessel and seal therefor
JPS6338832B2 (it)
US3742283A (en) Press seal for lamp having fused silica envelope
US3364378A (en) Electric incandescent lamp unit built-in fuse
US4539509A (en) Quartz to metal seal
CA1268202A (en) Tubular electric lamp with an interference filter on tubular portions
US4481443A (en) Short-arc discharge lamp
US2200939A (en) Gaseous electric discharge lamp device
JP2950517B2 (ja) 電 球
US2159794A (en) Electric lamp and similar devices
US4171500A (en) Electric lamp
US5576598A (en) Lamp with glass sleeve and method of making same
US2845557A (en) Arc tube mounting
US5128106A (en) Lamp with an oxygen detector
US3470410A (en) Bromine regenerative cycle incandescent lamps with protective overwind coils on coiled filament legs
US4221989A (en) Electric lamp seal construction
JP2004502278A (ja) 押圧封止部内で緊締されたフィラメント脚部を有するハロゲン白熱ランプ
US4236045A (en) Electric lamp
US3502932A (en) Incandescent lamp and method of manufacture
JPS6135661B2 (it)
JP3627370B2 (ja) セラミック放電灯