US3892459A - Open barrel terminal and method for terminating an electrical wire therein - Google Patents

Open barrel terminal and method for terminating an electrical wire therein Download PDF

Info

Publication number
US3892459A
US3892459A US481590A US48159074A US3892459A US 3892459 A US3892459 A US 3892459A US 481590 A US481590 A US 481590A US 48159074 A US48159074 A US 48159074A US 3892459 A US3892459 A US 3892459A
Authority
US
United States
Prior art keywords
wire
terminal
barrel
cavities
sidewalls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US481590A
Inventor
Larry Eugene Dittmann
Timothy Allen Lemke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TE Connectivity Corp
Original Assignee
AMP Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMP Inc filed Critical AMP Inc
Priority to US481590A priority Critical patent/US3892459A/en
Priority to US05/587,587 priority patent/US3990143A/en
Application granted granted Critical
Publication of US3892459A publication Critical patent/US3892459A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/188Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping having an uneven wire-receiving surface to improve the contact

Definitions

  • ABSTRACT The invention relates to a terminal and a method for terminating an electrical wire therein.
  • the terminal employs a wire barrel having a asymmetrical pattern of cavities into which the wire is extruded.
  • the method provides optimum electrical contact through high level deformation and maximum tensile strength through low level deformation.
  • Terminals which are attached to electrical conductors through crimping techniques are either open or closed barrel.
  • the open barrel terminal is one having a U-shape; i.e., a floor bounded on two sides by vertical sidewalls.
  • crimping the wire is laid on the floor and the walls are folded or otherwise wrapped around the wire into an encompassing relation.
  • a closed barrel terminal is one having a hollow cylinder in which the conductor is received.
  • the cylinder or portion thereof is collapsed down onto the wire squeez ing such thereinbetween.
  • FIG. 1 is a perspective view of an open barreled terminal constructed in accordance with the principles of the present invention
  • FIG. 2 is a view of the asymmetrical pattern of cavities constructed in accordance with the principles of the present invention.
  • FIG. 3 is a cross-sectional view taken normal to the axis of a prior art terminal
  • FIG. 4 is a cross-sectional view taken normal to the axis of the terminal of FIG. 5;
  • FIG. 5 is the terminal of FIG. I after being crimped onto a multi-stranded wire in accordance with the principles of the present invention.
  • FIG. 6 is a longitudinal cross-sectional view of the terminal of FIG. 3.
  • FIG. I an open barrel terminal 10 constructed in accordance with the present invention.
  • the three prominent elements of terminal 10 are, from front to rear, the tongue 12, wire barrel l4 and insulation barrel 16. These elements in the preferred embodiment shown are integral, the terminal being stamped and formed from a single coplanar sheet of conductive material.
  • the novelty resides in the wire barrel I4 and in the method of crimping it around a wire.
  • tongue 12 and insulation barrel 16 is not to be taken as limiting the invention to a terminal possessing all three elements.
  • Connecting means 12 is the dynamic contact interface of terminal 10 in that it provides a movable; i.e., non-permanent point of electrical contact between the terminated conducting wire and an electrical junction such as a motor, control box, generator or the like (none of which are shown in the drawings).
  • the configuration of connecting means 12 can take many different shapes as is well known in the industry. The particular one shown here: i.e., a ring tongue.” is designed generally to receive a threaded post (not shown) through hole 18. A nut (not shown) threaded down the post secures terminal 10 to the post mounting.
  • transition or connecting strap 20 between the connecting means 12 and wire barrel 14 may be abrupt or the edges 22 may be curled as shown to add structural strength to the forwardly extending connecting means 12. This structural feature is referred to as a transitional curl.
  • Insulation barrel 16 consists of a floor member 24 bounded on either side by upright sidewalls 26.
  • the dimensions of barrel 16 are such that the sidewalls may be crimped around the outer insulation jacket 28 of cable 30 as shown in FIG. 5.
  • the beveled surfaces 32 on the top of each sidewall 26 facilitate the crimping action as is well known in the art.
  • Wire barrel 14 is displaced downwardly with respect to wire barrel 14. This displacement, generally indicated by reference numeral 34, accommodates the outer diameter of cable 30 so that the multistranded wire 36 (FIG. 5) will lay in wire barrel 14 without being bent downwardly as the case would be otherwisev
  • Wire barrel 14 consists of a floor 38 and opposing sidewalls 40. As with insulation barrel 16 the sidewalls are beveled to facilitate crimping.
  • the floor and inner surfaces of sidewalls 40 i.e., the inner surface 42 of wire barrel 14, contains a plurality of cavities 44. Although these cavities are both rectangular and square, the precise geometry is not critical. However, the general pattern is; i.e., note that the inside cavities; i.e., those on floor 38 and on the flanks of the sidewalls, are smaller length and breadthwise, than those cavities higher up on the sidewalls 40 which are elongated. As is well known in the art, smaller cavities are desirable in terminating wire because, for a given inner surface area, the smaller cavities will provide a larger contact area between the terminal and wire terminated therein.
  • FIG. 3 is a drawing of a prior art terminal.
  • the terminal herein designated by reference numeral 46 contained a plurality of cavities 48 which were uniform and small in size, conforming to prior art practice.
  • FIG. 4 is a drawing of a terminal 10 having the cavity pattern shown in FIG. 2. It is clear that the elongated cavities remained open to receive wire 36.
  • FIGS. 3 and 4 are drawings from actual photographs of terminals sectioned normal to the longitudinal axis and across the wire barrel.
  • FIGS. 4, 5 and 6 illustrate the method and result of crimping wire barrel 14 around multi-stranded wire 36 as developed by the present invention.
  • FIGS. 4 and S illustrates the shape imparted to the top of terminal thereby.
  • a die (not shown) strikes the bottom of the wire barrel sharply and substantially deforms it as shown in FIGS. 4 and 6, the deformed area being generally designated by reference numeral 52.
  • the shape of the die is such as to provide two distinct levels of deformation as clearly shown in FIG. 6 which is a longitudinal cross-section.
  • the high level deformation is designated by reference numeral 54 and the low level deformation is designated by reference numeral 56.
  • FIG. 4 is a normal cross-sectional view across high deformation level 54.
  • the high level deformation pro vides the electrical relation and the low level deforma tion provides the mechanical relation between the wire and wire barrel. There are beneficial and unexpected effects resulting from the high deformation.
  • an elongation or stretching of wire 36 occurs.
  • the stretching causes the fracturing of brittle oxide film which generally is present on the strands surfaces.
  • the pressure exerted on the wire from the deformation causes clean metal to be extruded through the induced fissures in the oxide film.
  • the clean metal is bonded or cold welded with other extruded clean metal by the pressure of deformation.
  • the amount of deformation required to achieve optimum 0 electrical performance is equal to about a 60 percent reduction in the total cross-sectional area occupied by a non-deformed wire barrel and wire; provided, that the ratio of 2 to 1 exists between the cross sectional area of the wire barrel and the cross-sectional area of the wire.
  • a 60 percent overall reduction results in reducing the wire by a factor of about 80 percent which is required to create inter-strand bonding.
  • Dw wire diameter (CSA)w cross-sectional area of the wire The L3 is a multiplier to arrive at the average diameter of the terminal which, as is well known, must be large enough to permit wrapping the terminal sidewalls around the wirev
  • the die used to deform terminal 10 is not shown, its shape can be ascertained from FIGSv 4 and 6. Note that the depression is generally rectangular with the edges and corners rounded to prevent stresscracking of the terminal during deformation. Further, although not shown, a roughened die has been found to give better results in deforming the terminal than one having a smooth or polished face.
  • the purpose in using a roughened die face is to create a high degree of friction between the die and wire barrel surface, particularly along what becomes the sidewalls of the deformed area. By creating such friction, the thickness of the wall of the wire barrel being deformed remains uniform or nearly so. By maintaining a uniform wall thickness, it acts as an extension of the die; i.e., very little energy is lost in thinning the walls along the sides of the die. More energy then is transferred to the wire itself. Furthermore, more wire barrel material is moved into the wire area without approaching the stress-cracking level in the material. As workers in the field can appreciate, the more material moved inwardly against the wire, the more the wire will be extruded and more clean metal will result.
  • die faces must be flat or round to push the wire barrel material rather than to pierce it.
  • tests were conducted. It was found that variations in the amount of wire elongation occurred with die faces of various widths. Through additional testing and studies it was determined that a square die face having a width equal to the thickness of the wire barrel wall provided the maximum elongation in the center strands of the wires. Maximum elongation of course means more fresh metal exposed for bonding. Widths in excess of two thicknesses did not improve the performance while widths between one and two thicknesses were inconclusive to establish a more preferred width other than one thickness Widths less than one thick ness showed definite deterioration in performance.
  • the present invention provides a terminal and a method for terminating wire therein which results in a superior electrical and mechanical connection. More importantly, the terminal and method allows the satisfactory termination of stranded aluminum wire.
  • a terminal for receiving an electrical wire therein which comprises:
  • a wire barrel having a floor bounded on either side by a generally vertical sidewall and with the inner surface of the floor and sidewalls containing a plu rality of cavities, the cavities on the upper portion of the sidewalls being longer in one dimension than the cavities on the floor and lower portions of the sidewalls.

Landscapes

  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

The invention relates to a terminal and a method for terminating an electrical wire therein. The terminal employs a wire barrel having a asymmetrical pattern of cavities into which the wire is extruded. The method provides optimum electrical contact through high level deformation and maximum tensile strength through low level deformation.

Description

United States Patent 1 1 Dittmann et al.
[ 1 OPEN BARREL TERMINAL AND METHOD FOR TERMINATING AN ELECTRICAL WIRE THEREIN [75] Inventors: Larry Eugene Dittmann, Harrisburg;
Timothy Allen Lemke, Dillsburg. both of Pa [73] Assignee: AMP Incorporated, Harrisburg, Pa.
[22] Filed: June 21, 1974 [2i] Appl. No.: 481,590
[52] US. Cl. 339/95 R; l74/84 C; 339/276 T {5i} Int. Cl HOir 11/08 [58] Field of Search 339/95. 97-99.
[56] References Cited UNITED STATES PATENTS 2,685,076 Hoffmann i. 339/276 T [451 July 1,1975
3,496,520 2/1970 Reynolds 339/95 R Primary E.raminer.loseph H McGlynn Attorney. Agent, or FirmAllan B. Osborne. Esq.
[57] ABSTRACT The invention relates to a terminal and a method for terminating an electrical wire therein. The terminal employs a wire barrel having a asymmetrical pattern of cavities into which the wire is extruded. The method provides optimum electrical contact through high level deformation and maximum tensile strength through low level deformation.
1 Claim, 6 Drawing Figures wim'EmuLi ms SHEET OPEN BARREL TERMINAL AND METHOD FOR TERMINATING AN ELECTRICAL WIRE THEREIN BACKGROUND OF THE INVENTION The use of multi-stranded aluminum wire has been retarded because of the problems of reliably attaching the wire to a terminal at a reasonable cost. Further, the use of aluminum wire has been impeded by failures of prior art terminals wherein the failure has been catastrophic; sudden, rather than a gradual deterioration such as experienced with conventional copper conductors and brass, copper or other like terminals.
One well known problem with aluminum wire is its ability; i.e., the several individual strands to move or creep under temperature cycling common to all electrical connections. This phenomenon had for years prevented the use of conventional crimping technique on aluminum wire.
Terminals which are attached to electrical conductors through crimping techniques are either open or closed barrel.
The open barrel terminal is one having a U-shape; i.e., a floor bounded on two sides by vertical sidewalls. In crimping. the wire is laid on the floor and the walls are folded or otherwise wrapped around the wire into an encompassing relation.
A closed barrel terminal is one having a hollow cylinder in which the conductor is received. The cylinder or portion thereof is collapsed down onto the wire squeez ing such thereinbetween.
With respect to terminating multi-stranded aluminum wire, workers in the field have been successful in crimping such in closed barrel terminals wherein perforated liners are employed. These liners, placed in the hollow cylinder and around the wire, serve to break up aluminum oxides and further to cause the strands to be squeezed into the perforations. These actions result in good electrical and mechanical terminations. One such example ofa closed barrel aluminum termination is disclosed in US application Ser. No. 346,530, filed on Mar. 29, 1973, now abandoned, the disclosure being incorporated herein by reference.
Contra, aluminum termination in open barrel terminals have not met with a high degree of acceptability. One reason therefore relates to the aforementioned creep phenomenon. Another problem, common to both type of terminals but more conducive in open barrel terminals. is corrosion, particularly galvanic corrosion.
Accordingly it is an object of the present invention to provide a terminal and a method of terminating an electrical wire therein which will cause intenstrand bonding so that the individual strands cannot move but as a unit and that movement thereof is prevented by extruding wire into cavities located on the sidewalls of the terminal.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an open barreled terminal constructed in accordance with the principles of the present invention;
FIG. 2 is a view of the asymmetrical pattern of cavities constructed in accordance with the principles of the present invention;
FIG. 3 is a cross-sectional view taken normal to the axis of a prior art terminal;
FIG. 4 is a cross-sectional view taken normal to the axis of the terminal of FIG. 5;
FIG. 5 is the terminal of FIG. I after being crimped onto a multi-stranded wire in accordance with the principles of the present invention; and
FIG. 6 is a longitudinal cross-sectional view of the terminal of FIG. 3.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings wherein like reference numerals represent corresponding parts in all figures, there is shown in FIG. I an open barrel terminal 10 constructed in accordance with the present invention. The three prominent elements of terminal 10 are, from front to rear, the tongue 12, wire barrel l4 and insulation barrel 16. These elements in the preferred embodiment shown are integral, the terminal being stamped and formed from a single coplanar sheet of conductive material. However, the novelty resides in the wire barrel I4 and in the method of crimping it around a wire. Thus it is to be understood that the presence of tongue 12 and insulation barrel 16 is not to be taken as limiting the invention to a terminal possessing all three elements.
Connecting means 12 is the dynamic contact interface of terminal 10 in that it provides a movable; i.e., non-permanent point of electrical contact between the terminated conducting wire and an electrical junction such as a motor, control box, generator or the like (none of which are shown in the drawings). The configuration of connecting means 12 can take many different shapes as is well known in the industry. The particular one shown here: i.e., a ring tongue." is designed generally to receive a threaded post (not shown) through hole 18. A nut (not shown) threaded down the post secures terminal 10 to the post mounting.
The transition or connecting strap 20 between the connecting means 12 and wire barrel 14 may be abrupt or the edges 22 may be curled as shown to add structural strength to the forwardly extending connecting means 12. This structural feature is referred to as a transitional curl.
Insulation barrel 16 consists of a floor member 24 bounded on either side by upright sidewalls 26. The dimensions of barrel 16 are such that the sidewalls may be crimped around the outer insulation jacket 28 of cable 30 as shown in FIG. 5. The beveled surfaces 32 on the top of each sidewall 26 facilitate the crimping action as is well known in the art.
The insulation barrel 16 is displaced downwardly with respect to wire barrel 14. This displacement, generally indicated by reference numeral 34, accommodates the outer diameter of cable 30 so that the multistranded wire 36 (FIG. 5) will lay in wire barrel 14 without being bent downwardly as the case would be otherwisev Wire barrel 14 consists of a floor 38 and opposing sidewalls 40. As with insulation barrel 16 the sidewalls are beveled to facilitate crimping.
The floor and inner surfaces of sidewalls 40; i.e., the inner surface 42 of wire barrel 14, contains a plurality of cavities 44. Although these cavities are both rectangular and square, the precise geometry is not critical. However, the general pattern is; i.e., note that the inside cavities; i.e., those on floor 38 and on the flanks of the sidewalls, are smaller length and breadthwise, than those cavities higher up on the sidewalls 40 which are elongated. As is well known in the art, smaller cavities are desirable in terminating wire because, for a given inner surface area, the smaller cavities will provide a larger contact area between the terminal and wire terminated therein. Prior art terminals, in attempting to gain all the contact area possible, punched in small, uniform size cavities throughout the inner surface of the wire barrel. However, it has been discovered that the use of small cavities on the sidewalls are selfdefeating. As the sidewalls are crimped, the inner sur face area decreases and the cavities in the fold over region close off before the wire can be squeezed thereinto. FIG. 3 is a drawing of a prior art terminal. The terminal herein designated by reference numeral 46, contained a plurality of cavities 48 which were uniform and small in size, conforming to prior art practice. As seen in the drawing, as the wire barrel of terminal 46 was crimped about wire 50, the cavities in the fold-over region; i.e., upper portions of the sidewalls, pinched shut before the wire could be compressed thereinto. In contrast, FIG. 4 is a drawing of a terminal 10 having the cavity pattern shown in FIG. 2. It is clear that the elongated cavities remained open to receive wire 36. Both FIGS. 3 and 4 are drawings from actual photographs of terminals sectioned normal to the longitudinal axis and across the wire barrel.
FIGS. 4, 5 and 6 illustrate the method and result of crimping wire barrel 14 around multi-stranded wire 36 as developed by the present invention.
Two operations are performed simultaneously in terminating wire 36. After the bared wire is laid in the wire barrel the sidewalls 40 are folded in on the wire by conventional crimping techniques. FIGS. 4 and S illustrates the shape imparted to the top of terminal thereby. At the same time, a die (not shown) strikes the bottom of the wire barrel sharply and substantially deforms it as shown in FIGS. 4 and 6, the deformed area being generally designated by reference numeral 52. The shape of the die is such as to provide two distinct levels of deformation as clearly shown in FIG. 6 which is a longitudinal cross-section. The high level deformation is designated by reference numeral 54 and the low level deformation is designated by reference numeral 56. FIG. 4 is a normal cross-sectional view across high deformation level 54. The high level deformation pro vides the electrical relation and the low level deforma tion provides the mechanical relation between the wire and wire barrel. There are beneficial and unexpected effects resulting from the high deformation. With reference primarily to FIG. 6, an elongation or stretching of wire 36 occurs. The stretching causes the fracturing of brittle oxide film which generally is present on the strands surfaces. The pressure exerted on the wire from the deformation causes clean metal to be extruded through the induced fissures in the oxide film. The clean metal is bonded or cold welded with other extruded clean metal by the pressure of deformation.
The maximum elongation obviously occurs along the wires longitudinal axisv Further, most of the bonding occurs between the inner strands of wire 36 with little tensile strength is equal to about a percent reduction in overall cross-sectional area. In addition to the amount of deformation, tensile strength is enhanced by subjecting a greater area along the axial plane to the 5 low level deformation. As FIG. 6 shows, low level deformation 56 is provided on either axial end of the high level deformation.
With respect to high level deformation 54, the amount of deformation required to achieve optimum 0 electrical performance is equal to about a 60 percent reduction in the total cross-sectional area occupied by a non-deformed wire barrel and wire; provided, that the ratio of 2 to 1 exists between the cross sectional area of the wire barrel and the cross-sectional area of the wire. A 60 percent overall reduction results in reducing the wire by a factor of about 80 percent which is required to create inter-strand bonding.
The method used to arrive at the aforementioned 2 to 1 ratio is simple and straight forward. Knowing the circular cross-sectional area of a given wire, the width (W) and thickness (T) of the material to be formed into terminal 10 is computated by solving these two simultaneous equations:
T 2(CSA lw/W where:
Dw wire diameter (CSA)w cross-sectional area of the wire The L3 is a multiplier to arrive at the average diameter of the terminal which, as is well known, must be large enough to permit wrapping the terminal sidewalls around the wirev Although the die used to deform terminal 10 is not shown, its shape can be ascertained from FIGSv 4 and 6. Note that the depression is generally rectangular with the edges and corners rounded to prevent stresscracking of the terminal during deformation. Further, although not shown, a roughened die has been found to give better results in deforming the terminal than one having a smooth or polished face.
Further, with respect to the concept of deforming the wire barrel 14 of terminal 10 with a roughened die, experimental data indicates that a roughness of 175 microinches gives very good results and is preferred. However, satisfactory results have been obtained with dies having a roughness factor ranging from about 32 to about 400 microinches. The method used in roughening the die faces is sand blasting with ground shot.
The purpose in using a roughened die face is to create a high degree of friction between the die and wire barrel surface, particularly along what becomes the sidewalls of the deformed area. By creating such friction, the thickness of the wall of the wire barrel being deformed remains uniform or nearly so. By maintaining a uniform wall thickness, it acts as an extension of the die; i.e., very little energy is lost in thinning the walls along the sides of the die. More energy then is transferred to the wire itself. Furthermore, more wire barrel material is moved into the wire area without approaching the stress-cracking level in the material. As workers in the field can appreciate, the more material moved inwardly against the wire, the more the wire will be extruded and more clean metal will result.
As is well known in the art, die faces must be flat or round to push the wire barrel material rather than to pierce it. In determining optimum width of a square die face, tests were conducted. It was found that variations in the amount of wire elongation occurred with die faces of various widths. Through additional testing and studies it was determined that a square die face having a width equal to the thickness of the wire barrel wall provided the maximum elongation in the center strands of the wires. Maximum elongation of course means more fresh metal exposed for bonding. Widths in excess of two thicknesses did not improve the performance while widths between one and two thicknesses were inconclusive to establish a more preferred width other than one thickness Widths less than one thick ness showed definite deterioration in performance.
It has been observed that the pattern of wire extrusion from the wire barrel upon high level deformation is parabolic in a plane parallel to the longitudinal axis with the center strands being axially extruded the fur thest. As noted above. as the wire barrel is being deformed inwardly. the cavities are being filled by lateral extrusion of the outermost strands of the wire. Thus. longitudinal elongation is retarded as far as those strands are concerned.
in conclusion, the present invention provides a terminal and a method for terminating wire therein which results in a superior electrical and mechanical connection. More importantly, the terminal and method allows the satisfactory termination of stranded aluminum wire.
The foregoing detailed description has been given for clearness of understanding only. and no unnecessary limitations should be understood therefrom, as some modifications will be obvious to those skilled in the artv What is claimed is:
l. A terminal for receiving an electrical wire therein, which comprises:
a. a wire barrel having a floor bounded on either side by a generally vertical sidewall and with the inner surface of the floor and sidewalls containing a plu rality of cavities, the cavities on the upper portion of the sidewalls being longer in one dimension than the cavities on the floor and lower portions of the sidewalls.

Claims (1)

1. A terminal for receiving an electrical wire Therein, which comprises: a. a wire barrel having a floor bounded on either side by a generally vertical sidewall and with the inner surface of the floor and sidewalls containing a plurality of cavities, the cavities on the upper portion of the sidewalls being longer in one dimension than the cavities on the floor and lower portions of the sidewalls.
US481590A 1974-06-21 1974-06-21 Open barrel terminal and method for terminating an electrical wire therein Expired - Lifetime US3892459A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US481590A US3892459A (en) 1974-06-21 1974-06-21 Open barrel terminal and method for terminating an electrical wire therein
US05/587,587 US3990143A (en) 1974-06-21 1975-06-17 Method for terminating an electrical wire in an open barrel terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US481590A US3892459A (en) 1974-06-21 1974-06-21 Open barrel terminal and method for terminating an electrical wire therein

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/587,587 Division US3990143A (en) 1974-06-21 1975-06-17 Method for terminating an electrical wire in an open barrel terminal

Publications (1)

Publication Number Publication Date
US3892459A true US3892459A (en) 1975-07-01

Family

ID=23912572

Family Applications (1)

Application Number Title Priority Date Filing Date
US481590A Expired - Lifetime US3892459A (en) 1974-06-21 1974-06-21 Open barrel terminal and method for terminating an electrical wire therein

Country Status (1)

Country Link
US (1) US3892459A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973824A (en) * 1975-03-24 1976-08-10 Minnesota Mining And Manufacturing Company Multiple penetration aluminum connector and method
US5484961A (en) * 1993-03-08 1996-01-16 Sumitomo Wiring Systems, Ltd. Terminal crimping method and crimp terminal used therefor
US5532433A (en) * 1991-11-13 1996-07-02 Yazaki Corporation Waterproof-type terminal connection structure and method of producing same
WO1997016867A1 (en) * 1995-10-28 1997-05-09 Robert Bosch Gmbh Contact element with crimp section
US5658163A (en) * 1995-12-19 1997-08-19 Molex Incorporated Terminal for connecting electrical wires
US6290556B1 (en) 1998-12-01 2001-09-18 Thomas & Betts International, Inc. Two piece male pin terminal connector
US20030171042A1 (en) * 2002-03-05 2003-09-11 Autonetworks Technologies, Ltd. Molded connector
US20050233638A1 (en) * 2004-04-20 2005-10-20 Robert Taylor Crimp connector
US20090130923A1 (en) * 2007-11-16 2009-05-21 Yazaki Corporation Press-clamping terminal for aluminum wire
EP2151891A1 (en) * 2008-08-06 2010-02-10 Sumitomo Wiring Systems, Ltd. A terminal fitting and a method of forming it
US20100092238A1 (en) * 2008-10-13 2010-04-15 Gm Global Technology Operations, Inc. Active material elements having reinforced structural connectors
US20110028054A1 (en) * 2008-05-07 2011-02-03 Autonetworks Technologies, Ltd. Crimping terminal and method of manufacturing terminal-provided wire
US20110073365A1 (en) * 2007-11-16 2011-03-31 Yazaki Corporation Press-clamping structure for press-clamping aluminum electric wire to terminal
EP2309599A1 (en) * 2008-07-22 2011-04-13 Sumitomo Wiring Systems, Ltd. Terminal clamp and wire with terminal clamp
US20120208409A1 (en) * 2009-10-28 2012-08-16 Yazaki Corporation Press bond terminal
US20120214361A1 (en) * 2009-10-28 2012-08-23 Yazaki Corporation Press bond terminal
CN102844934A (en) * 2010-04-13 2012-12-26 矢崎总业株式会社 Crimping terminal and manufacturing method of same
EP2602877A1 (en) * 2010-08-05 2013-06-12 Yazaki Corporation Crimp terminal
JP2013207997A (en) * 2012-03-29 2013-10-07 Aichi Elec Co Stator and electric motor
US20140038475A1 (en) * 2012-07-31 2014-02-06 Tyco Electronics Japan G.K. Electrical Terminal
US20140106628A1 (en) * 2011-11-11 2014-04-17 Yazaki Corporation Connector terminal
US20140212213A1 (en) * 2012-12-28 2014-07-31 The National Telephone Supply Company Compression sleeves
US20140322994A1 (en) * 2004-11-20 2014-10-30 James C. Keeven Junction failure inhibiting connector
US20150072573A1 (en) * 2013-02-21 2015-03-12 Furukawa Electric Co.,Ltd. Crimp terminal, cable with terminal, and cable harness structure
WO2015056728A1 (en) * 2013-10-18 2015-04-23 矢崎総業株式会社 Crimp terminal
WO2015056692A1 (en) * 2013-10-15 2015-04-23 古河As株式会社 Terminal, wire harness, terminal and coated conductor wire connection method, and wire harness structure
JP2015130311A (en) * 2013-11-01 2015-07-16 古河電気工業株式会社 Terminal metal fitting and electric wire with terminal
US20150325930A1 (en) * 2013-01-24 2015-11-12 Elringklinger Ag Method for producing an electrically conductive bond between an electrical line and an electrically conductive component and assembly produced using the method
US9455504B2 (en) * 2014-11-07 2016-09-27 Hyundai Motor Company Wire terminal connector with improved clamping force
CN104682046B (en) * 2013-11-28 2017-04-12 日本航空电子工业株式会社 Crimp terminal and connector
WO2017104667A1 (en) * 2015-12-15 2017-06-22 株式会社ピー・エル Connection structure for aluminum body, and connector
US9837741B2 (en) * 2015-05-28 2017-12-05 Te Connectivity Germany Gmbh Electrical contact element with a finely structured contact surface
US20190221950A1 (en) * 2018-01-18 2019-07-18 Yazaki Corporation Electric wire with wire terminal, wire terminal and wire terminal crimper
US10587056B2 (en) * 2016-03-04 2020-03-10 Delta Plus Co., Ltd. Crimp connection terminal and production method for same
CN114824854A (en) * 2021-01-29 2022-07-29 日本压着端子制造株式会社 Terminal and method for connecting terminal and cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2685076A (en) * 1951-05-05 1954-07-27 Aircraft Marine Prod Inc Electrical connector
US3496520A (en) * 1967-05-11 1970-02-17 Amp Inc Fuel cell tab

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2685076A (en) * 1951-05-05 1954-07-27 Aircraft Marine Prod Inc Electrical connector
US3496520A (en) * 1967-05-11 1970-02-17 Amp Inc Fuel cell tab

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973824A (en) * 1975-03-24 1976-08-10 Minnesota Mining And Manufacturing Company Multiple penetration aluminum connector and method
US5532433A (en) * 1991-11-13 1996-07-02 Yazaki Corporation Waterproof-type terminal connection structure and method of producing same
US5484961A (en) * 1993-03-08 1996-01-16 Sumitomo Wiring Systems, Ltd. Terminal crimping method and crimp terminal used therefor
WO1997016867A1 (en) * 1995-10-28 1997-05-09 Robert Bosch Gmbh Contact element with crimp section
US5658163A (en) * 1995-12-19 1997-08-19 Molex Incorporated Terminal for connecting electrical wires
US6290556B1 (en) 1998-12-01 2001-09-18 Thomas & Betts International, Inc. Two piece male pin terminal connector
US20030171042A1 (en) * 2002-03-05 2003-09-11 Autonetworks Technologies, Ltd. Molded connector
US6716071B2 (en) * 2002-03-05 2004-04-06 Autonetworks Technologies, Ltd. Molded electrical connector
US20050233638A1 (en) * 2004-04-20 2005-10-20 Robert Taylor Crimp connector
US6997746B2 (en) * 2004-04-20 2006-02-14 Ark-Les Corporation Crimp connector
US20140322994A1 (en) * 2004-11-20 2014-10-30 James C. Keeven Junction failure inhibiting connector
US9172167B2 (en) * 2004-11-20 2015-10-27 Al Cop Llc Junction failure inhibiting connector
US7867014B2 (en) * 2007-11-16 2011-01-11 Yazaki Corporation Press-clamping terminal for aluminum wire
US20110073365A1 (en) * 2007-11-16 2011-03-31 Yazaki Corporation Press-clamping structure for press-clamping aluminum electric wire to terminal
US20090130923A1 (en) * 2007-11-16 2009-05-21 Yazaki Corporation Press-clamping terminal for aluminum wire
US8963006B2 (en) * 2007-11-16 2015-02-24 Yazaki Corporation Press-clamping structure for press-clamping aluminum electric wire to terminal
US8177590B2 (en) * 2008-05-07 2012-05-15 Autonetworks Technologies, Ltd. Crimping terminal and method of manufacturing terminal-provided wire
US20110028054A1 (en) * 2008-05-07 2011-02-03 Autonetworks Technologies, Ltd. Crimping terminal and method of manufacturing terminal-provided wire
EP2309599A1 (en) * 2008-07-22 2011-04-13 Sumitomo Wiring Systems, Ltd. Terminal clamp and wire with terminal clamp
US20110124247A1 (en) * 2008-07-22 2011-05-26 Sumitomo Wiring Systems, Ltd. Terminal fitting and electrical cable equipped with the same
EP2309599A4 (en) * 2008-07-22 2011-07-20 Sumitomo Wiring Systems Terminal clamp and wire with terminal clamp
US8177591B2 (en) * 2008-07-22 2012-05-15 Sumitomo Wiring Systems, Ltd. Terminal fitting and electrical cable equipped with the same
US7901257B2 (en) * 2008-08-06 2011-03-08 Sumitomo Wiring Systems, Ltd. Terminal fitting
US20100035485A1 (en) * 2008-08-06 2010-02-11 Sumitomo Wiring Systems, Ltd. terminal fitting
EP2151891A1 (en) * 2008-08-06 2010-02-10 Sumitomo Wiring Systems, Ltd. A terminal fitting and a method of forming it
US20100092238A1 (en) * 2008-10-13 2010-04-15 Gm Global Technology Operations, Inc. Active material elements having reinforced structural connectors
US20120208409A1 (en) * 2009-10-28 2012-08-16 Yazaki Corporation Press bond terminal
US9054431B2 (en) * 2009-10-28 2015-06-09 Yazaki Corporation Press bond terminal
US8905799B2 (en) * 2009-10-28 2014-12-09 Yazaki Corporation Press bond terminal
US20120214361A1 (en) * 2009-10-28 2012-08-23 Yazaki Corporation Press bond terminal
US8851941B2 (en) 2010-04-13 2014-10-07 Yazaki Corporation Crimping terminal and manufacturing of same
CN102844934B (en) * 2010-04-13 2015-06-03 矢崎总业株式会社 Crimping terminal and manufacturing method of same
CN102844934A (en) * 2010-04-13 2012-12-26 矢崎总业株式会社 Crimping terminal and manufacturing method of same
US9022818B2 (en) 2010-08-05 2015-05-05 Yazaki Corporation Crimp terminal
EP2602877A1 (en) * 2010-08-05 2013-06-12 Yazaki Corporation Crimp terminal
EP2602877A4 (en) * 2010-08-05 2014-01-08 Yazaki Corp Crimp terminal
US20140106628A1 (en) * 2011-11-11 2014-04-17 Yazaki Corporation Connector terminal
US9033751B2 (en) * 2011-11-11 2015-05-19 Yazaki Corporation Connector terminal
JP2013207997A (en) * 2012-03-29 2013-10-07 Aichi Elec Co Stator and electric motor
US20140038475A1 (en) * 2012-07-31 2014-02-06 Tyco Electronics Japan G.K. Electrical Terminal
US8992271B2 (en) * 2012-07-31 2015-03-31 Tyco Electronics Japan G.K. Electrical terminal
US20140212213A1 (en) * 2012-12-28 2014-07-31 The National Telephone Supply Company Compression sleeves
US10833426B2 (en) * 2013-01-24 2020-11-10 Elringklinger Ag Method for producing an electrically conductive bond between an electrical line and an electrically conductive component and assembly produced using the method
US20150325930A1 (en) * 2013-01-24 2015-11-12 Elringklinger Ag Method for producing an electrically conductive bond between an electrical line and an electrically conductive component and assembly produced using the method
US20150072573A1 (en) * 2013-02-21 2015-03-12 Furukawa Electric Co.,Ltd. Crimp terminal, cable with terminal, and cable harness structure
WO2015056692A1 (en) * 2013-10-15 2015-04-23 古河As株式会社 Terminal, wire harness, terminal and coated conductor wire connection method, and wire harness structure
EP3059804A4 (en) * 2013-10-15 2017-04-26 Furukawa Automotive Systems Inc. Terminal, wire harness, terminal and coated conductor wire connection method, and wire harness structure
CN105612662B (en) * 2013-10-15 2019-07-26 古河As株式会社 Terminal, harness, terminal and coated wire connection method and wiring harness structure body
CN105612662A (en) * 2013-10-15 2016-05-25 古河As株式会社 Terminal, wire harness, terminal and coated conductor wire connection method, and wire harness structure
US9755325B2 (en) 2013-10-15 2017-09-05 Furukawa Electric Co., Ltd. Terminal, wire harness, terminal and coated conductor wire connection method, and wire harness structure
JPWO2015056692A1 (en) * 2013-10-15 2017-03-09 古河As株式会社 TERMINAL, WIRE HARNESS, CONNECTION METHOD FOR TERMINAL AND COVERED CONDUCTOR AND WIRE HARNESS STRUCTURE
JP2015079687A (en) * 2013-10-18 2015-04-23 矢崎総業株式会社 Crimping terminal
US9899749B2 (en) 2013-10-18 2018-02-20 Yazaki Corporation Crimp terminal
WO2015056728A1 (en) * 2013-10-18 2015-04-23 矢崎総業株式会社 Crimp terminal
JP2015130311A (en) * 2013-11-01 2015-07-16 古河電気工業株式会社 Terminal metal fitting and electric wire with terminal
CN104682046B (en) * 2013-11-28 2017-04-12 日本航空电子工业株式会社 Crimp terminal and connector
US9455504B2 (en) * 2014-11-07 2016-09-27 Hyundai Motor Company Wire terminal connector with improved clamping force
US9837741B2 (en) * 2015-05-28 2017-12-05 Te Connectivity Germany Gmbh Electrical contact element with a finely structured contact surface
WO2017104667A1 (en) * 2015-12-15 2017-06-22 株式会社ピー・エル Connection structure for aluminum body, and connector
US10587056B2 (en) * 2016-03-04 2020-03-10 Delta Plus Co., Ltd. Crimp connection terminal and production method for same
US20190221950A1 (en) * 2018-01-18 2019-07-18 Yazaki Corporation Electric wire with wire terminal, wire terminal and wire terminal crimper
US10608349B2 (en) * 2018-01-18 2020-03-31 Yazaki Corporation Electric wire with wire terminal, wire terminal and wire terminal crimper
CN114824854A (en) * 2021-01-29 2022-07-29 日本压着端子制造株式会社 Terminal and method for connecting terminal and cable
CN114824854B (en) * 2021-01-29 2024-04-12 日本压着端子制造株式会社 Terminal and method for connecting terminal and cable

Similar Documents

Publication Publication Date Title
US3892459A (en) Open barrel terminal and method for terminating an electrical wire therein
US3990143A (en) Method for terminating an electrical wire in an open barrel terminal
US5396033A (en) H-tap compression connector
US5162615A (en) Full closure H-shaped connector
US3320354A (en) Insulation piercing electrical connection
US3955044A (en) Corrosion proof terminal for aluminum wire
US5696352A (en) Stranded electrical wire for use with IDC
US2680235A (en) Electrical connector
US2983898A (en) Terminal wire crimp and method for forming same
US3964815A (en) Insulation piercing terminal
JPWO2009101965A1 (en) Terminal fitting and wire harness
US2758491A (en) Crimping dies for electrical connectors
GB958644A (en) Electrical connector
US3594713A (en) Electrical connector
CN107431283B (en) Terminal and electric wire with terminal
US4264118A (en) Insulation-pierce and crimp termination and method for effecting same
US3111554A (en) Method and apparatus for producing an electrical connection with insulated wires
US3461221A (en) Electrical connector for flat conductor cable
US3474399A (en) Crimping ferrule with insert rings of hard material
US5022867A (en) Electrical terminal
EP0398342A1 (en) A crimp terminal and its wire crimping structure
GB820243A (en) Improvements in electrical connections and methods of making them
US4414740A (en) Insulation-pierce and crimp termination tool
US3234321A (en) Tubular tapered connectors
JP2938265B2 (en) Sleeve for connecting sector-shaped conductor and method for connecting sector-shaped conductor using the same