US3874054A - Wheel process - Google Patents

Wheel process Download PDF

Info

Publication number
US3874054A
US3874054A US420109A US42010973A US3874054A US 3874054 A US3874054 A US 3874054A US 420109 A US420109 A US 420109A US 42010973 A US42010973 A US 42010973A US 3874054 A US3874054 A US 3874054A
Authority
US
United States
Prior art keywords
lug
forming
hub
plane
blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US420109A
Inventor
Merlyn R Reppert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
APPLIANCE INDUSTRIES Inc
Bank of America Illinois
Original Assignee
WR Grace and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WR Grace and Co filed Critical WR Grace and Co
Priority to US420109A priority Critical patent/US3874054A/en
Priority to BR979774A priority patent/BR7409797A/en
Priority to JP13881974A priority patent/JPS5088701A/ja
Priority to US05/538,477 priority patent/US3989307A/en
Application granted granted Critical
Publication of US3874054A publication Critical patent/US3874054A/en
Assigned to CONTINENTAL ILLINOIS NATIONAL BANK AND TRUST COMPANY OF CHICAGO reassignment CONTINENTAL ILLINOIS NATIONAL BANK AND TRUST COMPANY OF CHICAGO ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: APPLIANCE INDUSTRIES, INC.
Assigned to APPLIANCE INDUSTRIES, INC. reassignment APPLIANCE INDUSTRIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: W.R. GRACE & CO.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/26Making other particular articles wheels or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49481Wheel making
    • Y10T29/49492Land wheel
    • Y10T29/49496Disc type wheel
    • Y10T29/49504Disc shaping

Definitions

  • ABSTRACT A polished steel wheel center with hub, outwardspreading spokes, and rim; the metal having substantially the same thickness throughout; the ratio of the center diameter to the hub height being substantially 5; the center having slots intermediate the outer areas of thespokes; the center having deeply recessed lug pockets intermediate the spokes; the terminus of the rim, the bottom of the lug recesses, and the bottom of the hub being in substantially the same plane; the slots being in a plane intermediate top and bottom of the hub.
  • Method of forming an automobile wheel center comprising as a first step, prepolishing the stock; forming a deep draw in the blank; forming alternate spoke and lug pocket areas, the lug pocket areas beingapproximately in the same plane as the periphery of the blank; further forming the lug pockets to depress same below the plane of the peripheral plane of the blank while simultaneously reducing the height of the hub area; in a subsequent forming step, still further depressing the lug pockets below the plane of the periphery, and still further reducing the height of the hub area; forming lug bosses and stamping out the hub center; and piercing peripheral slots and lug holes.
  • This invention is directed to an improvement in the manufacture of automobile wheels, and more particularly concerns a method for forming the center of the wheel, together with electroplating same.
  • wheel center in which the lug pockets contain enough metal and are sufficiently strong to be punched to standard size lug holes. Also these wheel centers can be electroplated, using the process of this invention. Prior to this invention such deeply drawn lug pockets, even had they existed, could not have been suitably electroplated.
  • My wheel forming process is directed to the wheel center. Its ultimate attachment to the rim is conventional.
  • my invention requires three crucial operations. The first of these operations is that the strip stock be prepolished. (If it is not prepolished, even if the other steps are carried out, the resulting wheel center cannot be properly electroplated.)
  • the second crucial operation is actually a series of operations carried out in a sequence of die presses. It is extremely important in this series of operations that the blank be initially very deeply drawn, i.e., forming a hat blank, with the depth of the draw being at least about one-quarter of the diameter of the blank, and the diameter of the draw being approximately five-sixths the diameter of the blank.
  • This initial step gives sufficient depth of metal for the subsequent spoke forming steps and for lug pocket forming. steps. If this deep draw is not made a weak lug pocket will result which will not have enough metal thickness to be stamped (i.e., pierced to form lug hole), or which may even crack during the forming processes. As a third crucial point the hub area, i.e., the center of the wheel center, must be reduced in height over several successive die forming operations.
  • FIGS. l/la-7/7a inclusive show successive stamping, drawing, and forming steps whereby the wheel center is made.
  • FIGS. 1, 2, etc. show half of the center in top plan view.
  • FIG. 8a shows the corresponding sections.
  • FIG. 8b shows a section taken along the lines h-b.
  • FIG. 9 shows a perspective view of the collector which is used in electroplating.
  • FIG. 10 shows a perspective view of the collector of FIG. 9 mounted in a 'center ready to carry out the electroplating operation.
  • the blanks i.e., the strip stock, were l6 X 96 inches and in thickness 0.l68 inch.
  • One such blank makes six wheels. This is a standard type of steel available commercially identified as hot rolled steel, pickled and oiled.
  • the stock material is not critical. For example, aluminum-killed steel, rimmed steel, and draw quality steel are suitable.
  • Each sheet of stock is polished. I prefer to do this by passing each sheet through six different polishing operations.
  • the grinding equipment is conventional.
  • six machines are used, one for each of the six polishing operations.
  • Each machine suitably carries a circular polishing belt vertically positioned.
  • the work piece is fed through the machine by means of two sets of duplicate pinch rolls on the incoming side.
  • the leading edge of the work piece proceeds between the polishing belt and a pressure roll.
  • the pressure roll presses the work piece against the polishing belt.
  • Four pinch rolls pick up the work piece as it emerges from the grinding belt and drop it in a stack on a work table.
  • the machine suitably is equipped with a dust collector, since the combination of metal removed from the surface of the work piece and the abrasive material removed from the polishing belt is considerable.
  • I use l6 inch-wide stock I prefer that the dimensions of the polishing belt be 18 inches wide by 126 inches in total length.
  • the belt is, of course, endless. As stated, these finishing operations proceed through six separate steps, one for each of the series of six machines.
  • the first machine uses No. I50 aluminum oxide grit. After all the stock strips of a given piece are passed under the belt of the first machine (approximately 40 strips) the belt is transferred to the second machine and is thus reused on all of the strips once more. A new l50- grit belt is put on the first machine.
  • the used belt acts as further finishing means.
  • a new belt of No. 220 grit aluminum oxide is used. All the work is passed under this belt for step No. 3.
  • the same belt (now used) is used once more on the number four machine for all of the work pieces.
  • a belt using No. 220 grit of silicon carbide is placed on the number five machine. All the stock pieces are passed under this belt for step No. 5.
  • the used belt from the number five machine is placed on the sixth and last machine, and all of the stock strips are passed under same.
  • New belts are used on the first, third, and fifth machines, and the used belts are transferred respectively to the second, fourth and sixth machines. They are discarded after the latter use.
  • the stock strips coming off the last belt have a surface which is sufficiently polished to accept nickel electroplating, even after forming, drawing, stamping, etc. as will be hereinafter explained.
  • polishing means other than that described and well known to those skilled in the polishing art. It is the finish that counts, and not how it was obtained.
  • Polishing machinery is available commercially for the polishing operations. I used a machine made by the Acme Manufacturing Co. of Detroit.
  • prepolishing also provides immediate benefits in that it removes mill scale and aids in the operation of the die lubricant in operations in the die shop below described.
  • the first step is to stamp out and draw the hat blank as shown in FIG. l/l-a. This is accomplished by a die having the indicated configuration, in a press of, for example, 500 Tons. As noted, this operation gives a blank with a deeply drawn and elevated interior. This area is drawn to an extent far greater than will be necessary in the subsequent finished wheel. The reason for this great depth of draw is that a considerable excess of metal must be provided for the steps hereinafter explained wherein the lug pockets are formed. In overall diameter this piece is about 12.5 inches and in depth about 3 inches. The dome of the hat is about inches in diameter.
  • step No. 2 the second die presses down in what will become the five lug pockets.
  • the proto-spoke areas are formed as gathers.
  • This step slightly increases the diameter of the blank, to about 12 /8 inches, while simultaneously reducing the center height, to about 3 3/16 inches.
  • the beginnings of the lug pockets are formed.
  • the lug pocket areas are formed in the same plane with the periphery, and approach the center hub area for about 3 4 inches before merging into the hub area.
  • the hub or center area itself is about 3 inches in diameter. Providing enough metal to make the lug pockets results in an excess of metal in the spoke and hub areas. Hence in the subsequent steps the forming operations must include compression to reduce this excess metal.
  • step No. 3 the third die makes a further indentation into the lug area while at the same time compressing down the hub area and the spoke areas. It would not be possible to make this necessary indentation into the lug areas if it were not possible to compress further the hub area and the spoke areas, since the latter areas are in effect reservoirs of metal needed to make the indentations into the lug areas. At this point it may be noted that if the initial deep drawing for blanks Nos. 1 and 2 had not been carried out, the final deep indentations contemplated for the lug areas in steps 4 and subsequent would not be possible, for the reason that the lug areas otherwise would have been too thin to permit stamping out the lug holes. Step No.
  • the upper surfaces of the spokes from step 4 may have a slight ripple. If the ripple is present it is barelv detectable by touch or eye. It is readily removed by a pressing step, with a die designed particularly for pressing the spoke surfaces, in step N0. 5. Pieces Nos. 4 and 5 are substantially the same except for the ripple, if any.
  • the peripheral (rim) slots and the lug holes are pierced.
  • the lug areas can of course be pierced for holes to fit different size hubs on different cars, for example Chevrolets, Ford, Pontiacs, and the like.
  • the lug holes may be five-eighths inch at the bottom (facing the car), tapering to three-fourths inch at the top.
  • the lug holes are coined and tapered at this step.
  • the wheel can be taken direct to final polishing and plating.
  • the lug holes are punched to provide a conical opening. This is desirable in mounting the wheels using conventional lugs, which are of course conical in terminal section.
  • the entrance angle into the lug holes is, of course, adapted to the angle of the lugs intended to be used with the wheels.
  • step 7 the wheel can be taken direct to polishing and plating operations.
  • step 1 metal be made available to the forming operations by compression of already drawn metal.
  • the wheel center is now put through additional polishing operations prior to plating. These operations comprise roughing and buffing. However, only the spoke and peripheral areas (annular rings) are polished, since these are the only areas that can be reached by the polishing equipment. The lug areas are too deep to be affected. These operations are carried out in order to blend out the die marks on the tops of the spokes and in the peripheral area.
  • the roughing operation on the spokes is suitably done in two steps, the difference being that the first step is done with a medium-grade abrasive and the second is done with a finer abrasive. Both of these steps involve the use of a con ventional cloth and emery polishing wheel. A polishing stick consisting of medium-grade tallow and emery is fed into the wheel simultaneously with exposure of the spoke areas to the polishing wheel.
  • the buffing operation likewise suitably uses two steps. One man can buff the peripheral areas, then can hand the wheel center to the second man who buffs the spoke areas. More buffing area is covered than in the roughing steps.
  • the Plating Operation The electroplating steps are three.
  • the cleaned piece is plated with a first coating of nickel, then a second coating of nickel (in a distinctly independent operation) and finally with a coating of chromium metal.
  • These electroplating operations are standard in the art. They are used, for example, to plate numerous types of automotive accessories, e.g., bumpers, molding strips, door handles, and the like.
  • the function of each electroplating coating is well known.
  • the first plating of nickel levels the surface of the piece, i.e., pits and scratches are filled in and the surface is generally levelled.
  • the second nickel coating is thicker, and provides very high resistance to corrosion.
  • chromium metal is added to provide resistance to scratching, such as may result when the car is washed or the wheel is polished by hand, etc.
  • This coating of chrome metal is fairly critical and is generally less than 0.000l inches thick. If it is plated any thicker its appearance would be rather dull, since chromium metal is a gray color in thick layers. If it is any thinner it cannot adequately protect the upper coat of nickel from scratches, etc.
  • the nickel coatings themselves are very carefully controlled. Too much nickel results in a rough surface, and not enough nickel would show scratches and polishing lines from the steps preceding the plating operation. If there is not enough chromium the underplated area would tend to turn yellow very quickly.
  • the Electrolytic Collector (see FIG. 9) comprises a plug 2, a plurality of legs 4, a base plate 6, and washer 8 held together by nut 12 and bolt 14. Each of the legs 4 has a foot 16.
  • the legs 4 and the feet 16 are painted to insulate them from the electrolytic bath. However, the bottom of each foot 16 is unpainted and does in fact conduct the electric current.
  • the legs are in electric contact with the metal base plate 6.
  • the feet 16 are preferably formed of titanium metal, and their bottoms are preferably platinum plated.
  • the function of the collector is to attract nickel and chromium ions into the deep lug pockets thereby to provide a coating of metal in these areas as thick as that given to the more accessible spoke and peripheral areas.
  • the material of plug 2 can be plastic (i.e., polyvinylchloride) or wood, or the like. The material is not critical so long as it fits into the hub hole and provides good electrical insulation.
  • FIG. 10 the collector is shown in position in the polished center, ready to be taken through the nickel and chromium electrolytic plating steps.
  • the initial polishing operation of the blank above referred to places the ultimate lug pockets in condition for plating. This is crucial, since absent such prepolishing, if these deeply indented lug pockets, in a rough pre-formed condition were plated by the standard technique, the plating would not adequately seal the pores of the metal, and after a few months of service under road conditions, the lug area would show signs of rust.
  • the final step of welding the center into the wheel rim is also standard, and equipment and procedures for accomplishing this are conventional in the art. It may be stated in general that the waiting rim has already been plated.
  • the plated center (prepared by the process of this invention) is pressed into the plated rim, is aligned, and then it is welded using a short arc. This gives the final wheel ready for installation on the automobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Punching Or Piercing (AREA)

Abstract

A polished steel wheel center with hub, outwardspreading spokes, and rim; the metal having substantially the same thickness throughout; the ratio of the center diameter to the hub height being substantially 5; the center having slots intermediate the outer areas of the spokes; the center having deeply recessed lug pockets intermediate the spokes; the terminus of the rim, the bottom of the lug recesses, and the bottom of the hub being in substantially the same plane; the slots being in a plane intermediate top and bottom of the hub. Method of forming an automobile wheel center comprising as a first step, prepolishing the stock; forming a deep draw in the blank; forming alternate spoke and lug pocket areas, the lug pocket areas being approximately in the same plane as the periphery of the blank; further forming the lug pockets to depress same below the plane of the peripheral plane of the blank while simultaneously reducing the height of the hub area; in a subsequent forming step, still further depressing the lug pockets below the plane of the periphery, and still further reducing the height of the hub area; forming lug bosses and stamping out the hub center; and piercing peripheral slots and lug holes.

Description

United States Patent [191 Reppert 1 Apr. 1, 1975 1 WHEEL PROCESS [75] Inventor: Merlyn R. Reppert, Torrance, Calif.
[73] Assignee: W. R. Grace & Co., New York,
[22] Filed: Nov. 29, 1973 [21] Appl. No.: 420,109
[52] U.S. Cl 29/l59.0l, 29/15903, l13/116 D, 301/63 R, 301/64 R [51] Int. Cl ..B21h1/02, B2lk 1/32 [58] Field of Search 29/159.01, 159.02, 159.3, 29/l59.03; 72/405, 379; 113/116 D; 301/63 R, 63 D, 64 SD, 64 R [56] References Cited UNITED STATES PATENTS 2,088,992 8/1937 Bierwirth et a1. 29/159.01 2,097,101 10/1937 Maclennan 29/l59.01 X 2,159,880 5/1939 Bierwirth et a1. 29/15903 2,779,994 2/1957 Mclntosh 29/159.01 3,664,000 5/1972 LeJeune 29/l59.01
FOREIGN PATENTS OR APPLICATIONS 517,347 l/l94O United Kingdom 29/159.0l
Primary E.\'aI1zinet- C. W. Lanham Assistant E.\'aminet-Victor A. DiPalma Attorney, Agent, or Firm-Charles L. Harness [5 7.] ABSTRACT A polished steel wheel center with hub, outwardspreading spokes, and rim; the metal having substantially the same thickness throughout; the ratio of the center diameter to the hub height being substantially 5; the center having slots intermediate the outer areas of thespokes; the center having deeply recessed lug pockets intermediate the spokes; the terminus of the rim, the bottom of the lug recesses, and the bottom of the hub being in substantially the same plane; the slots being in a plane intermediate top and bottom of the hub.
Method of forming an automobile wheel center comprising as a first step, prepolishing the stock; forming a deep draw in the blank; forming alternate spoke and lug pocket areas, the lug pocket areas beingapproximately in the same plane as the periphery of the blank; further forming the lug pockets to depress same below the plane of the peripheral plane of the blank while simultaneously reducing the height of the hub area; in a subsequent forming step, still further depressing the lug pockets below the plane of the periphery, and still further reducing the height of the hub area; forming lug bosses and stamping out the hub center; and piercing peripheral slots and lug holes.
5 Claims, 18 Drawing Figures PATENTE APB H975 3.874.054
sum 1 (IF 2 PATENTEI] APR 1 I975 sum 2 gr 2 WHEEL PROCESS" This invention is directed to an improvement in the manufacture of automobile wheels, and more particularly concerns a method for forming the center of the wheel, together with electroplating same.
It is known to form an automobile wheel by stamping a center, followed by forming, polishing, plating, and welding the center into a plated rim. These wheel centers of the prior art, however, are relatively shallow, and offer no problems with regard to subsequent polishing steps to prepare the centers for electroplating. That is to say, all areas of these prior centers were accessible to polishing equipment. The same is not true for centers which have been subjected to deep drawing operations. By deep drawing is meant that the lug pockets are so deeply recessed that they are not accessible to conventional polishing machinery. As a matter of fact no prior processes have been available to make suitable deeply drawn wheel centers. By the process of this invention these and other problems have been solved. For example, for the first time, using the process of this invention it is possible to form a wheel center in which the lug pockets contain enough metal and are sufficiently strong to be punched to standard size lug holes. Also these wheel centers can be electroplated, using the process of this invention. Prior to this invention such deeply drawn lug pockets, even had they existed, could not have been suitably electroplated.
My wheel forming process is directed to the wheel center. Its ultimate attachment to the rim is conventional. In making a deeply drawn platable wheel center my invention requires three crucial operations. The first of these operations is that the strip stock be prepolished. (If it is not prepolished, even if the other steps are carried out, the resulting wheel center cannot be properly electroplated.) The second crucial operation is actually a series of operations carried out in a sequence of die presses. It is extremely important in this series of operations that the blank be initially very deeply drawn, i.e., forming a hat blank, with the depth of the draw being at least about one-quarter of the diameter of the blank, and the diameter of the draw being approximately five-sixths the diameter of the blank. This initial step gives sufficient depth of metal for the subsequent spoke forming steps and for lug pocket forming. steps. If this deep draw is not made a weak lug pocket will result which will not have enough metal thickness to be stamped (i.e., pierced to form lug hole), or which may even crack during the forming processes. As a third crucial point the hub area, i.e., the center of the wheel center, must be reduced in height over several successive die forming operations.
Finally, as a fourth greatly preferred step, in the electroplating step, I use a collector" in association with the wheel center to insure that the lug pockets will be adequately plated. These steps constitute the improvements in my process over and above the standard and well known procedures of the prior art for making automobile wheels of the stamped and plated type. These steps are to be superimposed on the known conventional procedures.
In the figures, FIGS. l/la-7/7a inclusive show successive stamping, drawing, and forming steps whereby the wheel center is made. In this sequence of FIGS. 1, 2, etc., show half of the center in top plan view. FIGS.
1a, 2a, etc., show the corresponding sections. FIG. 8a
shows a finished wheel comprising rim and center, and FIG. 8b shows a section taken along the lines h-b.
FIG. 9 shows a perspective view of the collector which is used in electroplating. FIG. 10 shows a perspective view of the collector of FIG. 9 mounted in a 'center ready to carry out the electroplating operation.
Strip Stock The blanks, i.e., the strip stock, were l6 X 96 inches and in thickness 0.l68 inch. One such blank makes six wheels. This is a standard type of steel available commercially identified as hot rolled steel, pickled and oiled. The stock material is not critical. For example, aluminum-killed steel, rimmed steel, and draw quality steel are suitable.
Prepolishing Each sheet of stock is polished. I prefer to do this by passing each sheet through six different polishing operations. The grinding equipment is conventional. Preferably, six machines are used, one for each of the six polishing operations. Each machine suitably carries a circular polishing belt vertically positioned. The work piece is fed through the machine by means of two sets of duplicate pinch rolls on the incoming side. The leading edge of the work piece proceeds between the polishing belt and a pressure roll. The pressure roll presses the work piece against the polishing belt. Four pinch rolls pick up the work piece as it emerges from the grinding belt and drop it in a stack on a work table. The machine suitably is equipped with a dust collector, since the combination of metal removed from the surface of the work piece and the abrasive material removed from the polishing belt is considerable. When I use l6 inch-wide stock, I prefer that the dimensions of the polishing belt be 18 inches wide by 126 inches in total length. The belt is, of course, endless. As stated, these finishing operations proceed through six separate steps, one for each of the series of six machines. The first machine uses No. I50 aluminum oxide grit. After all the stock strips of a given piece are passed under the belt of the first machine (approximately 40 strips) the belt is transferred to the second machine and is thus reused on all of the strips once more. A new l50- grit belt is put on the first machine. In the second machine the used belt acts as further finishing means. In the third polishing machine a new belt of No. 220 grit aluminum oxide is used. All the work is passed under this belt for step No. 3. For step No. 4 the same belt (now used) is used once more on the number four machine for all of the work pieces. For step No. 5 a belt using No. 220 grit of silicon carbide is placed on the number five machine. All the stock pieces are passed under this belt for step No. 5. For step No. 6 the used belt from the number five machine is placed on the sixth and last machine, and all of the stock strips are passed under same. Thus six steps and six machines in all are used, but only three grades of polishing belts. New belts are used on the first, third, and fifth machines, and the used belts are transferred respectively to the second, fourth and sixth machines. They are discarded after the latter use.
The stock strips coming off the last belt have a surface which is sufficiently polished to accept nickel electroplating, even after forming, drawing, stamping, etc. as will be hereinafter explained. I aim at a finish in the range of about No. 8-l6. Such finish can, of course, be
attained by polishing means other than that described and well known to those skilled in the polishing art. It is the finish that counts, and not how it was obtained.
Polishing machinery is available commercially for the polishing operations. I used a machine made by the Acme Manufacturing Co. of Detroit.
As has been explained, it is essential for the subsequent nickel and chrome electroplating operations that the stock strips achieve a very fine finish at the outset before any subsequent stamping, etc. operations are commenced. In addition to providing a suitable surface for eventual electroplating, prepolishing also provides immediate benefits in that it removes mill scale and aids in the operation of the die lubricant in operations in the die shop below described.
Stamping, Drawing, Forming, etc.
The following concerns operations in the die shop.
The first step is to stamp out and draw the hat blank as shown in FIG. l/l-a. This is accomplished by a die having the indicated configuration, in a press of, for example, 500 Tons. As noted, this operation gives a blank with a deeply drawn and elevated interior. This area is drawn to an extent far greater than will be necessary in the subsequent finished wheel. The reason for this great depth of draw is that a considerable excess of metal must be provided for the steps hereinafter explained wherein the lug pockets are formed. In overall diameter this piece is about 12.5 inches and in depth about 3 inches. The dome of the hat is about inches in diameter.
In step No. 2 (see FIGS. 2/2u) the second die presses down in what will become the five lug pockets. In this step the proto-spoke areas are formed as gathers. This step slightly increases the diameter of the blank, to about 12 /8 inches, while simultaneously reducing the center height, to about 3 3/16 inches. In this operation the beginnings of the lug pockets are formed. Also there may be evident in this step some ripples in the proto-spokes. The lug pocket areas are formed in the same plane with the periphery, and approach the center hub area for about 3 4 inches before merging into the hub area. The hub or center area itself is about 3 inches in diameter. Providing enough metal to make the lug pockets results in an excess of metal in the spoke and hub areas. Hence in the subsequent steps the forming operations must include compression to reduce this excess metal.
In step No. 3 (see FIGS. 3-a/3a) the third die makes a further indentation into the lug area while at the same time compressing down the hub area and the spoke areas. It would not be possible to make this necessary indentation into the lug areas if it were not possible to compress further the hub area and the spoke areas, since the latter areas are in effect reservoirs of metal needed to make the indentations into the lug areas. At this point it may be noted that if the initial deep drawing for blanks Nos. 1 and 2 had not been carried out, the final deep indentations contemplated for the lug areas in steps 4 and subsequent would not be possible, for the reason that the lug areas otherwise would have been too thin to permit stamping out the lug holes. Step No. 3 gives a blank which is again increased in diameter, e.g., to about 13 Va inches. The hub area is further compressed, and now has a height of about 2 inches. The lug areas further approach the center, and are now slightly below the peripheral plane. The extreme edge of the lug area may measure 4 /2 inches from the periphery to the center.
Continuing with blank No. 4 (see FIGS. 4/4a) it will be seen that at this step the wheel has very nearly achieved its final form. The geometry of the wheel has been finalized, except that the lug bosses have not yet been formed nor have the five rim slots been stamped, nor the hub hole. The spokes and hub have been brought down to their final height. In this step No. 4 the die turns the peripheral rim down to give a inch peripheral depth. This rim may have a /4 inch straight side. The lug area is now about one-half inch below the annular rim. The center diameter has now been reduced to 12 /8 inches and the center height has been reduced to 2 /2 inches, i.e., ratio of substantially 5 to 1.
In some instances, the upper surfaces of the spokes from step 4 may have a slight ripple. If the ripple is present it is barelv detectable by touch or eye. It is readily removed by a pressing step, with a die designed particularly for pressing the spoke surfaces, in step N0. 5. Pieces Nos. 4 and 5 are substantially the same except for the ripple, if any.
Continuing on to blank No. 6 (see FIGS. 6/6a), at
this step the lug bosses are created by raising central sections of the lug areas about 5/16 of an inch. This, of course, requires a considerable amount of metal. However, this metal is available by reason of the preceding series of deep draws. These lug bosses have to be formed as a separate operation. This step cannot be combined with the step of forming the final lug recess. In proceeding from blank No. 3, if it is attempted to form simultaneously the ultimate lug recesses and the lug bosses, the metal will be ruptured. In blank No. 6 also the hub hole is stamped out.
In the final step, No. 7, the peripheral (rim) slots and the lug holes are pierced. The lug areas can of course be pierced for holes to fit different size hubs on different cars, for example Chevrolets, Ford, Pontiacs, and the like.
The lug holes may be five-eighths inch at the bottom (facing the car), tapering to three-fourths inch at the top. The lug holes are coined and tapered at this step. After step 7 the wheel can be taken direct to final polishing and plating. The lug holes are punched to provide a conical opening. This is desirable in mounting the wheels using conventional lugs, which are of course conical in terminal section. The entrance angle into the lug holes is, of course, adapted to the angle of the lugs intended to be used with the wheels.
After step 7 the wheel can be taken direct to polishing and plating operations.
Conventional die lubricant is used in all die operations, and the final product from the stamping plant is thus coated with a thin film of die compound. This film is permitted to remain while the center is in storage. However, prior to the nickel and chromium plating operation this film must be removed. This is customarily done by agitation in a caustic bath followed by a water rinse, and acid bath, and a second water rinse.
Five hundred ton presses in series are suitable for carrying out the forming operations described in this section, except for Step 5, for which a 2,000 or 2,500- ton press is recommended.
All of the above steps are done cold. Hot working is not necessary.
As noted, it is crucial to the entire series of steps following step 1 that metal be made available to the forming operations by compression of already drawn metal.
First Nickel Bath Second Nickel Bath Chromium Bath Metal Time in Concentration Amperage Bath (Minutes) 12 ounces/gal. ditto 44 ounces/gal.
l8 min.,l2 sec. 2 min.,48 sec. 200 ampslsqft. ditto 50 amps/sq.ft.
ditto Only in this way can the great height/depth differences in spoke, hub area, and lug area be retained with good structural strength. 15
Supplemental Polishing The wheel center is now put through additional polishing operations prior to plating. These operations comprise roughing and buffing. However, only the spoke and peripheral areas (annular rings) are polished, since these are the only areas that can be reached by the polishing equipment. The lug areas are too deep to be affected. These operations are carried out in order to blend out the die marks on the tops of the spokes and in the peripheral area. The roughing operation on the spokes is suitably done in two steps, the difference being that the first step is done with a medium-grade abrasive and the second is done with a finer abrasive. Both of these steps involve the use of a con ventional cloth and emery polishing wheel. A polishing stick consisting of medium-grade tallow and emery is fed into the wheel simultaneously with exposure of the spoke areas to the polishing wheel.
The buffing operation likewise suitably uses two steps. One man can buff the peripheral areas, then can hand the wheel center to the second man who buffs the spoke areas. More buffing area is covered than in the roughing steps.
The Plating Operation The electroplating steps are three. The cleaned piece is plated with a first coating of nickel, then a second coating of nickel (in a distinctly independent operation) and finally with a coating of chromium metal. These electroplating operations are standard in the art. They are used, for example, to plate numerous types of automotive accessories, e.g., bumpers, molding strips, door handles, and the like. The function of each electroplating coating is well known. The first plating of nickel levels the surface of the piece, i.e., pits and scratches are filled in and the surface is generally levelled. The second nickel coating is thicker, and provides very high resistance to corrosion. The coating of chromium metal is added to provide resistance to scratching, such as may result when the car is washed or the wheel is polished by hand, etc. This coating of chrome metal is fairly critical and is generally less than 0.000l inches thick. If it is plated any thicker its appearance would be rather dull, since chromium metal is a gray color in thick layers. If it is any thinner it cannot adequately protect the upper coat of nickel from scratches, etc. The nickel coatings themselves are very carefully controlled. Too much nickel results in a rough surface, and not enough nickel would show scratches and polishing lines from the steps preceding the plating operation. If there is not enough chromium the underplated area would tend to turn yellow very quickly.
In these'plating operations the use of my electrolytic collector is essential. This is described below.
The Electrolytic Collector The electrolytic collector (see FIG. 9) comprises a plug 2, a plurality of legs 4, a base plate 6, and washer 8 held together by nut 12 and bolt 14. Each of the legs 4 has a foot 16. The legs 4 and the feet 16 are painted to insulate them from the electrolytic bath. However, the bottom of each foot 16 is unpainted and does in fact conduct the electric current. The legs are in electric contact with the metal base plate 6. The feet 16 are preferably formed of titanium metal, and their bottoms are preferably platinum plated. The function of the collector is to attract nickel and chromium ions into the deep lug pockets thereby to provide a coating of metal in these areas as thick as that given to the more accessible spoke and peripheral areas. The material of plug 2 can be plastic (i.e., polyvinylchloride) or wood, or the like. The material is not critical so long as it fits into the hub hole and provides good electrical insulation.
In FIG. 10 the collector is shown in position in the polished center, ready to be taken through the nickel and chromium electrolytic plating steps.
An essential consequence of this entire series of steps is that it yields a wheel center which can be adequately plated. No other wheel center made by forming and drawing, so far as is known, can be adequately plated.
To state this another way, the initial polishing operation of the blank above referred to places the ultimate lug pockets in condition for plating. This is crucial, since absent such prepolishing, if these deeply indented lug pockets, in a rough pre-formed condition were plated by the standard technique, the plating would not adequately seal the pores of the metal, and after a few months of service under road conditions, the lug area would show signs of rust.
Although all the description herein refers to a 5- spoke wheel, this is obviously not critical. It can be used also to make a four-spoke wheel, for example, Pinto, many foreign imports, and the like. Additionally in the larger categories the same technique can be used to make a 6-spoke wheel.
The final step of welding the center into the wheel rim is also standard, and equipment and procedures for accomplishing this are conventional in the art. It may be stated in general that the waiting rim has already been plated. The plated center (prepared by the process of this invention) is pressed into the plated rim, is aligned, and then it is welded using a short arc. This gives the final wheel ready for installation on the automobile.
What is claimed is:
1. In the method comprising forming an automobile wheel center comprising stamping out a blank from 7 stock, drawing same, forming spoke ridges, and stamping lug and hub holes, the improvement comprising:
1. as a first step, prepolishing the stock;
2. in the drawing step, forming a deep draw with the depth of the draw being about one-quarter the diameter of the resulting blank;
3. forming alternate spoke and lug pocket areas, the lug pocket areas being approximately in the same plane as the periphery of the blank;
4. further forming the lug pockets to depress same below the plane of the peripheral plane of the blank while simultaneously reducing the height of the hub area;
5. in a subsequent forming step, still further depressing the lug pockets below the plane of the periphery, and still further reducing the height of the hub area;
6. forming lug bosses and stamping out the hub center;
7. piercing peripheral slots and lug holes.
2. Method according to claim 1 in which the center piece resulting from step (5) is pressed in the spoke areas to flatten out any ripples on the spoke surfaces.
3. The method according to claim 1 in which the wheel center is given five spokes.
4. The method according to claim 1 in which the prepolishing is accomplished by a plurality of steps using graded abrasive grits in a belt polishing system.
5. The method according to claim 4, using 3 polishing belts in six polishing steps, in which the first polishing belt material is grit aluminum oxide; the second polishing belt is the belt resulting from use in the first step; the third polishing belt material is 220 grit aluminum oxide; the fourth polishing belt is the belt resulting from use in the third step; the fifth polishing belt material is 220 grit silicon carbide; and the sixth polishing belt is the belt resulting from use in the fifth step.

Claims (11)

1. In the method comprising forming an automobile wheel center comprising stamping out a blank from stock, drawing same, forming spoke ridges, and stamping lug and hub holes, the improvement comprising: 1. as a first step, prepolishing the stock; 2. in the drawing step, forming a deep draw with the depth of the draw being about one-quarter the diameter of the resulting blank; 3. forming alternate spoke and lug pocket areas, the lug pocket areas being approximately in the same plane as the periphery of the blank; 4. further forming the lug pockets to depress same below the plane of the peripheral plane of the blank while simultaneously reducing the height of the hub area; 5. in a subsequent forming step, still further depressing the lug pockets below the plane of the periphery, and still further reducing the height of the hub area; 6. forming lug bosses and stamping out the hub center; 7. piercing peripheral slots and lug holes.
2. in the drawing step, forming a deep draw with the depth of the draw being about one-quarter the diameter of the resulting blank;
2. Method according to claim 1 in which the center piece resulting from step (5) is pressed in the spoke areas to flatten out any ripples on the spoke surfaces.
3. The method according to claim 1 in which the wheel center is given five spokes.
3. forming alternate spoke and lug pocket areas, the lug pocket areas being approximately in the same plane as the periphery of the blank;
4. further forming the lug pockets to depress same below the plane of the peripheral plane of the blank while simultaneously reducing the height of the hub area;
4. The method according to claim 1 in which the prepolishing is accomplished by a plurality of steps using graded abrasive grits in a belt polishing system.
5. The method according to claim 4, using 3 polishing belTs in six polishing steps, in which the first polishing belt material is 150 grit aluminum oxide; the second polishing belt is the belt resulting from use in the first step; the third polishing belt material is 220 grit aluminum oxide; the fourth polishing belt is the belt resulting from use in the third step; the fifth polishing belt material is 220 grit silicon carbide; and the sixth polishing belt is the belt resulting from use in the fifth step.
5. in a subsequent forming step, still further depressing the lug pockets below the plane of the periphery, and still further reducing the height of the hub area;
6. forming lug bosses and stamping out the hub center;
7. piercing peripheral slots and lug holes.
US420109A 1973-11-29 1973-11-29 Wheel process Expired - Lifetime US3874054A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US420109A US3874054A (en) 1973-11-29 1973-11-29 Wheel process
BR979774A BR7409797A (en) 1973-11-29 1974-11-22 IMPROVEMENT IN THE PROCESS OF FORMING A CAR WHEEL CUBE; COLLECTOR FOR USE IN THE PROCESS; SCHEME FOR GALVANIZATION; AND WHEEL CUBE
JP13881974A JPS5088701A (en) 1973-11-29 1974-11-29
US05/538,477 US3989307A (en) 1973-11-29 1975-01-06 Stamped automotive wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US420109A US3874054A (en) 1973-11-29 1973-11-29 Wheel process

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US47274574A Division 1973-11-29 1974-05-23
US05/538,477 Division US3989307A (en) 1973-11-29 1975-01-06 Stamped automotive wheel

Publications (1)

Publication Number Publication Date
US3874054A true US3874054A (en) 1975-04-01

Family

ID=23665114

Family Applications (1)

Application Number Title Priority Date Filing Date
US420109A Expired - Lifetime US3874054A (en) 1973-11-29 1973-11-29 Wheel process

Country Status (1)

Country Link
US (1) US3874054A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190297A (en) * 1977-10-07 1980-02-26 Swiss Aluminium Ltd. Wheel for air or gas filled tires for motor vehicles
US4228671A (en) * 1979-04-02 1980-10-21 Superior Industries International, Inc. Process for making a vehicle wheel
EP0353781A1 (en) * 1984-11-01 1990-02-07 Motor Wheel Corporation Styled wheel
EP0494697A2 (en) * 1986-03-31 1992-07-15 Motor Wheel Corporation Method of wheel manufacture for correcting rotational non-uniformity of a pneumatic tire and wheel assembly, apparatus for performing such method and the resulting wheel
US6044557A (en) * 1995-06-06 2000-04-04 Autoliv Asp, Inc. Method of making stamped driver inflator base
US20030080606A1 (en) * 2001-10-30 2003-05-01 Alan Coleman Fabricated vehicle wheel and method for producing the same
US20110100499A1 (en) * 2008-06-02 2011-05-05 Saltel Industries Flexible pipe with in-built end pieces
CN105081131A (en) * 2015-08-25 2015-11-25 无锡贺邦金属制品有限公司 Process for punching automobile spoke plates

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2088992A (en) * 1936-09-16 1937-08-03 Kelsey Hayes Wheel Co Method of making vehicle wheels
US2097101A (en) * 1934-04-16 1937-10-26 Kelsey Hayes Wheel Co Method of forming pressed sheet metal spoked wheels
US2159880A (en) * 1936-10-16 1939-05-23 Kelsey Hayes Wheel Co Method of making a vehicle wheel
US2779994A (en) * 1954-07-06 1957-02-05 Mcintosh Stamping Corp Wheel disk and method of manufacture
US3664000A (en) * 1969-11-19 1972-05-23 Establissements Michelin Raiso Method of making wheels for automotive vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2097101A (en) * 1934-04-16 1937-10-26 Kelsey Hayes Wheel Co Method of forming pressed sheet metal spoked wheels
US2088992A (en) * 1936-09-16 1937-08-03 Kelsey Hayes Wheel Co Method of making vehicle wheels
US2159880A (en) * 1936-10-16 1939-05-23 Kelsey Hayes Wheel Co Method of making a vehicle wheel
US2779994A (en) * 1954-07-06 1957-02-05 Mcintosh Stamping Corp Wheel disk and method of manufacture
US3664000A (en) * 1969-11-19 1972-05-23 Establissements Michelin Raiso Method of making wheels for automotive vehicles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190297A (en) * 1977-10-07 1980-02-26 Swiss Aluminium Ltd. Wheel for air or gas filled tires for motor vehicles
US4228671A (en) * 1979-04-02 1980-10-21 Superior Industries International, Inc. Process for making a vehicle wheel
EP0353781A1 (en) * 1984-11-01 1990-02-07 Motor Wheel Corporation Styled wheel
EP0494697A2 (en) * 1986-03-31 1992-07-15 Motor Wheel Corporation Method of wheel manufacture for correcting rotational non-uniformity of a pneumatic tire and wheel assembly, apparatus for performing such method and the resulting wheel
EP0494697A3 (en) * 1986-03-31 1992-09-09 Motor Wheel Corporation Method of wheel manufacture for correcting rotational non-uniformity of a pneumatic tire and wheel assembly, apparatus for performing such method and the resulting wheel
US6044557A (en) * 1995-06-06 2000-04-04 Autoliv Asp, Inc. Method of making stamped driver inflator base
US20030080606A1 (en) * 2001-10-30 2003-05-01 Alan Coleman Fabricated vehicle wheel and method for producing the same
US6754957B2 (en) * 2001-10-30 2004-06-29 Hayes Lemmerz International, Inc. Fabricated vehicle wheel and method for producing the same
US20110100499A1 (en) * 2008-06-02 2011-05-05 Saltel Industries Flexible pipe with in-built end pieces
CN105081131A (en) * 2015-08-25 2015-11-25 无锡贺邦金属制品有限公司 Process for punching automobile spoke plates

Similar Documents

Publication Publication Date Title
US3874054A (en) Wheel process
US3989307A (en) Stamped automotive wheel
US3956915A (en) Drawing and ironing container stock and manufacturing methods
US3930396A (en) Die system for can body press
US3964987A (en) Electroplating apparatus
CN114653773B (en) Processing method of stainless steel grinding product for rail transit carrier
CN111037209A (en) Novel production process of automobile wheel spoke plate
CN209394440U (en) A kind of PLC control bucket automatic welding polishing grinding device
US3774426A (en) Apparatus for and method of forming a workpiece
CN102036768B (en) The method manufacturing canned box, canned lid or canned box sealing-plug
US20040163255A1 (en) Lightweight bicycle wheel rim and method for producing it
CN108555546A (en) A kind of improvement type automotive oil tank processing technology
US1736495A (en) Method of forming hardware
US3153278A (en) Method of forming a composite aluminum article
JPS5915733B2 (en) Method of manufacturing alloy wheels for vehicles
US2023904A (en) Process of finishing metallic sheets
JP4317573B2 (en) Press die for sheet metal molding, processing method of press die surface, and production method of vehicle body
US2612736A (en) Lapping method and apparatus
KR20070018609A (en) A decorative method on the automobile aluminium wheel and the automobile aluminum wheel made by forge or spinning
US1372246A (en) Method of forming metal blanks of varying cross-section
US2163005A (en) Process of manufacturing sheet metal articles
JPS59215418A (en) Production of stainless steel strip finished by polishing and having excellent resistance to staining
CN215090211U (en) Bolt seat binding off mould
CN115283950B (en) Three-piece automobile hub, manufacturing process thereof and manufacturing process of rim thereof
JPH02185959A (en) Production of hot dip galvanized steel sheet having superior vividness

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLIANCE INDUSTRIES, INC., 3344 NORTH TORREY PINE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:W.R. GRACE & CO.;REEL/FRAME:003923/0298

Effective date: 19801024