US3872189A - Apparatus for controlling and modulating engine functions - Google Patents

Apparatus for controlling and modulating engine functions Download PDF

Info

Publication number
US3872189A
US3872189A US331219A US33121973A US3872189A US 3872189 A US3872189 A US 3872189A US 331219 A US331219 A US 331219A US 33121973 A US33121973 A US 33121973A US 3872189 A US3872189 A US 3872189A
Authority
US
United States
Prior art keywords
metering
engine
air
carburetor
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US331219A
Inventor
Morris C Brown
Forrest W Cook
Ralph E Kalert
Arthur C Vollmer
Jerry H Winkley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carter Automotive Co Inc
Original Assignee
ACF Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACF Industries Inc filed Critical ACF Industries Inc
Priority to US331219A priority Critical patent/US3872189A/en
Priority to ZA740362A priority patent/ZA74362B/en
Priority to AU64775/74A priority patent/AU6477574A/en
Priority to IT19839/74A priority patent/IT1007104B/en
Priority to GB389774A priority patent/GB1464595A/en
Priority to CA191,851A priority patent/CA1008742A/en
Priority to JP49014644A priority patent/JPS49111046A/ja
Priority to DE19742405628 priority patent/DE2405628A1/en
Priority to FR7404286A priority patent/FR2217552B1/fr
Application granted granted Critical
Publication of US3872189A publication Critical patent/US3872189A/en
Priority to JP1977169491U priority patent/JPS5395024U/ja
Assigned to CARTER AUTOMOTIVE CORPORATION, INC., 9666 OLIVE BOULEVARD, ST. LOUIS, MISSOURI 63132, A CORP. OF DE. reassignment CARTER AUTOMOTIVE CORPORATION, INC., 9666 OLIVE BOULEVARD, ST. LOUIS, MISSOURI 63132, A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ACF INDUSTRIES, INCORPORATED
Assigned to CARTER AUTOMOTIVE COMPANY, INC. reassignment CARTER AUTOMOTIVE COMPANY, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ACF INDUSTRIES, INCORPORATED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/23Fuel aerating devices
    • F02M7/24Controlling flow of aerating air
    • F02M7/28Controlling flow of aerating air dependent on temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M3/00Idling devices for carburettors
    • F02M3/08Other details of idling devices
    • F02M3/09Valves responsive to engine conditions, e.g. manifold vacuum

Definitions

  • Calibration 1 1 References Cited features are provided for establishing a base condition UNITED STATES PATENTS of operation as well as individual calibration of all the 2,003,143 7/1935 Mock 26l/39A Various functions listed mgether with the ability to 2,230,159 1/1941 Kratzer 123/124 A make base Calibration Changes y application of 2,402,350 6/1946 Silver 26l/DIG. 2 ternal signal. 2,631,024 3/1953 Beardsley, Jr. 261/39 A 2,662,757 12/1953 Mock 261/39 A 5 Claims, 19 Drawlng Flgures I IIIIIIITIIIII sum 2 BF 5 55 FIGURE 5.
  • FIGURE IO
  • FIGURE 7 APPARATUS FOR CONTROLLING AND MODULATING ENGINE FUNCTIONS BACKGROUND OF THE INVENTION
  • operating conditions such as barometric pressure, ambient temperature and frequently one or more temperatures associated with the engine itself.
  • stationary engines and other engines operating under essentially constant load conditions
  • adjustments can be made to achieve efficient operation of the engine under these more or less constant conditions.
  • no single set of adjustments are capable of compensating for the constantly changing variables surrounding the engine.
  • Power enrichment is another important carburetor function that is adversely affected by changes in altitude and for which there has been no compensation provided in commercial carburetors.
  • Power enrichment customarily is provided by opening an auxiliary fuel passage or by moving a metering element so that additional fuel can enter the main fuel system.
  • the manifold vacuum is applied to one side of a diaphragm or piston and when manifold vacuum is high only normal fuel quantities are allowed to enter the main fuel system.
  • manifold vacuum becomes low then the movable member shifts into another position. thus allowing enrichment fuel to pass into the fuel sys tem.
  • the movable member (diaphragm or piston) is normally biased by a spring to move toward the enrichment position and the bias of this spring is overcome by the manifold vacuum. If the spring is so adjusted that it will cause enrichment whenever manifold vacuum drops below about six inches mercury, then no enrichment occurs until the engine is heavily loaded and usually a wide-open throttle condition has been reached.
  • the power enrichment may come into play even though the engine is relatively lightly loaded. This condition is caused by the fact that barometric pressure at altitudes is considerably less than that at sea level and this reduction in ambient presure is reflected in the intake manifold as a lesser degree of manifold vacuum for normal operation. Accordingly, as the engine is increased in its normal loading, the pressure condition necessary for power enrichment may be reached far in advance of any actual need for the enrichment.
  • FIG. 1 is a representation of an engine having the compensating unit of the invention attached to the carburetor of the engine.
  • FIG. 2 is a plan view of the interior of the compensating unit.
  • FIG. 3 is a section along the lines of 3-3 of FIG. 2.
  • FIG. 4 is another section taken along the lines of 4-4 of FIG. 2.
  • FIG. 5 is a partial section of a carburetor showing the manner of admitting air from the compensating unit into the main fuel system of a carburetor.
  • FIG. 6 is a partial section of a carburetor showing the manner of introduction of air into the idle system.
  • FIG. 7 is a partial sectional view of a carburetor showing a vacuum controlled accelerating pump and having attached to said carburetor a second vacuum controlled device and illustrating a passage for air from the compensating unit to the vacuum passage in the carburetor to modulate vacuum to the respective vacuum motors.
  • FIG. 8 is a partial plan view of a multibarrel carburetor illustrating the compensating unit of the invention integrally attached to the carburetor.
  • FIG. 9 is a partial section of the carburetor showing the idle fuel adjustment screw and the air modulating passage from the compensating unit.
  • FIG. 10 illustrates the air passage for passing air from the compensating unit to the air metering portions of the carburetor of FIG. 8.
  • FIG. 11 illustrates the communication of an air passageway of FIG. 8 with the secondary nozzle of the multibarrel carburetor of FIG. 8.
  • FIG. 12 is a partial section of the main fuel system of the primary barrels of the carburetor of FIG. 8 illustrating the communication of the modulated air from the compensating unit with the main fuel nozzle.
  • FIG. 13 is another partial section of a carburetor showing the vacuum piston which raises and lowers a fuel metering rod and illustrating the vacuum passage which is modulated by the compensating unit of the invention.
  • FIG. 14 is an elevation view of the compensating unit of FIG. 8 with the cover removed.
  • FIG. 15 is a sectional view of FIG. 14 with the cover in place.
  • FIGS. l6, l7, l8 and 19 are details of various construction features of the compensating unit of FIGS. 14 and 15.
  • a compensation unit which can be installed in the vehicle or made integral with the carburetor as desired and this unit meters air into the various systems involved in such a manner as to automatically compensate for changes in engine operating characteristics caused by changes in atmospheric pressure and- /or temperature.
  • the compensation unit includes a capsule which is temperature and/or barometric sensitive to change its dimensions as the altitude or the temperature varies.
  • This capsule moves a plate to which are at tached a number of metering elements.
  • One group of metering elements are arranged in such a manner as to increase air flow as the altitude increases and also increase air flow as temperature increases.
  • Another metering element is arranged to operate in the opposite direction so that maximum air flow occurs at low altitude and/or temperature and a decreasing quantity of air flows as the altitude and/or temperature increases.
  • the first-mentioned group of metering elements provide an air bleed into one or more of the fuel systems of the carburetor to overcome the tendency toward richness as temperature and altitude increase.
  • Another metering element is adapted to admit larger quantities of air at sea level and standard temperatures with a reduced quantity of air as the altitude and/or temperature increases.
  • This last mentioned metering element serves to reduce what would normally be a high manifold vacuum applied to some operative function of the engine at low altitudes and low temperatures and to reduce the air admitted with changes in those variables so that the vacuum actually applied will remain substantially constant, irrespective of any change in altitude or temperature.
  • FIG. 1 there is shown an altitude and/or temperature compensating unit attached to a carburetor 12 by a plurality of conduits 14, 16, 18 and 20, which illustrate one realization of the invention.
  • Carburetor 12 is suitably mounted on an intake manifold 13 which delivers the usual air/fuel mixture to an engine 15. Products of combustion are discharged from the engine into an exhaust pipe 17 and thence to a muffler 19 from which the products are discharged into the atmosphere.
  • An air cleaner or filter 21 is installed on carburetor 12 so that only clean filtered air is delivered to the intake of the internal combustion engine.
  • the unit comprises a body portion 22 having a cover 23 which cover seals the unit from the atmosphere.
  • Conduit 14 which in this embodiment may be a rubber hose, is attached to a nipple 24 for conducting clean air to the interior of unit 10.
  • the interior of unit 10 has air at substantially atmospheric pressure inside it at all times. Any deviation from absolute atmospheric pressure will be due to any pressure drop that may occur across the filter element and air cleaner 21.
  • an am hient air condition responsive device 30 which, in this instance, is a capsule of the bellows type which is conditioned to have within it a predetermined air pressure which, for barometric or altitude compensation represents a high degree of evacuation of the interior of the capsule. Additionally, there may be provided on the interior of capsule 30 a spring 32 which, through proper biasing, makes the capsule responsive to give the desired movement for a given change. High evacuation makes the capsule almost totally responsive to barometric change, while partial evacuation causes the capsule to respond to both barometric and temperature change. Accordingly, the spring bias and degree of evacuation will be chosen to achieve predetermined requirements.
  • the base of capsule 30 is secured to the housing 22 in any convenient manner, in this instance by way of a boss 33.
  • a detent 34 is provided at the upper end of capsule 30 for receiving an adjustment screw 36 as will be hereinafter described.
  • a plate 40 is installed in an upper portion of housing 22 and is pivi oted at 42 in such a manner that it positions adjustment screw 36 above unit 30 so that changes of length in unit 30 occasioned by changes in barometric pressure and- /or temperature will cause plate 40 to move upwardly and downwardly about the pivot 42.
  • a plurality of adjustment screws other than screw 36 are carried by plate 40. These are identified as 44, 46, 48 and 50. Each such adjustment screw is provided for the purpose of making final adjustment and calibration of the metering elements and biasing arrangements used in the device.
  • Screw 44 at its lower extremity contacts a metering pin 52 which, by way of conduit 16, controls the quantity of air bled into the main fuel system.
  • metering pin 52 which, by way of conduit 16, controls the quantity of air bled into the main fuel system.
  • Such bleed air when increased in quantity serves to diminish the amount of fuel delivered to the carburetor by the main fuel nozzle.
  • a greater quantity of fuel is made available through the main nozzle.
  • Metering pin 52 is urged in an upward direction by a biasing spring 54.
  • Clean air from the interior of housing 22 is admitted into the vicinity of metering pin 52 by an air passageway 53 so that as pin 52 rises, the tapered end portion uncovers the air entry passageway to admit air into conduit 16 and thence, by way of conduit 16 to a passageway 55 in the carburetor itself, which communicates with a portion of the main fuel system and, in this instance, the anti-perk well 56. Air passing into antiperk well 56 then mixes with the fuel in passageway 57 so that a mixture of air and fuel are discharged by nozzle 58 into the boost venturi 60 of the carburetor.
  • the fuel of course, is supplied from a constant level fuel bowl 62 and enters the main fuel passage by way of a metering orifice 64 which is controlled in part by a metering rod 66.
  • Air is bled into the idle fuel system in a manner substantially the same as that described above with respect to the main fuel system.
  • idle fuel is drawn by a passage 70 from the main fuel passage 57 of FIG. 5 and passes upwardly through a dip tube 71 and thence, through a restriction 72 where it is mixed with a quantity of air supplied by way of orifice 73, the resultant mixture then passes through restriction 74 where additional air can be added by way of restriction 75, thence downwardly by way of passage 77 to a cross-passage 78 which termi nates in the bore of the carburetor adjacent the throttle valve.
  • FIG. 7 A final engine function that is accomplished by the compensating unit of the invention is illustrated by two different embodiments in FIG. 7.
  • two vacuum responsive devices in the form of diaphragm units.
  • One of these controls the step-up by which the carburetor is caused to provide enrichment fuel under heavy-load or wide-open throttle conditions and the other is a diaphragm motor such as can be used to control spark advance or, in some instances, the shift mechanism of an automatic transmission.
  • a diaphragm motor such as can be used to control spark advance or, in some instances, the shift mechanism of an automatic transmission.
  • any or all of these vacuum responsive units could comprise a piston instead ofa diaphragm mechanism.
  • conduit is attached to the carburetor by means of a tube 85 which intersects a pas sage 86 in the throttle flange ofthe carburetor. Passage 86 enters the bore of the throttle of the carburetor below the throttle valve 88. By means of a branch passage, conduit 86 communicates with a space 90 below the diaphragm of a diaphragm-type accelerating pump.
  • the diaphragm is shown at 91 and is attached by suitable retaining means to a stem 92 which is biased in an upwardly direction by spring 93.
  • a cavity 94 on the upper side ofthe diaphragm is utilized for the acceleration fuel provided by the diaphragm pump.
  • the inlet and outlet of fuel to the space 94 is not shown for convenience sake.
  • Stem 92 is provided with a carrier bar 96 which supports the metering rod 66.
  • manifold vacuum acting in space 90 pulls the diaphragm down and this permits the pumping space 94 to fill with fuel while at the same time drawing the metering rod 66 down into the metering jet 64 to reduce the annular clearance between the taper of the metering rod and the interior of the jet.
  • spring 93 overcomes the vacuum and causes the diaphragm to move upwardly so that fuel is discharged into the carburetor from the accelerating pump and at the same time, metering rod 66 is drawn up to provide a greater annular clearance, thus providing additional fuel to the carburetor for enrichment purposes. This is commonly referred to as step-up.
  • conduit 20 communicates with air metering means in the form of a metering rod 100 which is provided at its lowermost extremity with a reverse taper metering section.
  • rod 100 moves up and down under the influence of biasing spring 102 and carrier plate 40.
  • Adjustment screw 48 makes final calibration adjustments of the relationship of metering rod 100 with its metering orifice.
  • Air is provided from the interior of compensating unit 10 to the metering zone by way of a passage 104.
  • Pipe 110 communicates with a vacuum motor 112 which is shown as a diaphragm unit but which might be a piston-type device.
  • Diaphragm unit 112 is provided with a diaphragm 114 biased in a direction away from the source of vacuum by a spring 116.
  • An operating arm 118 is attached to the opposite side from the biasing spring to the diaphragm. Arm 118 can be connected to any selected function, as for example, the spark advance of the ignition distributor or to the shift mechanism of an automatic transmission.
  • Each of these engine functions may be required to alter operating characteristics as the vehicle is driven into changing conditions of altitude or temperature.
  • the vacuum motor 112 which receives a controlled vacuum signal which is dependent upon the altitude and/or temperature can be made to function in a desired and programmed manner.
  • motor 112 is shown connected to the same system as the accelerator pump and step-up of the carburetor, it could be divorced from that system as would be obvious merely through the provision of a separate air metering element corresponding to element 100 and a separate source of vacuum together with a suitable connecting passage corresponding to passage 20.
  • the basic con cepts of the invention are applied to a four-barrel carburetor and, for the most part, these same concepts would be true of a two-barrel carburetor.
  • numbers similar to that used in the single barrel carburetor will be used, excepting that all numbers will be three-digit numbers in place of mostly two-digit numbers used earlier, as for example, the number 14 will become 214, 20 will become 220, etc.
  • a further difference between the four-barrel embodiment and the single barrel embodiment is that the passageways which were formerly separate conduits, such as flexible rubber tubing. now are passages formed or drilled integrally in the carbure' tor body and the altitude/temperature compensation unit is also mounted directly on the carburetor body.
  • FIG. 8 there is shown the base of a compensating unit 220 mounted on the body of a four-barrel carburetor 212.
  • a cover 223 is provided for covering up the operative mechanism of the compensator unit.
  • the four-barrel carburetor 212 has two primary barrels and two secondary barrels.
  • the primary barrels are each equipped with an idle fuel system and a main fuel system while the secondary barrels have only a single main fuel system each. Since each of the fuel systems can be managed by single metering pin, the unit 210 duplicates the metering capability of the compensating unit 10 of FIG. 1 with the addition of one additional capability for the secondary fuel nozzles.
  • a passage 214 communicates at one end with the air horn of the carburetor and, thus, with the space inside the air cleaner and its other end with the interior of compensating unit 210. In this fashion, clean air is supplied for all air metering functions. This last is shown also in FIG. 10.
  • a passageway 216 which extends from the interior of unit 210 to a branch extending to each of the two main nozzle wells indicated at 256.
  • a passage 218 is branched to extend to the two idle fuel passages 277.
  • a passage 213 extends to a branching point where it separates and branches out to secondary fuel wells 215. It is to be'remembered that all of the fuel passages and fuel systems in the fourbarrel version are substantially similar to the single barrel version shown in FIGS. 1 through 7. Principal difference being the secondary fuel nozzle and secondary fuel well which are at least similar to the primary fuel nozzle and well.
  • Multiple barrel carburetors are normally provided with a pair of metering rods 266 which cooperate with a metering jet similar to jet 64 of FIG. 5.
  • the metering rod 266 is controlled in part by a vacuum actuated piston 291 which receives vacuum by way of passage 286.
  • the passage 286 communicates with the intake manifold at a point beneath the throttle valve and communicates also with a passage 220 which terminates in the compensating unit 210 where an air metering pin controls the quantity of air that is admitted into the vacuum passage 286 to regulate the vacuum therein.
  • vacuum piston 291 can also be forced into an upward position by means of a rod 300 which is driven by a leaf 302 which in turn is driven by a cam 304 on trottle shaft 306.
  • the cam 304 will move leaf 302 upwardly to in turn move rod 300 which in turn will lift the metering pin 266 the desired amount.
  • additional fuel can be delivered to the main nozzles of the primary barrel as the throttles are opened.
  • piston 291 is allowed to rise upwardly and this in turn lifts the metering rod 266 to provide the fuel enrighment usually desired under these conditions.
  • the compensating unit 210 is quite similar to the unit 10 of FIGS. 2, 3 & 4, and contains all ofthe same features, although housed somewhat differently.
  • Air conduits 213, 214, 2l6, 218 and 220 are connected to a carburetor as shown in FIG. 8.
  • Plate 240 is hinged at 242 and carries a plurality of adjustment screws.
  • Adjustment screw 236 makes any needed corrections or adjustments to the contact with barometric and/or temperature capsule 230.
  • Adjustment screws 244, 246 and 248 are provided to position metering pins in the same fashion as screws 44, 46 and 48 of FIGS. 3 and 4.
  • biasing adjustment screw 250 adjusts tension on a spring in the same manner as does screw 50 of FIG. 3.
  • a further metering screw 245 is provided to adjust the position of the metering pin which controls the air delivered to the secondary fuel nozzles by way of conduit 13 and, as explained earlier, this is in the same manner as the air delivered to the primary main nozzles.
  • FIGS. 8 through 19 the 200 series of numbers corresponds as nearly as possible with the below 100 series of numbers in FIGS. 1 through 7. It is believed unnecessary to give a detailed description of the various features of FIGS. 8 through 19 and a brief description is believed sufficient.
  • FIG. 14 corresponds roughly to FIG. 2, with the exception that it is configured for a multibarrel carburetor.
  • FIG. 15 corresponds to FIG. 3.
  • FIG. 16 illustrates a means by which spring 251 can be adjusted by means of screw 250 and also by means of a screw 253 which adjusts the bottom end of the spring 251.
  • spring 251 can be adjusted by an external means, which, for example, could be a temperature sensor 255 in communication with an exhaust manifold 257 which by means of a thermal motor 259, can adjust an arm 261 which in turn will adjust the spring 251.
  • FIG. 11 is similar to FIG. 5, excepting that the fuel nozzle 271 is a secondary main fuel nozzle and in all other respects, the air bleed into the nozzle is similar to that of FIG. 5.
  • FIG. 13 is similar to the righthand portion of FIG. 7 in that it shows a means for raising or lowering a metering rod 266 in accordance with the position of the throttle.
  • 306 is the primary throttle shaft and 304 is a cam on that shaft. The cam in turn moves a lever 302 which raises and/or lowers a rod 300 which is in direct connection with metering rod 266.
  • FIGS. 17 and 18 illustrate metering pins moved by plate 240.
  • metering pin 320 functions in the same manner as metering pin 100 of FIG. 4 to reduce the quantity of air flowing through a passage 322 which communicates with a motor such as diaphragm motor 112 of FIG. 7.
  • metering rod 280 of FIG. 18 functions much the same as metering rod of FIG. 4 to increase the amount of air bled into the fuel system when plate 240 rises under the influence of reduced barometric pressure or increased temperature and rod 280 can be adjusted as desired by screw 250 and its associated nut.
  • a capsule sensitive to barometric pressure and/or temperature can be utilized to adjust air bleeds into various operative functions of an engine to thereby control said functions as a result of changes in atmospheric pressure and/or temperature.
  • the air bleeds can be compensated in such a manner that, with increasing altitude or decreasing barometric pressure, the fuel supplied to the carburetor will be reduced in accordance with such change and other operative functions of the vehicle such as transmission shifts and/or spark advance or re tard can be accomodated in such a manner as to achieve optimum operation of the engine and vehicle.
  • an attachment connected to said engine communicating on one side with ambient air and on another side with at least one suction controlled passage leading to at least one engine function controlling means,
  • said attachment including a bellows responsive to barometric and/or temperature changes of said atmospheric air to change a dimension of said bellows
  • said bellows being mounted in a housing, said housing also including a pivotable plate surmounting said bellows,
  • At least one metering means being connected to said plate, said metering means being adapted to meter ambient air to said at least one engine function controlling means and said metering means including an adjustment means for setting said metering means to a preselected value of metered air when said attachment is sub jected to a preselected set of ambient air conditions of altitude and/or temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Abstract

Changes is barometric pressure and/or temperature can adversely affect a number of engine functions. Apparatus is disclosed for controlling and modulating a number of engine functions, including carburetor idle fuel and main fuel supply, fuel enrichment during acceleration and wide open throttle operation, as well as vacuum applied to such vacuum motors associated with the engine as the carburetor choke, the spark advance and automatic transmission shift. Calibration features are provided for establishing a base condition of operation as well as individual calibration of all the various functions listed together with the ability to make base calibration changes by application of an external signal.

Description

United States Patent. 1191 Brown et a1. Mar. 18, 1975 1 1 APPARATUS FOR CONTROLLING AND 3,313,532 4/1967 T 3,362,694 1 1968 MODULATING ENGINE FUNC IONS 3,493,217 2/1970 [75] Inventors: Morris C. Brown; Forrest W. Cook; 3, 77,241 7/1972 Ralph E. Kalert; Arthur C. Vollmer; 3,764,120 10/1973 Jerry H. Winkley, all of St. Louis, Mo. Primary Examiner-Manuel A. Antonakas [73] Assignee: ACF Industries, Incorporated, New
York, NY 57 ABSTRACT Filed! 1973 Changes is barometric pressure and/or temperature 21 A L N '2 331219 can adversely affect a number of engine functions. 1 pp 0 Apparatus is disclosed for controlling and modulating a number of engine functions, including carburetor 1 1 1115- 261/39 123/119 R, 6 R idle fuel and main fuel supply, fuel enrichment during [51] Int. Cl. F02m 1/10 ac eleration and wide open throttle operation, as well [58] el 0f Search 123/119 124 124 as vacuum applied to such vacuum motors associated 261/131G- 39 121 B, 39 69 R with the engine as the carburetor choke, the spark advance and automatic transmission shift. Calibration 1 1 References Cited features are provided for establishing a base condition UNITED STATES PATENTS of operation as well as individual calibration of all the 2,003,143 7/1935 Mock 26l/39A Various functions listed mgether with the ability to 2,230,159 1/1941 Kratzer 123/124 A make base Calibration Changes y application of 2,402,350 6/1946 Silver 26l/DIG. 2 ternal signal. 2,631,024 3/1953 Beardsley, Jr. 261/39 A 2,662,757 12/1953 Mock 261/39 A 5 Claims, 19 Drawlng Flgures I IIIIIIITIIIII sum 2 BF 5 55 FIGURE 5.
, TENTEUH AR I 81975 FIGURE 7.
KIT 3 BF 5 FIGURE 8.
FIGURE IO.
FIGURE 9.
MTENTEENAR 1 8191s 3872.189
saw u of 5 FIGURE n. FIGURE l2.
FIGURE l9. 7
IGURE |4 FIGURE I5.
FIGURE [8,
FIGURE |7 APPARATUS FOR CONTROLLING AND MODULATING ENGINE FUNCTIONS BACKGROUND OF THE INVENTION There are a number of functions of the internal combustion engine that are affected, usually adversely, by changes in operating conditions such as barometric pressure, ambient temperature and frequently one or more temperatures associated with the engine itself. In the case of stationary engines, and other engines operating under essentially constant load conditions, adjustments can be made to achieve efficient operation of the engine under these more or less constant conditions. In the case of the automotive engine, no single set of adjustments are capable of compensating for the constantly changing variables surrounding the engine.
Among the several engine functions that can be affected by changes in altitude and temperature, the idle fuel and main fuel systems of the conventional carburetor are very important. These fuel metering systems are severely affected by changes in altitude; so much so, that with an unmodified carburetor the engine will re ceive an unnecessarily rich mixture whenever there is any great departure from sea level. Customarily, this situation has been accepted and/or tolerated with the exception that if an automotive vehicle is normally used at higher altitudes a permanent change is made to reduce the size of the metering jet or to install a larger metering rod, or both, and such modification allows the engine to operate correctly so long as the vehicle is kept at substantially the same altitude. If this vehicle is driven to sea level conditions, then the mixture may be unduly lean. In a somewhat similar manner, changes in temperature which directly affect the temperature of the fuel as well as that of the air entering the carburetor will also cause undesirable changes in the air/fuel ratio discharged by the carburetor to the engine. For automotive engines, little has been done to alleviate these conditions other than the use of a hot idle compensator which can admit some additional air to the intake manifold when ambient conditions have exceeded some preselected temperature and this addition of air without additional fuel has the affect of leaning the mixture out at the higher ambient temperature. While automotive carburetors normally have made no compensation for the above-mentioned variables, many aircraft carburetors over the years have necessarily embodied altitude compensation, but because of the considerable differences in the carburetors used on aircraft with respect to those used on automobiles, the overall approach to correcting fuel ratio is not well suited to that of the automotive carburetor.
Power enrichment is another important carburetor function that is adversely affected by changes in altitude and for which there has been no compensation provided in commercial carburetors. Power enrichment customarily is provided by opening an auxiliary fuel passage or by moving a metering element so that additional fuel can enter the main fuel system. In both cases, the manifold vacuum is applied to one side of a diaphragm or piston and when manifold vacuum is high only normal fuel quantities are allowed to enter the main fuel system. When manifold vacuum becomes low then the movable member shifts into another position. thus allowing enrichment fuel to pass into the fuel sys tem. The movable member (diaphragm or piston) is normally biased by a spring to move toward the enrichment position and the bias of this spring is overcome by the manifold vacuum. If the spring is so adjusted that it will cause enrichment whenever manifold vacuum drops below about six inches mercury, then no enrichment occurs until the engine is heavily loaded and usually a wide-open throttle condition has been reached. On the other hand, when the same vehicle is operated at altitudes of 5,000 feet or more, the power enrichment may come into play even though the engine is relatively lightly loaded. This condition is caused by the fact that barometric pressure at altitudes is considerably less than that at sea level and this reduction in ambient presure is reflected in the intake manifold as a lesser degree of manifold vacuum for normal operation. Accordingly, as the engine is increased in its normal loading, the pressure condition necessary for power enrichment may be reached far in advance of any actual need for the enrichment.
There are other engine and vehicle functions that are also dependent upon manifold vacuum and which functions can be adversely affected by changes in altitude. One such engine function is the advance and retard of the spark ignition which is normally done by a diaphragm motor. Again, a considerable change in altitude may cause the diaphragm motor to shift the spark advance at a time when the engine does not require such a shift and this, then becomes an undesirable result. In a similar fashion, some automatic transmissions are equipped with a diaphragm actuated motor for assisting in the shifting of the transmission mechanism. As is the case of the spark advance, the automatic transmission vacuum motor may come into play or fall out of play at an undesirable operating condition.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a representation of an engine having the compensating unit of the invention attached to the carburetor of the engine.
FIG. 2 is a plan view of the interior of the compensating unit.
FIG. 3 is a section along the lines of 3-3 of FIG. 2.
FIG. 4 is another section taken along the lines of 4-4 of FIG. 2.
FIG. 5 is a partial section of a carburetor showing the manner of admitting air from the compensating unit into the main fuel system of a carburetor.
FIG. 6 is a partial section of a carburetor showing the manner of introduction of air into the idle system.
FIG. 7 is a partial sectional view of a carburetor showing a vacuum controlled accelerating pump and having attached to said carburetor a second vacuum controlled device and illustrating a passage for air from the compensating unit to the vacuum passage in the carburetor to modulate vacuum to the respective vacuum motors.
FIG. 8 is a partial plan view of a multibarrel carburetor illustrating the compensating unit of the invention integrally attached to the carburetor.
FIG. 9 is a partial section of the carburetor showing the idle fuel adjustment screw and the air modulating passage from the compensating unit.
FIG. 10 illustrates the air passage for passing air from the compensating unit to the air metering portions of the carburetor of FIG. 8.
FIG. 11 illustrates the communication of an air passageway of FIG. 8 with the secondary nozzle of the multibarrel carburetor of FIG. 8.
FIG. 12 is a partial section of the main fuel system of the primary barrels of the carburetor of FIG. 8 illustrating the communication of the modulated air from the compensating unit with the main fuel nozzle.
FIG. 13 is another partial section of a carburetor showing the vacuum piston which raises and lowers a fuel metering rod and illustrating the vacuum passage which is modulated by the compensating unit of the invention.
FIG. 14 is an elevation view of the compensating unit of FIG. 8 with the cover removed.
FIG. 15 is a sectional view of FIG. 14 with the cover in place.
FIGS. l6, l7, l8 and 19 are details of various construction features of the compensating unit of FIGS. 14 and 15.
BRIEF DESCRIPTION OF THE INVENTION In order to make the compensation for the various engine and automotive functions described above, there is provided a compensation unit which can be installed in the vehicle or made integral with the carburetor as desired and this unit meters air into the various systems involved in such a manner as to automatically compensate for changes in engine operating characteristics caused by changes in atmospheric pressure and- /or temperature.
1 Basically, the compensation unit includes a capsule which is temperature and/or barometric sensitive to change its dimensions as the altitude or the temperature varies. This capsule moves a plate to which are at tached a number of metering elements. One group of metering elements are arranged in such a manner as to increase air flow as the altitude increases and also increase air flow as temperature increases. Another metering element is arranged to operate in the opposite direction so that maximum air flow occurs at low altitude and/or temperature and a decreasing quantity of air flows as the altitude and/or temperature increases. The first-mentioned group of metering elements provide an air bleed into one or more of the fuel systems of the carburetor to overcome the tendency toward richness as temperature and altitude increase. Another metering element is adapted to admit larger quantities of air at sea level and standard temperatures with a reduced quantity of air as the altitude and/or temperature increases. This last mentioned metering element serves to reduce what would normally be a high manifold vacuum applied to some operative function of the engine at low altitudes and low temperatures and to reduce the air admitted with changes in those variables so that the vacuum actually applied will remain substantially constant, irrespective of any change in altitude or temperature.
DETAILED DESCRIPTION OF THE INVENTION In FIG. 1 there is shown an altitude and/or temperature compensating unit attached to a carburetor 12 by a plurality of conduits 14, 16, 18 and 20, which illustrate one realization of the invention. Carburetor 12 is suitably mounted on an intake manifold 13 which delivers the usual air/fuel mixture to an engine 15. Products of combustion are discharged from the engine into an exhaust pipe 17 and thence to a muffler 19 from which the products are discharged into the atmosphere. An air cleaner or filter 21 is installed on carburetor 12 so that only clean filtered air is delivered to the intake of the internal combustion engine.
Referring now to FIGS. 2, 3 and 4, compensating unit 10 is shown in greater detail. The unit comprises a body portion 22 having a cover 23 which cover seals the unit from the atmosphere. Conduit 14, which in this embodiment may be a rubber hose, is attached to a nipple 24 for conducting clean air to the interior of unit 10. Thus, the interior of unit 10 has air at substantially atmospheric pressure inside it at all times. Any deviation from absolute atmospheric pressure will be due to any pressure drop that may occur across the filter element and air cleaner 21. Within housing 22, there is an am hient air condition responsive device 30 which, in this instance, is a capsule of the bellows type which is conditioned to have within it a predetermined air pressure which, for barometric or altitude compensation represents a high degree of evacuation of the interior of the capsule. Additionally, there may be provided on the interior of capsule 30 a spring 32 which, through proper biasing, makes the capsule responsive to give the desired movement for a given change. High evacuation makes the capsule almost totally responsive to barometric change, while partial evacuation causes the capsule to respond to both barometric and temperature change. Accordingly, the spring bias and degree of evacuation will be chosen to achieve predetermined requirements. The base of capsule 30 is secured to the housing 22 in any convenient manner, in this instance by way of a boss 33. A detent 34 is provided at the upper end of capsule 30 for receiving an adjustment screw 36 as will be hereinafter described. A plate 40 is installed in an upper portion of housing 22 and is pivi oted at 42 in such a manner that it positions adjustment screw 36 above unit 30 so that changes of length in unit 30 occasioned by changes in barometric pressure and- /or temperature will cause plate 40 to move upwardly and downwardly about the pivot 42.
A plurality of adjustment screws other than screw 36 are carried by plate 40. These are identified as 44, 46, 48 and 50. Each such adjustment screw is provided for the purpose of making final adjustment and calibration of the metering elements and biasing arrangements used in the device. Screw 44 at its lower extremity contacts a metering pin 52 which, by way of conduit 16, controls the quantity of air bled into the main fuel system. Such bleed air, when increased in quantity serves to diminish the amount of fuel delivered to the carburetor by the main fuel nozzle. When the bleed air is reduced or cutoff, a greater quantity of fuel is made available through the main nozzle. Metering pin 52 is urged in an upward direction by a biasing spring 54. Clean air from the interior of housing 22 is admitted into the vicinity of metering pin 52 by an air passageway 53 so that as pin 52 rises, the tapered end portion uncovers the air entry passageway to admit air into conduit 16 and thence, by way of conduit 16 to a passageway 55 in the carburetor itself, which communicates with a portion of the main fuel system and, in this instance, the anti-perk well 56. Air passing into antiperk well 56 then mixes with the fuel in passageway 57 so that a mixture of air and fuel are discharged by nozzle 58 into the boost venturi 60 of the carburetor. The fuel, of course, is supplied from a constant level fuel bowl 62 and enters the main fuel passage by way of a metering orifice 64 which is controlled in part by a metering rod 66.
Air is bled into the idle fuel system in a manner substantially the same as that described above with respect to the main fuel system. Referring to FIG. 6, it will be seen that idle fuel is drawn by a passage 70 from the main fuel passage 57 of FIG. 5 and passes upwardly through a dip tube 71 and thence, through a restriction 72 where it is mixed with a quantity of air supplied by way of orifice 73, the resultant mixture then passes through restriction 74 where additional air can be added by way of restriction 75, thence downwardly by way of passage 77 to a cross-passage 78 which termi nates in the bore of the carburetor adjacent the throttle valve.
Communication with the compensating unit is established by way of restriction 79 and conduit 18 which connects with the compensating unit and is supplied with metered air by way of metering pin 80 which is biased by way of a spring 81 in an outwardly direction and which, as previously mentioned, is adjusted by way of adjustment screw 46 carried on plate 40. It is to be mentioned that both metering pins 52 and 80 are provided with a taper such that as plate 40 moves upwardly, greater quantities of air are admitted into conduits 16 and 18 thereby reducing the quantity of fuel discharged by the main and idle fuel systems.
A final engine function that is accomplished by the compensating unit of the invention is illustrated by two different embodiments in FIG. 7. In that Figure there are shown two vacuum responsive devices in the form of diaphragm units. One of these controls the step-up by which the carburetor is caused to provide enrichment fuel under heavy-load or wide-open throttle conditions and the other is a diaphragm motor such as can be used to control spark advance or, in some instances, the shift mechanism of an automatic transmission. It is to be recognized that any or all of these vacuum responsive units could comprise a piston instead ofa diaphragm mechanism.
As shown in FIG. 7, conduit is attached to the carburetor by means of a tube 85 which intersects a pas sage 86 in the throttle flange ofthe carburetor. Passage 86 enters the bore of the throttle of the carburetor below the throttle valve 88. By means of a branch passage, conduit 86 communicates with a space 90 below the diaphragm of a diaphragm-type accelerating pump. The diaphragm is shown at 91 and is attached by suitable retaining means to a stem 92 which is biased in an upwardly direction by spring 93. a cavity 94 on the upper side ofthe diaphragm is utilized for the acceleration fuel provided by the diaphragm pump. In this instance, the inlet and outlet of fuel to the space 94 is not shown for convenience sake. Stem 92 is provided with a carrier bar 96 which supports the metering rod 66. In the normal operation of the pump, manifold vacuum acting in space 90 pulls the diaphragm down and this permits the pumping space 94 to fill with fuel while at the same time drawing the metering rod 66 down into the metering jet 64 to reduce the annular clearance between the taper of the metering rod and the interior of the jet. Upon a reduction of vacuum, as would come about ifthrottle 88 were opened more widely, spring 93 overcomes the vacuum and causes the diaphragm to move upwardly so that fuel is discharged into the carburetor from the accelerating pump and at the same time, metering rod 66 is drawn up to provide a greater annular clearance, thus providing additional fuel to the carburetor for enrichment purposes. This is commonly referred to as step-up.
Referring now to FIG. 4, it will be seen that conduit 20 communicates with air metering means in the form of a metering rod 100 which is provided at its lowermost extremity with a reverse taper metering section. As with the metering rods described earlier, rod 100 moves up and down under the influence of biasing spring 102 and carrier plate 40. Adjustment screw 48 makes final calibration adjustments of the relationship of metering rod 100 with its metering orifice. Air is provided from the interior of compensating unit 10 to the metering zone by way of a passage 104.
Returning to FIG. 7, there is shown an additional engine control function connected by a pipe to passage 86. Pipe 110 communicates with a vacuum motor 112 which is shown as a diaphragm unit but which might be a piston-type device. Diaphragm unit 112 is provided with a diaphragm 114 biased in a direction away from the source of vacuum by a spring 116. An operating arm 118 is attached to the opposite side from the biasing spring to the diaphragm. Arm 118 can be connected to any selected function, as for example, the spark advance of the ignition distributor or to the shift mechanism of an automatic transmission. Each of these engine functions may be required to alter operating characteristics as the vehicle is driven into changing conditions of altitude or temperature. Thus, the vacuum motor 112 which receives a controlled vacuum signal which is dependent upon the altitude and/or temperature can be made to function in a desired and programmed manner. Although motor 112 is shown connected to the same system as the accelerator pump and step-up of the carburetor, it could be divorced from that system as would be obvious merely through the provision of a separate air metering element corresponding to element 100 and a separate source of vacuum together with a suitable connecting passage corresponding to passage 20.
The foregoing description has described a system pri marily for use in a single barrel carburetor in which the altitude/temperature compensating unit is separated from the carburetor and engine and connected to the necessary components by means of flexible tubes or hoses. It will be apparent that to the extent the altitude/temperature unit controls carburetor functions, the unit can be integrated with the carburetor structure and the various hoses replaced with integral passages in the carburetor body structure. In such an embodiment, the only remote locations connected by tubes or hoses would be to the other engine functions such as distributor vacuum motors and/or automatic transmission control motors.
In the remaining figures of drawing, the basic con cepts of the invention are applied to a four-barrel carburetor and, for the most part, these same concepts would be true of a two-barrel carburetor. In making the description of the four-barrel carburetor, numbers similar to that used in the single barrel carburetor will be used, excepting that all numbers will be three-digit numbers in place of mostly two-digit numbers used earlier, as for example, the number 14 will become 214, 20 will become 220, etc. A further difference between the four-barrel embodiment and the single barrel embodiment is that the passageways which were formerly separate conduits, such as flexible rubber tubing. now are passages formed or drilled integrally in the carbure' tor body and the altitude/temperature compensation unit is also mounted directly on the carburetor body.
Referring now to FIG. 8, there is shown the base of a compensating unit 220 mounted on the body of a four-barrel carburetor 212. A cover 223 is provided for covering up the operative mechanism of the compensator unit. The four-barrel carburetor 212 has two primary barrels and two secondary barrels. The primary barrels are each equipped with an idle fuel system and a main fuel system while the secondary barrels have only a single main fuel system each. Since each of the fuel systems can be managed by single metering pin, the unit 210 duplicates the metering capability of the compensating unit 10 of FIG. 1 with the addition of one additional capability for the secondary fuel nozzles. A passage 214 communicates at one end with the air horn of the carburetor and, thus, with the space inside the air cleaner and its other end with the interior of compensating unit 210. In this fashion, clean air is supplied for all air metering functions. This last is shown also in FIG. 10.
Also shown in FIG. 8 is a passageway 216 which extends from the interior of unit 210 to a branch extending to each of the two main nozzle wells indicated at 256. Similarly, a passage 218 is branched to extend to the two idle fuel passages 277. A passage 213 extends to a branching point where it separates and branches out to secondary fuel wells 215. It is to be'remembered that all of the fuel passages and fuel systems in the fourbarrel version are substantially similar to the single barrel version shown in FIGS. 1 through 7. Principal difference being the secondary fuel nozzle and secondary fuel well which are at least similar to the primary fuel nozzle and well.
Multiple barrel carburetors are normally provided with a pair of metering rods 266 which cooperate with a metering jet similar to jet 64 of FIG. 5. In the embodiment shown, the metering rod 266 is controlled in part by a vacuum actuated piston 291 which receives vacuum by way of passage 286. The passage 286 communicates with the intake manifold at a point beneath the throttle valve and communicates also with a passage 220 which terminates in the compensating unit 210 where an air metering pin controls the quantity of air that is admitted into the vacuum passage 286 to regulate the vacuum therein.
Referring now to FIG. 13, vacuum piston 291 can also be forced into an upward position by means of a rod 300 which is driven by a leaf 302 which in turn is driven by a cam 304 on trottle shaft 306. Thus, when throttle shaft 6 is rotated in a direction to open the throttle, the cam 304 will move leaf 302 upwardly to in turn move rod 300 which in turn will lift the metering pin 266 the desired amount. In this manner, additional fuel can be delivered to the main nozzles of the primary barrel as the throttles are opened. On the other hand, if there is a sudden loss of manifold vacuum, as sometimes occurs, piston 291 is allowed to rise upwardly and this in turn lifts the metering rod 266 to provide the fuel enrighment usually desired under these conditions.
Referring now to FIGS. 14 through 18, the compensating unit 210 is quite similar to the unit 10 of FIGS. 2, 3 & 4, and contains all ofthe same features, although housed somewhat differently. Air conduits 213, 214, 2l6, 218 and 220 are connected to a carburetor as shown in FIG. 8. Plate 240 is hinged at 242 and carries a plurality of adjustment screws. Adjustment screw 236 makes any needed corections or adjustments to the contact with barometric and/or temperature capsule 230. Adjustment screws 244, 246 and 248 are provided to position metering pins in the same fashion as screws 44, 46 and 48 of FIGS. 3 and 4. Additionally, biasing adjustment screw 250 adjusts tension on a spring in the same manner as does screw 50 of FIG. 3. A further metering screw 245 is provided to adjust the position of the metering pin which controls the air delivered to the secondary fuel nozzles by way of conduit 13 and, as explained earlier, this is in the same manner as the air delivered to the primary main nozzles.
In FIGS. 8 through 19, the 200 series of numbers corresponds as nearly as possible with the below 100 series of numbers in FIGS. 1 through 7. It is believed unnecessary to give a detailed description of the various features of FIGS. 8 through 19 and a brief description is believed sufficient.
FIG. 14 corresponds roughly to FIG. 2, with the exception that it is configured for a multibarrel carburetor. FIG. 15 corresponds to FIG. 3. FIG. 16 illustrates a means by which spring 251 can be adjusted by means of screw 250 and also by means of a screw 253 which adjusts the bottom end of the spring 251. In a similar manner, spring 251 can be adjusted by an external means, which, for example, could be a temperature sensor 255 in communication with an exhaust manifold 257 which by means of a thermal motor 259, can adjust an arm 261 which in turn will adjust the spring 251. Thus, as exhaust temperature changes, the bias on spring 251 will be adjusted in accordance with engine operation to put a bias on plate 240 to thereby change the quantity of air bled into the fuel metering systems in accordance with engine demands. FIG. 11 is similar to FIG. 5, excepting that the fuel nozzle 271 is a secondary main fuel nozzle and in all other respects, the air bleed into the nozzle is similar to that of FIG. 5. FIG. 13 is similar to the righthand portion of FIG. 7 in that it shows a means for raising or lowering a metering rod 266 in accordance with the position of the throttle. 306 is the primary throttle shaft and 304 is a cam on that shaft. The cam in turn moves a lever 302 which raises and/or lowers a rod 300 which is in direct connection with metering rod 266.
FIGS. 17 and 18 illustrate metering pins moved by plate 240. In FIG. 17 metering pin 320 functions in the same manner as metering pin 100 of FIG. 4 to reduce the quantity of air flowing through a passage 322 which communicates with a motor such as diaphragm motor 112 of FIG. 7. In a similar manner, metering rod 280 of FIG. 18 functions much the same as metering rod of FIG. 4 to increase the amount of air bled into the fuel system when plate 240 rises under the influence of reduced barometric pressure or increased temperature and rod 280 can be adjusted as desired by screw 250 and its associated nut.
From the foregoing it can be seen that a capsule sensitive to barometric pressure and/or temperature can be utilized to adjust air bleeds into various operative functions of an engine to thereby control said functions as a result of changes in atmospheric pressure and/or temperature. In general, it can be said that whether the engine be equipped with a one-barrel, two-barrel, or four-barrel carburetor. the air bleeds can be compensated in such a manner that, with increasing altitude or decreasing barometric pressure, the fuel supplied to the carburetor will be reduced in accordance with such change and other operative functions of the vehicle such as transmission shifts and/or spark advance or re tard can be accomodated in such a manner as to achieve optimum operation of the engine and vehicle.
I claim:
1. In an internal combustion engine having a plurality of engine functions operable by the suction created by the natural aspiration of said engine during running condition, the improvement comprising;
an attachment connected to said engine communicating on one side with ambient air and on another side with at least one suction controlled passage leading to at least one engine function controlling means,
said attachment including a bellows responsive to barometric and/or temperature changes of said atmospheric air to change a dimension of said bellows,
said bellows being mounted in a housing, said housing also including a pivotable plate surmounting said bellows,
at least one metering means being connected to said plate, said metering means being adapted to meter ambient air to said at least one engine function controlling means and said metering means including an adjustment means for setting said metering means to a preselected value of metered air when said attachment is sub jected to a preselected set of ambient air conditions of altitude and/or temperature.
2. Apparatus according to claim 1 in which said metering means comprises a metering rod in a metering orifice.
3. Apparatus according to claim 2 in which said metering rod is tapered along the length thereof which is inside said orifice.
4. Apparatus according to claim 3 in which said tapered length decreases in diameter as said rod is withdrawn from said orifice.
5. Apparatus according to claim 3 in which said ta pered length increases in diameter as said rod is withdrawn from said orifice.
=l k l

Claims (5)

1. In an internal combustion engine having a plurality of engine functions operable by the suction created by the natural aspiration of said engine during running condition, the improvement comprising; an attachment connected to said engine communicating on one side with ambient air and on another side with at least one suction controlled passage leading to at least one engine function controlling means, said attachment including a bellows responsive to barometric and/or temperature changes of said atmospheric air to change a dimension of said bellows, said bellows being mounted in a housing, said housing also including a pivotable plate surmounting said bellows, at least one metering means being connected to said plate, said metering means being adapted to meter ambient air to said at least one engine function controlling means and said metering means including an adjustment means for setting said metering means to a preselected value of metered air when said attachment is subjected to a preselected set of ambient air conditions of altitude and/or temperature.
2. Apparatus according to claim 1 in which said metering means comprises a metering rod in a metering orifice.
3. Apparatus according to claim 2 in which said metering rod is tapered along the length thereof which is inside said orifice.
4. Apparatus according to claim 3 in which said tapered length decreases in diameter as said rod is withdrawn from said orifice.
5. Apparatus according to claim 3 in which said tapered length increases in diameter as said rod is withdrawn from said orifice.
US331219A 1973-02-09 1973-02-09 Apparatus for controlling and modulating engine functions Expired - Lifetime US3872189A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US331219A US3872189A (en) 1973-02-09 1973-02-09 Apparatus for controlling and modulating engine functions
ZA740362A ZA74362B (en) 1973-02-09 1974-01-17 Apparatus for controlling and modulating engine functions
AU64775/74A AU6477574A (en) 1973-02-09 1974-01-23 Controlling and modulating engine functions
IT19839/74A IT1007104B (en) 1973-02-09 1974-01-25 EQUIPMENT FOR ADJUSTING AND MODULATING THE FUNCTIONS OF A MOTOR
GB389774A GB1464595A (en) 1973-02-09 1974-01-28 Internal combustion engine with means for compensating for air density variation
CA191,851A CA1008742A (en) 1973-02-09 1974-02-04 Apparatus for controlling and modulating engine functions
JP49014644A JPS49111046A (en) 1973-02-09 1974-02-06
DE19742405628 DE2405628A1 (en) 1973-02-09 1974-02-06 DEVICE FOR CONTROLLING AND ADAPTING MOTOR FUNCTIONS
FR7404286A FR2217552B1 (en) 1973-02-09 1974-02-08
JP1977169491U JPS5395024U (en) 1973-02-09 1977-12-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US331219A US3872189A (en) 1973-02-09 1973-02-09 Apparatus for controlling and modulating engine functions

Publications (1)

Publication Number Publication Date
US3872189A true US3872189A (en) 1975-03-18

Family

ID=23293069

Family Applications (1)

Application Number Title Priority Date Filing Date
US331219A Expired - Lifetime US3872189A (en) 1973-02-09 1973-02-09 Apparatus for controlling and modulating engine functions

Country Status (9)

Country Link
US (1) US3872189A (en)
JP (2) JPS49111046A (en)
AU (1) AU6477574A (en)
CA (1) CA1008742A (en)
DE (1) DE2405628A1 (en)
FR (1) FR2217552B1 (en)
GB (1) GB1464595A (en)
IT (1) IT1007104B (en)
ZA (1) ZA74362B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965222A (en) * 1974-09-03 1976-06-22 Schmelzer Corporation Carburetion system
US4338265A (en) * 1979-08-08 1982-07-06 Aisan Industry Co., Ltd. Altitude compensation device
US4370282A (en) * 1980-07-28 1983-01-25 Nissan Motor Company, Limited Control device for acceleration pump
US5879594A (en) * 1997-07-10 1999-03-09 Holtzman; Barry L. Temperature responsive pressure splitter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276237A (en) * 1979-08-01 1981-06-30 Standard-Thomson Corporation Carburetor air control device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2008143A (en) * 1931-06-22 1935-07-16 Bendix Res Corp Fuel feed control
US2230159A (en) * 1938-04-18 1941-01-28 Herbert J Kratzer Compensating device for carburetors of internal combustion motors
US2402350A (en) * 1944-07-01 1946-06-18 Chandler Evans Corp Flow measuring apparatus
US2631024A (en) * 1948-02-13 1953-03-10 United Aircraft Corp Carburetor having a density responsive fuel control
US2662757A (en) * 1944-03-01 1953-12-15 Bendix Aviat Corp Density responsive device
US3313532A (en) * 1964-09-08 1967-04-11 Acf Ind Inc Anti-smog device
US3362694A (en) * 1965-05-17 1968-01-09 Ralph E. Gould Carburetor
US3493217A (en) * 1966-12-16 1970-02-03 John Dashwood Farley Carburettors
US3677241A (en) * 1970-05-08 1972-07-18 Laprade Usines Sa Carburettors operating under a constant reduced pressure
US3764120A (en) * 1970-10-09 1973-10-09 Honda Motor Co Ltd Air bleed adjusting device for the carburetor of an internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2426741A (en) * 1940-08-03 1947-09-02 Bendix Prod Corp Charge forming device
JPS5032907B2 (en) * 1972-02-01 1975-10-25
JPS5042265U (en) * 1973-08-15 1975-04-28

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2008143A (en) * 1931-06-22 1935-07-16 Bendix Res Corp Fuel feed control
US2230159A (en) * 1938-04-18 1941-01-28 Herbert J Kratzer Compensating device for carburetors of internal combustion motors
US2662757A (en) * 1944-03-01 1953-12-15 Bendix Aviat Corp Density responsive device
US2402350A (en) * 1944-07-01 1946-06-18 Chandler Evans Corp Flow measuring apparatus
US2631024A (en) * 1948-02-13 1953-03-10 United Aircraft Corp Carburetor having a density responsive fuel control
US3313532A (en) * 1964-09-08 1967-04-11 Acf Ind Inc Anti-smog device
US3362694A (en) * 1965-05-17 1968-01-09 Ralph E. Gould Carburetor
US3493217A (en) * 1966-12-16 1970-02-03 John Dashwood Farley Carburettors
US3677241A (en) * 1970-05-08 1972-07-18 Laprade Usines Sa Carburettors operating under a constant reduced pressure
US3764120A (en) * 1970-10-09 1973-10-09 Honda Motor Co Ltd Air bleed adjusting device for the carburetor of an internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965222A (en) * 1974-09-03 1976-06-22 Schmelzer Corporation Carburetion system
US4338265A (en) * 1979-08-08 1982-07-06 Aisan Industry Co., Ltd. Altitude compensation device
US4370282A (en) * 1980-07-28 1983-01-25 Nissan Motor Company, Limited Control device for acceleration pump
US5879594A (en) * 1997-07-10 1999-03-09 Holtzman; Barry L. Temperature responsive pressure splitter

Also Published As

Publication number Publication date
DE2405628A1 (en) 1974-08-15
CA1008742A (en) 1977-04-19
IT1007104B (en) 1976-10-30
JPS5395024U (en) 1978-08-02
JPS49111046A (en) 1974-10-23
ZA74362B (en) 1974-11-27
AU6477574A (en) 1975-07-24
GB1464595A (en) 1977-02-16
FR2217552B1 (en) 1977-09-16
FR2217552A1 (en) 1974-09-06

Similar Documents

Publication Publication Date Title
US3857908A (en) Apparatus for controlling and modulating engine functions
US3872188A (en) Apparatus for controlling and modulating engine functions
US2382625A (en) Manifold injection carburetor
US3987131A (en) Altitude correction device for a carburetor and carburetor incorporating the same
US2394663A (en) Carburetor device
US3899551A (en) Apparatus for controlling and modulating engine functions
US2877998A (en) Apparatus for controlling the admission of fuel and air to an internal combustion engine
US2227267A (en) Carburetor
US2737935A (en) Crankcase ventilator
US2680605A (en) Carburetor
US2477481A (en) Antidetonating device
US3872189A (en) Apparatus for controlling and modulating engine functions
US2798703A (en) Two-stage carburetion system
US3596645A (en) Fuel feed devices for internal-combustion engines
US3125084A (en) Fuel injection system
US3831910A (en) Carburetors
US3872190A (en) Apparatus for controlling and modulating engine functions
US2864596A (en) Carburetor
US2768819A (en) Engine fuel system
US1931259A (en) Carburetor
US2187885A (en) Carburetor
US2552056A (en) Carburetor priming means
US3031172A (en) Fuel system for internal combustion engines
US1958818A (en) Carburetor
US3141048A (en) Carburetor

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARTER AUTOMOTIVE CORPORATION, INC., 9666 OLIVE BO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ACF INDUSTRIES, INCORPORATED;REEL/FRAME:004491/0867

Effective date: 19851212

AS Assignment

Owner name: CARTER AUTOMOTIVE COMPANY, INC., 9666 OLIVE BOULEV

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ACF INDUSTRIES, INCORPORATED;REEL/FRAME:004715/0162

Effective date: 19870410

Owner name: CARTER AUTOMOTIVE COMPANY, INC., MISSOURI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ACF INDUSTRIES, INCORPORATED;REEL/FRAME:004715/0162

Effective date: 19870410