US3766032A - Method for control of marine fouling - Google Patents

Method for control of marine fouling Download PDF

Info

Publication number
US3766032A
US3766032A US00163883A US3766032DA US3766032A US 3766032 A US3766032 A US 3766032A US 00163883 A US00163883 A US 00163883A US 3766032D A US3766032D A US 3766032DA US 3766032 A US3766032 A US 3766032A
Authority
US
United States
Prior art keywords
strips
current
stainless steel
areas
sheathed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00163883A
Inventor
A Yeiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3766032A publication Critical patent/US3766032A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B59/00Hull protection specially adapted for vessels; Cleaning devices specially adapted for vessels
    • B63B59/04Preventing hull fouling

Definitions

  • ABSTRACT An electrical apparatus and method for eliminating the fouling of boat bottoms and the like by marine growth.
  • the underwater surface is sheathed with strips of a metal such as stainless steel.
  • An electric current is passed between adjacent strips or areas, preferably for short periods of time on a regular maintenance" schedule, e.g., 30 amperes per square foot for a few seconds every two days.
  • the sheathing may be of 0.020" stainless steel in 3-inch wide strips spaced 0.1" apart.
  • Test panels in sea water are found to remain clean and bright after six months immersion when so energized, while identical panels to which no current is applied become heavily fouled. Ions produced by electrolysis close to the sheathed surface move at relatively high velocities, and are found to kill the small organisms that settle on the surface. N0 persistent toxic chemicals such as mercury compounds are released into the water, and only minute quantities of dead organic matter are released at any one time.
  • This invention is an electrolytic means and method for the control of marine fouling, wherein substantially the entire surface to be kept free from fouling is sheathed or covered with relatively thin strips (or areas of other suitable shape) of non-corrosive conducting material such as stainless steel.
  • the metal should be one that does not appreciably dissolve and release any substantial number of metallic ions (as copper does). Relatively narrow spaces or gaps are left between adjacent strips or areas, and separate electrical connections are made to individual strips or areas, or to suitable groups of them.
  • An electric current is passed between adjacent strips or areas, preferably for a very small percentage of time, e.g., about 0.001 per cent or 2 seconds every two days.
  • a suitable current density or area density is 30 amperes per square foot.
  • Test panels immersed continuously in sea water for six months have been found to remain clean when supplied with electrical defouling current on the above time schedule and at the above current density. Identical panels not fed with current became fouled to a depth of over 2 inches.
  • the test panels were sheathed with 3-inch wide strips of 0.020 inch thick stainless steel, spaced about one-eighth inch apart.
  • Electrolysis of sea water produces many different kinds of ions, including unstable and metastable ones; it is thought that the efficacy of the present means and method depends substantially on the direct impingement on small marine organisms of ions which are moving at relatively high velocities, the velocities being high because the ions are formed close to the organisms (or even inside them) at relatively high current density. It is also believed that the gas bubbles generated by the electrolysis assist in scrubbing the dead organisms off of the surface.
  • pairs or groups of the conductive strips or areas of the sheathing may be electrically energized in succession to reduce the electric current demand.
  • suitable sequential switching apparatus may be employed.
  • the defouling current may be d-c or a-c.
  • a preferred current supply is d-c, reversed in polarity once during each application.
  • Another suitable heavy-current supply is a discharge from a large electrolytic capacitor.
  • a preferred sheathing material is sheet copper of the order of 0.01 inch thick clad with stainless steel of the order of 0.002 inch0.02 inch thick. The stainless steel cladding faces outward; the copper is provided for high electrical conductivity.
  • the duty cycle is so low that the average electrical energy requirement is relatively low, e.g., 2.5 kwh per month for 1,000 square feet of surface.
  • FIG. l is a diagrammatic view of the bow portion of a boat hull whose underwater portion is sheathed with metal strips according to the invention
  • FIG. 2 is a simplified circuit diagram, partly in block form, of an electrical circuit suitable for supplying and routing the defouling current according to the invention
  • FIG. 3 is a circuit diagram of an alternative detail of FIG. 2;
  • FIG. 41 is a diagram of another alternative detail of FIG. 2;
  • FIG. 5 is a diagrammatic sectional view of a small portion of sheathing according to the invention.
  • FIG. l a portion of a boat hull or the like is indicated at 30, having its underwater portion sheathed or covered with strips of conducting material 3-9.
  • Contiguous areas of other shapes may obviously be used instead of strips, but strips of the order of 3 inches wide, with spaces in between of roughly one-eighth inch, are one preferred shape.
  • Dots at the ends of each strip 3-@ indicate electrical connections. strips 3, 5, 7, and 9 may be connected together and strips l, 6, and 8 also together, and current applied between these two groups. To reduce the current demand, the current may alternatively be applied first between strips 3 and l, then to 4i and 5, and so on in succession.
  • the terms contiguous and adjacent are used herein to refer to strips or areas having a relatively narrow space between them, and not actually touching each other.
  • FIG. 2 indicates some suitable circuitry for energizing such strips, which are therein shown at ll-9 As many as needed would be used.
  • a selector switch may be used, with one stationary contact connected to each of the strips or areas 1-9
  • the switch it may have two movable contacts or sliders l1, l2 mechanically (but not electrically) connected together, so that in one position the sliders would connect to strips l and 2, in the next to 2 and 3, and so on.
  • the circuit may contain an off-on switch 2A, which in turn is connected, optionally through an ammeter A, to a reversing switch and thence to a power source indicated as a battery 20.
  • a suitable sequencing and timing device is indicated as a block 27, arranged to control switches l0, l5, and 24l by known means.
  • d-c from source 20 would be applied in one polarity for, say 1 second, between strips l and 2; then the sequencer 27. would operate reversing switch 113, leaving switch 2% on for l more second, then turn it off.
  • the unit 27 would then move selector switch 10 to connect to strips 2 and 3, repeat the process, and so on.
  • power terminals are indicated at lib-W.
  • the connections between terminals 116 and 13, and between ll7 and 19, may be in a cable running from the boat to the dock.
  • the apparatus to the right of terminals l6, 17, FIG. 2 may be located on board, and the d-c power source may be 20 located ashore.
  • FIG. 3 shows an a-c supply for the defouling current.
  • A-c source 31 may be a commercial power line on shore, connected via a cable between terminals 16-19 (as before) to a stepdown transformer 23 which may be located on a boat.
  • a low-voltage, high-current secondary winding goes to terminals 25, 26, from which the remainder of the wiring may proceed as from the corresponding terminals or points 25, 26 in FIG. 2.
  • FIG. 4 shows the essentials of a simple capacitor discharge circuit for supplying pulses of defouling current.
  • a large capacitor 41 may be charged by connecting it across a dc power source such as a generator 40, via switch 42, which may then be switched over to connect to terminal 16.
  • Terminals 16 and 17 may be connected to the circuitry shown to the right of terminals 16, 17 in FIG. 2.
  • terminals 16, 17 in FIG. 4 may be connected to a relatively large number of pairs of strips or areas simultaneously in a group, if capacitor 41 is of very large capacitance such as 1 farad. Electrolytic capacitors of this value have been manufactured in moderate physical sizes.
  • a l-farad capacitor for example, discharged from 30 volts at constant current, would provide 30 amperes for 1 second, or 30,000 amperes for 1 millisecond.
  • FIG. shows diagrammatically a small portion of a boat hull or the like 30. with a small portion of a preferred kind of metallic sheathing 51, 52 attached thereon, as by epoxy glue.
  • Layer 51 is copper or other high-conductivity metal.
  • Th outer layer 52 is preferably of stainless steel, or other material which is relatively non-corrosive and does not dissolve and release substantial numbers of metallic ions (as, say copper does) when electric current passes between it and the water.
  • the invention ifipphedtdafi foot boat which has a bottom area of 1,000 square feet, and displaces 12 tons.
  • Stainless steel sheathing 0.015 inch thick would weigh approximately 650 pounds, or 2.6 percent of the weight of the boat.
  • the electrical power required for defouling on a preventive maintenance basis, at volts and 30 amperes per square foot, would b c 300 k durmgl e periods that the Eu rYent Eapplied (such as 2 seconds every 2 days).
  • the average energy consumption would be 0.083 kilowatthour per day, or about 30 kwh per year.
  • the electrical connections to the strips or the like l-9, etc. may be made by any of the suitable throughthe-hull or other known means.
  • a method for maintaining an underwater surface free from fouling by marine growth comprising the following steps:

Abstract

An electrical apparatus and method for eliminating the fouling of boat bottoms and the like by marine growth. The underwater surface is sheathed with strips of a metal such as stainless steel. An electric current is passed between adjacent strips or areas, preferably for short periods of time on a regular ''''maintenance'''' schedule, e.g., 30 amperes per square foot for a few seconds every two days. The sheathing may be of 0.020'''' stainless steel in 3-inch wide strips spaced 0.1'''' apart. Test panels in sea water are found to remain clean and bright after six months immersion when so energized, while identical panels to which no current is applied become heavily fouled. Ions produced by electrolysis close to the sheathed surface move at relatively high velocities, and are found to kill the small organisms that settle on the surface. No persistent toxic chemicals such as mercury compounds are released into the water, and only minute quantities of dead organic matter are released at any one time.

Description

iliiited Mates ateiit 91 ileiser METillUD W011i CUNTRQL Ul MARIINE ll UlUlLiNG [76] Inventor: Andrew S. Yeiser, 302 Cleveland Dr., Huntington Beach, Calif.
[22] Filed: July 119, 119711 [21] Appl. No.: 163,803
[52] US. Cl. 204/147, 204/196 [51] int. 1. (3231' 113/00 [58] Field of Search 204/147, 148, 196, 204/197 [56] Reierenees Cited UNITED STATES PATENTS 843,357 2/1907 Partee et al 204/147 994,405 6/191 1 James 204/196 2,435,986 2/1948 Taylor 204/196 3,241,512 3/1966 Green 204/196 3,303,118 2/1967 Anderson 204/196 3,497,434 2/1970 Littauer 204/196 3,530,051 9/1970 Lieda et al.... 204/196 3,625,852 12/1971 Anderson 204/196 3,661,742 5/1972 Osborn et al. 204/196 Primary Examiner-T. Tung Attorney-Lawrence Fleming [5 7] ABSTRACT An electrical apparatus and method for eliminating the fouling of boat bottoms and the like by marine growth. The underwater surface is sheathed with strips of a metal such as stainless steel. An electric current is passed between adjacent strips or areas, preferably for short periods of time on a regular maintenance" schedule, e.g., 30 amperes per square foot for a few seconds every two days. The sheathing may be of 0.020" stainless steel in 3-inch wide strips spaced 0.1" apart. Test panels in sea water are found to remain clean and bright after six months immersion when so energized, while identical panels to which no current is applied become heavily fouled. Ions produced by electrolysis close to the sheathed surface move at relatively high velocities, and are found to kill the small organisms that settle on the surface. N0 persistent toxic chemicals such as mercury compounds are released into the water, and only minute quantities of dead organic matter are released at any one time.
0 Claims, 5 Drawing Figures SEQUENQER & T11 450 Pate-Med Uci. 116, 11973 3,766,032
SEQUENCER & TIMER INVENTOR ANDREW S. YEflSER B) I ENT METHOD FUR CONTROL DE MARINE FUELING BACKGROUND OF THE INVENTION The fouling of ship and boat bottoms, piling, and other underwater structures is an age-old problem. Continuous sheathings of copper have been used, which produce toxic copper compounds by slow solution. Anti-fouling paints are used, which release toxic copper or mercury compounds. Electrolytic schemes are known wherein ions and bubbles are generated by continuous electrolysis at relatively low current densities, one or more of the electrodes being located at some distance from the surface to be protected. Such methods have disadvantages. Paints and the like which release toxic metallic compounds have limited life and cause pollution. The most common anti-fouling procedure is still mechanical scraping.
BRIEF SUMMARY This invention is an electrolytic means and method for the control of marine fouling, wherein substantially the entire surface to be kept free from fouling is sheathed or covered with relatively thin strips (or areas of other suitable shape) of non-corrosive conducting material such as stainless steel. The metal should be one that does not appreciably dissolve and release any substantial number of metallic ions (as copper does). Relatively narrow spaces or gaps are left between adjacent strips or areas, and separate electrical connections are made to individual strips or areas, or to suitable groups of them. An electric current is passed between adjacent strips or areas, preferably for a very small percentage of time, e.g., about 0.001 per cent or 2 seconds every two days. A suitable current density or area density is 30 amperes per square foot.
Test panels immersed continuously in sea water for six months have been found to remain clean when supplied with electrical defouling current on the above time schedule and at the above current density. Identical panels not fed with current became fouled to a depth of over 2 inches. The test panels were sheathed with 3-inch wide strips of 0.020 inch thick stainless steel, spaced about one-eighth inch apart.
Electrolysis of sea water produces many different kinds of ions, including unstable and metastable ones; it is thought that the efficacy of the present means and method depends substantially on the direct impingement on small marine organisms of ions which are moving at relatively high velocities, the velocities being high because the ions are formed close to the organisms (or even inside them) at relatively high current density. It is also believed that the gas bubbles generated by the electrolysis assist in scrubbing the dead organisms off of the surface.
According to the invention, pairs or groups of the conductive strips or areas of the sheathing may be electrically energized in succession to reduce the electric current demand. For this purpose, suitable sequential switching apparatus may be employed. The defouling current may be d-c or a-c. A preferred current supply is d-c, reversed in polarity once during each application. Another suitable heavy-current supply is a discharge from a large electrolytic capacitor. A preferred sheathing material is sheet copper of the order of 0.01 inch thick clad with stainless steel of the order of 0.002 inch0.02 inch thick. The stainless steel cladding faces outward; the copper is provided for high electrical conductivity.
While heavy currents are often required, the duty cycle is so low that the average electrical energy requirement is relatively low, e.g., 2.5 kwh per month for 1,000 square feet of surface.
IN THE DRAWING FIG. l is a diagrammatic view of the bow portion of a boat hull whose underwater portion is sheathed with metal strips according to the invention;
FIG. 2 is a simplified circuit diagram, partly in block form, of an electrical circuit suitable for supplying and routing the defouling current according to the invention;
FIG. 3 is a circuit diagram of an alternative detail of FIG. 2;
FIG. 41 is a diagram of another alternative detail of FIG. 2;
FIG. 5 is a diagrammatic sectional view of a small portion of sheathing according to the invention.
DETAILED DESCRIPTION In FIG. l, a portion of a boat hull or the like is indicated at 30, having its underwater portion sheathed or covered with strips of conducting material 3-9. Contiguous areas of other shapes may obviously be used instead of strips, but strips of the order of 3 inches wide, with spaces in between of roughly one-eighth inch, are one preferred shape. Dots at the ends of each strip 3-@ indicate electrical connections. Strips 3, 5, 7, and 9 may be connected together and strips l, 6, and 8 also together, and current applied between these two groups. To reduce the current demand, the current may alternatively be applied first between strips 3 and l, then to 4i and 5, and so on in succession. The terms contiguous and adjacent are used herein to refer to strips or areas having a relatively narrow space between them, and not actually touching each other.
FIG. 2 indicates some suitable circuitry for energizing such strips, which are therein shown at ll-9 As many as needed would be used. Here, a selector switch may be used, with one stationary contact connected to each of the strips or areas 1-9 The switch it) may have two movable contacts or sliders l1, l2 mechanically (but not electrically) connected together, so that in one position the sliders would connect to strips l and 2, in the next to 2 and 3, and so on. The circuit may contain an off-on switch 2A, which in turn is connected, optionally through an ammeter A, to a reversing switch and thence to a power source indicated as a battery 20. A suitable sequencing and timing device is indicated as a block 27, arranged to control switches l0, l5, and 24l by known means. In operation, d-c from source 20 would be applied in one polarity for, say 1 second, between strips l and 2; then the sequencer 27. would operate reversing switch 113, leaving switch 2% on for l more second, then turn it off. The unit 27 would then move selector switch 10 to connect to strips 2 and 3, repeat the process, and so on.
In FIG. 2, power terminals are indicated at lib-W. The connections between terminals 116 and 13, and between ll7 and 19, may be in a cable running from the boat to the dock. The apparatus to the right of terminals l6, 17, FIG. 2, may be located on board, and the d-c power source may be 20 located ashore.
FIG. 3 shows an a-c supply for the defouling current. A-c source 31 may be a commercial power line on shore, connected via a cable between terminals 16-19 (as before) to a stepdown transformer 23 which may be located on a boat. A low-voltage, high-current secondary winding goes to terminals 25, 26, from which the remainder of the wiring may proceed as from the corresponding terminals or points 25, 26 in FIG. 2.
FIG. 4 shows the essentials of a simple capacitor discharge circuit for supplying pulses of defouling current. A large capacitor 41 may be charged by connecting it across a dc power source such as a generator 40, via switch 42, which may then be switched over to connect to terminal 16. Terminals 16 and 17 may be connected to the circuitry shown to the right of terminals 16, 17 in FIG. 2. Alternatively, terminals 16, 17 in FIG. 4 may be connected to a relatively large number of pairs of strips or areas simultaneously in a group, if capacitor 41 is of very large capacitance such as 1 farad. Electrolytic capacitors of this value have been manufactured in moderate physical sizes. A l-farad capacitor, for example, discharged from 30 volts at constant current, would provide 30 amperes for 1 second, or 30,000 amperes for 1 millisecond.
FIG. shows diagrammatically a small portion of a boat hull or the like 30. with a small portion of a preferred kind of metallic sheathing 51, 52 attached thereon, as by epoxy glue. Layer 51 is copper or other high-conductivity metal. Th outer layer 52 is preferably of stainless steel, or other material which is relatively non-corrosive and does not dissolve and release substantial numbers of metallic ions (as, say copper does) when electric current passes between it and the water.
To illustrate the magnitudes involved in a practical example, assume that the invention ifipphedtdafi foot boat which has a bottom area of 1,000 square feet, and displaces 12 tons. Stainless steel sheathing 0.015 inch thick would weigh approximately 650 pounds, or 2.6 percent of the weight of the boat. The electrical power required for defouling on a preventive maintenance basis, at volts and 30 amperes per square foot, would b c 300 k durmgl e periods that the Eu rYent Eapplied (such as 2 seconds every 2 days). The average energy consumption would be 0.083 kilowatthour per day, or about 30 kwh per year.
The electrical connections to the strips or the like l-9, etc. may be made by any of the suitable throughthe-hull or other known means.
It will be understood that the invention is not restricted to specific values of current density and application time, the above examples being given for the purpose of illustration.
It will be seen that the practice of the invention does not introduce any foreign substances into the water, but operates merely to break down chemically certain substances that are already there. In addition, the amount of organic matter removed by each individual application of current is so small as to be substantially invisible; thus there is no need to dispose of large quantities of decaying organic debris in a short time, as there is when an accumulation of fouling is mechanically scraped off the bottom of a boat.
I claim:
1. A method for maintaining an underwater surface free from fouling by marine growth, comprising the following steps:
covering substantially all of said surface with a sheath in the form of a plurality of electrically separated adjacent electrode aras of the same electrically conductive material, said material having exposed surface portions substantially insoluble in sea water and incapable of producing substantial quantities of toxic ions of said material, and
applying an electric current between at least one adjoining pair of said electrode areas at a current density of about 30 amperes per square foot for periods of about 2 seconds for every 2 days,
said current producing ions of substances in the water but substantially no ions of said conductive material, said ions moving at relatively high velocities and killing said marine growth.
2. The method of claim 1, wherein all said electrode areas are in the form of parallel strips of sheet metal.
3. The method of claim 2, wherein alternate strips are electrically connected together to form two groups, and said current is applied between said groups.
4. The method of claim 1, wherein all said electrode areas are in the form of parallel strips of sheet stainless steel.
5. The method of claim 1, wherein all said electrode areas are in the form of parallel strips of sheet copper having a layer of stainless steel on their exposed outer surfaces.
' 6. The method of claim 1, comprising the following additional step:
applying said current between the succeeding adjoining pairs of said electrode areas in sequence.
7. The method of claim 1, comprising the additional step of connecting a capacitor, to said electrode areas to provide current pulses.
8. The method of claim 1,'wherein said current is applied in successive pulses of opposite polarity.

Claims (7)

  1. 2. The method of claim 1, wherein all said electrode areas are in the form of parallel strips of sheet metal.
  2. 3. The method of claim 2, wherein alternate strips are electrically connected together to form two groups, and said current is applied between said groups.
  3. 4. The method of claim 1, wherein all said electrode areas are in the form of parallel strips of sheet stainless steel.
  4. 5. The method of claim 1, wherein all said electrode areas are in the form of parallel strips of sheet copper having a layer of stainless steel on their exposed outer surfaces.
  5. 6. The method of claim 1, comprising the following additional step: applying said current between the succeeding adjoining pairs of said electrode areas in sequence.
  6. 7. The method of claim 1, comprising the additional step of connecting a capacitor, to said electrode areas to provide current pulses.
  7. 8. The method of claim 1, wherein said current is applied in successive pulses of opposite polarity.
US00163883A 1971-07-19 1971-07-19 Method for control of marine fouling Expired - Lifetime US3766032A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16388371A 1971-07-19 1971-07-19

Publications (1)

Publication Number Publication Date
US3766032A true US3766032A (en) 1973-10-16

Family

ID=22591995

Family Applications (1)

Application Number Title Priority Date Filing Date
US00163883A Expired - Lifetime US3766032A (en) 1971-07-19 1971-07-19 Method for control of marine fouling

Country Status (1)

Country Link
US (1) US3766032A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2391904A1 (en) * 1977-05-25 1978-12-22 Riffe William POTENTIOMETRIC PRESERVATION AND ANTI-CORROSIVE DEVICE FOR MARINE
US4196064A (en) * 1978-11-06 1980-04-01 Conoco, Inc. Marine fouling control
US4440611A (en) * 1981-12-09 1984-04-03 The Texas A & M University System Cathodic electrochemical process for preventing or retarding microbial and calcareous fouling
FR2638704A1 (en) * 1988-11-09 1990-05-11 Intersub France Process for protecting immersed surfaces against biological soiling and a device for its use
US5182007A (en) * 1990-07-23 1993-01-26 Daiki Engineering Co., Ltd. Stain preventing method
EP0550766A1 (en) * 1991-07-24 1993-07-14 Nakagawa Corrosion Protecting Co., Ltd. Method and device for preventing adhesion of aquatic organisms
EP1000852A1 (en) * 1998-11-09 2000-05-17 Brunswick Corporation Apparatus and method for inhibiting fouling of an underwater surface
US6173669B1 (en) 1999-10-14 2001-01-16 Brunswick Corporation Apparatus and method for inhibiting fouling of an underwater surface
US6488572B1 (en) 1999-05-07 2002-12-03 Dennis Mason Method and apparatus for removing marine organisms from a submerged substrate
US6547952B1 (en) 2001-07-13 2003-04-15 Brunswick Corporation System for inhibiting fouling of an underwater surface
US20050006905A1 (en) * 2003-05-28 2005-01-13 Jorn Rurup Cooling arrangement for an offshore wind energy installation
EP1592611A1 (en) * 2003-02-13 2005-11-09 Myung Kuk Jung Anti-fouling and eliminating system against aquatic organisms
US7211173B1 (en) 2003-07-29 2007-05-01 Brunswick Corporation System for inhibiting fouling of an underwater surface
NL2002873C2 (en) * 2009-05-12 2010-11-15 Stichting Van Hall Larenstein Device and method for inhibiting growth of organisms on a submerged object and a ship provided with such device.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US843357A (en) * 1906-01-24 1907-02-05 William Arky Partee Hull-cleaning and friction-reducing apparatus.
US994405A (en) * 1910-05-03 1911-06-06 John Evans James Electrical arrangement for protecting ships' bottoms from barnacles or aquatic life and such like.
US2435986A (en) * 1943-02-18 1948-02-17 Ivan M Taylor Antifouling device
US3241512A (en) * 1964-02-12 1966-03-22 William G Green Anti-fouling, barnacles, algae, eliminator
US3303118A (en) * 1963-04-08 1967-02-07 Engelhard Ind Inc Cathodic protection and anti-marine fouling electrode system
US3497434A (en) * 1967-07-20 1970-02-24 Lockheed Aircraft Corp Method for preventing fouling of metal in a marine environment
US3530051A (en) * 1965-07-05 1970-09-22 Mitsubishi Heavy Ind Ltd Electrolytic method for preventing fouling of sea water-immersed structures by marine life
US3625852A (en) * 1969-06-27 1971-12-07 Engelhard Min & Chem Marine antifouling system
US3661742A (en) * 1970-06-22 1972-05-09 Dow Chemical Co Electrolytic method of marine fouling control

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US843357A (en) * 1906-01-24 1907-02-05 William Arky Partee Hull-cleaning and friction-reducing apparatus.
US994405A (en) * 1910-05-03 1911-06-06 John Evans James Electrical arrangement for protecting ships' bottoms from barnacles or aquatic life and such like.
US2435986A (en) * 1943-02-18 1948-02-17 Ivan M Taylor Antifouling device
US3303118A (en) * 1963-04-08 1967-02-07 Engelhard Ind Inc Cathodic protection and anti-marine fouling electrode system
US3241512A (en) * 1964-02-12 1966-03-22 William G Green Anti-fouling, barnacles, algae, eliminator
US3530051A (en) * 1965-07-05 1970-09-22 Mitsubishi Heavy Ind Ltd Electrolytic method for preventing fouling of sea water-immersed structures by marine life
US3497434A (en) * 1967-07-20 1970-02-24 Lockheed Aircraft Corp Method for preventing fouling of metal in a marine environment
US3625852A (en) * 1969-06-27 1971-12-07 Engelhard Min & Chem Marine antifouling system
US3661742A (en) * 1970-06-22 1972-05-09 Dow Chemical Co Electrolytic method of marine fouling control

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2391904A1 (en) * 1977-05-25 1978-12-22 Riffe William POTENTIOMETRIC PRESERVATION AND ANTI-CORROSIVE DEVICE FOR MARINE
US4196064A (en) * 1978-11-06 1980-04-01 Conoco, Inc. Marine fouling control
JPS5565266A (en) * 1978-11-06 1980-05-16 Conoco Inc Method of preventing adhesion of marine creature to structure or separating it and device therefor
JPS6334192B2 (en) * 1978-11-06 1988-07-08 Conoco Inc
US4440611A (en) * 1981-12-09 1984-04-03 The Texas A & M University System Cathodic electrochemical process for preventing or retarding microbial and calcareous fouling
FR2638704A1 (en) * 1988-11-09 1990-05-11 Intersub France Process for protecting immersed surfaces against biological soiling and a device for its use
US5182007A (en) * 1990-07-23 1993-01-26 Daiki Engineering Co., Ltd. Stain preventing method
EP0550766A1 (en) * 1991-07-24 1993-07-14 Nakagawa Corrosion Protecting Co., Ltd. Method and device for preventing adhesion of aquatic organisms
EP0550766A4 (en) * 1991-07-24 1993-12-08 Nakagawa Corrosion Protecting Co., Ltd. Method and device for preventing adhesion of aquatic organisms
US5344531A (en) * 1991-07-24 1994-09-06 Nakagawa Corrosion Protecting Co., Ltd. Prevention method of aquatic attaching fouling organisms and its apparatus
EP1000852A1 (en) * 1998-11-09 2000-05-17 Brunswick Corporation Apparatus and method for inhibiting fouling of an underwater surface
US6209472B1 (en) * 1998-11-09 2001-04-03 Brunswick Corporation Apparatus and method for inhibiting fouling of an underwater surface
US6488572B1 (en) 1999-05-07 2002-12-03 Dennis Mason Method and apparatus for removing marine organisms from a submerged substrate
US6173669B1 (en) 1999-10-14 2001-01-16 Brunswick Corporation Apparatus and method for inhibiting fouling of an underwater surface
US6547952B1 (en) 2001-07-13 2003-04-15 Brunswick Corporation System for inhibiting fouling of an underwater surface
EP1592611A1 (en) * 2003-02-13 2005-11-09 Myung Kuk Jung Anti-fouling and eliminating system against aquatic organisms
EP1592611A4 (en) * 2003-02-13 2008-12-17 Myung Kuk Jung Anti-fouling and eliminating system against aquatic organisms
US20050006905A1 (en) * 2003-05-28 2005-01-13 Jorn Rurup Cooling arrangement for an offshore wind energy installation
US7111668B2 (en) * 2003-05-28 2006-09-26 Rittal Gmbh & Co. Kg Cooling arrangement for an offshore wind energy installation
US7211173B1 (en) 2003-07-29 2007-05-01 Brunswick Corporation System for inhibiting fouling of an underwater surface
NL2002873C2 (en) * 2009-05-12 2010-11-15 Stichting Van Hall Larenstein Device and method for inhibiting growth of organisms on a submerged object and a ship provided with such device.

Similar Documents

Publication Publication Date Title
US3766032A (en) Method for control of marine fouling
US3241512A (en) Anti-fouling, barnacles, algae, eliminator
US3625852A (en) Marine antifouling system
CA2001785C (en) Anti-fouling system for substances in contact with seawater
US2444174A (en) Galvanic coating process
KR100246555B1 (en) Method and apparatus for the prevention of fouling and/or corrosion of structures in seawater, brackish and/or fresh water
US2643222A (en) Method of cathodically descalling and electrode therefor
DE59003239D1 (en) Methods and devices for the anodic or cathodic electro-painting of hollow bodies, in particular cans.
KR937000698A (en) Methods and apparatus for preventing and / or corrosion of structures in seawater, brine and / or freshwater
US3600286A (en) Electrolytic treatment of aqueous solutions
Carlin et al. Less is more: Measure of chloride removal rate from wrought iron artifacts during electrolysis
CN100465346C (en) Electrochemical method for removing biological pollution of ocean ship
GB1597305A (en) Marine potentiometric antifouling and anticorrosion device
US2404031A (en) Corrosion preventing electrode
US3410771A (en) Treatment of lead alloy anodes
JPS5391468A (en) Dehydrator for pretreatment of concentrated sludge
IL34091A (en) An apparatus for the electrolysis of sea water or other saline solutions,especially for their sterilization
DE93946T1 (en) METHOD FOR JOINING METALS OF DIFFERENT TYPES.
US2476286A (en) Marine electrocleaning and electropickling apparatus
KR20020050494A (en) anti-fouling system and using method thereof
US3538876A (en) Ship salvaging system and method
DE145802T1 (en) METHOD FOR PREVENTING GROWTH AND CORROSION OF A STRUCTURE.
JPH02144406A (en) Filth-resistant device for water-intake ditch
JPS55122899A (en) Degreasing method by high speed contactless electrolysis
DE199114C (en)