US3692839A - Condensation products of {60 ,{62 -unsaturated aldehydes with lower alkyl ketones - Google Patents

Condensation products of {60 ,{62 -unsaturated aldehydes with lower alkyl ketones Download PDF

Info

Publication number
US3692839A
US3692839A US805365A US3692839DA US3692839A US 3692839 A US3692839 A US 3692839A US 805365 A US805365 A US 805365A US 3692839D A US3692839D A US 3692839DA US 3692839 A US3692839 A US 3692839A
Authority
US
United States
Prior art keywords
reaction
lower alkyl
formula
utilized
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US805365A
Inventor
Pius Anton Wehrli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3692839A publication Critical patent/US3692839A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/603Unsaturated compounds containing a keto groups being part of a ring of a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/06Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by conversion of non-aromatic six-membered rings or of such rings formed in situ into aromatic six-membered rings, e.g. by dehydrogenation
    • C07C37/07Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by conversion of non-aromatic six-membered rings or of such rings formed in situ into aromatic six-membered rings, e.g. by dehydrogenation with simultaneous reduction of C=O group in that ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/63Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/74Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups combined with dehydration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • C07C49/457Saturated compounds containing a keto group being part of a ring containing halogen
    • C07C49/463Saturated compounds containing a keto group being part of a ring containing halogen a keto group being part of a six-membered ring

Definitions

  • 2,3,6-tri-lower alkyl phenols of the formula wherein R It, and R are lower alkyl are prepared through the reaction of an a,B-unsaturated aldehyde of the formula wherein R is lower alkyl with a ketone of the formula wherein R and R are lower alkyl.
  • lower alkyl designates both straight and branched chain alkyl groups containing from one to seven carbon atoms such as methyl, ethyl, propyl and isopropyl.
  • halogen as used throughout the specification includes all four halogens, i.e., chlorine, fluorine,
  • the aldehyde of formula II is condensed with the ketone of formula III via reaction step (a) to produce the compound of formula IV above.
  • This condensation reaction is carried out in the presence of a base. Any conventional organic or inorganic base can be utilized in this reaction.
  • alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, etc.
  • alkali metal-lower alkoxides such as sodium methoxide, sodium ethoxide, etc.
  • alkali metal hydrides such as sodium hydride, lithium hydride, etc.
  • alkali metal amides such as sodium amide, potassium amide, etc.
  • organic amine bases such as pyridine, piperidine, etc.
  • the ketone of formula HI above be present in excess of the stoichiometric amount required to react with the compound of formula H above.
  • excess ketone of formula III above can be utilized as the reaction medium.
  • any conventional inert organic solvent can be used as the reaction medium.
  • toluene, benzene, xylene, dioxane, diethyl ether and tetrahydrofuran are preferred.
  • temperature and pressure are not critical and this reaction can be carried out at room temperature and atmospheric pressure. However, if desired, elevated or reduced temperatures, i.e., temperatures between 10 C. to C., depending upon the reflux temperature of the solvent medium, can be utilized.
  • the compound of formula IV above is converted to the compound of formula V above via reaction step (b).
  • This reaction is carried out by treating the compound of formula IV above with a halogenating agent.
  • a halogenating agent can be utilized in carrying out the reaction of step (b).
  • the conventional halogenating agents which can be utilized are included N-bromosuccinimide, alkali metal hypohalites or a halogen such as chlorine, bromine, or iodine.
  • this reaction is carried out in an inert organic solvent. Any conventional inert organic solvent can be utilized in carrying out this reaction.
  • hydrocarbons such as xylene, toluene and halogenated hydrocarbons such as carbon tetrachloride, methylene chloride, chlorobenzene, etc.
  • this reaction is carried out by treating the compound of formula IV above with a halogenating agent at a temperature of from about to 40 C.
  • the compound of formula V above is converted to' the compound of formula I above via reaction step (c) by treating the compound of formula V above with a base or a metal selected from the group consisting of Group III metals and transition metals.
  • a base or a metal selected from the group consisting of Group III metals and transition metals Any conventional base can be utilized.
  • the preferred bases are included inorganic bases such as sodium hydroxide,
  • potassium hydroxide and organic amine bases such as piperazine, pyridine, picoline, piperidine, etc.
  • Any conventional Group III metal or transition metal can be utilized in carrying out this reaction. Among the preferred metals are included iron, zinc, copper, aluminum, platinum, palladium, etc.
  • a metal is utilized in carrying out this reaction the compound of formula V above is treated with the metal in powdered form. This reaction can take place in the presence of a conventional inert organic solvent.
  • Any conventional inert organic solvent can be utilized.
  • the conventional inert organic solvents which can be utilized are the hydrocarbon solvents such as tetralin, toluene, xylene, etc.
  • reaction temperature and pressure are not critical and this reaction can be carried out at room temperature and atmospheric pressure. However, elevated temperatures and pressures can be utilized in carrying out this reaction. If desired, the reaction can take place at conditions of temperature and'pressure where the compound of formula V is in the vapor phase. Generally, it is preferred to carry out this reaction at the reflux temperature of the solvent medium.
  • the compound of formula IV above is directly converted to the compound of formula I above, via reaction step (d) by treating the compound of formula IV above with a dehydrogenating'agent.
  • a dehydrogenating'agent any conventional dehydrogenating agent can be utilized.
  • the conventional dehydrogenating agents which can be utilized dichlorodicyanoquinone, mercuric acetate and palladium on carbon are preferred.
  • this reaction is carried out in a conventional inert organic solvent. Any conventional inert organic solvent can be utilized.
  • tetralin, benzene, toluene, xylene and organic acids which include lower alkanoic acids such as acetic acid are preferred.
  • palladium on carbon is utilized as the dehydrogenating agent, no solvent need be present and the reaction can be carried out by heating the reaction medium in the presence of air to a temperature of from about 150 C. to about 300 C.
  • a solvent is utilized, the reaction proceeds very slowly at room temperature. Therefore, it is generally preferred to utilize elevated temperatures in carrying out this reaction. In general, temperatures of from about 50 C. to 200 C. are preferred depending upon the reflux temperature of the solvent utilized in the reaction medium.
  • Example 1 pentanone were added to the stirred reaction mixture over a period of 45 minutes (the. temperature was maintained between 20 and 25). When of the s0lution was left, 18 g. (0.15 in) more of potassium butoxide were added to the flask and the addition was continued. After completion of addition, the ice bath was removed and the reaction mixture stirred for further 30 minutes.
  • reaction mixture was then partitioned between etheraqueous NaCl.
  • the ether phase was washed five times with aqueous NaCl (until the aqueous wash was no longer basic to pH paper). It was dried over anhydrous sodium sulfate and concentrated at atmospheric pressure (on steam bath) until the temperature rose to 85. The residue was then distilled under vacuum by a water pump. From the residue one obtained 2,5 ,6-trimethyl-2-cyclohexenone as a fraction.
  • Example 2 2,3-dichloro-2,5,6-trimethylcycloiiexanone 13.8 g. (10 mmoles) of 2,5,6-trimethyl-2-cyclohexenone were diluted with 50 cc of carbon tetrachloride and cooled to -20 C. At this temperature, 7.1 g. (10 mmoles) of chlorine was slowly introduced by way of a subsurface glass-tubing gas-inlet. After all of the chlorine has been absorbed, the solvent was removed under reduced pressure at 20 C. to provide 20.9 g. percent of theory) of 2,3-dichloro-2,5,6- trimethylcyclohexanone as residue. This product showed a new strong band in the lR-spectrum at 1720 cm.
  • Example 4 7.7 g. of 2,3-dichloro-2,5,6-trimethylcyclohexanone were added to 23.1 g. of pyridine and refluxed for 6 hours.
  • the brown reaction mixture was diluted with water, cooled in an ice bath and concentrated HCl added until strongly acidic. After three extractions with ether and two washings with saturated NaCl-solution, the organic layers were combined and dried over magnesium sulfate. After filtration, removal of the solvent 10 wherein R1, R2 nd R3 are allfiyl and X is chlorine and distillation of the residue (b.p. ca 120 C./ ll mg Hg) one obtained 4.35 g. of 2,3,6-trimethylphenol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Condensation products of Alpha , Beta -unsaturated aldehydes with di-lower alkyl ketones and the preparation of 2,3,6-trilower alkyl phenols therefrom.

Description

United States Patent Wehrli [451 Sept. 19, 1972 s41 CONDENSATION PRODUCTS 0F a,/3- [56] References Cited UNSATURATED ALDEl-IYDES WITH QTHER PUBLICATIONS LOWER ALKYL KETONES Inventor: Pius Anton Wehrli, 9 Runnymede Gardens, Linn Drive, Verona, NJ. 07044 Filed: March 7, 1969 Appl. No.: 805,365
US. Cl. ..260/586 R, 260/621 H, 260/624 R,
260/626 R, 260/626 T Int. Cl. ....C07c 49/30, C07c 37/06, C07c 49/48 Field of Search", ..260/586 R Morrison et a1., Organic Chemistry p. 199 (1962) Baker, Jour. Chem. Soc. Vol. 1926, pp. 663- 670 1926) [57] ABSTRACT Condensation products of a,B-unsaturated aldehydes with di-lower alkyl ketones and the preparation of 2,3,6-t1i-lower alkyl phenols therefrom.
2 Claims, No Drawings CONDENSATION PRODUCTS OF (1,13- UNSATURATED ALDEHYDES WITH LOWER ALKYL KETONES BACKGROUND OF THE INVENTION The commercially available 2,3,6-tri-lower alkyl phenols which are important starting materials in the synthesis of tri-lower' alkyl hydroquinones, intermediates for vitamin E, are of a very low purity. This has proven extremely disadvantageous since the trilower alkyl hydroquinones, which are intermediates for vitamin E and related compounds, should have a high degree ofpurity. The alkyl hydroquinones which are prepared from the commercially available 2,3,6-trilower alkyl phenols generally contain impurities which result from utilizing these impure phenols as starting materials. It is with considerable difficulty and expense that the final tri-lower alkyl hydroquinones are purified for commercial use. Therefore, a method whereby 2,3,6-tri-lower alkyl phenols of high purity can be prepared from economic starting materials has long been desired in the art.
SUMMARY OF'THE INVENTION In accordance with this invention, 2,3,6-tri-lower alkyl phenols of the formula wherein R It, and R are lower alkyl are prepared through the reaction of an a,B-unsaturated aldehyde of the formula wherein R is lower alkyl with a ketone of the formula wherein R and R are lower alkyl.
In this manner a simple and economic means is provided for producing pure 2,3,6-tri-lower alkyl phenols.
DETAILED DESCRIPTION The term lower alkyl as used throughout the specification designates both straight and branched chain alkyl groups containing from one to seven carbon atoms such as methyl, ethyl, propyl and isopropyl. The term halogen as used throughout the specification includes all four halogens, i.e., chlorine, fluorine,
r-CHz-C-OHz-Ra III s 0 (b) R, =0
IV V
Rs -OI-I wherein R R and R are as above and X is halogen.
In accordance with the process of this invention, the aldehyde of formula II is condensed with the ketone of formula III via reaction step (a) to produce the compound of formula IV above. This condensation reaction is carried out in the presence of a base. Any conventional organic or inorganic base can be utilized in this reaction. Among the conventional bases which can be utilized in carrying out this reaction are included the alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, etc.; alkali metal-lower alkoxides such as sodium methoxide, sodium ethoxide, etc.; alkali metal hydrides such as sodium hydride, lithium hydride, etc.; alkali metal amides such as sodium amide, potassium amide, etc., and organic amine bases such as pyridine, piperidine, etc. In carrying out this reaction, one mole of the compound of formula II is reacted with one mole of the compound of formula III above. Generally, it is preferable that the ketone of formula HI above be present in excess of the stoichiometric amount required to react with the compound of formula H above. Generally, it is preferred to have at least 5 moles of the ketone of formula III above per mole of the compound of formula II. In carrying out this reaction excess ketone of formula III above can be utilized as the reaction medium. If desired, any conventional inert organic solvent can be used as the reaction medium. Among the conventional inert organic solvents which can be utilized, toluene, benzene, xylene, dioxane, diethyl ether and tetrahydrofuran are preferred. In carrying out this reaction, temperature and pressure are not critical and this reaction can be carried out at room temperature and atmospheric pressure. However, if desired, elevated or reduced temperatures, i.e., temperatures between 10 C. to C., depending upon the reflux temperature of the solvent medium, can be utilized.
In the next step of the process of this invention the compound of formula IV above is converted to the compound of formula V above via reaction step (b). This reaction is carried out by treating the compound of formula IV above with a halogenating agent. Any conventional halogenating agent can be utilized in carrying out the reaction of step (b). Among the conventional halogenating agents which can be utilized are included N-bromosuccinimide, alkali metal hypohalites or a halogen such as chlorine, bromine, or iodine. Generally, this reaction is carried out in an inert organic solvent. Any conventional inert organic solvent can be utilized in carrying out this reaction. Among the preferred inert organic solvents which can be utilized in carrying out this reaction are included hydrocarbons such as xylene, toluene and halogenated hydrocarbons such as carbon tetrachloride, methylene chloride, chlorobenzene, etc. Generally, this reaction is carried out by treating the compound of formula IV above with a halogenating agent at a temperature of from about to 40 C.
The compound of formula V above is converted to' the compound of formula I above via reaction step (c) by treating the compound of formula V above with a base or a metal selected from the group consisting of Group III metals and transition metals. Any conventional base can be utilized. Among the preferred bases are included inorganic bases such as sodium hydroxide,
potassium hydroxide; and organic amine bases such as piperazine, pyridine, picoline, piperidine, etc. Any conventional Group III metal or transition metal can be utilized in carrying out this reaction. Among the preferred metals are included iron, zinc, copper, aluminum, platinum, palladium, etc. When a metal is utilized in carrying out this reaction the compound of formula V above is treated with the metal in powdered form. This reaction can take place in the presence of a conventional inert organic solvent. Any conventional inert organic solvent can be utilized. Among the conventional inert organic solvents which can be utilized are the hydrocarbon solvents such as tetralin, toluene, xylene, etc. In carrying out this reaction, temperature and pressure are not critical and this reaction can be carried out at room temperature and atmospheric pressure. However, elevated temperatures and pressures can be utilized in carrying out this reaction. If desired, the reaction can take place at conditions of temperature and'pressure where the compound of formula V is in the vapor phase. Generally, it is preferred to carry out this reaction at the reflux temperature of the solvent medium.
In accordance with another embodiment of this invention, the compound of formula IV above is directly converted to the compound of formula I above, via reaction step (d) by treating the compound of formula IV above with a dehydrogenating'agent. In carrying out this reaction, any conventional dehydrogenating agent can be utilized. Among the conventional dehydrogenating agents which can be utilized, dichlorodicyanoquinone, mercuric acetate and palladium on carbon are preferred. Generally, this reaction is carried out in a conventional inert organic solvent. Any conventional inert organic solvent can be utilized. Among the conventional inert organic solvents that can be utilized in this reaction, tetralin, benzene, toluene, xylene and organic acids which include lower alkanoic acids such as acetic acid are preferred. When palladium on carbon is utilized as the dehydrogenating agent, no solvent need be present and the reaction can be carried out by heating the reaction medium in the presence of air to a temperature of from about 150 C. to about 300 C. When a solvent is utilized, the reaction proceeds very slowly at room temperature. Therefore, it is generally preferred to utilize elevated temperatures in carrying out this reaction. In general, temperatures of from about 50 C. to 200 C. are preferred depending upon the reflux temperature of the solvent utilized in the reaction medium.
The invention will be more fully understood from the specific examples which follow. These examples are intended to illustrate the invention and are not to be construed as limitative thereof. The temperatures utilized in these examples are in degrees Centigrade.
Example 1 pentanone were added to the stirred reaction mixture over a period of 45 minutes (the. temperature was maintained between 20 and 25). When of the s0lution was left, 18 g. (0.15 in) more of potassium butoxide were added to the flask and the addition was continued. After completion of addition, the ice bath was removed and the reaction mixture stirred for further 30 minutes.
The reaction mixture was then partitioned between etheraqueous NaCl. The ether phase was washed five times with aqueous NaCl (until the aqueous wash was no longer basic to pH paper). It was dried over anhydrous sodium sulfate and concentrated at atmospheric pressure (on steam bath) until the temperature rose to 85. The residue was then distilled under vacuum by a water pump. From the residue one obtained 2,5 ,6-trimethyl-2-cyclohexenone as a fraction.
Example 2 Example 3 2,3-dichloro-2,5,6-trimethylcycloiiexanone 13.8 g. (10 mmoles) of 2,5,6-trimethyl-2-cyclohexenone were diluted with 50 cc of carbon tetrachloride and cooled to -20 C. At this temperature, 7.1 g. (10 mmoles) of chlorine was slowly introduced by way of a subsurface glass-tubing gas-inlet. After all of the chlorine has been absorbed, the solvent was removed under reduced pressure at 20 C. to provide 20.9 g. percent of theory) of 2,3-dichloro-2,5,6- trimethylcyclohexanone as residue. This product showed a new strong band in the lR-spectrum at 1720 cm.
Example 4 7.7 g. of 2,3-dichloro-2,5,6-trimethylcyclohexanone were added to 23.1 g. of pyridine and refluxed for 6 hours. The brown reaction mixture was diluted with water, cooled in an ice bath and concentrated HCl added until strongly acidic. After three extractions with ether and two washings with saturated NaCl-solution, the organic layers were combined and dried over magnesium sulfate. After filtration, removal of the solvent 10 wherein R1, R2 nd R3 are allfiyl and X is chlorine and distillation of the residue (b.p. ca 120 C./ ll mg Hg) one obtained 4.35 g. of 2,3,6-trimethylphenol. The
' lR-spectrum of this material was superimposable with an authentic sample.

Claims (1)

  1. 2. The compound of claim 1 wherein R1, R2 and R3 are methyl and X is chlorine.
US805365A 1969-03-07 1969-03-07 Condensation products of {60 ,{62 -unsaturated aldehydes with lower alkyl ketones Expired - Lifetime US3692839A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80536569A 1969-03-07 1969-03-07

Publications (1)

Publication Number Publication Date
US3692839A true US3692839A (en) 1972-09-19

Family

ID=25191375

Family Applications (1)

Application Number Title Priority Date Filing Date
US805365A Expired - Lifetime US3692839A (en) 1969-03-07 1969-03-07 Condensation products of {60 ,{62 -unsaturated aldehydes with lower alkyl ketones

Country Status (1)

Country Link
US (1) US3692839A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891717A (en) * 1971-02-16 1975-06-24 Quaker Oats Co Preparation of O-chlorophenols
US4081482A (en) * 1975-10-22 1978-03-28 Basf Aktiengesellschaft Manufacture of 2,6,6-trimethyl-cyclohex-2-en-1-one
US5233095A (en) * 1986-03-18 1993-08-03 Catalytica, Inc. Process for manufacture of resorcinol

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Baker, Jour. Chem. Soc. Vol. 1926, pp. 663 670 (1926) *
Morrison et al., Organic Chemistry p. 199 (1962) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891717A (en) * 1971-02-16 1975-06-24 Quaker Oats Co Preparation of O-chlorophenols
US4081482A (en) * 1975-10-22 1978-03-28 Basf Aktiengesellschaft Manufacture of 2,6,6-trimethyl-cyclohex-2-en-1-one
US5233095A (en) * 1986-03-18 1993-08-03 Catalytica, Inc. Process for manufacture of resorcinol

Similar Documents

Publication Publication Date Title
Chatani et al. Palladium-catalyzed addition of trimethylgermyl cyanide to terminal acetylenes
Burckhalter et al. Ethylene and Phenylacetyl Chloride in the Friedel-Crafts Reaction. Novel Syntheses of 2-Tetralones and Benzofuranones1
HAAR et al. THE SYNTHESIS OF 1, 2-CYCLOHEPTANEDIONE DIOXIME1
US3692839A (en) Condensation products of {60 ,{62 -unsaturated aldehydes with lower alkyl ketones
Saito et al. The Palladium-catalyzed Arylation of 4-Chromanone Enol Esters. A New Synthesis of Isoflavanones
Naruse et al. The reaction of lithium trialkylalkynylborate with methanesulphinyl chloride: A novel route to internal acetylenes
US3857892A (en) Process for the preparation of 2,5,6-tri-lower-alkyl-2-cyclohexenones
Wang et al. Novel reductive coupling cyclization of 1, 1-dicyanoalkenes promoted by metallic samarium in aqueous media
Ojima et al. The synthesis of benzannelated annulenes. Dibenzo-tetrakisdehydro-[18] annulene, and tribenzo-bisdehydro [14] annulene.
TWEEDIE et al. Hydrogenolysis by Metal Hydrides. III. Hydrogenolysis of Alkylallylarylamines by Lithium Aluminum Hydride1
Timberlake et al. Synthetic routes to cyclopropyl-substituted azoalkanes. Some reactions of cyclopropylcarbinyl cyanates, isocyanates, benzoates, and p-nitrobenzoates
Chikashita et al. Nonacidic and highly chemoselective protection of the carbonyl function. 3-Methylbenzothiazolines as a base-and acid-resistant protected form for the carbonyl groups.
JP2004524328A (en) Process for producing vinyl, aryl and heteroaryl acetic acids and derivatives thereof
US4072723A (en) Preparation of 2,3,6-tri-lower alkyl phenols
Collins et al. Convenient preparation of 3-alkylcyclopentenones from alkylcyclopentadienes
Botteron et al. Ring-Size Effects in the Pinacol Rearrangement
Hutchins et al. Reduction of tertiary halides to hydrocarbons with sodium borohydride in sulfolane
Casy et al. Alkylation reactions of propargyl alcohol; improved routes to prostaglandin α-side chain precursors
JPS629098B2 (en)
Ishikawa The Synthesis of Ethyl β-Ionylideneacetate by the Wittig Reaction
BAILEY et al. Pyrolysis of Esters. XII. Ketone Cleavage of Acetoacetic Esters by Pyrolysis1, 2
JP6477339B2 (en) Process for producing dialkyldithienobenzodifuran
JPS5855129B2 (en) Method for producing 2-substituted or unsubstituted geranyl acetates
EP0499980B1 (en) Process for producing irone
SU436825A1 (en) The method of obtaining asymmetric diine derivatives of ferrocene