US3596708A - Locking mechanism for diecasting - Google Patents

Locking mechanism for diecasting Download PDF

Info

Publication number
US3596708A
US3596708A US879121A US3596708DA US3596708A US 3596708 A US3596708 A US 3596708A US 879121 A US879121 A US 879121A US 3596708D A US3596708D A US 3596708DA US 3596708 A US3596708 A US 3596708A
Authority
US
United States
Prior art keywords
die
ejector
closed position
portions
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US879121A
Inventor
John Lapin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Application granted granted Critical
Publication of US3596708A publication Critical patent/US3596708A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/26Mechanisms or devices for locking or opening dies

Definitions

  • Kozak and Sidney Carter ABSTRACT A diecasting machine of the horizontal type include d j gla stationary cover die and an ejector die movable along 'afl'ongitudinal axis between a mold open and mold closed position.
  • the ejector die comprises a plurality of die [54] glacflmglsM FOR DIECASTING elements including die elements movable obliquely to the longitudinal axis of the die assembly and other die elements [52] U5.
  • CL 164/343 movable transversely of the longitudinal axis of the die as- I 164/312 sembly.
  • This invention relates to die-casting machines having a plurality of relatively movable die members forming the movable ejector die assembly and more particularly to a means of interlocking the die members in a die-closed position during the molten metal injection step of the die-casting process.
  • the die apparatus may consist of a cover die which defines the crank case portion of the block and an ejector die assembly which defined the top, the sidewalls and the cylinders of the block.
  • the ejector die assembly may consist of a main portion which defines the top of the block, a pair of obliquely movable die portions or slides which form the barrel cores for forming the cylinders and a pair of opposed die portions or slides movable relative to the ejector die assembly transversely thereof which forms the sidewalls of the engine block.
  • FIG. 1 is an elevation view of a die-casting machine cmbodying the invention with the dies of the machine being a closed and locked position;
  • FIG. 2 is an enlarged fragmentary sectional view of FlG. 1 except that the diet are shown in an open position;
  • FIG. 3 is a view similar to FIG. 2 except that the dies are shown i a closed position.
  • the movable platen I! is slidably supported on the tie rods which in turn are supported by the stationary platen l4 and the support 16 in a well known manner.
  • the movable platen is also supported by a pillar 22 attached to the movable piston and supported by the rollers 24 disposed in rolling engage ment with the rails 21.
  • the stationary platen 14 also supports a shot sleeve 44. a shot plunger 46 rcciproeablo therein and a hydraulic cylinder 48 connected to the shot plunger 46 and supported by the platen 50 attached to the stationary piston 14 by the rods 52. fixed to the platen 50 and the stationary platen 14.
  • the stationary platen 14 carries the cover die 28 and the movable platen 18 carries the ejector die 30.
  • the cover and ejector dies cooperate in a die-closed position to form a die cavity in the form of a V-type engine block.
  • a typical casting 32 is shown in FIG. 2 including the crankcase cavity 34, the surfaces 36, the sidewalls 38 and the cylinder bores 40.
  • the cover die 28 includes the die member 42 which defines the crankcase cavity 34 of the engine block.
  • the stationary platen l4 and the cover die 28 contain and support the shot sleeve 44 and the shot plunger 46 as previously described.
  • the ejector die includes a main portion 54 mounted rigidly on the movable platen 18, a die portion 56 which defines the top portion 36 of the casting, the obliquely opposed barrel core members or die members 58 and 60 positioned at oblique angles to the longitudinal axis of the apparatus and movable relative to the main die member 54 between a die-open and a die-closed position.
  • These oblique die members 58 and 60 are usually positioned at an angle of about 45 to the longitudinal axis of the ejector die and define the cylinder barrels 40 and the cooling passage 41 when in a die-closed position.
  • the ejector die assembly also includes a pair of opposed die members 62 and 64 movable transversely of or perpendicularly to the longitudinal axis of the die-casting apparatus.
  • the die memhere 62 and 64 define the sidewalls or bulkheads 38 of the engine block 32 when they are in a die-closed position.
  • the die portions 58 and 60 are reciprocably movable with respect to the main die member 54 by means of the hydraulic cylinders 59 and 61, respectively. supported on the main die portion 54 by means of the brackets 63 and 65 and guided and supported by the tie rods 63A and 65A respectively.
  • the transverse die portions 62 and 64 are movable relative to the main die member 54 by means of hydraulic cylinders 66 and 68, respectively, and are supported on the main die member 54 by means of the brackets 67 and 69, respectively, and are guided and supported by the tie rods 67A and 69A.
  • the barrel core or oblique die portion 58 includes a depression 70 therein including a sidewall 72 parallel to the longitudinal axis of the barrel core 58 and a sidewall 74 perpendicular thereto.
  • the transverse die portion 62 includes a projection 76 having a sidewall 78 parallel to the longitudinal axis oi the barrel core 58 and a sidewall 80 perpendicular to the longitudinal axis oithc barrel core 58.
  • the barrel core 60 similarly has a recess 82 having a sidewall 83 parallel to the longitudinal axis of the barrel core 60 and a sidewall 84 perpendicular to the longitudinal axis of the barrel core 60.
  • the transverse die portion 64 similarly has a projection 86 having a sidewall 87 parallel to the sidewall 83 and a sidewall 88 parallel to the sidewall 84.
  • the ejector die assembly 30 also includes the conventional ejector pins 90 attached to the ejector plate 92 operated by the hydraulic mechanism 94 in a well known manner.
  • the face 96 of the ejector die 54 portion facing the cover die is provided with a central protruding portion 98 bounded by tho transversely extending angular surface 101).
  • the trans verse die portions 62 and 64 are shaped so that the protruding portion 102 thcreoi bounded by the transverse surface 104 coincide with the surface 108 oi the cover die member 28 when the transverse die members are in a dic closed position.
  • H6. 2 shows the apparatus after the engine block has been cast and ejected. in returning the apparatus to a casting position the ejector pins 90 are retracted by the hydraulic cylinder 94 so that the ends thereof are flush with the surface of the die element 56. Next, barrel cores Stland 60 are moved to a diecloscd position as shown in FIG. 3 by means of the hydraulic Cylinders 59 and 61, respectively.
  • transverse die porders 66 and 68 respectively, with the surface 80 of the projec- "tion 76 engaging the surface 74 of the recess 70; and with the surface 88 of the projection 86 engaging the surface 84 of the recess 82 whereby the transverse die members 62-fa'nd 64 securely lock the barrel cores 58 and 60, respectively, in a dieclosed position.
  • the tip of the plunger 46 is then retracted and the movable platen is moved toward the cover die 28 bymeans of the hydraulic cylinder 26 and the toggle linkage 24 to a die-closed position whereby the protruding die face 98 of the ejector die engages the recess die face 106 of the cover die and whereby the angular surfaces 108 of the cover die engage the angular surfaces 100 of the ejector die and the angular surfaces 104 of the transverse dies 62 and 64 and whereby the cover die 28 looks the transverse dies 62 and 64 in a die-closed position.
  • the toggle linkage 24 is operative to maintain the cover and ejector dies in a die-closed position against the load of casting pressures, and is operative also to hold the transverse dies 62 and 64 and the barrel cores 58 and 60 in a die-closed position by reason of the interlocking die arrangement described.
  • the molten metal is then injected into the cavity formed between the die members and permitted to cool. During this time the plunger 46 continues to exert pressure on the solidifying metal bun 110 and on the casting through the runner 112. After the casting has solidified the hydraulic mechanism 26 is operated to move the ejector die to an open position. The pressure of the plunger 46 forces the bun 110 from the shot sleeve and the casting 32 is freed from the cover die and carried by the ejector die. The transverse die portions 62 and 64 are then retracted freeing the barrel cores 58 and 60 which are then retracted. The casting is then readily ejected by means of the ejector pins 90 operated by the hydraulic cylinder 94.
  • the combination comprising a stationary cover die and an ejector die assembly movable along the longitudinal axis of said machine between a dicopen and a die-closed position defining a die cavity thcrebetwcen in said closed position,
  • said third die portion including projection means and.
  • said ejector die assembly comprising a plurality of die portions movable independently of saidcover die between an ejector die open-and-closed position including a first main die portion movable between said die-open and dieclosed positions along said longitudinal axis, a pair of opposed seconddie portions carried by said first die portion at less than a right angle to said longitudinal axis comprising movable between said ejectordie open-and-closed positions and a pair of opposed third die portions carried by said first die and movable transversely of said longitudinal axis between said ejectordie open-and-closed positions, I
  • each of said second die portions including depression means and each of said third die portions including projection means and each of said depression means being adapted to receive one of said projection means when said second and third die portions are each in said ejector die-closed position whereby said third die portions lock said second die portions insaid ejector die-closed position
  • said third die portions including projection means and said cover die including depression means and said third die portions projection means being'adaptcd to be received in said coverdie depression means when said cover.
  • said second die portion depression means includes a first surface perpendicular to the longitudinal axis of said second die portion and said third die portion projection means includes a second surface perpendicular to the longitudinal axis oi second die portions, said first and second surface being adapted to engage one another in said ejector dic assembly closed position.
  • each of said second die portions including depression means and each of said third die portions including projection means and each of said depression means being adapted to receive one of said projection means when said second and third die portions are each in said ejector die-closed position whereby said third die portions lock said second die portions in said ejector die-closed position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

A diecasting machine of the horizontal type including a stationary cover die and an ejector die movable along a longitudinal axis between a mold open and mold closed position. The ejector die comprises a plurality of die elements including die elements movable obliquely to the longitudinal axis of the die assembly and other die elements movable transversely of the longitudinal axis of the die assembly. In accordance with the invention the transversely movable die elements interlock with and hold the obliquely movable die elements in a closed position and the cover die interlocks with and holds the transverse die elements in a closed position when the cover die and ejector die assembly are in a closed position.

Description

United States Patent 1 3,596,708
[72] Inventor John Lapin [56] References Cited fl Midl- UNITED STATES PATENTS 2 113" 1969 3,165,796 1/1965 McDonald 164/341 x 3,43 3 1969 M D ld 164 34 451 Patented A s, 197i 3 I c I 3 [73] Assignee GcnenlMotors Corporation rima y Exam Spencer overhmser Mich fixaminer-John S. Brown ys -peter P. Kozak and Sidney Carter ABSTRACT: A diecasting machine of the horizontal type inclu d j gla stationary cover die and an ejector die movable along 'afl'ongitudinal axis between a mold open and mold closed position. The ejector die comprises a plurality of die [54] glacflmglsM FOR DIECASTING elements including die elements movable obliquely to the longitudinal axis of the die assembly and other die elements [52] U5. CL 164/343, movable transversely of the longitudinal axis of the die as- I 164/312 sembly. In accordance with the invention the transversely [5i] lnt.Cl. 822d 17/26 movable die elements interlock with and hold the obliquely [50] Field 0! Search 164/303, movable die elements in a closed position and the cover die in- 341, 342, 343, 344, l37, 323, 333, 339, 340, 345; terlocks with and holds the transverse die elements in a closed l8/DIG. 5, D10. 10, DIG. 58, 30 LA, 30 LM, 34 R, position when the cover die and ejector die assembly are in a 2 RM, 2 RP, 42 P, 30 WM, 30 WC; 249/63-68 closed position.
Patented Aug. 3, 1971 3,596,708
2 Sheets-Sheet 1 INVIIN'IOR- BY MM Ka 7x22 Patented Aug. 3, 1971 I 3,596,708
2 Sheetm-Shnt 2 BY A422 fa 01 A T TOD/VF) LOCKING MECHANISM FOR DIECASTING This invention relates to die-casting machines having a plurality of relatively movable die members forming the movable ejector die assembly and more particularly to a means of interlocking the die members in a die-closed position during the molten metal injection step of the die-casting process.
in die-casting articles of complex shape such as an engine block, a plurality of movable die members are used which are registered in a die-closed position to form the die cavity and which are subsequently retracted to permit removal of the casting from the die. These die sections must be held in a dieclosed position against high molten metal injection pressures in the vicinity of 10,000 pounds per square inch. in die casting an engine block. the die apparatus may consist of a cover die which defines the crank case portion of the block and an ejector die assembly which defined the top, the sidewalls and the cylinders of the block. The ejector die assembly may consist of a main portion which defines the top of the block, a pair of obliquely movable die portions or slides which form the barrel cores for forming the cylinders and a pair of opposed die portions or slides movable relative to the ejector die assembly transversely thereof which forms the sidewalls of the engine block.
it is an object of this invention to provide means for utilizing the locking force of the normal die-casting machine, i.e. the mechanical advantage obtained in the opening and closing mechanism to secure or lock all of the die members against movement when the dies are moved to a die-closed position.
it is a more specific object of this invention to provide recesses in the oblique dies or slides which are engaged by projections in the transverse dies in the die-closed position and further to provide projections on the transverse dies which engage a recess in the cover die whereby the transverse dies lock the oblique dies and the cover die locks the transverse dies in a die-closed position and whereby all the dies are maintained in the die-closed position by the normal locking force of the machine.
Other objectives and advantages of my invention will ap pear more clear from the following detailed description wherein reference is made to the accompanying drawings in which:
FIG. 1 is an elevation view of a die-casting machine cmbodying the invention with the dies of the machine being a closed and locked position;
FIG. 2 is an enlarged fragmentary sectional view of FlG. 1 except that the diet are shown in an open position;
FIG. 3 is a view similar to FIG. 2 except that the dies are shown i a closed position.
Refer ing to the drawings and particularly to FIG. 1. a die= casting machine generally indicated at includes a platform 12 which supports the stationary platen l4 and the vertical support 16.
The movable platen I! is slidably supported on the tie rods which in turn are supported by the stationary platen l4 and the support 16 in a well known manner. The movable platen is also supported by a pillar 22 attached to the movable piston and supported by the rollers 24 disposed in rolling engage ment with the rails 21. The stationary support 16 and the movable piston 18 are interconnected by the toggle mechanism 24 whereby the movable piston 18 is movable reclprocably between a dic=open position and a die=closcd position by the hydraulic cylinder 26 in a well known manner.
The stationary platen 14 also supports a shot sleeve 44. a shot plunger 46 rcciproeablo therein and a hydraulic cylinder 48 connected to the shot plunger 46 and supported by the platen 50 attached to the stationary piston 14 by the rods 52. fixed to the platen 50 and the stationary platen 14.
The above described mechanism is of standard construction common to toggle=operatcd horizontal die-casting machines and the details thereof will be obvious tothose familiar with the art.
Referring to FIG. 2, the stationary platen 14 carries the cover die 28 and the movable platen 18 carries the ejector die 30. in the preferred embodiment of this invention. the cover and ejector dies cooperate in a die-closed position to form a die cavity in the form of a V-type engine block. A typical casting 32 is shown in FIG. 2 including the crankcase cavity 34, the surfaces 36, the sidewalls 38 and the cylinder bores 40.
The cover die 28 includes the die member 42 which defines the crankcase cavity 34 of the engine block. The stationary platen l4 and the cover die 28 contain and support the shot sleeve 44 and the shot plunger 46 as previously described.
The ejector die includes a main portion 54 mounted rigidly on the movable platen 18, a die portion 56 which defines the top portion 36 of the casting, the obliquely opposed barrel core members or die members 58 and 60 positioned at oblique angles to the longitudinal axis of the apparatus and movable relative to the main die member 54 between a die-open and a die-closed position. These oblique die members 58 and 60 are usually positioned at an angle of about 45 to the longitudinal axis of the ejector die and define the cylinder barrels 40 and the cooling passage 41 when in a die-closed position. The ejector die assembly also includes a pair of opposed die members 62 and 64 movable transversely of or perpendicularly to the longitudinal axis of the die-casting apparatus. The die memhere 62 and 64 define the sidewalls or bulkheads 38 of the engine block 32 when they are in a die-closed position.
The die portions 58 and 60 are reciprocably movable with respect to the main die member 54 by means of the hydraulic cylinders 59 and 61, respectively. supported on the main die portion 54 by means of the brackets 63 and 65 and guided and supported by the tie rods 63A and 65A respectively. The transverse die portions 62 and 64 are movable relative to the main die member 54 by means of hydraulic cylinders 66 and 68, respectively, and are supported on the main die member 54 by means of the brackets 67 and 69, respectively, and are guided and supported by the tie rods 67A and 69A.
in accordance with the principal features of this invention the barrel core or oblique die portion 58 includes a depression 70 therein including a sidewall 72 parallel to the longitudinal axis of the barrel core 58 and a sidewall 74 perpendicular thereto. The transverse die portion 62 includes a projection 76 having a sidewall 78 parallel to the longitudinal axis oi the barrel core 58 and a sidewall 80 perpendicular to the longitudinal axis oithc barrel core 58. As may be readily seen the side wall 80 of the projection 76 is adapted to engage the sidewall 74 of the recess 70 when the core member 58 and the transverse die portion 62 are in a dlc=ciosed position as shown in FiG. 3.
The barrel core 60 similarly has a recess 82 having a sidewall 83 parallel to the longitudinal axis of the barrel core 60 and a sidewall 84 perpendicular to the longitudinal axis of the barrel core 60. The transverse die portion 64 similarly has a projection 86 having a sidewall 87 parallel to the sidewall 83 and a sidewall 88 parallel to the sidewall 84.
The ejector die assembly 30 also includes the conventional ejector pins 90 attached to the ejector plate 92 operated by the hydraulic mechanism 94 in a well known manner.
The face 96 of the ejector die 54 portion facing the cover die is provided with a central protruding portion 98 bounded by tho transversely extending angular surface 101). The trans verse die portions 62 and 64 are shaped so that the protruding portion 102 thcreoi bounded by the transverse surface 104 coincide with the surface 108 oi the cover die member 28 when the transverse die members are in a dic closed position. The cover die 28 is provided with a recessed surface 106 bounded by the transversely extending surface 108 which form a lock with surfaces 104 of the ejector die assembly when the cover and ejector dies are in a die=eloscd position.
H6. 2 shows the apparatus after the engine block has been cast and ejected. in returning the apparatus to a casting position the ejector pins 90 are retracted by the hydraulic cylinder 94 so that the ends thereof are flush with the surface of the die element 56. Next, barrel cores Stland 60 are moved to a diecloscd position as shown in FIG. 3 by means of the hydraulic Cylinders 59 and 61, respectively. Then the transverse die porders 66 and 68, respectively, with the surface 80 of the projec- "tion 76 engaging the surface 74 of the recess 70; and with the surface 88 of the projection 86 engaging the surface 84 of the recess 82 whereby the transverse die members 62-fa'nd 64 securely lock the barrel cores 58 and 60, respectively, in a dieclosed position.
The tip of the plunger 46 is then retracted and the movable platen is moved toward the cover die 28 bymeans of the hydraulic cylinder 26 and the toggle linkage 24 to a die-closed position whereby the protruding die face 98 of the ejector die engages the recess die face 106 of the cover die and whereby the angular surfaces 108 of the cover die engage the angular surfaces 100 of the ejector die and the angular surfaces 104 of the transverse dies 62 and 64 and whereby the cover die 28 looks the transverse dies 62 and 64 in a die-closed position. The toggle linkage 24 is operative to maintain the cover and ejector dies in a die-closed position against the load of casting pressures, and is operative also to hold the transverse dies 62 and 64 and the barrel cores 58 and 60 in a die-closed position by reason of the interlocking die arrangement described.
The molten metal is then injected into the cavity formed between the die members and permitted to cool. During this time the plunger 46 continues to exert pressure on the solidifying metal bun 110 and on the casting through the runner 112. After the casting has solidified the hydraulic mechanism 26 is operated to move the ejector die to an open position. The pressure of the plunger 46 forces the bun 110 from the shot sleeve and the casting 32 is freed from the cover die and carried by the ejector die. The transverse die portions 62 and 64 are then retracted freeing the barrel cores 58 and 60 which are then retracted. The casting is then readily ejected by means of the ejector pins 90 operated by the hydraulic cylinder 94.
The apparatusand method of operation described herein has substantial advantages of space conservation and siniplici ty of operation and ease of adjustment in comparison to mechanisms of the prior art. Although the invention has been described in terms of apparatus for making engine blocks it is obvious that the principles involved may be applied to casting other articles within the scope of the invention.
What l claim is:
l. in a die-casting machine the combination comprising a stationary cover die and an ejector die assembly movable along the longitudinal axis of said machine between a dicopen and a die-closed position defining a die cavity thcrebetwcen in said closed position,
said ejector die assembly comprising a plurality of die por' tions movable independently of said cover die between an ejector die open-and=eioscd position including a first main die portion movable between said die-open and dieclosed positions along said longitudinal axis, a second the portion carried by said first die portion at less than a right angle to said longitudinal axis and movable between said ejector die opcn=and=closcd positions and a third die por tion carried by said first dis and movable transversely oi said longitudinal axis between said ejector ie opcn and= closed positions,
said second die portion including depression means and said third die portion including projection means and said depression means being adapted to receive said projcc= tion means when said second and third die portions are each in said ejector dic=closcd position whereby said third die portions lock said second die in said ojcctor dio cl'oscd position,
said third die portion including projection means and. said cover dis including depression means and said third die portion projection means being adapted to be recei ed in said cover die depression means when said cover die and said ejector dis asscmbly are in said dic=ciosed position whereby said third die portion is locked in said die-closed position and I means for holding said cover die and ejector die assembly in said die-closed position. 2. in a die-casting machine the combination comprising a stationary cover die and an ejectordie assembly movable along the longitudinal axis of said machine between a dieopen and a die-closed position defining a die cavity therebetweenin said closed position,-.
said ejector die assembly comprising a plurality of die portions movable independently of saidcover die between an ejector die open-and-closed position including a first main die portion movable between said die-open and dieclosed positions along said longitudinal axis, a pair of opposed seconddie portions carried by said first die portion at less than a right angle to said longitudinal axis comprising movable between said ejectordie open-and-closed positions and a pair of opposed third die portions carried by said first die and movable transversely of said longitudinal axis between said ejectordie open-and-closed positions, I
each of said second die portions including depression means and each of said third die portions including projection means and each of said depression means being adapted to receive one of said projection means when said second and third die portions are each in said ejector die-closed position whereby said third die portions lock said second die portions insaid ejector die-closed position, said third die portions including projection means and said cover die including depression means and said third die portions projection means being'adaptcd to be received in said coverdie depression means when said cover. die and said ejector die assembly are in said die-closed position whereby said third die portions are locked in said dieclosed position and i means for holding said cover die and said ejector die assembly in said die=closed position.
3. The die-casting machine of claim 1 wherein said second die portion depression means includes a first surface perpendicular to the longitudinal axis of said second die portion and said third die portion projection means includes a second surface perpendicular to the longitudinal axis oi second die portions, said first and second surface being adapted to engage one another in said ejector dic assembly closed position.
4. in a dio=casting machine for casting a V=type engine block including a crankcase cavity. sidewalls. a top side and a plurality of cylinders the combination comprising a stationary cover die and an ejector dic assembly movable along the longitudinal axis oisaid machine between a dieopcn and a dio closod position doiining a die cavity thcrcbctwcen in said closed position, said cover die defining the crankcase cavity and said ejector die assembly defining the said cylinders. sidewalls and top surfaces of said block.
said ejector die assembly comprising a plurality of die portions movable independently of said cover dic between an ejector die opon=and=closcd position including a first main die portion movable between said dic opcn and diecloscd positions along said longitudinal axis. said first die portion defining the top surface of said block. a pair of opposed second die portionscarricd by said first die-portion at oss than a righ angle to said longitudinal nxisand movablc between said ejector die opcn=and-closed positions for defining the said cylinders of said block and a pair of opposed third die portions carried by said first die and movable transversely of said longitudinal axis between said ejector die opon and=closed positions for defining the said sidewalls of said block.
each of said second die portions including depression means and each of said third die portions including projection means and each of said depression means being adapted to receive one of said projection means when said second and third die portions are each in said ejector die-closed position whereby said third die portions lock said second die portions in said ejector die-closed position.
whereby said third die portions are locked in said dieclosed position and means for holding said cover die and said ejector die assembly in said dieclosed position.

Claims (4)

1. In a die-casting machine the combination comprising a stationary cover die and an ejector die assembly movable along the longitudinal axis of said machine between a die-open and a die-closed position defining a die cavity therebetween in said closed position, said ejector die assembly comprising a plurality of die portions movable independently of said cover die between an ejector die open-and-closed position including a first main die portion movable between said die-open and die-closed positions along said longitudinal axis, a second die portion carried by said first die portion at less than a right angle to said longitudinal axis and movable between said ejector die openand-closed positions and a third die portion carried by said first die and movable transversely of said longitudinal axis between said ejector die open-and-closed positions, said second die portion including depression means and said third die portion including projection means and said depression means being adapted to receive said projection means when said second and third die portions are each in said ejector die-closed position whereby said third die portions lock said second die in said ejector die-closed position, said third die portion including projection means and said cover die including depression means and said third die portion projection means being adapted to be received in said cover die depression means when said cover die and said ejector die assembly are in said die-closed position whereby said third die portion is locked in said die-closed position and means for holding said cover die and ejector die assembly in said die-closed position.
2. In a die-casting machine the combination comprising a stationary cover die and an ejector die assembly movable along the longitudinal axis of said machine between a die-open and a die-closed position defining a die cavity therebetween in said closed position, said ejector die assembly comprising a plurality of die portions movable independently of said cover die between an ejector die open-and-closed position including a first main die portion movable between said die-open and die-closed positions along said longitudinal axis, a pair of opposed second die portions carried by said first die portion at less than a right angle to said longitudinal axis comprising movable between said ejector die open-and-closed positions and a pair of opposed third die portions carried by said first die and movable transversely of said longitudinal axis between said ejector die open-and-closed positions, each of said second die portions including depression means and each of said third die portions including projection means and each of said depression means being adapted to receive one of said projection means when said second and third die portions are each in said ejector die-closed position whereby said third die portions lock said second die portions in said ejector die-closed position, said third die portions including projection means and said cover die including depression means and said third die portions projection means being adapted to be received in said cover die depression means when said cover die and said ejector die assembly are in said die-closed position whereby said third die portions are locked in said die-closed position and means for holding said cover die and said ejector die assembly in said die-closed position.
3. The die-casting machine of claim 1 wherein said second die portion depression means includes a first surface perpendicular to the longitudinal axis of said second die portion and said third die portion projection means includes a second surface perpendicular to the longitudinal axis of second die portions, said first and second surface being adapted to engage one another in said ejector Die assembly closed position.
4. In a die-casting machine for casting a V-type engine block including a crankcase cavity, sidewalls, a top side and a plurality of cylinders the combination comprising a stationary cover die and an ejector die assembly movable along the longitudinal axis of said machine between a die-open and a die-closed position defining a die cavity therebetween in said closed position, said cover die defining the crankcase cavity and said ejector die assembly defining the said cylinders, sidewalls and top surfaces of said block, said ejector die assembly comprising a plurality of die portions movable independently of said cover die between an ejector die open-and-closed position including a first main die portion movable between said die-open and die-closed positions along said longitudinal axis, said first die portion defining the top surface of said block, a pair of opposed second die portions carried by said first die portion at less than a right angle to said longitudinal axis and movable between said ejector die open-and-closed positions for defining the said cylinders of said block and a pair of opposed third die portions carried by said first die and movable transversely of said longitudinal axis between said ejector die open-and-closed positions for defining the said sidewalls of said block, each of said second die portions including depression means and each of said third die portions including projection means and each of said depression means being adapted to receive one of said projection means when said second and third die portions are each in said ejector die-closed position whereby said third die portions lock said second die portions in said ejector die-closed position, said third die portions including projection means and said cover die including depression means and said third die portion projection means being adapted to be received in said cover die depression means when said cover die and said ejector die assembly are in said die-closed position whereby said third die portions are locked in said die-closed position and means for holding said cover die and said ejector die assembly in said die-closed position.
US879121A 1969-11-24 1969-11-24 Locking mechanism for diecasting Expired - Lifetime US3596708A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87912169A 1969-11-24 1969-11-24

Publications (1)

Publication Number Publication Date
US3596708A true US3596708A (en) 1971-08-03

Family

ID=25373469

Family Applications (1)

Application Number Title Priority Date Filing Date
US879121A Expired - Lifetime US3596708A (en) 1969-11-24 1969-11-24 Locking mechanism for diecasting

Country Status (1)

Country Link
US (1) US3596708A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760864A (en) * 1971-02-12 1973-09-25 Minnesota Mining & Mfg Method of casting in thin-walled molds
US3971432A (en) * 1973-06-11 1976-07-27 Donald Paul Hardey Die casting machine
US4206799A (en) * 1978-12-11 1980-06-10 Mcdonald John W Oblique core locking mechanism for die casting machines
US4210196A (en) * 1978-06-01 1980-07-01 Lewis Weiner Die casting apparatus
EP0155121A1 (en) * 1984-02-29 1985-09-18 Guido Perrella Nozzle assembly for die casting machine
US5429175A (en) * 1993-07-01 1995-07-04 Tht Presses Inc. Vertical die casting press and method of operation
US5832982A (en) * 1997-01-29 1998-11-10 Williams International Co., L.L.C. Metal forming process
US5865241A (en) * 1997-04-09 1999-02-02 Exco Technologies Limited Die casting machine with precisely positionable obliquely moving die core pieces
US6003585A (en) * 1997-01-29 1999-12-21 Williams International Co., L.L.C. Multiproperty metal forming process
US6502624B1 (en) 2000-04-18 2003-01-07 Williams International Co., L.L.C. Multiproperty metal forming process
US20030201576A1 (en) * 2002-04-25 2003-10-30 Michael Smith Injection mold apparatus and method
US6761208B2 (en) 2002-10-03 2004-07-13 Delaware Machinery & Tool Co. Method and apparatus for die-casting a V-block for an internal combustion engine
US20060207741A1 (en) * 2005-02-11 2006-09-21 Jim Purdy Engine block die-casting apparatus having mechanically actuated bank core slides
US20070006988A1 (en) * 2005-07-08 2007-01-11 Buhler Druckguss Ag Injection-molding device for manufacturing V-engine blocks
US20070204969A1 (en) * 2006-03-03 2007-09-06 Whealy Gregg E Molding and die casting apparatus and methods
WO2007131368A1 (en) * 2006-05-11 2007-11-22 Bühler Druckguss AG Mold device for producing cast parts
US20080308250A1 (en) * 2007-06-12 2008-12-18 Delaware Machinery And Tool Company, Inc. Die-casting apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3165796A (en) * 1962-02-07 1965-01-19 Nat Lead Co Large angular core locking mechanism for die casting
US3433292A (en) * 1966-05-25 1969-03-18 Gen Motors Corp Locking mechanism for diecasting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3165796A (en) * 1962-02-07 1965-01-19 Nat Lead Co Large angular core locking mechanism for die casting
US3433292A (en) * 1966-05-25 1969-03-18 Gen Motors Corp Locking mechanism for diecasting

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760864A (en) * 1971-02-12 1973-09-25 Minnesota Mining & Mfg Method of casting in thin-walled molds
US3971432A (en) * 1973-06-11 1976-07-27 Donald Paul Hardey Die casting machine
US4210196A (en) * 1978-06-01 1980-07-01 Lewis Weiner Die casting apparatus
US4206799A (en) * 1978-12-11 1980-06-10 Mcdonald John W Oblique core locking mechanism for die casting machines
EP0155121A1 (en) * 1984-02-29 1985-09-18 Guido Perrella Nozzle assembly for die casting machine
US4609032A (en) * 1984-02-29 1986-09-02 Guido Perrella Nozzle assembly for die casting machine
US5429175A (en) * 1993-07-01 1995-07-04 Tht Presses Inc. Vertical die casting press and method of operation
US5832982A (en) * 1997-01-29 1998-11-10 Williams International Co., L.L.C. Metal forming process
US6003585A (en) * 1997-01-29 1999-12-21 Williams International Co., L.L.C. Multiproperty metal forming process
US5865241A (en) * 1997-04-09 1999-02-02 Exco Technologies Limited Die casting machine with precisely positionable obliquely moving die core pieces
US6502624B1 (en) 2000-04-18 2003-01-07 Williams International Co., L.L.C. Multiproperty metal forming process
US20030201576A1 (en) * 2002-04-25 2003-10-30 Michael Smith Injection mold apparatus and method
EP1556181A4 (en) * 2002-10-03 2006-06-07 Delaware Machinery And Tool Co Method and apparatus for die-casting a v-block for an internal combustion engine
US6761208B2 (en) 2002-10-03 2004-07-13 Delaware Machinery & Tool Co. Method and apparatus for die-casting a V-block for an internal combustion engine
EP1556181A1 (en) * 2002-10-03 2005-07-27 Delaware Machinery and Tool Company, Inc. Method and apparatus for die-casting a v-block for an internal combustion engine
US7278462B2 (en) 2005-02-11 2007-10-09 Aar-Kel Enterprises, Inc. Engine block die-casting apparatus having mechanically actuated bank core slides
US20060207741A1 (en) * 2005-02-11 2006-09-21 Jim Purdy Engine block die-casting apparatus having mechanically actuated bank core slides
US20070006988A1 (en) * 2005-07-08 2007-01-11 Buhler Druckguss Ag Injection-molding device for manufacturing V-engine blocks
US7500508B2 (en) * 2005-07-08 2009-03-10 Buhler Druckguss Ag Injection-molding device for manufacturing V-engine blocks
WO2007106194A2 (en) 2006-03-03 2007-09-20 Delaware Machinery And Tool Company, Inc. Molding and die casting apparatus and methods
US20070204969A1 (en) * 2006-03-03 2007-09-06 Whealy Gregg E Molding and die casting apparatus and methods
US7669639B2 (en) 2006-03-03 2010-03-02 Delaware Machinery And Tool Co., Inc. Molding and die casting apparatus and methods
WO2007131368A1 (en) * 2006-05-11 2007-11-22 Bühler Druckguss AG Mold device for producing cast parts
US20090071623A1 (en) * 2006-05-11 2009-03-19 Buhler Druckguss Ag Moulding equipment for the production of castings
US7980290B2 (en) 2006-05-11 2011-07-19 Buhler Druckguss Ag Molding equipment for the production of castings
CN101437637B (en) * 2006-05-11 2013-02-20 布勒压力铸造股份公司 Mold device for producing cast parts
US20080308250A1 (en) * 2007-06-12 2008-12-18 Delaware Machinery And Tool Company, Inc. Die-casting apparatus
US7766073B2 (en) 2007-06-12 2010-08-03 Delaware Machinery And Tool Company, Inc. Die-casting apparatus

Similar Documents

Publication Publication Date Title
US3596708A (en) Locking mechanism for diecasting
US3433292A (en) Locking mechanism for diecasting
US4832307A (en) Injection mold
KR100852489B1 (en) Die-casting mold
EP0772278B1 (en) Apparatus for casting conductor of rotor of induction motor
US3581804A (en) Expansion gap compensating system for a die
US3165796A (en) Large angular core locking mechanism for die casting
CN101633041A (en) Double liquid-state forging die for extrusion casting
US6761208B2 (en) Method and apparatus for die-casting a V-block for an internal combustion engine
KR102102152B1 (en) Ejector device for ejecting product in high vacuum diecasting mold
US2335807A (en) Mold locking mechanism
JPH01128811A (en) Mold changeover mechanism of molding equipment
US4301856A (en) Permanent mold for gravity casting of light alloy cylinder heads
KR20210058169A (en) Vacuum system for die casting mold
US10183327B2 (en) Casting assembly
US3608623A (en) Wedge-shaped chock means for locking impression blocks of a die assembly
US2531965A (en) Mold base
US2969569A (en) Compound angular ejection system
GB1270878A (en) Improvements in and relating to die casting machines
JP6134776B1 (en) Die casting mold
SU1289595A1 (en) Apparatus for die casting
JPS6453751A (en) Die-casting device
US2925635A (en) Off-center gate
SU1733188A1 (en) Molding die
SU1296292A1 (en) Die mould for die casting with staight gate system