US3508910A - Master alloy - Google Patents

Master alloy Download PDF

Info

Publication number
US3508910A
US3508910A US523866A US3508910DA US3508910A US 3508910 A US3508910 A US 3508910A US 523866 A US523866 A US 523866A US 3508910D A US3508910D A US 3508910DA US 3508910 A US3508910 A US 3508910A
Authority
US
United States
Prior art keywords
percent
titanium
molybdenum
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US523866A
Inventor
Walter L Finlay
Howard B Bomberger Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crucible Materials Corp
Original Assignee
Crucible Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crucible Inc filed Critical Crucible Inc
Application granted granted Critical
Publication of US3508910A publication Critical patent/US3508910A/en
Assigned to COLT INDUSTRIES OPERATING CORP. reassignment COLT INDUSTRIES OPERATING CORP. MERGER AND CHANGE OF NAME Assignors: CRUCIBLE CENTER COMPANY (INTO) CRUCIBLE INC. (CHANGED TO)
Assigned to CRUCIBLE MATERIALS CORPORATION reassignment CRUCIBLE MATERIALS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: COLT INDUSTRIES OPERATING CORP.
Assigned to MELLON FINANCIAL SERVICES CORPORATION, MELLON BANK, N.A. AS AGENT FOR MELLON BANK N.A. & MELLON FINANCIAL SERVICES CORPORATION reassignment MELLON FINANCIAL SERVICES CORPORATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). 2ND Assignors: CRUCIBLE MATERIALS CORPORATION, A CORP. OF DE.
Assigned to MELLON BANK, N.A. FOR THE CHASE MANHATTAN BANK (NATIONAL ASSOCIATION) AND MELLON BANK N.A., CHASE MANHATTAN BANK, THE (NATIONAL ASSOCIATION) AS AGENT reassignment MELLON BANK, N.A. FOR THE CHASE MANHATTAN BANK (NATIONAL ASSOCIATION) AND MELLON BANK N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). 1ST Assignors: CRUCIBLE MATERIALS CORPORATION, A CORP. OF DE.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00

Definitions

  • the master alloy consists essentially of 30 percent maximum chromium, 25 percent maximum titanium, 20 percent maximum iron, up to about percent in total of manganese, hafnium, columbium, tantalum, vanadium, nickel, copper and cobalt, to percent zirconium and 30 to 75 percent molybdenum.
  • titanium-base alloys of the alpha-beta type such as the alloy comprising 7 percent aluminum, 4 percent molybdenum, balance titanium, are known, and these alloys can be melted as a homogeneous composition rather readily by using a master alloy consisting of aluminum and molybdenum.
  • this approach is not available because the element aluminum is a stabilizer and promoter of the alpha phase and tends to form intemetallic compounds that would interfere with the ductility and usefulness of beta-type titanium-base alloys.
  • Another method which has been considered for use in producing such alloys involves the mixing of titanium powder with molybdenum powder and other alloy constituents to form a homogeneous powder mixture, compacting the powder mixture into a briquette, and then vacuum consumable-electrode melting such a briquette. Powdered molybdenum is required as a starting material, and the mixing step is exceedingly diflicult to perform adequately on anything but a very small scale, because the molybdenum powder is more dense than the other involved powders.
  • a master alloy of zirconium-molybdenum is lowermelting and less dense than molybdenum, and so melts quickly into liquid solution into the molten titanium, and in the instant invention advantage is taken of this fact.
  • the introduction of iron into the master alloy has the further advantage that it makes possible the use as a starting material of a relatively inexpensive material, ferromolybdenum, in place of the relatively expensive material, powdered molybdenum, hitherto considered necessary as a source of the molybdenum in the alloys.
  • the melting point of the master alloy can be further lowered, and the properties of the alloy thus produced can be further enhanced, by the inclusion in the master alloy of a substantial proportion of chromium, up to about 30 percent. If desired, up to about 10 percent in total amount of one or more elements selected from the group consisting of manganese, hafnium, columbium, tantalum, vanadium, nickel, copper, and cobalt may be incorporated in the master alloy with a view to further lowering its melting point and/ or enhancing the properties of the titanium-base alloy to be produced by its use.
  • the instant invention comprises the concept of providing, in fine granular form, a molybdenum-containing master alloy containing 20 to 40 percent zirconium, and at least about 30 percent molybdenum.
  • the zirconium may be replaced with iron in whole or in part on the basis of about one part for one by Weight, and preferably this is done, as aforesaid, by using the commercial ferrornolybdenum as a source of at least part of the molybdenum in the master alloy.
  • ferromolybdenum contains about 55 to 75 percent of molybdenum by weight, the balance being substantially iron, so that in most circumstances only a relatively small part of the molybdenum contained in the master alloy would need to be supplied in the form of pure molybdenum. It is considered essential that zirconium be included in a master alloy intended for use in the production of titanium-base alloys, because otherwise the final titaniumbase alloy has a relatively high content of iron, and its ductility suffers.
  • the instant invention comprises master alloys that contain 30 to 75 percent molybdenum, to 40 percent zirconium, 0 to 20 percent iron, 0 to 30 percent chromium, and 0 to 25 percent titanium, but 25 percent to 70 percent in total amount of one or more of the elements zirconium, iron, chromium, and titanium.
  • such alloys contain 20 to 40 percent of zirconium, and desirably, also at least 3 percent in total amount of an element selected from the group consisting of iron and chromium.
  • one desirable range of molybdenum-zirconium-ir0n master alloys con- "sists of 40 to 75 percent molybdenum, 25 to 35 percent zirconium, and 5 to 20 percent iron.
  • Another example of a master alloy within the scope of the present invention is one consisting essentially of 45 to 70 percent molybdenum, 25 to 35 percent zirconium, 5 to 20 percent iron, 3 to percent chromium, and to percent titanium.
  • the master alloys are provided in the form of fine granules.
  • the particles of master alloy are substantially all of such size as will pass through a No. 3 US. Standard sieve and be retained upon a sieve such as a No. US. Standard sieve, or perhaps slightly finer.
  • the considerations in choosing a suitable size range for a given master alloy include the readiness with which the particular alloy melts and the size and chemical composition of the material with which it is to be mixed to form the desired final alloy.
  • Master alloys that are quite readily meltable, having a low melting point in comparison with that of the material with which the master alloy is to be mixed, can often be used in the form of fairly coarse particles, e.g., with a maximum dimension of about one inch. It is generally desirable, however, to adhere to a somewhat smaller top size, such as a No. 8 US. Standard sieve or finer. On the other hand, it is essential, in the interest of obtaining a relatively uniform mixture of the master alloy with the other materials contained in the composition of the desired final alloy, to avoid the use of any substantial amount of particles that are so fine as to separate out or be carried away as dust. The sizes of the particles of the titanium sponge, titanium fines, or other similar material should be considered.
  • the invention also comprises the method of using certain of the master alloys of the invention to produce homogeneous ingots of molybdenum-rich titanium-base alloys which consists in mixing said alloys in the form of fine granules with particles of titanium, preferably titanium sponge, compacting the mixture thus obtained into an object to be melted, preferably a consumable electrode, and then melting said object in the substantial absence of oxygen, nitrogen, and carbon, preferably in a vacuum.
  • EXAMPLE I Ten parts by weight of molybdenum chips or molybdenum rondelles are blended with 5 parts by weight of zirconium sponge, then melted in a carbon arc furnace to produce an ingot. The ingot is dumped, crushed, and screened to obtain a sized fraction which will pass through a No. 8 US. Standard sieve but will be retained upon a No. 30 U.S. Standard sieve. If desired, the sized material is again carbon-arc-melted to form a second ingot which is subsequently crushed and screened to obtain a material of the same consistency.
  • the master alloy is in fine, granular form and contains about 67 percent molybdenum, about 33 percent zirconium, and only about 0.01 percent of carbon. That is how a fine, granular master alloy in accordance with the present invention is made.
  • Such a master alloy is used in the following manner. Fifteen parts by weight of the master alloy, prepared as mentioned above are mixed with 4 parts by weight of tin and 81 parts by weight of spronge titanium. The mixture is blended and is then compacted into the form of briquettes, for example, about 8 inches in diameter and 10 inches high. The briquettes are then assembled to form a consumable electrode, in any desired fashion, for example, by forming a cluster composed of three strands, each strand containing 8 or more of said briquettes, a titanium rod 1 inch in diameter being used, together with a welding torch, to weld the cluster together.
  • An adapter piece preferably of titanium metal, is welded to the upper end of the electrode, which is then placed in a vacuum consumable-electrode melting furnace and then melted in accordance with known practices.
  • the ingot thus produced is upended, an adapter is welded to its upper end, and the ingot is remelted, to yield an ingot of titanium-base alloy consisting essentially of 10 percent molybdenum, 5 percent zirconium, 4 precent tin, balance titanium.
  • a titanium-base alloy is produced which is considerably freer from dense-metal inclusions than any other titanium-base alloy of like molybdenum content produced without the use of special and costly melting practices.
  • Example I was repeated, except that after the first carbon-arc melt was conducted and a sized fraction of molybdenum-zirconium alloy was obtained, there were added to parts by weights of said molybdenum-zirconium alloy 5 parts by weight of titanium sponge. This mixture was thoroughly blended and carbon-arc-melted a second time as in Example I, and the resulting ingot was crushed and screened. Twenty parts by weight of such master alloy were mixed with 4 parts by Weight of tin and 76 parts by weight of sponge titanium, and then further treated as in Example I to yield a titanium-base alloy con taining 10 weight percent polybdenum, 5 percent zirconium, 4 percent tin, balance titanium.
  • EXAMPLE III A mixture was formed consisting of 59 parts by weight of molybdenum rondelles, 29 parts by weight of zirconium sponge and 12 parts by weight of iron pellets. The mixture was thoroughly blended, then carbon-arc-melted, screened, remelted, and again screened, as indicated in Example I. This yields a master alloy in fine, granular form, consisting essentially, by weight, of 59 percent molybdenum, percent zirconium, and 12 percent iron.
  • Example II One hundred parts by weight of such mixture were then thoroughly blended with 24 parts by weight of tin and 466 parts by weight of titanium sponge, and then further processed as indicated in Example I, to yield a final titanium base alloy consisting essentially of 10 percent molybdenum, 5 percent zirconium, 4 percent tin, 2 percent iron, balance titanium. The addition of iron further lowers the melting point of the master alloy and yields a final doubly consumable-electrode-melted product of improved homogeneity.
  • Example III was repeated except that ferromolybdenum was used as a source of iron, in place of iron pellets. That is, a mixture wa formed consisting of 36 parts by weight of ferromolybdenum (containing 67 percent molybdenum and the balance essentially iron), parts by weight of molybdenum rondelles, and 29 parts by weight of zirconium sponge. The mixture was thoroughly blended and carbon-arc-melted, screened, remelted, and again screened as indicated in Example I.
  • ferromolybdenum was used as a source of iron, in place of iron pellets. That is, a mixture wa formed consisting of 36 parts by weight of ferromolybdenum (containing 67 percent molybdenum and the balance essentially iron), parts by weight of molybdenum rondelles, and 29 parts by weight of zirconium sponge. The mixture was thoroughly blended and carbon-arc-melted, screened, remelted, and again screened as indicated in Example I.
  • Example II One hundred parts by weight of such mixture were then thoroughly blended with 24 parts by weight of tin and 466 parts by weight of titanium sponge, and then further processed as indicated in Example I, to yield a titanium-base alloy consisting essentially of 10 percent molybdenum, 5 percent zirconium, 4 percent tin, 2 percent iron, balance titanium.
  • Example IV was repeated, except that some titanium was added to the master-alloy composition immediately before the second carbon-arc-melting. That is, a mixture was formed consisting of 36 parts by weight of ferromolybdenum (containing 67 percent molybdenum and the balance essentially iron), 35 parts by weight of molybdenum rondellas, and 29 parts by weight of zirconium sponge. The mixture was thoroughly blended, then carbon-arc-melted, and screened. To this screened product there was added suflicient titanium sponge to yield a titanium content of 20 percent in the master alloy after the second carbon-arc melt.
  • ferromolybdenum containing 67 percent molybdenum and the balance essentially iron
  • molybdenum rondellas 35 parts by weight of molybdenum rondellas
  • zirconium sponge 29 parts by weight
  • Example I 100 parts by weight of the screened product of the first carbon-arc melt were mixed with 25 parts by weight of titanium sponge, and then further processed as indicated in Example I. This yielded a screened master alloy in fine, granular form, consisting essentially, by weight of 47 percent molybdenum, 23 percent zirconium, 10 percent iron, 20 percent titanium. One hundred parts by weight of such mixture were then thoroughly blended with 19 parts by weight of tin and 351 parts by weight of titanium sponge, and then further processed as indicated in Example I, to yield a final titanium-base alloy consisting essentially of 10 percent molybdenum, 5 percent zirconium, 4 percent tin, 2 percent iron, balance titanium.
  • EXAMPLE VI A mixture was formed consisting of 53 parts of weight of molybdenum rondelles, 30 parts by weight of zirconium sponge, 12 parts by weight of iron pellets, and 6 parts by weight of chromium chips. The mixture was thoroughly blended then carbon-arc-melted, screened, remelted, and again screened as indicated in Example I. One hundred and one parts by weight of such mixture were then thoroughly blended with 24 parts by weight of tin and 464 parts by weight of titanium sponge, and then further processed as indicated in Example I to yield a titanium-base alloy consisting essentially of 9 percent molybdenum, 5 percent zirconium, 4 percent tin, 2 percent iron, 1 percent chromium, balance titanium.
  • Example VI wa repeated, except that ferromolybdenum was used as a source of iron in place of iron pellets. That is, a mixture was formed consisting of 36 parts by weight of ferromolybdenum (containing 67 percent molybdenum and the balance essentially iron), 29 parts by weight of molybdenum rondelles, 30 parts by weight of zirconium sponge, and 6 parts by weight of chromium chips. The mixture was throughly blended, then carbonarc-melted, screened, remelted, and again screened as indicated in Example I.
  • Example II One hundred and one parts by weight of such mixture were then thoroughly blended with 24 parts by weight of tin and 464 parts by weight of titanium sponge, and then further processed as indicated in Example I, to yield a final titanium-base alloy consisting essentially of 9 percent molybdenum, 5 percent zirconium, 4 percent tin, 2 percent iron, 1 percent chromium, balance titanium.
  • Example VII was repeated, except that titanium was introduced to the master alloy immediately before the second carbon-arc melt. That is, a mixture was formed consisting of 36 parts by weight of ferromolybdenum (containing 67 percent molybdenum and the balance essentially iron), 29 parts by weight of molybdenum rondelles, 30 parts by weight of zirconium sponge, and 6 parts by weight of chromium chips. The mixture was thoroughly blended then carbon-arc-melted and screened. To this screened product there was added sutficient titanium sponge to yield a titanium content of 20 percent in the master alloy after the second carbon-arc-melt.
  • ferromolybdenum containing 67 percent molybdenum and the balance essentially iron
  • molybdenum rondelles 30 parts by weight of zirconium sponge
  • chromium chips 6 parts by weight
  • Example I 101 parts by weight of the screened product of the first carbon-arc-melt were mixed with 25 parts by weight of titanium sponge, and then further processed as indicated in Example I.
  • One hundred twentysix parts by weight of such mixture were then thoroughly blended with 24 parts by weight of tin and 439 parts by weight of titanium sponge, and then further processed as indicated in Example I, to yield a final titanium-base alloy consisting essentially of 9 percent molybdenum, 5 percent zirconium, 4 percent tin, 2 percent iron, 1 percent chromium, balance titanium.
  • Example VIII was repeated, except that ferrochromium (consisting of 70 percent chromium, balance essentially iron) was used as a source of chromiumin place of chromium chips, and molybdenum rondelles were used as a source of part of the molybdenum. That is, a mixture was formed consisting of 41 parts by weight of molybdenum 7 rondelles, 33 parts by weight of ferromolybdenum, 35 parts by weight of zirconium sponge, and 10 parts by weight of ferrochromium. The mixture was thoroughly blended and then carbon-arc-melted, screened, and remelted, and again screened as indicated in Example I.
  • ferrochromium consisting of 70 percent chromium, balance essentially iron
  • Example II One hundred nineteen parts by weight of such mixture were then thoroughly blended with 28 parts by weight of tin and 55 3 parts by weight of titaniumsponge and further processed as indicated in Example I, to yield a final titaniumbase alloy consisting essentially of 9 percent molybdenum, percent zirconium, 4 percent tin, 2 percent iron, 1 percent chromium, balance titanium.
  • Example 1X was repeated, .except that titanium was introduced to the master alloy immediately before the second carbon arc-melt. That is, a mixture was formed consisting of 41 parts by weight of m01yb denum rondelles, 33 parts by weight of ferro-molybdenum, 35 parts by weight of zirconium sponge, and parts by weight of ferrochromium. The mixture was thoroughly blended then carbon-arc-melted and screened. To this screened product there was added sutficient titanium sponge to yield a titanium content of 20 percent in the master alloy after the second carbon-arc-melt. That is, 119 parts by weight of the screened product of the first carbonarc-melt were mixed with 30 parts by weight of titanium sponge, and then further processed as indicated in Exam ple I.
  • a screened master alloy in fine, granular form having substantially the following composition: 42 percent molybdenum, 35 percent zirconium, 9 percent iron, 5 percent chromium, and 20 percent titanium.
  • 42 percent molybdenum, 35 percent zirconium, 9 percent iron, 5 percent chromium, and 20 percent titanium One hundred forty-nine parts by weight of such mixture were then thoroughly blended with 28 parts by weight of tin and 523 parts by weight of titanium sponge, and then further processed as indicated in Example I, to yield a final titanium-base alloy consisting essentially of 9 percent molybdenum, 5 percent zirconium, 4 percent tin, 2.percent iron, I percent chromium, balance titanium.
  • Another way in which the master alloy according to the invention may be used is to place together in a furnace in a vacuum or a protective (oxygenand nitrogen-free) atmosphere particles of master alloy and particles of titanium, and then arc-melt, using a non-consumable elec trode, for example, of carbon or tungsten.
  • a master alloy useful for the production of titaniumbase alloys containing a substantial quantity of molybdenum said matser alloy consisting essentially of up to 20 percent iron, up to 30 percent chromium, up to 25 percent titanium, 20 to 40 percent zirconium, and 30 to 75 percent of molybdenum, said alloy containing at least 3 percent in total amount of one element selected from the group consisting of chromium and iron.
  • a master alloy useful for the production of titaniumbase alloys containing a substantial quantity of molybdenum said master alloy consisting essentially of 40 to 75 percent molybdenum, 25 to 35 percent zirconium, and 5 to percent of iron.
  • a master alloy useful for the production of titaniumbase alloys containing a substantial quantity of 'molybdenum said master alloy consisting essentially of 40 to 75 percent molybdenum, to 35 percent zirconium, 5 to 20 percent of iron, and 3 to 10 percent of chromium.
  • a master alloy as defined in claim 8 characterized in that said alloy is in the form of fine granules snbstan tially all of such size as to pass through a No. 8 U.S. Standard sieve and be retained upon a No. 30 U.S. Standard sieve.
  • a master alloy useful for the production of titanium-base alloys containing a substantial quantity of molybdenum consisting essentially of 40 to percent by weight of molybdenum, 25 to 35 percent zirconium, 5 to 20 percentiron, up to 30 percent chromium, and 15 to 25 percent titanium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)

Description

United States Patent 3,508,910 MASTER ALLOY Walter L. Finlay, New York, N.Y., and Howard B. Bornberger, Jr., East Liverpool, Ohio, assignors to Crucible Inc., a corporation of Delaware No Drawing. Filed Feb. 1, 1966, Ser. No. 523,866 Int. Cl, C22c 27/00 U.S. Cl. 75-122 12 Claims ABSTRACT OF THE DISCLOSURE A molybdenum master alloy useful in the production of titanium-base alloys containing a substantial quantity of molybdenum. The master alloy consists essentially of 30 percent maximum chromium, 25 percent maximum titanium, 20 percent maximum iron, up to about percent in total of manganese, hafnium, columbium, tantalum, vanadium, nickel, copper and cobalt, to percent zirconium and 30 to 75 percent molybdenum.
It has long been known and appreciated that it is ex ceedingly ditficult to produce molybdenum-containing beta-type titanium-base alloys on a commercial scale. Titanium-base alloys of the alpha-beta type, such as the alloy comprising 7 percent aluminum, 4 percent molybdenum, balance titanium, are known, and these alloys can be melted as a homogeneous composition rather readily by using a master alloy consisting of aluminum and molybdenum. In making beta-type titanium-base alloys, this approach is not available because the element aluminum is a stabilizer and promoter of the alpha phase and tends to form intemetallic compounds that would interfere with the ductility and usefulness of beta-type titanium-base alloys.
Various alternative procedures have been considered for elfecting the inclusion of molybdenum in alloys of this type and obtaining a homogeneous composition, but all of these are considerably more tedious and complex in commercial use than the practice which is made possible by the use of master alloys in accordance with the instant invention.
The earliest known procedure for the production of relatively high-molybdenum titanium-base alloys involved the repeated vacuum-induction melting of small quantities, for example, about 50 grams, of the alloy, starting with titanium sponge or powder and powders of molybdenum and the other alloy constituents. Although a homogeneous alloy can be obtained in this manner, this method is entirely too time-consuming and costly to be useful in the production of molybdenum-containing betatype titanium-base alloys on a commercial scale.
Another method which has been considered for use in producing such alloys involves the mixing of titanium powder with molybdenum powder and other alloy constituents to form a homogeneous powder mixture, compacting the powder mixture into a briquette, and then vacuum consumable-electrode melting such a briquette. Powdered molybdenum is required as a starting material, and the mixing step is exceedingly diflicult to perform adequately on anything but a very small scale, because the molybdenum powder is more dense than the other involved powders. The finest-particle-size molybdenum powder commercially available is nevertheless sufficiently large, and the rate of diffusion of molybdenum in solid titanium is sufficiently low, that it takes an impractically long time to achieve homogeneity in even a perfectly blended powder-metallurgy compact. The long diffusion time is aggravated by the necessity to use relatively coarse titanium granules to avoid excessive oxygen pickup. Moreover, if one melts even a perfectly blended elecice trode, the titanium melts and the solid molybdenum particles drop from the melting electrode into the molten titanium pool. The latter is very reducing, i.e., non-oxidizing, and the molybdenum particles doubtless have chemically clean surfaces wetted by titanium. They are also high melting, and so do not immediately dissolve in the titanium; they are denser, and so drop rapidly to the bottom of the molten titanium bathhere, it is believed, there is a liquid solid slush, and also there is often some swirl and the interface between solid and liquid is usually concave upwards, with the result that some of the chemically-clean-surfaces moybdenum partices become jostled together and thus become sintered into agglomerates to form the large dense inclusions subsequently found in the ingot. A master alloy of zirconium-molybdenum, on the other hand, is lowermelting and less dense than molybdenum, and so melts quickly into liquid solution into the molten titanium, and in the instant invention advantage is taken of this fact.
Yet another possibility is the mixing of titanium powder with molybdenum powder and other alloy constituent powders in the manner described above, followed by compaction to a high theoretical density (somewhat in excess of percent), for example, in an argon-filled or evacuated enclosure or under other suitable protective conditions. Although such a method avoids the expense of the final melting step, the expense of the initial powdermixing step and the use of molybdenum powder militate strongly against the commercial usefulness of such approach. The tendency of titanium powder to become contaminated with oxygen, as noted above, is a further drawback. Similarly, dense metallic compacts produced in this manner have been found too brittle tobe useful and/ or too inclined, when welded, to cause weld porosity to be of use in any applications involving welding.
Yet another method for producing molybdenum-containing beta-type titanium-base alloys is that disclosed in co-pending application Serial No. 288,686, filed June 10, 1963 now Patent No. 3,269,825. This involves mixing powders of molybdenum and tin, rolling the molybdenum-tin mixture to extreme thinness so that it forms flakes, placing the flakes uniformly over the surface of a bed of titanium powder, building up the bed by adding additional layers of titanium powder and flakes, and then briquetting and double vacuum-consumable-electrode melting as indicated above. This procedure is very timeconsuming and expensive and requires considerable care and skill on the part of the persons practicing it.
Thus, it will be seen that the art of titanium metallurgy has been faced for a period of at least 10 years with a problem, the production of alloys of this type on a large scale, for which no satisfactory solution has yet been proposed.
In accordance with the instant invention, it has been discovered that by making first a master alloy of molybdenum with zirconium, alone or with one or more other elements, and comminuting that master alloy into fine granular form, and then mixing the fine granular master alloy with granular powder or sponge titanium, it becomes possible to produce, far more readily than in any manner hitherto known, beta-type titanium-base alloys containing substantial quantities of molybdenum. It has further been discovered that by replacing part, or possibly all, of the zirconium with iron, the melting point of the master alloy can be lowered still further, and the ease with which such molybdenum-containing beta-type titanium-base alloys can be produced is yet further enhanced. The introduction of iron into the master alloy has the further advantage that it makes possible the use as a starting material of a relatively inexpensive material, ferromolybdenum, in place of the relatively expensive material, powdered molybdenum, hitherto considered necessary as a source of the molybdenum in the alloys. This latter aspect is based upon work that has revealed, rather surprisingly, that although silicon, even in amounts as small as 0.1 percent by weight, tends to affect detrimentally the cold workability of the desired titaniumbase alloys, nevertheless the amounts of silicon that are present as an impurity in ferromolybdenum are sufficiently small that when ferromolybdenum is used in the formation of the master alloy which is ultimately incorporated in a molybdenum-containing beta-type titanium-base alloy, the silicon present does not worsen the properties of the product titanium-base alloy substantially, at least if the silicon content of the ferromolybdennm is less than about 1 percent.
It has also been discovered that the melting point of the master alloy can be further lowered, and the properties of the alloy thus produced can be further enhanced, by the inclusion in the master alloy of a substantial proportion of chromium, up to about 30 percent. If desired, up to about 10 percent in total amount of one or more elements selected from the group consisting of manganese, hafnium, columbium, tantalum, vanadium, nickel, copper, and cobalt may be incorporated in the master alloy with a view to further lowering its melting point and/ or enhancing the properties of the titanium-base alloy to be produced by its use.
In brief summary, the instant invention comprises the concept of providing, in fine granular form, a molybdenum-containing master alloy containing 20 to 40 percent zirconium, and at least about 30 percent molybdenum. In the broadest aspect of the invention, the zirconium may be replaced with iron in whole or in part on the basis of about one part for one by Weight, and preferably this is done, as aforesaid, by using the commercial ferrornolybdenum as a source of at least part of the molybdenum in the master alloy. Commercial ferromolybdenum contains about 55 to 75 percent of molybdenum by weight, the balance being substantially iron, so that in most circumstances only a relatively small part of the molybdenum contained in the master alloy would need to be supplied in the form of pure molybdenum. It is considered essential that zirconium be included in a master alloy intended for use in the production of titanium-base alloys, because otherwise the final titaniumbase alloy has a relatively high content of iron, and its ductility suffers.
In its broadest aspect, the instant invention comprises master alloys that contain 30 to 75 percent molybdenum, to 40 percent zirconium, 0 to 20 percent iron, 0 to 30 percent chromium, and 0 to 25 percent titanium, but 25 percent to 70 percent in total amount of one or more of the elements zirconium, iron, chromium, and titanium. Preferably, such alloys contain 20 to 40 percent of zirconium, and desirably, also at least 3 percent in total amount of an element selected from the group consisting of iron and chromium. More specifically, one desirable range of molybdenum-zirconium-ir0n master alloys con- "sists of 40 to 75 percent molybdenum, 25 to 35 percent zirconium, and 5 to 20 percent iron. Another example of a master alloy within the scope of the present invention is one consisting essentially of 45 to 70 percent molybdenum, 25 to 35 percent zirconium, 5 to 20 percent iron, 3 to percent chromium, and to percent titanium.
Another feature of the instant invention is that the master alloys are provided in the form of fine granules. By this, it is meant that the particles of master alloy are substantially all of such size as will pass through a No. 3 US. Standard sieve and be retained upon a sieve such as a No. US. Standard sieve, or perhaps slightly finer. The considerations in choosing a suitable size range for a given master alloy include the readiness with which the particular alloy melts and the size and chemical composition of the material with which it is to be mixed to form the desired final alloy. Master alloys that are quite readily meltable, having a low melting point in comparison with that of the material with which the master alloy is to be mixed, can often be used in the form of fairly coarse particles, e.g., with a maximum dimension of about one inch. It is generally desirable, however, to adhere to a somewhat smaller top size, such as a No. 8 US. Standard sieve or finer. On the other hand, it is essential, in the interest of obtaining a relatively uniform mixture of the master alloy with the other materials contained in the composition of the desired final alloy, to avoid the use of any substantial amount of particles that are so fine as to separate out or be carried away as dust. The sizes of the particles of the titanium sponge, titanium fines, or other similar material should be considered. Finer material in the master alloy can be tolerated if there is a suitable portion of the material with which it is to be mixed which is also comparatively fine. For admixture with common sponge titanium, the use of a master alloy not containing particles which will pass through a No. 30 US. Standard sieve is preferred.
The invention also comprises the method of using certain of the master alloys of the invention to produce homogeneous ingots of molybdenum-rich titanium-base alloys which consists in mixing said alloys in the form of fine granules with particles of titanium, preferably titanium sponge, compacting the mixture thus obtained into an object to be melted, preferably a consumable electrode, and then melting said object in the substantial absence of oxygen, nitrogen, and carbon, preferably in a vacuum.
A complete understanding of the invention may be obtained from a consideration of the following specific examples, illustrating how master alloys in accordance with the present invention are made and used.
EXAMPLE I Ten parts by weight of molybdenum chips or molybdenum rondelles are blended with 5 parts by weight of zirconium sponge, then melted in a carbon arc furnace to produce an ingot. The ingot is dumped, crushed, and screened to obtain a sized fraction which will pass through a No. 8 US. Standard sieve but will be retained upon a No. 30 U.S. Standard sieve. If desired, the sized material is again carbon-arc-melted to form a second ingot which is subsequently crushed and screened to obtain a material of the same consistency. Thus, it is found that the master alloy is in fine, granular form and contains about 67 percent molybdenum, about 33 percent zirconium, and only about 0.01 percent of carbon. That is how a fine, granular master alloy in accordance with the present invention is made.
Such a master alloy is used in the following manner. Fifteen parts by weight of the master alloy, prepared as mentioned above are mixed with 4 parts by weight of tin and 81 parts by weight of spronge titanium. The mixture is blended and is then compacted into the form of briquettes, for example, about 8 inches in diameter and 10 inches high. The briquettes are then assembled to form a consumable electrode, in any desired fashion, for example, by forming a cluster composed of three strands, each strand containing 8 or more of said briquettes, a titanium rod 1 inch in diameter being used, together with a welding torch, to weld the cluster together. An adapter piece, preferably of titanium metal, is welded to the upper end of the electrode, which is then placed in a vacuum consumable-electrode melting furnace and then melted in accordance with known practices. As is known, the ingot thus produced is upended, an adapter is welded to its upper end, and the ingot is remelted, to yield an ingot of titanium-base alloy consisting essentially of 10 percent molybdenum, 5 percent zirconium, 4 precent tin, balance titanium. In this manner, a titanium-base alloy is produced which is considerably freer from dense-metal inclusions than any other titanium-base alloy of like molybdenum content produced without the use of special and costly melting practices.
EXAMPLE H Example I was repeated, except that after the first carbon-arc melt was conducted and a sized fraction of molybdenum-zirconium alloy was obtained, there were added to parts by weights of said molybdenum-zirconium alloy 5 parts by weight of titanium sponge. This mixture was thoroughly blended and carbon-arc-melted a second time as in Example I, and the resulting ingot was crushed and screened. Twenty parts by weight of such master alloy were mixed with 4 parts by Weight of tin and 76 parts by weight of sponge titanium, and then further treated as in Example I to yield a titanium-base alloy con taining 10 weight percent polybdenum, 5 percent zirconium, 4 percent tin, balance titanium.
EXAMPLE III A mixture was formed consisting of 59 parts by weight of molybdenum rondelles, 29 parts by weight of zirconium sponge and 12 parts by weight of iron pellets. The mixture was thoroughly blended, then carbon-arc-melted, screened, remelted, and again screened, as indicated in Example I. This yields a master alloy in fine, granular form, consisting essentially, by weight, of 59 percent molybdenum, percent zirconium, and 12 percent iron. One hundred parts by weight of such mixture were then thoroughly blended with 24 parts by weight of tin and 466 parts by weight of titanium sponge, and then further processed as indicated in Example I, to yield a final titanium base alloy consisting essentially of 10 percent molybdenum, 5 percent zirconium, 4 percent tin, 2 percent iron, balance titanium. The addition of iron further lowers the melting point of the master alloy and yields a final doubly consumable-electrode-melted product of improved homogeneity.
EXAMPLE IV Example III was repeated except that ferromolybdenum was used as a source of iron, in place of iron pellets. That is, a mixture wa formed consisting of 36 parts by weight of ferromolybdenum (containing 67 percent molybdenum and the balance essentially iron), parts by weight of molybdenum rondelles, and 29 parts by weight of zirconium sponge. The mixture was thoroughly blended and carbon-arc-melted, screened, remelted, and again screened as indicated in Example I. One hundred parts by weight of such mixture were then thoroughly blended with 24 parts by weight of tin and 466 parts by weight of titanium sponge, and then further processed as indicated in Example I, to yield a titanium-base alloy consisting essentially of 10 percent molybdenum, 5 percent zirconium, 4 percent tin, 2 percent iron, balance titanium.
EXAMPLE V Example IV was repeated, except that some titanium was added to the master-alloy composition immediately before the second carbon-arc-melting. That is, a mixture was formed consisting of 36 parts by weight of ferromolybdenum (containing 67 percent molybdenum and the balance essentially iron), 35 parts by weight of molybdenum rondellas, and 29 parts by weight of zirconium sponge. The mixture was thoroughly blended, then carbon-arc-melted, and screened. To this screened product there was added suflicient titanium sponge to yield a titanium content of 20 percent in the master alloy after the second carbon-arc melt. That is, 100 parts by weight of the screened product of the first carbon-arc melt were mixed with 25 parts by weight of titanium sponge, and then further processed as indicated in Example I. This yielded a screened master alloy in fine, granular form, consisting essentially, by weight of 47 percent molybdenum, 23 percent zirconium, 10 percent iron, 20 percent titanium. One hundred parts by weight of such mixture were then thoroughly blended with 19 parts by weight of tin and 351 parts by weight of titanium sponge, and then further processed as indicated in Example I, to yield a final titanium-base alloy consisting essentially of 10 percent molybdenum, 5 percent zirconium, 4 percent tin, 2 percent iron, balance titanium.
EXAMPLE VI A mixture was formed consisting of 53 parts of weight of molybdenum rondelles, 30 parts by weight of zirconium sponge, 12 parts by weight of iron pellets, and 6 parts by weight of chromium chips. The mixture was thoroughly blended then carbon-arc-melted, screened, remelted, and again screened as indicated in Example I. One hundred and one parts by weight of such mixture were then thoroughly blended with 24 parts by weight of tin and 464 parts by weight of titanium sponge, and then further processed as indicated in Example I to yield a titanium-base alloy consisting essentially of 9 percent molybdenum, 5 percent zirconium, 4 percent tin, 2 percent iron, 1 percent chromium, balance titanium.
EXAMPLE VII Example VI wa repeated, except that ferromolybdenum was used as a source of iron in place of iron pellets. That is, a mixture was formed consisting of 36 parts by weight of ferromolybdenum (containing 67 percent molybdenum and the balance essentially iron), 29 parts by weight of molybdenum rondelles, 30 parts by weight of zirconium sponge, and 6 parts by weight of chromium chips. The mixture was throughly blended, then carbonarc-melted, screened, remelted, and again screened as indicated in Example I. One hundred and one parts by weight of such mixture were then thoroughly blended with 24 parts by weight of tin and 464 parts by weight of titanium sponge, and then further processed as indicated in Example I, to yield a final titanium-base alloy consisting essentially of 9 percent molybdenum, 5 percent zirconium, 4 percent tin, 2 percent iron, 1 percent chromium, balance titanium.
EXAMPLE VIII Example VII was repeated, except that titanium was introduced to the master alloy immediately before the second carbon-arc melt. That is, a mixture was formed consisting of 36 parts by weight of ferromolybdenum (containing 67 percent molybdenum and the balance essentially iron), 29 parts by weight of molybdenum rondelles, 30 parts by weight of zirconium sponge, and 6 parts by weight of chromium chips. The mixture was thoroughly blended then carbon-arc-melted and screened. To this screened product there was added sutficient titanium sponge to yield a titanium content of 20 percent in the master alloy after the second carbon-arc-melt. That is, 101 parts by weight of the screened product of the first carbon-arc-melt were mixed with 25 parts by weight of titanium sponge, and then further processed as indicated in Example I. This yielded a screened master alloy in fine, granular form having substantially the following composition: 42 percent molybdenum, 24 percent zirconium, 9 percent iron, 5 percent chromium, 20 percent titanium. One hundred twentysix parts by weight of such mixture were then thoroughly blended with 24 parts by weight of tin and 439 parts by weight of titanium sponge, and then further processed as indicated in Example I, to yield a final titanium-base alloy consisting essentially of 9 percent molybdenum, 5 percent zirconium, 4 percent tin, 2 percent iron, 1 percent chromium, balance titanium.
EXAMPLE. IX
Example VIII was repeated, except that ferrochromium (consisting of 70 percent chromium, balance essentially iron) was used as a source of chromiumin place of chromium chips, and molybdenum rondelles were used as a source of part of the molybdenum. That is, a mixture was formed consisting of 41 parts by weight of molybdenum 7 rondelles, 33 parts by weight of ferromolybdenum, 35 parts by weight of zirconium sponge, and 10 parts by weight of ferrochromium. The mixture was thoroughly blended and then carbon-arc-melted, screened, and remelted, and again screened as indicated in Example I. One hundred nineteen parts by weight of such mixture were then thoroughly blended with 28 parts by weight of tin and 55 3 parts by weight of titaniumsponge and further processed as indicated in Example I, to yield a final titaniumbase alloy consisting essentially of 9 percent molybdenum, percent zirconium, 4 percent tin, 2 percent iron, 1 percent chromium, balance titanium.
EXAMPLE X Example 1X was repeated, .except that titanium was introduced to the master alloy immediately before the second carbon arc-melt. That is, a mixture was formed consisting of 41 parts by weight of m01yb denum rondelles, 33 parts by weight of ferro-molybdenum, 35 parts by weight of zirconium sponge, and parts by weight of ferrochromium. The mixture was thoroughly blended then carbon-arc-melted and screened. To this screened product there was added sutficient titanium sponge to yield a titanium content of 20 percent in the master alloy after the second carbon-arc-melt. That is, 119 parts by weight of the screened product of the first carbonarc-melt were mixed with 30 parts by weight of titanium sponge, and then further processed as indicated in Exam ple I. This yielded a screened master alloy in fine, granular form having substantially the following composition: 42 percent molybdenum, 35 percent zirconium, 9 percent iron, 5 percent chromium, and 20 percent titanium. One hundred forty-nine parts by weight of such mixture were then thoroughly blended with 28 parts by weight of tin and 523 parts by weight of titanium sponge, and then further processed as indicated in Example I, to yield a final titanium-base alloy consisting essentially of 9 percent molybdenum, 5 percent zirconium, 4 percent tin, 2.percent iron, I percent chromium, balance titanium.
Another way in which the master alloy according to the invention may be used is to place together in a furnace in a vacuum or a protective (oxygenand nitrogen-free) atmosphere particles of master alloy and particles of titanium, and then arc-melt, using a non-consumable elec trode, for example, of carbon or tungsten.
While we have shown and described certain embodiments of our invention, we intend to cover as well any change or modification therein which may be made without departing from the spirit and scope of the invention.
We claim:
1. A master alloy useful for the production of titaniumbase alloys containing a substantial quantity of molybdenum, said matser alloy consisting essentially of up to 20 percent iron, up to 30 percent chromium, up to 25 percent titanium, 20 to 40 percent zirconium, and 30 to 75 percent of molybdenum, said alloy containing at least 3 percent in total amount of one element selected from the group consisting of chromium and iron.
2. A master alloy as defined in claim 1, said alloy being in the form of fine granules.
3. A master alloy as defined in claim 2, characterized in that said alloy is in the form of fine granules substantially all of such size as to pass through a N0. 8 U.S. Standard sieve and be retained up a No. 30 U.S. Standard sieve.
4. A master alloy useful for the production of titaniumbase alloys containing a substantial quantity of molybdenum, said master alloy consisting essentially of 40 to 75 percent molybdenum, 25 to 35 percent zirconium, and 5 to percent of iron.
5. A master alloy as defined in claim 4, said alloy being in the form of fine granules.
6. A master alloy as defined in claim 5, characterized in that said alloy is in the form of fine granules substantially all of such size as to pass through a N0. 8 U.S. Standard sieve and be retained upon a No. 30 U.S. Standard sieve.
7. A master alloy useful for the production of titaniumbase alloys containing a substantial quantity of 'molybdenum, said master alloy consisting essentially of 40 to 75 percent molybdenum, to 35 percent zirconium, 5 to 20 percent of iron, and 3 to 10 percent of chromium.
8. A master alloy as described in claim 7, said alloy being in the form of fine granules.
9. A master alloy as defined in claim 8, characterized in that said alloy is in the form of fine granules snbstan tially all of such size as to pass through a No. 8 U.S. Standard sieve and be retained upon a No. 30 U.S. Standard sieve.
10. A master alloy useful for the production of titanium-base alloys containing a substantial quantity of molybdenum, said master alloy consisting essentially of 40 to percent by weight of molybdenum, 25 to 35 percent zirconium, 5 to 20 percentiron, up to 30 percent chromium, and 15 to 25 percent titanium.
11. A master alloy as defined in claim 10, said alloy being in the form of fine granules.
12. A master alloy as defined in claim 11, characterized in that said alloy is in the form of fine granules substantially all of such size as to pass through a No. 8 U.S. Standard sieve and be retained upon a No. 30 U.S. Standard sieve.
References Cited UNITED STATES PATENTS 7 3,004,848 10/ 1961 Hansley et al. 75--l77 2,850,385 9/1958 Nisbet 75-176 2,883,284 4/1959 Lawthers 75-176 3,030,206 4/ 1962 Buck 75176 3,190,749 6/1965 Fleming 75l76 OTHER REFERENCES Hansen, Constitution of Binary Alloys, N.Y., McGraw- Hill, 1958, pp. 982-983, TA490. HZ7AE, Copy in Group III.
RICHARD O. DEAN, Primary Examiner U.S. Cl. X.R. 75-134, 175.5, 176
US523866A 1966-02-01 1966-02-01 Master alloy Expired - Lifetime US3508910A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US52386666A 1966-02-01 1966-02-01

Publications (1)

Publication Number Publication Date
US3508910A true US3508910A (en) 1970-04-28

Family

ID=24086753

Family Applications (1)

Application Number Title Priority Date Filing Date
US523866A Expired - Lifetime US3508910A (en) 1966-02-01 1966-02-01 Master alloy

Country Status (1)

Country Link
US (1) US3508910A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2392133A1 (en) * 1977-05-27 1978-12-22 Reading Alloys MOTHER ALLOYS BASED ON MOLYBDENE, TITANIUM, ZIRCONIUM AND ALUMINUM
US5158365A (en) * 1990-05-28 1992-10-27 Dango & Dienenthal Maschinenbau Gmbh Measuring probe
WO1994002274A1 (en) * 1992-07-23 1994-02-03 PERFECT, Marjorie, L. Nickel alloy for hydrogen battery electrodes
WO1994002657A1 (en) * 1992-07-23 1994-02-03 PERFECT, Marjorie, L. Master alloys for beta 21s titanium-based alloys and method of making same
CN102560213A (en) * 2012-01-19 2012-07-11 上海康臣特种金属材料有限公司 Aluminum-niobium interalloy and preparation method thereof
JP2014513197A (en) * 2010-09-27 2014-05-29 パブリックストックカンパニー “ヴイエスエムピーオー アヴィスマ コーポレーション” (4.0-6.0)% Al- (4.5-6.0)% Mo- (4.5-6.0)% V- (2.0-3.6)% Method for melting near β-type titanium alloy comprising Cr- (0.2-0.5)% Fe- (0.1-2.0)% Zr
WO2014159102A1 (en) * 2013-03-14 2014-10-02 Reading Alloys, Inc. Radiolucent molybdenum-containing master alloys

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2850385A (en) * 1955-08-29 1958-09-02 Universal Cyclops Steel Corp Molybdenum-base alloy
US2883284A (en) * 1956-07-30 1959-04-21 Westinghouse Electric Corp Molybdenum base alloys
US3004848A (en) * 1958-10-02 1961-10-17 Nat Distillers Chem Corp Method of making titanium and zirconium alloys
US3030206A (en) * 1959-02-17 1962-04-17 Gen Motors Corp High temperature chromiummolybdenum alloy
US3190749A (en) * 1963-07-23 1965-06-22 Du Pont Alloy article having a porous outer surface and process of making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2850385A (en) * 1955-08-29 1958-09-02 Universal Cyclops Steel Corp Molybdenum-base alloy
US2883284A (en) * 1956-07-30 1959-04-21 Westinghouse Electric Corp Molybdenum base alloys
US3004848A (en) * 1958-10-02 1961-10-17 Nat Distillers Chem Corp Method of making titanium and zirconium alloys
US3030206A (en) * 1959-02-17 1962-04-17 Gen Motors Corp High temperature chromiummolybdenum alloy
US3190749A (en) * 1963-07-23 1965-06-22 Du Pont Alloy article having a porous outer surface and process of making same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2392133A1 (en) * 1977-05-27 1978-12-22 Reading Alloys MOTHER ALLOYS BASED ON MOLYBDENE, TITANIUM, ZIRCONIUM AND ALUMINUM
US5158365A (en) * 1990-05-28 1992-10-27 Dango & Dienenthal Maschinenbau Gmbh Measuring probe
WO1994002274A1 (en) * 1992-07-23 1994-02-03 PERFECT, Marjorie, L. Nickel alloy for hydrogen battery electrodes
WO1994002657A1 (en) * 1992-07-23 1994-02-03 PERFECT, Marjorie, L. Master alloys for beta 21s titanium-based alloys and method of making same
US5364587A (en) * 1992-07-23 1994-11-15 Reading Alloys, Inc. Nickel alloy for hydrogen battery electrodes
JP2014513197A (en) * 2010-09-27 2014-05-29 パブリックストックカンパニー “ヴイエスエムピーオー アヴィスマ コーポレーション” (4.0-6.0)% Al- (4.5-6.0)% Mo- (4.5-6.0)% V- (2.0-3.6)% Method for melting near β-type titanium alloy comprising Cr- (0.2-0.5)% Fe- (0.1-2.0)% Zr
CN102560213A (en) * 2012-01-19 2012-07-11 上海康臣特种金属材料有限公司 Aluminum-niobium interalloy and preparation method thereof
CN102560213B (en) * 2012-01-19 2013-09-11 上海康臣特种金属材料有限公司 Aluminum-niobium interalloy and preparation method thereof
WO2014159102A1 (en) * 2013-03-14 2014-10-02 Reading Alloys, Inc. Radiolucent molybdenum-containing master alloys

Similar Documents

Publication Publication Date Title
CN1699000B (en) Method for preparing a metallic article having an other additive constituent, without any melting
US3592637A (en) Method for adding metal to molten metal baths
US3645727A (en) Method for melting titanium alloys
US3565602A (en) Method of producing an alloy from high melting temperature reactive metals
US7897103B2 (en) Method for making and using a rod assembly
US3508910A (en) Master alloy
US5316723A (en) Master alloys for beta 21S titanium-based alloys
US4164420A (en) Master alloy for the preparation of zirconium alloys
US3788839A (en) Method for incorporating metals into molten metal baths
US3503738A (en) Metallurgical process for the preparation of aluminum-boron alloys
US3511646A (en) Filler metal for the electric arc welding,and method for its manufacture
JPH03166330A (en) Tough titanium alloy and its manufacture
US4179287A (en) Method for adding manganese to a molten magnesium bath
US3554740A (en) Nickel-aluminum electrical resistance elements
US3512962A (en) Cobalt-tungsten carbide alloy and process
JPH0583623B2 (en)
US3552947A (en) Method for melting titanium base alloys
JPH1046269A (en) Manufacture of titanium-molybdenum master alloy, and titanium-molybdenum master alloy
JP3161224B2 (en) Consumable electrode for producing nitrogen-containing titanium alloy ingot and method for producing nitrogen-containing titanium alloy ingot using this consumable electrode
EP0651682A4 (en) Nickel alloy for hydrogen battery electrodes.
US2076366A (en) Hard carbide composition
US3203783A (en) Process of incorpoation of correctives in the manufacture of iron by the method of fusion with a consumable electrode
JPS6036462B2 (en) Manufacturing method for hydrogen storage alloy
US5209790A (en) Production of Ti-V-Cr homogeneous alloy without vanadium inclusions
JPH03193842A (en) Ti-al matrix composite and its manufacture

Legal Events

Date Code Title Description
AS Assignment

Owner name: COLT INDUSTRIES OPERATING CORP.

Free format text: MERGER AND CHANGE OF NAME;ASSIGNOR:CRUCIBLE CENTER COMPANY (INTO) CRUCIBLE INC. (CHANGED TO);REEL/FRAME:004120/0308

Effective date: 19821214

AS Assignment

Owner name: CRUCIBLE MATERIALS CORPORATION, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COLT INDUSTRIES OPERATING CORP.;REEL/FRAME:004194/0621

Effective date: 19831025

Owner name: CRUCIBLE MATERIALS CORPORATION, A DE CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:COLT INDUSTRIES OPERATING CORP.;REEL/FRAME:004194/0621

Effective date: 19831025

AS Assignment

Owner name: MELLON BANK, N.A. FOR THE CHASE MANHATTAN BANK (NA

Free format text: SECURITY INTEREST;ASSIGNOR:CRUCIBLE MATERIALS CORPORATION, A CORP. OF DE.;REEL/FRAME:004490/0452

Effective date: 19851219

Owner name: CHASE MANHATTAN BANK, THE (NATIONAL ASSOCIATION) A

Free format text: SECURITY INTEREST;ASSIGNOR:CRUCIBLE MATERIALS CORPORATION, A CORP. OF DE.;REEL/FRAME:004490/0452

Effective date: 19851219

Owner name: MELLON FINANCIAL SERVICES CORPORATION

Free format text: SECURITY INTEREST;ASSIGNOR:CRUCIBLE MATERIALS CORPORATION, A CORP. OF DE.;REEL/FRAME:004490/0410

Effective date: 19851219

Owner name: MELLON BANK, N.A. AS AGENT FOR MELLON BANK N.A. &

Free format text: SECURITY INTEREST;ASSIGNOR:CRUCIBLE MATERIALS CORPORATION, A CORP. OF DE.;REEL/FRAME:004490/0410

Effective date: 19851219