US2945523A - Hold-down apparatus - Google Patents

Hold-down apparatus Download PDF

Info

Publication number
US2945523A
US2945523A US693171A US69317157A US2945523A US 2945523 A US2945523 A US 2945523A US 693171 A US693171 A US 693171A US 69317157 A US69317157 A US 69317157A US 2945523 A US2945523 A US 2945523A
Authority
US
United States
Prior art keywords
pole
wheels
hold
yoke
lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US693171A
Inventor
Starling E Jenkins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beazer East Inc
Original Assignee
Koppers Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koppers Co Inc filed Critical Koppers Co Inc
Priority to US693171A priority Critical patent/US2945523A/en
Application granted granted Critical
Publication of US2945523A publication Critical patent/US2945523A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27LREMOVING BARK OR VESTIGES OF BRANCHES; SPLITTING WOOD; MANUFACTURE OF VENEER, WOODEN STICKS, WOOD SHAVINGS, WOOD FIBRES OR WOOD POWDER
    • B27L1/00Debarking or removing vestiges of branches from trees or logs; Machines therefor

Definitions

  • This invention relates to a pole rossing machine and more particularly to a hold-down device for a pole as it is being rossed in such a rossing machine.
  • This invention is used to prevent a pole from whipping out of control as it is being fed longitudinally through the rossing machine and is located on the out-feed side thereof.
  • Such a rossing machine is disclosed by U.S. patent to Taylor et al. 2,330,336 dated February 4, 1941.
  • Another object is to provide a means for raising and lowering the yoke so that the yoke may selectively engage and disengage the pole.
  • a further object of this invention is to provide a hold-down mechanism which includes a means for cushioning the shock caused by the whipping movements of therotating pole.
  • Still another object is to provide a simple light-weight hold-down device which is not subject to damage by shock from the whipping movements of the rotating pole.
  • the objects of the present invention are ac complished by providing a hold-down device .with .a pivotably mounted swivel link between a pole holding yoke and a leverage means attached thereto.
  • This allows the yoke to follow the eccentric movements of the rotating pole as it emerges from the rossing machine but still allows the yoke to retain enough rigidity to constrain the pole from whipping too severely.
  • the hold-down device is made of simple light-weight construction which helps the yoke to follow the rotating pole without being damaged by the residual whipping of the rotating pole.
  • the yoke which is connected to the lever is loaded by means of an air cylinder connected to the lever.
  • the loading of the holding means can be quickly varied 2,945,523 Patented July 19, 19 60 to increase or decrease the restraining force on the pole and the holding means can be quickly disengaged from the pole after the pole is completely tossed.
  • the holding yoke is provided with rubber tiredwheels.
  • Fig. l is a perspective view of the hold-down device.
  • Fig. 2 is a front elevational View adjacent to the outfeed side of the rossing machine embodying the holddown device of the presentinvention.
  • Fig. 3 is a top plan view of the hold-down yoke'show ing the lever pivotably attached thereto.
  • Fig. 4 is a side elevational view of the hold-down yoke shown in Figure 3.
  • a yoke block 9 Connected to one end of lever arm 6 by a swivel link 8 there is mounted a yoke block 9.
  • Swivel link 8 comprises two collars 11 and 12 through which extends a pin 13 positioned so that the yoke block 8 is rotatable about an axis centered at pin 13, parallel to lever arm 6, and perpendicular to the longitudinal axis of the pole 1.
  • the two' collarsll' and 12 are connected and they carry a swedged lug'14 shown in detail in Fig. 4, and yoke block 9 is attached to this swedged lug 14 so that it may rotate in a horizontal plane substantially parallel to the longitudinal axis of pole 1.
  • Lever arm 6, collars 11 and 12, and pin 13 are shown in two different positions in Fig. 3.
  • Yoke block 9 is in the form of a substantially rectangular housing having a substantially arcuate cut-out 15. Wheels 16 and 17 are carried in yoke block9f on pins 18 and 19 which are freely rotatable in bearings 21 and 22 shown in Fig.8. These Wheels provide a V groove in which pole 1 is held as it is fed to the holddown device from the rossing machine. Wheels16 and 17 are provided with rubber tires 23 and 24 which help to cushion the shock caused by the rotation of the pole being ross'ed and also grip the pole on opposite sides substantially on the top.
  • Underneath pole 1 is supported by tram 25 which is provided with wheels 26 and 27 shown in outline in Fig. 1 which are mounted in a substantially rectangular housing 28.
  • Tram 25 provides a means for supporting the rossed end portion of the pole emerging from'the rossing machine so that it may be gripped on top by the wheels 16 and 17 of the yoke block 9 and underneath by the wheels 26 and 27 of the tram 25.1 WheelsT'29 move on track' 30 as that the tram 25 and the pole 1 supported thereon can be pulled away from held.
  • Air cylinder 31 is pivotably connected to lever arm 6 through link 32.
  • Air cylinder 31 is fixedly mounted so that it may impart a raising and lowering force through piston arm 33 to that end of the lever arm 6 to which it is attached. As the cylinder is actuated it thus causes lever arm 6 to rotate around the axis of the flucrum provided on upright 3 by bosses 4 and S- and gudgeon 7. Air cylinder 31 also cushions residual vibrations transmitted through lever arm 6 from the rotating pole which are not dampened by yoke block 9.
  • Piston arm 33 in air cylinder 31 is activated by forcing air through opening 34 in the lower portion of the cylinder.
  • a force is transmitted from lever arm 6 through swivel link 3 'to yokeblock 9 by the actuating of cylinder 31 the rotating pole l is restrained from whipping by wheels 16 and .17 of yoke block 9 and wheels 26 and 27 of tram 25.
  • the wheels of the yoke 9 and tram ' rotate and thus confine the pole to a rotation which is substantially longitudinal to the poles axis, as it is fed from the rossing machine.
  • a typical sequence of operation starting with the yoke block 9 lifted to receive a pole emerging from the rossing machine is as follows:
  • the whipping movements of the rotating pole 1 do not damage the hold-down device.
  • the pole 1 is constrained to such an extent that the whipping is not allowed to become too severe.
  • a hold-down device adapted to receive a rotating pole from a pole rossing machine which rotates and feeds a pole in an axial direction comprising an axially movable pole supporting tram having two tangentially opposed first rotatable wheels, yoking means having two tangentially opposed second rotatable'wheels for cooperation with said first wheels for holding a rotating pole between said first and second wheels by contact of said first and second wheels on opposite sides of the rotating pole, a loading lever means for positively and yieldably holding said yoking means in contact with a rotating pole, and means pivotally and swivelly connecting said yoking means and said lever means for transmitting a load to said yoking means and providing for relative movement between said yoking means and said lever means in horizontal and vertical planes whereby said yoking means is adapted to follow eccentric movements of a rotating pole held between said first and second wheels as it emerges from said rossing machines and to maintain adequate rigidity to constrain a pole so held from whipping.
  • a hold-down device adapted to receive a rotating pole from a pole tossing machine which rotates and feeds a pole in an axial direction comprising a pole supporting tram having two tangentially opposed first rotatable wheels, yoking means having two tangentially opposed second rotatable wheels for cooperation with said first wheels for holding a pole between said first and second wheels by contact of said first and second wheels on opposite sides of the rotating pole, a loading lever means for positively and yieldably holding said yoking means in contact with a rotating pole, fluid pressure-actuating means for loading said lever to hold a pole between said first and second wheels, and means pivotally and swivelly connecting said yoking means and said lever means for transmitting a load to said yoking means and providing for relative movement between said yoking means and said lever in horizontal and vertical planes whereby said yoking means is adapted to follow eccentric movements of a rotating pole as it emerges from said rossing machine and still maintains sufiicient rigidity to constrain
  • a hold-down device adapted to receive a rotating pole from a pole rossing machine which rotates and feeds a pole in an axial direction
  • a pole supporting tram having two tangentially opposed first rotatable wheels forming a substantially V shaped cradle equipped to support a rotating pole and move in an axial direction therewith, yoking means having two tangentially opposed second rotatable wheels forming a substantially V shaped cradle for cooperation with said first wheels for holding a rotating pole between said first and second wheels by contact of said first and second Wheels on opposite sides of the rotating pole, a first class lever supported intermediate its ends on a fixedly mounted base for positively and yieldably holding said yoking means in contact with a rotating pole, force loading means connected to one end of said lever in which the force loading means is an air cylinder for raising and lowering said yoking means so as to load said yoking means, and means connecting said yoking means and said lever including a swivel link pivotally connected to

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Handcart (AREA)

Description

July 19, 1960 Filed Oct. 29, 1957 S E. JENKINS HOLD-DOWN APPARATUS 2 Sheetg-Sheet 1 July 19, 1960 s. E. JENKINS HOLD-DOWN APPARATUS 2 Shoots-Shoot 2 Filed Oct. 29, 1957 Fill INVENTOR. Java. 11/4 .5. JEN/(1M9.
United States Patent O HOLD-DOWN APPARATUS Starling E. Jenkins, Charleston, S.C., assignor to Koppers Company, Inc., a corporation of Delaware Filed Oct. 29, 1957, Ser. No. 693,171
3 Claims. (Cl. 144-290) This invention relates to a pole rossing machine and more particularly to a hold-down device for a pole as it is being rossed in such a rossing machine. This invention is used to prevent a pole from whipping out of control as it is being fed longitudinally through the rossing machine and is located on the out-feed side thereof. Such a rossing machine is disclosed by U.S. patent to Taylor et al. 2,330,336 dated February 4, 1941.
Heretofore, in rossing machines variousmeans have been used to hold the pole and prevent it from whipping as the bark has been peeled'therefrom, ie during rossing. The holding means have been either manual or mechanical. The manual means had disadvantages since they required brute strength and often caused injury to the operator. The mechanical means used have been 00111 plex with a rigidly mounted wheeled yoke to hold down the rotating pole following the rossing operation. While these prior mechanical hold-down devices have prevented the dangerouswork of holding the pole manually, they have held the pole by the sheer weight of the yoke and this caused expensive installation and maintenance costs. Furthermore, since whipping could not be entirely eliminated and since these structures were constructed so that the holding yoke was limited to vertical movement only, the latter tended thereby to be damaged by the shock caused by the residual whipping of the rotating pole.
It is an object of the present invention to provide an improved hold-down device for a rossing machine which overcomes the difiiculties heretofore encountered.
Another object is to provide a means for raising and lowering the yoke so that the yoke may selectively engage and disengage the pole.
A further object of this invention is to provide a hold-down mechanism which includes a means for cushioning the shock caused by the whipping movements of therotating pole.
Still another object is to provide a simple light-weight hold-down device which is not subject to damage by shock from the whipping movements of the rotating pole.
Further objects and features of the invention. will hereinafter appear and be understood more fully in the following specification taken from the accompanying drawings herein.
Briefly, the objects of the present invention are ac complished by providing a hold-down device .with .a pivotably mounted swivel link between a pole holding yoke and a leverage means attached thereto. This allows the yoke to follow the eccentric movements of the rotating pole as it emerges from the rossing machine but still allows the yoke to retain enough rigidity to constrain the pole from whipping too severely. Also the hold-down device is made of simple light-weight construction which helps the yoke to follow the rotating pole without being damaged by the residual whipping of the rotating pole. The yoke which is connected to the lever is loaded by means of an air cylinder connected to the lever. Thus, the loading of the holding means can be quickly varied 2,945,523 Patented July 19, 19 60 to increase or decrease the restraining force on the pole and the holding means can be quickly disengaged from the pole after the pole is completely tossed.
Moreover, for the purpose of reducing shock, the holding yoke is provided with rubber tiredwheels. I
Fig. l is a perspective view of the hold-down device. Fig. 2 is a front elevational View adjacent to the outfeed side of the rossing machine embodying the holddown device of the presentinvention.
Fig. 3 is a top plan view of the hold-down yoke'show ing the lever pivotably attached thereto.
Fig. 4 is a side elevational view of the hold-down yoke shown in Figure 3.
Referring now to the drawings and in particular to Fig. 1, the invention is shown with that portion of the pole 1 being held in the hold-down device which has been rossed. Base 2 is fixedly secured from which there extends an up-right 3 carrying bosses 4 and 5. Lever arm 6 is pivotably supported on up-right 3 through bosses 4 and 5 by gudgeon 7. Lever arm 6 movably rotates around the fixed axis provided by gudgeon 7 and bosses 4 and 5 so as to form a basic first order lever. Connected to one end of lever arm 6 by a swivel link 8 there is mounted a yoke block 9. Swivel link 8 comprises two collars 11 and 12 through which extends a pin 13 positioned so that the yoke block 8 is rotatable about an axis centered at pin 13, parallel to lever arm 6, and perpendicular to the longitudinal axis of the pole 1. The two' collarsll' and 12 are connected and they carry a swedged lug'14 shown in detail in Fig. 4, and yoke block 9 is attached to this swedged lug 14 so that it may rotate in a horizontal plane substantially parallel to the longitudinal axis of pole 1. Lever arm 6, collars 11 and 12, and pin 13 are shown in two different positions in Fig. 3. v These jareprovided to show the relative movement between the yoke block 9 and the lever arm 6 which is made possible by rotation of the yoke block 9 around swedged lug 14. V The posh tions shown are not limiting but are shown as only two possible positions to accommodate the yoke to theeccentric movements of the pole as it is being roe'sed. Yoke block 9 is in the form of a substantially rectangular housing having a substantially arcuate cut-out 15. Wheels 16 and 17 are carried in yoke block9f on pins 18 and 19 which are freely rotatable in bearings 21 and 22 shown in Fig.8. These Wheels provide a V groove in which pole 1 is held as it is fed to the holddown device from the rossing machine. Wheels16 and 17 are provided with rubber tires 23 and 24 which help to cushion the shock caused by the rotation of the pole being ross'ed and also grip the pole on opposite sides substantially on the top.
Underneath pole 1 is supported by tram 25 which is provided with wheels 26 and 27 shown in outline in Fig. 1 which are mounted in a substantially rectangular housing 28. Tram 25 provides a means for supporting the rossed end portion of the pole emerging from'the rossing machine so that it may be gripped on top by the wheels 16 and 17 of the yoke block 9 and underneath by the wheels 26 and 27 of the tram 25.1 WheelsT'29 move on track' 30 as that the tram 25 and the pole 1 supported thereon can be pulled away from held. down device from the rossing machine after the pole has been rossed. Air cylinder 31 is pivotably connected to lever arm 6 through link 32. Air cylinder 31 is fixedly mounted so that it may impart a raising and lowering force through piston arm 33 to that end of the lever arm 6 to which it is attached. As the cylinder is actuated it thus causes lever arm 6 to rotate around the axis of the flucrum provided on upright 3 by bosses 4 and S- and gudgeon 7. Air cylinder 31 also cushions residual vibrations transmitted through lever arm 6 from the rotating pole which are not dampened by yoke block 9.
Piston arm 33 in air cylinder 31 is activated by forcing air through opening 34 in the lower portion of the cylinder. When a force is transmitted from lever arm 6 through swivel link 3 'to yokeblock 9 by the actuating of cylinder 31 the rotating pole l is restrained from whipping by wheels 16 and .17 of yoke block 9 and wheels 26 and 27 of tram 25. As the pole rotates the wheels of the yoke 9 and tram 'rotate and thus confine the pole to a rotation which is substantially longitudinal to the poles axis, as it is fed from the rossing machine.
When piston arm 33 of air cylinder 31 is activated by forcing air through opening 35 in air cylinder 31, in the upper portion of the cylinder 31, a force is imparted to lever arm 6 whereupon yoke block 9 is lifted.
A typical sequence of operation starting with the yoke block 9 lifted to receive a pole emerging from the rossing machine is as follows:
The rossed end portion of a pole being rossed emerges from the rossing machine, and as the pole emerges, it is supported on the underneath side by tram 25. Tram is moved toward the raised yoke block 9 with pole 1 resting upon it until the rossed end portion of the pole is underneath and tangential to the yoke. Then air is forced in opening 34 in air cylinder 31 which raises piston arm 33 which causes yoke block 9 to be lowered. The force provided by the raising of piston arm 33 and the resultant lowering of yoke block 9 brings the wheels of yoke block 9 into contact with the top of pole 1 and causes the pole to be constrained from whipping between wheels 16 and 17 on yoke block 9, and wheels 26 and 27 of tram 25. After pole 1 is completely rossed, the last portion of the pole to be rossed falls on top piece 36 on another tram 37 with wheels 38 riding on track shown in Fig. 2. Tram 25 is pulled by line 39 attached to hook 41 on tram 25 and pole 1 is thereby completely carried away from the hold-down device. Then the air cylinder 31 is activated by forcing air through opening and releasing air out of the opening 34 by means of suitable valves. This causes the piston arm 33 to be lowered. The lowering of the piston arm 33 in turn raises the yoke block 9 for the receiving of the rossed end portion of the next pole emerging from the rossing machine and for the beginning of a new cycle as described above.
By providing a hold-down device as described the whipping movements of the rotating pole 1 do not damage the hold-down device. By the same token, the pole 1 is constrained to such an extent that the whipping is not allowed to become too severe.
I claim:
1. A hold-down device adapted to receive a rotating pole from a pole rossing machine which rotates and feeds a pole in an axial direction comprising an axially movable pole supporting tram having two tangentially opposed first rotatable wheels, yoking means having two tangentially opposed second rotatable'wheels for cooperation with said first wheels for holding a rotating pole between said first and second wheels by contact of said first and second wheels on opposite sides of the rotating pole, a loading lever means for positively and yieldably holding said yoking means in contact with a rotating pole, and means pivotally and swivelly connecting said yoking means and said lever means for transmitting a load to said yoking means and providing for relative movement between said yoking means and said lever means in horizontal and vertical planes whereby said yoking means is adapted to follow eccentric movements of a rotating pole held between said first and second wheels as it emerges from said rossing machines and to maintain suficient rigidity to constrain a pole so held from whipping.
2. A hold-down device adapted to receive a rotating pole from a pole tossing machine which rotates and feeds a pole in an axial direction comprising a pole supporting tram having two tangentially opposed first rotatable wheels, yoking means having two tangentially opposed second rotatable wheels for cooperation with said first wheels for holding a pole between said first and second wheels by contact of said first and second wheels on opposite sides of the rotating pole, a loading lever means for positively and yieldably holding said yoking means in contact with a rotating pole, fluid pressure-actuating means for loading said lever to hold a pole between said first and second wheels, and means pivotally and swivelly connecting said yoking means and said lever means for transmitting a load to said yoking means and providing for relative movement between said yoking means and said lever in horizontal and vertical planes whereby said yoking means is adapted to follow eccentric movements of a rotating pole as it emerges from said rossing machine and still maintains sufiicient rigidity to constrain the pole from whipping.
3. A hold-down device adapted to receive a rotating pole from a pole rossing machine which rotates and feeds a pole in an axial direction comprising a pole supporting tram having two tangentially opposed first rotatable wheels forming a substantially V shaped cradle equipped to support a rotating pole and move in an axial direction therewith, yoking means having two tangentially opposed second rotatable wheels forming a substantially V shaped cradle for cooperation with said first wheels for holding a rotating pole between said first and second wheels by contact of said first and second Wheels on opposite sides of the rotating pole, a first class lever supported intermediate its ends on a fixedly mounted base for positively and yieldably holding said yoking means in contact with a rotating pole, force loading means connected to one end of said lever in which the force loading means is an air cylinder for raising and lowering said yoking means so as to load said yoking means, and means connecting said yoking means and said lever including a swivel link pivotally connected to the other end of said lever for transmitting a load to said yoking means and providing for simultaneous relative movement between said second wheels and said lever in horizontal and vertical planes whereby said second wheels are adapted to follow eccentric movements of a rotating pole held between said first and second wheels and still maintains sufficient rigidity to constrain the pole from whipping.
References Cited in the file of this patent UNITED STATES PATENTS 527,929 Bentrup Oct. 23, 1894 1,300,748 Lombard Apr. 15, 1919 2,436,806 Hunt Mar. 2, 1948 2,505,168 Augustin Apr. 25, 1950 2,540,994 Rogers Feb. 6, 1951 2,780,252 Gyllenberg Feb. 5, 1957
US693171A 1957-10-29 1957-10-29 Hold-down apparatus Expired - Lifetime US2945523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US693171A US2945523A (en) 1957-10-29 1957-10-29 Hold-down apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US693171A US2945523A (en) 1957-10-29 1957-10-29 Hold-down apparatus

Publications (1)

Publication Number Publication Date
US2945523A true US2945523A (en) 1960-07-19

Family

ID=24783613

Family Applications (1)

Application Number Title Priority Date Filing Date
US693171A Expired - Lifetime US2945523A (en) 1957-10-29 1957-10-29 Hold-down apparatus

Country Status (1)

Country Link
US (1) US2945523A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173673A (en) * 1962-03-06 1965-03-16 Power Jacks Ltd Powered work-clamping device
US3482438A (en) * 1968-04-22 1969-12-09 Clifford C Toyne Means for applying a load to a structure
US3810501A (en) * 1972-03-20 1974-05-14 Domtar Ltd Post domer
US3991990A (en) * 1975-04-23 1976-11-16 I-T-E Imperial Corporation Efcor Division Fixture for holding a tubular workpiece during the machining thereof
FR2407801A1 (en) * 1977-11-04 1979-06-01 Bruks Mekaniska Ab PROCESS AND MACHINE FOR WORKING WITH OBLONG PARTS, BY REMOVING MATERIAL
US4450882A (en) * 1981-10-14 1984-05-29 Hitchcock Lonnie G Automatic shaper
WO1984002105A1 (en) * 1982-11-30 1984-06-07 John Flessum Machine for removing thickened root portions on timber
US4632374A (en) * 1981-12-15 1986-12-30 Yang Tai Her Vise with sliding movable clamp surface
US4641820A (en) * 1985-06-07 1987-02-10 Deere & Company Weld fixture mounting
US4717132A (en) * 1986-09-25 1988-01-05 Yang Tai Her Vise with sliding movable clamp surface
US4875511A (en) * 1986-12-10 1989-10-24 Commonwealth Scientific And Industrial Research Organisation Apparatus for removing bark from logs
US5022446A (en) * 1987-10-20 1991-06-11 Commonwealth Scientific And Industrial Research Organisation Compression log debarking apparatus
US5247977A (en) * 1992-03-12 1993-09-28 Pierce-Pacific Manufacturing, Inc. High speed log debarker
WO1996027476A2 (en) * 1995-02-28 1996-09-12 Techcom Technical Computerized Fixturing Ltd. Universal modular fixturing and sleeve-clamp systems
US5673843A (en) * 1995-06-07 1997-10-07 Gainey; Kenneth Clifford Transportable pipe welding and fabrication station
US5799932A (en) * 1994-12-22 1998-09-01 Isi Norgren Inc. Rotary clamp having a common plane mounting arrangement
US5918868A (en) * 1995-02-28 1999-07-06 Techcom Technical Computerized Fixturing Ltd. Universal modular fixturing systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US527929A (en) * 1894-10-23 Drilling-machine
US1300748A (en) * 1915-05-06 1919-04-15 Int Paper Co Machine for barking wood.
US2436806A (en) * 1945-09-27 1948-03-02 Everett M Hunt Forming and shearing device
US2505168A (en) * 1948-01-09 1950-04-25 Ray C Augustin Pole feeding device for pole peeling machines
US2540994A (en) * 1949-03-17 1951-02-06 Southern Wood Preserving Co Hold-down apparatus for poles
US2780252A (en) * 1953-10-16 1957-02-05 Anthony Brandenthaler Log barking machine having bilateral cutters, brushes, and feed rollers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US527929A (en) * 1894-10-23 Drilling-machine
US1300748A (en) * 1915-05-06 1919-04-15 Int Paper Co Machine for barking wood.
US2436806A (en) * 1945-09-27 1948-03-02 Everett M Hunt Forming and shearing device
US2505168A (en) * 1948-01-09 1950-04-25 Ray C Augustin Pole feeding device for pole peeling machines
US2540994A (en) * 1949-03-17 1951-02-06 Southern Wood Preserving Co Hold-down apparatus for poles
US2780252A (en) * 1953-10-16 1957-02-05 Anthony Brandenthaler Log barking machine having bilateral cutters, brushes, and feed rollers

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173673A (en) * 1962-03-06 1965-03-16 Power Jacks Ltd Powered work-clamping device
US3482438A (en) * 1968-04-22 1969-12-09 Clifford C Toyne Means for applying a load to a structure
US3810501A (en) * 1972-03-20 1974-05-14 Domtar Ltd Post domer
US3991990A (en) * 1975-04-23 1976-11-16 I-T-E Imperial Corporation Efcor Division Fixture for holding a tubular workpiece during the machining thereof
FR2407801A1 (en) * 1977-11-04 1979-06-01 Bruks Mekaniska Ab PROCESS AND MACHINE FOR WORKING WITH OBLONG PARTS, BY REMOVING MATERIAL
US4450882A (en) * 1981-10-14 1984-05-29 Hitchcock Lonnie G Automatic shaper
US4632374A (en) * 1981-12-15 1986-12-30 Yang Tai Her Vise with sliding movable clamp surface
WO1984002105A1 (en) * 1982-11-30 1984-06-07 John Flessum Machine for removing thickened root portions on timber
US4641820A (en) * 1985-06-07 1987-02-10 Deere & Company Weld fixture mounting
US4717132A (en) * 1986-09-25 1988-01-05 Yang Tai Her Vise with sliding movable clamp surface
US4875511A (en) * 1986-12-10 1989-10-24 Commonwealth Scientific And Industrial Research Organisation Apparatus for removing bark from logs
US5022446A (en) * 1987-10-20 1991-06-11 Commonwealth Scientific And Industrial Research Organisation Compression log debarking apparatus
US5111860A (en) * 1987-10-20 1992-05-12 Commonwealth Scientific And Industrial Research Organisation Compression log debarking apparatus
US5247977A (en) * 1992-03-12 1993-09-28 Pierce-Pacific Manufacturing, Inc. High speed log debarker
US5297601A (en) * 1992-03-12 1994-03-29 Pierce-Pacific Manufacturing, Inc. Triple head high speed log debarker
US5799932A (en) * 1994-12-22 1998-09-01 Isi Norgren Inc. Rotary clamp having a common plane mounting arrangement
WO1996027476A2 (en) * 1995-02-28 1996-09-12 Techcom Technical Computerized Fixturing Ltd. Universal modular fixturing and sleeve-clamp systems
WO1996027476A3 (en) * 1995-02-28 1996-10-31 Techcom Technical Computerized Universal modular fixturing and sleeve-clamp systems
US5918868A (en) * 1995-02-28 1999-07-06 Techcom Technical Computerized Fixturing Ltd. Universal modular fixturing systems
US5673843A (en) * 1995-06-07 1997-10-07 Gainey; Kenneth Clifford Transportable pipe welding and fabrication station

Similar Documents

Publication Publication Date Title
US2945523A (en) Hold-down apparatus
US2596477A (en) Lift truck grab arm mechanism for cylindrical bodies
US4133439A (en) Vehicle body loading and unloading mechanism
CA1082651A (en) Multiple head drum lift unit
US2530375A (en) Lifting fork with gripping means
KR101588765B1 (en) Wheels loading system for vehicle and wheels loading apparatus provided thereto
US2514307A (en) Crane hook
US2883925A (en) Bundling apparatus
US3165348A (en) Handling device for cylindrical or like objects
CN107601274A (en) A kind of slipping tail hanging apparatus and slipping tail hanging method
US4561479A (en) Mechanical wood splitter
CN106335820A (en) Locking and self-discharging mechanism for wire reels
US2548944A (en) Bumper jack attachment unit
US2660982A (en) Animal hold-down for cattle chutes
US3032331A (en) Pipe clamp for trimming machines
US2559028A (en) Washing machine supporting carriage
US2747754A (en) Truck mounted hoist
US2789538A (en) Animal restraining device
US2651428A (en) Lift truck and attachment therefor
US2652877A (en) Means for feeding round metal stock such as bars and rods to straightening or reeling machines
US2540994A (en) Hold-down apparatus for poles
GB1112341A (en) Apparatus for teeing golf balls
US3077997A (en) Device for transferring a carcass from one conveyor to another
US2837147A (en) Semi-automatic tire bead breaking machine
US3165215A (en) Heel boom log grappling apparatus