US2793144A - Method and means for treating wire - Google Patents

Method and means for treating wire Download PDF

Info

Publication number
US2793144A
US2793144A US442317A US44231754A US2793144A US 2793144 A US2793144 A US 2793144A US 442317 A US442317 A US 442317A US 44231754 A US44231754 A US 44231754A US 2793144 A US2793144 A US 2793144A
Authority
US
United States
Prior art keywords
wire
spiral
rod
filament
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US442317A
Inventor
James E Crowley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bethlehem Steel Corp
Original Assignee
Bethlehem Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bethlehem Steel Corp filed Critical Bethlehem Steel Corp
Priority to US442317A priority Critical patent/US2793144A/en
Application granted granted Critical
Publication of US2793144A publication Critical patent/US2793144A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/22Removing excess of molten coatings; Controlling or regulating the coating thickness by rubbing, e.g. using knives, e.g. rubbing solids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/45Scale remover or preventor

Definitions

  • This invention relates to a process and apparatus for the removal of deleterious substances from wires and other continuous filamentous material, and relates more particularly to the removal of molten non-ferrous metal from a traveling steel wire.
  • the principal object of this invention is to remove, in a satisfactory manner, molten non-ferrous metal, such as lead, from steel wire.
  • Another object is to remove molten metal from wire in a manner so that the physical properties of the wire remain unchanged.
  • a further object is to remove molten metal from a moving steel wire when the wire itself is at a relatively high temperature.
  • Another object is to provide a wire wiping device which is easily applied to, or removed from, a hot moving wire.
  • Still another object is to provide a wiping device which will accommodate wires of different diameters, and which will permit welds and looped joints to pass freely.
  • wire is drawn through a furnace having a lead bath temperature of approximately 1600 F., or 1400 F., depending npon Whether a patenting or an annealing treatment is desired.
  • a lead bath temperature of approximately 1600 F., or 1400 F., depending npon Whether a patenting or an annealing treatment is desired.
  • the hot wire upon leaving the furnace, the hot wire, after traversing a short path outside the furnace, is introduced into a lead quench bath.
  • the temperature of the quench bath is approximately 1100" F.
  • the wires may travel at a speed as great as 300 feet per minute.
  • the wire at this'point has a temperature in the neighborhood of 1400 F., or 1100" F. where a lead quench is used.
  • a spiral wipe in the form of a carbon steel rod or heavy wire, of circular cross-section when applied to a wire emerging from a lead bath, will produce. a satisfactory cleaning action on the moving wire.
  • the spiral wipe should have at least one, and preferably two, complete turns or convolutions, and each 2,793,144 w re Ma 2 9 turn must have an internal diameter smaller than the diameter of the wire being cleaned. It is both practicable and convenient to use an internal helical diameter of sub stantially zero.
  • the wipe must be secured at the adit end, and preferably, remain free at the exit end. By maintaining the exit end free, the normal strumming action in the passing wire is not hindered, and thereby the removal of lead-from the spiral wipe is facilitated;
  • Fig. 1 is a diagrammatic side view showing the path of wire travel through a lead bath, and thence through a spiral wipe.
  • Fig. 2 is an enlarged view of the spiral wipe showing the sinuous path taken by the wire as it passes along the spiral.
  • a wire 1 passes through a molten lead bath 2 in the direction indicated.
  • the wire As the wire emerges from the lead bath, it contacts an elongated spiral wipe 3 and travels therealong in a sinuous path and in bearing relationship to the spiral wipe throughout the entire length of the wipe, as shown in Fig. 2.
  • the wipe is fastened to bar 4.
  • the diameter-of the spiral wiping rod should be greater than the diameter of the wire to be cleaned.
  • the internal diameter of each'turn of the spiral wiping rod 3 must be less than the diameter of wire 1 to insure a positive pressure on the wire at all points of contact between wire. and rod. It is preferable to have the internal diameter of each turn at substantially zero. Because of these limitations, wire 1 will never be permitted to pass through the spiral in a straight line, but will be made to follow the path of the turns of the spiral. In this manner a thorough wiping action is obtained.
  • Mild carbon steel rods may be used in forming the spiral wipe, and while rods of this character will eventually wear to the point where they no longer perform an efiicient wiping action, quite a few tons of wire may be processed with this type of wiping rod before the rods must be discarded. If desired, hardened steel rods may be used. Because of the wear on the wipe, it is usually desirable to have more than one spiral, and generally three will be sufficient.
  • a Wipe of spiral, or helical, configuration may be made by selecting two straight cylindrically shaped rods and co-twisting the rods about each other by any desired means so that the finished product will have at least one complete turn.
  • the rods are fixed at one end in the rotatable head of a lathe.
  • the rods at the other end are fixed to a movable tailstock.
  • the head Upon rotating the head, natural spirals are formed and the tailstock is free to move to accommodate the change in length of the twisting rod.
  • the twisting has progrossed sufficiently, the rods are removed from the lathe and unraveled.
  • the axial length, the length defined by the center line ofFig. 2, of each turn should be approximately six inches.
  • axial length of the turn may be reduced to as low as two inches.
  • One end of the rod may be fashioned into the form of a hook for the purpose of securing the rod during use.
  • One outstanding advantage of cleaning wires by my method is in the application or removal of wiping spirals.
  • the wipe In order to apply the wipe to a moving wire, the wipe should first be secured to a bar or heavy rod, which may be positioned transversely of, and below, the wires as they come from the lead bath. The wipe is then merely woven around the wire until all turns of the wipe are in contact with the wire. To remove the wipe, the steps of application are reversed. It has been found convenient to use the handle of a pair of cutting pliers, such as those normally used in wire mills, to apply or remove the wipe.
  • the simplicity of applying or removing the wipe to or from a moving wire, and especially a hot wire is quite advantageous, aside from the very etfective cleaning obtained by use of the wipe.
  • the wipe may be applied or removed in a matter of a minute or so, while at no time is it necessary to halt the travel of the wire being treated.
  • the wires being treated were of .57 carbon steel and had a diameter 'of .060 inch.
  • Each turn of each spiral wipe had an axial length of 6 inches and an internal diameter of less than .060 inch.
  • the wires, upon leaving the lead bath (bath temperature, 1100 F.) and passing through the .wipes, were traveling at a speed of 200 feet per minute.
  • the wipes removed 18 pounds of lead per net ton of wire cleaned.
  • the wear on the wipes was such that each wipe was effective in the treatment of approximately ten tons of wire.
  • the tension applied to the wire during cleaning did not change the physical properties of the wire.
  • one bundle of wire is usually attached to a preceding bundle by welding, or by looping the adjoining ends of the bundles. Welds and looped joints do not hinder the passage of the wire through the spiral wipe. This is an outstanding advantage of my cleaning method.
  • the method of removing deleterious material from a substantially round filament which comprises passing said filament longitudinally along and around the surface of a substantially round rod of spiral formation and in single line contact therewith, the internal diameter of the rod spiral being less than the diameter of said filament during the passage of the filament along and around the spiral.
  • the method of removing deleterious material from a substantially round filament which comprises passing said filament longitudinally along and around the surface of a substantially round rod in the form of a helix having at least two turns, and in single line contact therewith throughout the entire length of at least the first two turns of the rod, the internal diameter of said helix being less than the diameter of said filament during the passage of the filament along and around the helix.
  • the method of removing deleterious material from a substantially round wire which comprises passing said wire longitudinally along and around the surface of a substantially round spiral metal rod and in single line contact therewith, the internal diameter of the rod spiral being less than the diameter of said wire during the passage of the wire along and around the spiral.
  • the method of removing deleterious material from a substantially round wire which comprises passing said wire longitudinally along and around the surface of a substantially round spiral metal rod having at least two turns, and in single line contacttherewith throughout the entire length of at least the first two turns of the rod spiral, the internal diameter of said spiral being less than the diameter of said wire during the passage of the wire along and around the spiral.
  • the method of removing deleterious material from a substantially round wire which comprises passing said wire longitudinally along and around the surface of an elongated spiral metal rod having at least one turn, and in single line contact therewith throughout the entire length of at least the first turn of the rod spiral, the internal diameter of said spiral being less than the diameter of said wire during the passage of the wire along and around the spiral.
  • the method of removing deleterious material from a substantially round wire which comprises passing said wire in a longitudinal direction along and around the surface of an elongated spiral metal rod having at least two turns, the internal diameter of the rod spiral being less than the diameter of said wire during the passage of the wire through the spiral, said rod being in single line contact with said wire throughout the entire length of at least the first two turns of the rod spiral, with the forward end of said rod being fixed.
  • the method of removing deleterious material from a substantially round wire which comprises passing said wire in a longitudinal direction along and around the surface of an elongated spiral metal rod having at least two turns, the internal diameter of the rod spiral being less than the diameter of said wire during the passage of the wire through the spiral, said rod being in single line contact with said wire throughout the entire length of at least the first -two turns of the rod spiral and having a diameter larger than the wire diameter, with the forward end of the rod being'fixed.
  • the method of removing deleterious material from a substantially round filament which comprises passing said filament longitudinally along and around the surface of a substantially round rod of spiral formation, and in single line contact therewith, each spiral of said rod having a pitch length greater than the sum of the diameter of the rod plus the largest diameter of the workpiece and the internal diameter of the rod spiral being less than the diameter of said filament during passage of the filament along and around the spiral.
  • the method of removing deleterious material from a substantially round filament which comprises passing said filament longitudinally along and around the surface of a substantially round-rod of spiral formation, and in single line contact therewith, said rod having a hardness at least substantially equal to that of said filament and the internal diameter of the rod spiral being less than the diameter of said filament during passage of'the filament along and around the spiral.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cleaning In General (AREA)

Description

May 21, 1957 J; E.- CIQROWLEY 2,793,144
' METHOD AND MEANS FoR TREATING WIRE Filed July 9, 1954 INVENTOR Ja/nws E; rowlej EJQ.
- ATTOR Y United States Patent ce METHOD AND MEANS FOR TREATING WIRE James E. Crowley, Bethlehem, Pa., assignor to Bethlehem Steel Company, a corporation of Pennsylvania Application July 9, 1954, Serial No. 442,317
10 Claims. (Cl. 134--9) This invention relates to a process and apparatus for the removal of deleterious substances from wires and other continuous filamentous material, and relates more particularly to the removal of molten non-ferrous metal from a traveling steel wire.
The principal object of this invention is to remove, in a satisfactory manner, molten non-ferrous metal, such as lead, from steel wire.
Another object is to remove molten metal from wire in a manner so that the physical properties of the wire remain unchanged.
A further object is to remove molten metal from a moving steel wire when the wire itself is at a relatively high temperature.
. Another object is to provide a wire wiping device which is easily applied to, or removed from, a hot moving wire.
Still another object is to provide a wiping device which will accommodate wires of different diameters, and which will permit welds and looped joints to pass freely.
' In the lead patenting or lead annealing of steel wire, wire is drawn through a furnace having a lead bath temperature of approximately 1600 F., or 1400 F., depending npon Whether a patenting or an annealing treatment is desired. Where quenching is used, upon leaving the furnace, the hot wire, after traversing a short path outside the furnace, is introduced into a lead quench bath. The temperature of the quench bath is approximately 1100" F. In the case of the smaller diameter wires, i. e., those ranging from .025 inch to .050 inch diameter, the wires may travel at a speed as great as 300 feet per minute. When the wires emerge from a molten lead bath at this high rate of speed, some molten lead is usually dragged out on the surface of the wire. When wire, which has dragged-out lead on its surface, is subsequently cooled and coated with zinc in an electrogalvanizing operation, the lead present lowers the electrochemical efficiency of the zinc plating operation, and in addition develops poor coating adherence at points on the wire where the lead is distributed. Mechanical difficulties may also develop in the electrogalvanizing operation due to lead accretions.
Numerous methods have been tried in attempts to remove the molten lead from wire, as the wire moves out of the molten lead bath. The wire at this'point has a temperature in the neighborhood of 1400 F., or 1100" F. where a lead quench is used.
Among methods tried for lead removal have been those of asbestos wipes (compression), the use of sand on the exit end of the lead pot, driven wire brushes and other expedients well known in the art. None of these known methods have proved completely satisfactory from the standpointof maintenance or efliciency.
I have found that a spiral wipe in the form of a carbon steel rod or heavy wire, of circular cross-section, when applied to a wire emerging from a lead bath, will produce. a satisfactory cleaning action on the moving wire. The spiral wipe should have at least one, and preferably two, complete turns or convolutions, and each 2,793,144 w re Ma 2 9 turn must have an internal diameter smaller than the diameter of the wire being cleaned. It is both practicable and convenient to use an internal helical diameter of sub stantially zero. The wipe must be secured at the adit end, and preferably, remain free at the exit end. By maintaining the exit end free, the normal strumming action in the passing wire is not hindered, and thereby the removal of lead-from the spiral wipe is facilitated;
In the accompanying drawing:
Fig. 1 is a diagrammatic side view showing the path of wire travel through a lead bath, and thence through a spiral wipe.
Fig. 2 is an enlarged view of the spiral wipe showing the sinuous path taken by the wire as it passes along the spiral.
As one example of the manner in which my invention may be performed reference should be made to Fig. 1, wherein a wire 1 passes through a molten lead bath 2 in the direction indicated. As the wire emerges from the lead bath, it contacts an elongated spiral wipe 3 and travels therealong in a sinuous path and in bearing relationship to the spiral wipe throughout the entire length of the wipe, as shown in Fig. 2. The wipe is fastened to bar 4. The diameter-of the spiral wiping rod should be greater than the diameter of the wire to be cleaned. The internal diameter of each'turn of the spiral wiping rod 3 must be less than the diameter of wire 1 to insure a positive pressure on the wire at all points of contact between wire. and rod. It is preferable to have the internal diameter of each turn at substantially zero. Because of these limitations, wire 1 will never be permitted to pass through the spiral in a straight line, but will be made to follow the path of the turns of the spiral. In this manner a thorough wiping action is obtained.
With a heavy material such as molten lead, at least one complete turn is required in the spiral to provide satisfactory wiping action, but more turns may be used as desired.
Mild carbon steel rods may be used in forming the spiral wipe, and while rods of this character will eventually wear to the point where they no longer perform an efiicient wiping action, quite a few tons of wire may be processed with this type of wiping rod before the rods must be discarded. If desired, hardened steel rods may be used. Because of the wear on the wipe, it is usually desirable to have more than one spiral, and generally three will be sufficient.
A Wipe of spiral, or helical, configuration may be made by selecting two straight cylindrically shaped rods and co-twisting the rods about each other by any desired means so that the finished product will have at least one complete turn. For example, the rods are fixed at one end in the rotatable head of a lathe. The rods at the other end are fixed to a movable tailstock. Upon rotating the head, natural spirals are formed and the tailstock is free to move to accommodate the change in length of the twisting rod. When the twisting has progrossed sufficiently, the rods are removed from the lathe and unraveled. Preferably, the axial length, the length defined by the center line ofFig. 2, of each turn should be approximately six inches. Longer rods having an additional number of turns may be used. While a six inch axial length, or pitch, for each turn is desirable, the axial length of the turn may be reduced to as low as two inches. One end of the rod may be fashioned into the form of a hook for the purpose of securing the rod during use.
While there is no limitation as to the size of wire which may be cleaned by my method, as a practical matter, the sizes generally requiring cleaning will range from .025 inch to .100 inch in diameter.
One outstanding advantage of cleaning wires by my method is in the application or removal of wiping spirals. In order to apply the wipe to a moving wire, the wipe should first be secured to a bar or heavy rod, which may be positioned transversely of, and below, the wires as they come from the lead bath. The wipe is then merely woven around the wire until all turns of the wipe are in contact with the wire. To remove the wipe, the steps of application are reversed. It has been found convenient to use the handle of a pair of cutting pliers, such as those normally used in wire mills, to apply or remove the wipe. The simplicity of applying or removing the wipe to or from a moving wire, and especially a hot wire, is quite advantageous, aside from the very etfective cleaning obtained by use of the wipe. The wipe may be applied or removed in a matter of a minute or so, while at no time is it necessary to halt the travel of the wire being treated.
In one instance in which my invention was used to remove lead from lead patented wire, a spiral wipe having six turns, arid made from a .250 inch mild carbon steel straightened rod, was applied to each of four wires in a four wire lead patenting operation. The wires being treated were of .57 carbon steel and had a diameter 'of .060 inch. Each turn of each spiral wipe had an axial length of 6 inches and an internal diameter of less than .060 inch. The wires, upon leaving the lead bath (bath temperature, 1100 F.) and passing through the .wipes, were traveling at a speed of 200 feet per minute. The wipes removed 18 pounds of lead per net ton of wire cleaned. The wear on the wipes was such that each wipe was effective in the treatment of approximately ten tons of wire. The tension applied to the wire during cleaning did not change the physical properties of the wire.
In the continuous heat treatment of wire, one bundle of wire is usually attached to a preceding bundle by welding, or by looping the adjoining ends of the bundles. Welds and looped joints do not hinder the passage of the wire through the spiral wipe. This is an outstanding advantage of my cleaning method.
While I have particularly .pointed out a method of wiping wire,'it will be readily understood that my invention can be applied to the wiping of the surface of any form of continuous filament, such as plastic filament, thread, etc.
I claim:
1. The method of removing deleterious material from a substantially round filament which comprises passing said filament longitudinally along and around the surface of a substantially round rod of spiral formation and in single line contact therewith, the internal diameter of the rod spiral being less than the diameter of said filament during the passage of the filament along and around the spiral.
2. The method of removing deleterious material from a substantially round filament which comprises passing said filament longitudinally along and around the surface of a substantially round rod in the form of a helix having at least two turns, and in single line contact therewith throughout the entire length of at least the first two turns of the rod, the internal diameter of said helix being less than the diameter of said filament during the passage of the filament along and around the helix.
3. The method of removing deleterious material from a substantially round wire which comprises passing said wire longitudinally along and around the surface of a substantially round spiral metal rod and in single line contact therewith, the internal diameter of the rod spiral being less than the diameter of said wire during the passage of the wire along and around the spiral.
4. The method of removing deleterious material from a substantially round wire which comprises passing said wire longitudinally along and around the surface of a substantially round spiral metal rod having at least two turns, and in single line contacttherewith throughout the entire length of at least the first two turns of the rod spiral, the internal diameter of said spiral being less than the diameter of said wire during the passage of the wire along and around the spiral.
5. The method of removing deleterious material from a substantially round wire which comprises passing said wire longitudinally along and around the surface of an elongated spiral metal rod having at least one turn, and in single line contact therewith throughout the entire length of at least the first turn of the rod spiral, the internal diameter of said spiral being less than the diameter of said wire during the passage of the wire along and around the spiral.
6. The method of removing deleterious material from a substantially round wire which comprises passing said wire in a longitudinal direction along and around the surface of an elongated spiral metal rod having at least two turns, the internal diameter of the rod spiral being less than the diameter of said wire during the passage of the wire through the spiral, said rod being in single line contact with said wire throughout the entire length of at least the first two turns of the rod spiral, with the forward end of said rod being fixed.
7. The method of removing deleterious material from a substantially round wire which comprises passing said wire in a longitudinal direction along and around the surface of an elongated spiral metal rod having at least two turns, the internal diameter of the rod spiral being less than the diameter of said wire during the passage of the wire through the spiral, said rod being in single line contact with said wire throughout the entire length of at least the first -two turns of the rod spiral and having a diameter larger than the wire diameter, with the forward end of the rod being'fixed.
8. The method of removing deleterious material from a substantially round filament which comprises passing said filament longitudinally along and around the surface of a substantially round rod of spiral formation, and in single line contact therewith, each spiral of said rod having a pitch length greater than the sum. of the diameter of the rod plus the diameter of the workpiece and the internal diameter of the rod spiral being less than the diameter of said filament during passage of the filament along and around the spiral.
9. The method of removing deleterious material from a substantially round filament which comprises passing said filament longitudinally along and around the surface of a substantially round rod of spiral formation, and in single line contact therewith, each spiral of said rod having a pitch length greater than the sum of the diameter of the rod plus the largest diameter of the workpiece and the internal diameter of the rod spiral being less than the diameter of said filament during passage of the filament along and around the spiral.
10. The method of removing deleterious material from a substantially round filament which comprises passing said filament longitudinally along and around the surface of a substantially round-rod of spiral formation, and in single line contact therewith, said rod having a hardness at least substantially equal to that of said filament and the internal diameter of the rod spiral being less than the diameter of said filament during passage of'the filament along and around the spiral.
References Cited in the file of thispatent UNITED STATES PATENTS 348,660 Collins Sept. 7, 1886 606,482 Gallagher June 28, 1898 1,766,954 Scholler June 24, 1930 2,178,912 Leahey Nov. 7, 1939 2,239,159 Miller Apr. 22, 1941 2,285,742 Miller June 9, 1942 2,437,528 Hodil Mar. 29, 1948

Claims (1)

1. THE METHOD OF REMOVING DELETERIOUS MATERIAL FROM A SUBSTANTIALLY ROUND FILAMENT WHICH COMPRISES PASSING SAID FILAMENT LONGITUDINALLY ALONG AND AROUND THE SURFACE OF A SUBSANTIALLY ROUND ROD OF SPIRAL FORMATION AND IN SINGLE LINE CONTACT THEREWITH, THE INTERNAL DIAMETER OF THE ROD SPIRAL BEING LESS THAN THE DIAMETER OF SAID FILAMENT DURING THE PASSAGE OF THE FILAMENT ALONG AND AROUND THE SPIRAL.
US442317A 1954-07-09 1954-07-09 Method and means for treating wire Expired - Lifetime US2793144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US442317A US2793144A (en) 1954-07-09 1954-07-09 Method and means for treating wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US442317A US2793144A (en) 1954-07-09 1954-07-09 Method and means for treating wire

Publications (1)

Publication Number Publication Date
US2793144A true US2793144A (en) 1957-05-21

Family

ID=23756354

Family Applications (1)

Application Number Title Priority Date Filing Date
US442317A Expired - Lifetime US2793144A (en) 1954-07-09 1954-07-09 Method and means for treating wire

Country Status (1)

Country Link
US (1) US2793144A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3273190A (en) * 1962-10-23 1966-09-20 Bethlehem Steel Corp Wire polisher

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US348660A (en) * 1886-09-07 Olmstbad collins
US606482A (en) * 1898-06-28 Darius f
US1766954A (en) * 1926-02-20 1930-06-24 Frederick C Scholler Thread oiler or moistener
US2178912A (en) * 1938-04-23 1939-11-07 American Steel & Wire Co Wire cleaning device
US2239159A (en) * 1940-02-14 1941-04-22 Patterson Ballagh Corp Line wiping device
US2285742A (en) * 1940-12-18 1942-06-09 De Mont G Miller Line wiping device
US2437528A (en) * 1945-06-08 1948-03-09 Surface Combustion Corp High-temperature cleaning of steel strip, including removing ferrous chloride therefrom

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US348660A (en) * 1886-09-07 Olmstbad collins
US606482A (en) * 1898-06-28 Darius f
US1766954A (en) * 1926-02-20 1930-06-24 Frederick C Scholler Thread oiler or moistener
US2178912A (en) * 1938-04-23 1939-11-07 American Steel & Wire Co Wire cleaning device
US2239159A (en) * 1940-02-14 1941-04-22 Patterson Ballagh Corp Line wiping device
US2285742A (en) * 1940-12-18 1942-06-09 De Mont G Miller Line wiping device
US2437528A (en) * 1945-06-08 1948-03-09 Surface Combustion Corp High-temperature cleaning of steel strip, including removing ferrous chloride therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3273190A (en) * 1962-10-23 1966-09-20 Bethlehem Steel Corp Wire polisher

Similar Documents

Publication Publication Date Title
US3231432A (en) Process for the quenching of hot rolled rods in direct sequence with rod mill
US3490500A (en) Plant for the treatment of rolled wire from the roll heat
US2250610A (en) Wire and wire making
US2793144A (en) Method and means for treating wire
JP2023535656A (en) Processing process of NPR rebar coil
US4118845A (en) Apparatus for producing fine metal filaments
US5201206A (en) Continuous wire drawing process with mechanical descaling and post-die treatment and apparatus
US3785878A (en) Treatment of metal rod or wire
US3865153A (en) Metal treatment apparatus for steel rod having an oscillating platform below the laying head
US2355174A (en) Method and apparatus for surface conditioning wire and the like
US3391450A (en) Process for treating wire
DE1919296B2 (en) PROCESS AND SYSTEM FOR THE MANUFACTURE OF COPPER-PLATED STEEL WIRE, IN PARTICULAR FOR CO DEEP 2 GAS WELDING
US4817645A (en) In-process wire cleaning
US2203064A (en) Method of and apparatus for treating and drawing wire
US2071089A (en) Bale tie
GB2064593A (en) Direct sorbitic transformation of hotrolled steel rod
US459903A (en) Art of treating wire rods
US1202368A (en) Method of and apparatus for treating material.
US3455133A (en) Devices for the continuous t9eatment of wires or metallic strips
US1531498A (en) Method and means for feeding long blanks
SU447239A1 (en) Welding wire cleaning method
US2159561A (en) Method of and apparatus for removing scale from and sizing rods and the like
US781078A (en) Art or process of removing scale from wires, rods, &c.
US283557A (en) Process of and apparatus for manufacturing continuous lengths of coiled wire
US3532083A (en) Helical stone sawing wires