US2570008A - Polar co-ordinate cathode-ray tube - Google Patents

Polar co-ordinate cathode-ray tube Download PDF

Info

Publication number
US2570008A
US2570008A US176121A US17612150A US2570008A US 2570008 A US2570008 A US 2570008A US 176121 A US176121 A US 176121A US 17612150 A US17612150 A US 17612150A US 2570008 A US2570008 A US 2570008A
Authority
US
United States
Prior art keywords
deflection
pair
screen
electrodes
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US176121A
Inventor
Robert E Rutherford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allen B du Mont Laboratories Inc
Original Assignee
Allen B du Mont Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allen B du Mont Laboratories Inc filed Critical Allen B du Mont Laboratories Inc
Priority to US176121A priority Critical patent/US2570008A/en
Application granted granted Critical
Publication of US2570008A publication Critical patent/US2570008A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/78Arrangements for deflecting ray or beam along a circle, spiral or rotating radial line, e.g. for radar display

Definitions

  • This invention relates to cathode ray tubes and particularly to the deflection electrodes of the electrostatically deflected polar coordinate cathode ray tubes.
  • Cathode ray tubes of the type shown in U. S. Patent 2,328,259 intended for use in displaying electrical signals in a polar coordinate presentation are diflicult to construct accurately since the center electrode of the radial deflection pair of electrodes is supported from the front face of the tube entirely independently of the electron gun and hence is subject to misalignment through improper positioning while being sealed into the glass envelope or through mechanical shocks received by the completed tube.
  • the center deflection electrode of polar coordinate tubes having two pairs of mutually perpendicular deflection plates is supported by the electron gun, a gap caused by the support for the center electrode is produced in the circular pattern on the face of the tube.
  • there is an elliptical distortion of the electron beam envelope in electrostatically deflected cathode ray tubes due to the fact that the centers of deflection of the horizontal and vertical pairs of deflection plates are not coincident.
  • An electrostatically deflected polar coordinate cathode ray tube is described hereinafter in which the pair of radial deflection electrodes are formed as frustums of elliptically cross sectioned cones to minimize the efiects of the elliptical distortion in the electron beam envelope.
  • the radial deflec tion electrodes are rigidly mounted on the electron gun in such a manner as to withstand any reasonable mechanical shock and corrector plates are mounted axially on the radial deflection electrodes to reduce the width of the gap in the pattern on the face of the tube.
  • FIG. 1 illustrates a cathode ray tube embodying this invention
  • Figure 2 shows a cross section of the radial deflection electrodes through 2--2 of Figure 1;
  • Figure 3 shows a top view of the electrodes in Figure 2;
  • Figures 4 and 5 illustrate the deflection of the electron beam in Figure 1 by the horizontal and vertical pairs of deflection plates respectively;
  • Figures 6 and 7 illustrate sections through 8-8 and 1-1 respectively of the radial deflection electrodes in Figure 1;
  • Figure 8 shows a typical pattern on the fluorescent screen of the tube in Figure 1.
  • a polar coordinate cathode ray tube comprising a bulb ll having a base 12 and an electron gun mounted in the neck l3 of the bulb II.
  • the electron gun comprises a control grid II with a cathode (not shown) located therein, a portion IQ of the second anode, the
  • Figure 2 shows the deflection electrode 28 supported by a pair of wire rods 31 and 38 extending from the ceramic rods l9 and 20.
  • the center electrode 29 is preferably supported by a thin metal ribbon support 39 from one of the ceramic rods l9 and is electrically insulated from the outer electrode 28.
  • Directly above the support 38 and attached to the wall of the outer electrode 28 is a thin metal corrector plate 5
  • the pattern on the face of the polar coordinate cathode ray tube appears as shown in Figure 8 in which the trace 0 is set to form a circle ll having a predetermined radius.
  • This circle ll is called the median circle and signal voltages impressed on the radial deflection electrodes 28 and 29 cause the radius of the trace ll to become either greater or less than its median value as screen of the tube.
  • This shadow is similar to an optical shadow of the support 39 and may be of the order of ti inch in circles having a radius 01' 1% dnches.
  • signal voltages occurring during the time that the beam is in this shadow region would not appear as visible patterns on the cathode ray tube screen and consequently the information represented by these signals, such as the pulse 42, would be lost.
  • the corrector plate acts to reduce the angle of this gap in the trace of the cathode ray beam. Since this plate 5
  • the voltages of the electron gun and the deflection system are selected so'as to narrow the gap for a three inch median circle to 4; inch or less.
  • the line 50 in- Figure 4 represents the electron beam deflected the necessary amount by the pair of deflection .plates 2
  • the line 52 represents the electron beam deflected the necessary amount by the upper pair of deflection plates 23 and to produce the median circle.
  • , 22, 23 and 24 are adjusted to provide equal deflection in both of two mutually perpendicular directions as indicated by points 46 and 51 which are equidistant from the center 58 of the screen 54.
  • the deflection of the electron beam does not take place at a single spot between a given pair of deflection plates but is distributed over an area, it is well known to representthe deflection as having taken place about a center point which for the pair of deflection plates 2
  • the pair of deflection plates 23 and 24 create the center of deflection at the point 6
  • the angle of deflection A for the pair of plates 23 and 24, near the screen must be greater than the angle of deflection B for the pair of plates 2
  • Figure 7 shows an ellipse 12 representing the cross section of the conical sheet at the top edge of the electrode 28 as formed by radii C and E corresponding to D and F in Figure 6.
  • the ellipse I2 is more nearly circular shape to the ellipses in Figures 6 and 7 respectively but preferably changed in size so that the conical sheet passes midway between these two electrodes throughout the axial lengths thereof.
  • push-pull deflection should be applied to the two electrodes 28 and 28.
  • An electrostatically deflected polar coordinate cathode ray tube comprising an'evacuated vessel containing a light translating screen and an electron gun comprising a plurality of electron beam forming electrodes, a plurality of pairs of deflection plates, one of said pairs being supported by and adjacent the end of said electron gun nearer said screen, another of said pairs being supported by said gun between said screen and the former of said pairs of deflection plates, a pair of conical deflection electrodes supported by supporting means crossing the area traversed by the electron beam from said electron gun between the latter of said pairs of deflection plates and said screen, and corrector means parallel and adjacent to said supporting means to exert a force on said beam equal and opposite to the force exerted thereon by said supporting means.
  • a polar coordinate cathode ray tube comprising an evacuated vessel having a light translating screen and an electron gun, said electron gun comprising a plurality of tubular electrodes, a first pair of deflection plates supported by said electron gun between said screen and said gun, a second pair of deflection plates supported by said electron gun between said screen and said first pair of deflection plates, a pair of radial deflection electrodes comprising a conically shaped outer electrode supported by said electron gun structure and a conically shaped inner deflection 816a trode coaxial with said outer electrode and suspended by a strap from said electron gun structure, and a corrector plate attached to the inner wall of said outer deflection electrode and extending inwardly toward said inner electrode substantially parallel with said support strap.
  • a polar coordinate cathode ray tube comprising an evacuated vessel having a light translating screen and an electron gun, said electron gun comprising a plurality of tubular electrodes secured to a plurality of insulating rods, a flrst pair of deflection plates supported by said rods between said screen and said gun, a second pair of deflection plates substantially perpendicular to said first pair of deflection plates located between said first pair of deflection plates and said screen and supported by said rods, and a pair of radial deflection electrodes comprising an outer deflecsaid flrst pair of deflection plates and said screen and a pair of radial deflection electrodes between said second named pair of deflection plates and said screen, each of said radial deflection electrodes having a frusto-conical shape with the cross section of said electrodes being elliptical with the major axes of the ellipses being perpendicular to said first named pair of deflection plates.
  • a polar coordinate cathode ray tube comprising an evacuated vessel containing a light translating screen and an electron gun, said elecpr a va uated v ss l containi a l t 15 tron gun comprising a polarity of beam forming translating screen, an electron gun, a first pair of deflection plates between said electron gun and said screen, a second pair of deflection plates between said first pair of deflection plates and said screen and a pair of radial deflection electrodes between said second named pair of deflection plates and said screen, both said radial deflection electrodes having elliptical cross sections in a plane perpendicular to the axis of said radial deflection electrodes.
  • a polar coordinate cathode ray tube comprising an evacuated vessel containing a light translating screen, an electron gun, a first pair of deflection plates between said electron gun and said screen, a second pair of deflection plates between ROBERT E. RUTHERFORD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Description

O 1951 R. E.-RUT HERFORD I ,570, 0
POLAR CO-ORDINATE CATHODE-RAY TUBE Filed July 27, 1950 2 Sheets-Sheet 1 1 l8 l3 I7 I i Fig. 3
| u 12 I i IN VEN TOR. ROBERT E. RUTHERFORD ATTORNEYS 1951 R. E. RUTHERFQRD 2,570,008
POLAR CO-ORDINATE CATHODE-RAY TUBE Filed July 27, 1950 2 Sheets-Sheet 2 F Fig. 7
uvmvrm ROBE RT E. RUTHERFORD BY w k ha,
A TTORNEYS Patented Oct. 2,- 1951 POLAR CO-ORDINATE CATHODE-RAY TUBE Robert E. Rutherford, Nutley, N. J., assignor to Allen B. Du Mont Laboratories, Inc.,
Clifton,
N. .L, a corporation of Delaware Application July 27, 1950, Serial No. 176,121
8 Claims. 1
This invention relates to cathode ray tubes and particularly to the deflection electrodes of the electrostatically deflected polar coordinate cathode ray tubes.
Cathode ray tubes of the type shown in U. S. Patent 2,328,259 intended for use in displaying electrical signals in a polar coordinate presentation are diflicult to construct accurately since the center electrode of the radial deflection pair of electrodes is supported from the front face of the tube entirely independently of the electron gun and hence is subject to misalignment through improper positioning while being sealed into the glass envelope or through mechanical shocks received by the completed tube. When the center deflection electrode of polar coordinate tubes having two pairs of mutually perpendicular deflection plates is supported by the electron gun, a gap caused by the support for the center electrode is produced in the circular pattern on the face of the tube. Furthermore, there is an elliptical distortion of the electron beam envelope in electrostatically deflected cathode ray tubes due to the fact that the centers of deflection of the horizontal and vertical pairs of deflection plates are not coincident.
An electrostatically deflected polar coordinate cathode ray tube is described hereinafter in which the pair of radial deflection electrodes are formed as frustums of elliptically cross sectioned cones to minimize the efiects of the elliptical distortion in the electron beam envelope. The radial deflec tion electrodes are rigidly mounted on the electron gun in such a manner as to withstand any reasonable mechanical shock and corrector plates are mounted axially on the radial deflection electrodes to reduce the width of the gap in the pattern on the face of the tube.
It'is one object of this invention to produce an improved polar coordinate cathode ray tube.
Other objects are to produce a steadier radial deflection electrode pair for electrostatically deflected polar coordinate cathode ray tubes, to equalize the deflection sensitivity over the en tire circle of the radial deflection electrodes, andto reduce the gap in the cathode ray pattern traced on the screen of polar coordinate cathode ray tubes.
Other objects will be apparent after studying the following specification and drawings in which:
Figure 1 illustrates a cathode ray tube embodying this invention;
Figure 2 shows a cross section of the radial deflection electrodes through 2--2 of Figure 1;
Figure 3 shows a top view of the electrodes in Figure 2; l
Figures 4 and 5 illustrate the deflection of the electron beam in Figure 1 by the horizontal and vertical pairs of deflection plates respectively;
Figures 6 and 7 illustrate sections through 8-8 and 1-1 respectively of the radial deflection electrodes in Figure 1; and
Figure 8 shows a typical pattern on the fluorescent screen of the tube in Figure 1.
In Figure 1 a polar coordinate cathode ray tube is shown comprising a bulb ll having a base 12 and an electron gun mounted in the neck l3 of the bulb II. The electron gun comprises a control grid II with a cathode (not shown) located therein, a portion IQ of the second anode, the
focussing anode l1, and a section It which is electrically connected to the portion It. to form the complete second anode, all mounted on a pair of'insulating rods l8 and 20. A first pair of deflection plates 2| and 22 and a second pair of deflection plates 23 and 24 similar to those shown in U. 8. Patent 2,391,273 also are mounted on the ceramic rods l9 and 20. A spring centering de-, vice 26 is attached to an insulating disk 21 which may be, for instance, a mica plate. The radial deflection electrode pair comprising an inner electrode 28 and an outer electrode 28 is secured to the ends of the ceramic rods l9 and 20. Electrical connections to the deflection plates 2| and 22 may be made by means of a pair of contact terminals 3| and 32 which may be of the type shown in U. S. Patent 2,448,808.
Figure 2 shows the deflection electrode 28 supported by a pair of wire rods 31 and 38 extending from the ceramic rods l9 and 20. The center electrode 29 is preferably supported by a thin metal ribbon support 39 from one of the ceramic rods l9 and is electrically insulated from the outer electrode 28. Directly above the support 38 and attached to the wall of the outer electrode 28 is a thin metal corrector plate 5| which, as is shown in both Figure 2 and Figure 3,, extends substantially parallel to the support 38 from the inner wall of the electrode 28 to the proximity of the electrode 28.
Under the influence of normal operating potentials the pattern on the face of the polar coordinate cathode ray tube appears as shown in Figure 8 in which the trace 0 is set to form a circle ll having a predetermined radius. This circle ll is called the median circle and signal voltages impressed on the radial deflection electrodes 28 and 29 cause the radius of the trace ll to become either greater or less than its median value as screen of the tube. This shadow is similar to an optical shadow of the support 39 and may be of the order of ti inch in circles having a radius 01' 1% dnches. As is shown by the dotted lines in Figure 8, signal voltages occurring during the time that the beam is in this shadow region would not appear as visible patterns on the cathode ray tube screen and consequently the information represented by these signals, such as the pulse 42, would be lost.
The corrector plate acts to reduce the angle of this gap in the trace of the cathode ray beam. Since this plate 5| has a voltage impressed on it which is opposite in polarity to the voltage impressed on the support 39, the electron beam which was deflected away from a portion of the screen to create the gap indicated at 42 is deflected back to its original trajectory thus decreasing or eliminating the gap. In practice the voltages of the electron gun and the deflection system are selected so'as to narrow the gap for a three inch median circle to 4; inch or less.
The line 50 in-Figure 4 represents the electron beam deflected the necessary amount by the pair of deflection .plates 2| and 22 to produce the median circle. Similarly, in Figure 5 the line 52 represents the electron beam deflected the necessary amount by the upper pair of deflection plates 23 and to produce the median circle. In order to produce the median circle 4! on the screen of the cathode ray tube, the signal voltages applied to the deflection plates 2|, 22, 23 and 24 are adjusted to provide equal deflection in both of two mutually perpendicular directions as indicated by points 46 and 51 which are equidistant from the center 58 of the screen 54. Although the deflection of the electron beam does not take place at a single spot between a given pair of deflection plates but is distributed over an area, it is well known to representthe deflection as having taken place about a center point which for the pair of deflection plates 2| and 221s the point 59.
, The pair of deflection plates 23 and 24 create the center of deflection at the point 6|. It is important to note that between the points 58 and GI the electron beam is being deflected back and forth in only one directionand it is only above the point 6i that the beam is deflected at right angles to this first direction.
In order to create the circular pattern on the screen, the angle of deflection A for the pair of plates 23 and 24, near the screen, must be greater than the angle of deflection B for the pair of plates 2| and 22 which are farther from the screen. Since the polar coordinate tube is designed with certain dimensional relations for a particular accelerating voltage and deflection sensitivities, the path of the electron beam through the deflection area of the electrodes 28 and 29 is predetermined.
In tracing out a circle on the screen 54 the pathsvof the electron beam form a conical sheet having'an elliptical cross section with a continuously varying eccentricity which is shown graphically in Figures 6 and '7. The radii D and F in Figure 6 represent the distance from the center line 53 in Figures 4 and 5 to the rays 5| and 52 respectively in a plane passing through the lower edge of the electrode 28 when these rays are deflected so as to produce the median circle 42. It is awell known exercise in-analytic geometry 4 to construct an ellipse based on two concentric circles andthis ellipse is indicated in Figure 6 by the reference character".
Figure 7 shows an ellipse 12 representing the cross section of the conical sheet at the top edge of the electrode 28 as formed by radii C and E corresponding to D and F in Figure 6. It will be noticed that the ellipse I2 is more nearly circular shape to the ellipses in Figures 6 and 7 respectively but preferably changed in size so that the conical sheet passes midway between these two electrodes throughout the axial lengths thereof. In order to take best advantage of the minimum spot distortion thus achieved, push-pull deflection should be applied to the two electrodes 28 and 28.
Although this invention has been described with reference to specific embodiments, it is obvious that modifications may be made by those skilled in the art without departing from the scope of the following claims.
What is claimed is:
1. An electrostatically deflected polar coordinate cathode ray tube comprising an'evacuated vessel containing a light translating screen and an electron gun comprising a plurality of electron beam forming electrodes, a plurality of pairs of deflection plates, one of said pairs being supported by and adjacent the end of said electron gun nearer said screen, another of said pairs being supported by said gun between said screen and the former of said pairs of deflection plates, a pair of conical deflection electrodes supported by supporting means crossing the area traversed by the electron beam from said electron gun between the latter of said pairs of deflection plates and said screen, and corrector means parallel and adjacent to said supporting means to exert a force on said beam equal and opposite to the force exerted thereon by said supporting means.
2. A polar coordinate cathode ray tube comprising an evacuated vessel having a light translating screen and an electron gun, said electron gun comprising a plurality of tubular electrodes, a first pair of deflection plates supported by said electron gun between said screen and said gun, a second pair of deflection plates supported by said electron gun between said screen and said first pair of deflection plates, a pair of radial deflection electrodes comprising a conically shaped outer electrode supported by said electron gun structure and a conically shaped inner deflection 816a trode coaxial with said outer electrode and suspended by a strap from said electron gun structure, and a corrector plate attached to the inner wall of said outer deflection electrode and extending inwardly toward said inner electrode substantially parallel with said support strap.
3. A polar coordinate cathode ray tube comprising an evacuated vessel having a light translating screen and an electron gun, said electron gun comprising a plurality of tubular electrodes secured to a plurality of insulating rods, a flrst pair of deflection plates supported by said rods between said screen and said gun, a second pair of deflection plates substantially perpendicular to said first pair of deflection plates located between said first pair of deflection plates and said screen and supported by said rods, and a pair of radial deflection electrodes comprising an outer deflecsaid flrst pair of deflection plates and said screen and a pair of radial deflection electrodes between said second named pair of deflection plates and said screen, each of said radial deflection electrodes having a frusto-conical shape with the cross section of said electrodes being elliptical with the major axes of the ellipses being perpendicular to said first named pair of deflection plates.
'1. The device of claim 6 in which the eccentricities of said ellipses varies along the axial length of said radial pair of deflection electrodes.
8. .A polar coordinate cathode ray tube comprising an evacuated vessel containing a light translating screen and an electron gun, said elecpr a va uated v ss l containi a l t 15 tron gun comprising a polarity of beam forming translating screen, an electron gun, a first pair of deflection plates between said electron gun and said screen, a second pair of deflection plates between said first pair of deflection plates and said screen and a pair of radial deflection electrodes between said second named pair of deflection plates and said screen, both said radial deflection electrodes having elliptical cross sections in a plane perpendicular to the axis of said radial deflection electrodes.
5. The device of claim 4 in which the elliptical cross section of said radial deflection electrodes has a different eccentricity at the end of said electrodes proximal to said screen from the cocentricity at the end of said electrodes distal from said screen.
6. A polar coordinate cathode ray tube comprising an evacuated vessel containing a light translating screen, an electron gun, a first pair of deflection plates between said electron gun and said screen, a second pair of deflection plates between ROBERT E. RUTHERFORD.
REFERENCES crrEn The following references are of record in the flle of this patent:
UNITED STATES PATENTS Number Name Date 2,088,493 Sutherlin et al July 27, 1937 2,328,259 Chrlstaldi et al. Aug. 31, 1943 2,432,037 O'Larte et a1. Dec. 2. 1947
US176121A 1950-07-27 1950-07-27 Polar co-ordinate cathode-ray tube Expired - Lifetime US2570008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US176121A US2570008A (en) 1950-07-27 1950-07-27 Polar co-ordinate cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US176121A US2570008A (en) 1950-07-27 1950-07-27 Polar co-ordinate cathode-ray tube

Publications (1)

Publication Number Publication Date
US2570008A true US2570008A (en) 1951-10-02

Family

ID=22643062

Family Applications (1)

Application Number Title Priority Date Filing Date
US176121A Expired - Lifetime US2570008A (en) 1950-07-27 1950-07-27 Polar co-ordinate cathode-ray tube

Country Status (1)

Country Link
US (1) US2570008A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2088493A (en) * 1933-06-21 1937-07-27 Westinghouse Electric & Mfg Co Cathode ray tube
US2328259A (en) * 1941-11-18 1943-08-31 Du Mont Allen B Lab Inc Polar coordinate cathode-ray tube
US2432037A (en) * 1943-08-20 1947-12-02 Kreisler Mfg Corp Jacques Electron gun positioning means

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2088493A (en) * 1933-06-21 1937-07-27 Westinghouse Electric & Mfg Co Cathode ray tube
US2328259A (en) * 1941-11-18 1943-08-31 Du Mont Allen B Lab Inc Polar coordinate cathode-ray tube
US2432037A (en) * 1943-08-20 1947-12-02 Kreisler Mfg Corp Jacques Electron gun positioning means

Similar Documents

Publication Publication Date Title
US2200745A (en) Electron discharge device
GB676622A (en) Calculating electron discharge device
US2139678A (en) Electron discharge device
US3921025A (en) Dual-beam CRT with vertical trace bowing correction means
US3731136A (en) Cylindrical electrode system for focusing and deflecting an electron beam
US2735031A (en) woodbridge
GB803221A (en) Improvements relating to electron guns
GB1181540A (en) Improvements in or relating to Cathode Ray Tubes.
US2570008A (en) Polar co-ordinate cathode-ray tube
US2114572A (en) Cathode ray ture system
US2847598A (en) Electron gun structure for plural beam tubes
GB1078832A (en) Electrostatic electron optical system
US2225455A (en) Cathode ray device
US2328259A (en) Polar coordinate cathode-ray tube
US2131563A (en) Cathode ray tube
US2189320A (en) Electro-optical device
US3983444A (en) Dual beam CRT with inner gun and outer gun shield means for correcting keystone distortion
US2117709A (en) Electron discharge device
US2131192A (en) High vacuum television tube
GB707064A (en) Improvements relating to electrode assemblies for cathode ray tubes
GB905351A (en) Cathode-ray tubes of the focus-mask variety
US2217197A (en) Cathode ray device
GB743181A (en) Improvements in or relating to cathode ray tubes
US2633553A (en) Cathode-ray oscillograph
GB783305A (en) Improvements in or relating to cathode-ray tubes for reproducing coloured televisionimages