US20210369938A1 - Integrated system for assessing wound exudates - Google Patents

Integrated system for assessing wound exudates Download PDF

Info

Publication number
US20210369938A1
US20210369938A1 US17/399,271 US202117399271A US2021369938A1 US 20210369938 A1 US20210369938 A1 US 20210369938A1 US 202117399271 A US202117399271 A US 202117399271A US 2021369938 A1 US2021369938 A1 US 2021369938A1
Authority
US
United States
Prior art keywords
wound
drain line
internal channel
flow
wound exudate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/399,271
Inventor
Landy Toth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Convatec Technologies Inc
Original Assignee
Convatec Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Convatec Technologies Inc filed Critical Convatec Technologies Inc
Priority to US17/399,271 priority Critical patent/US20210369938A1/en
Publication of US20210369938A1 publication Critical patent/US20210369938A1/en
Assigned to CONVATEC TECHNOLOGIES INC. reassignment CONVATEC TECHNOLOGIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TOTH, LANDY
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14557Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted to extracorporeal circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/412Detecting or monitoring sepsis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/445Evaluating skin irritation or skin trauma, e.g. rash, eczema, wound, bed sore
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/73Suction drainage systems comprising sensors or indicators for physical values
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/74Suction control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/95Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing with sensors for exudate composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14539Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring pH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/96Suction control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3379Masses, volumes, levels of fluids in reservoirs, flow rates
    • A61M2205/3389Continuous level detection

Definitions

  • NPWT negative pressure wound therapy
  • a system for assessing wound exudate from the wound of a patient may include a system comprising a wound treatment device, detecting means for detecting one or more values of one or more physiological parameters of the wound exudate, analyzing means for analyzing the values of the one or more physiological parameters so as to obtain an assessment of the wound exudate, and providing means for providing treatment guidelines based on the assessment, in which the wound treatment device, the detecting means, the analyzing means, and the providing means are integrated.
  • FIG. 1 is a functional block diagram representing components of a wound exudate system, in accordance with an embodiment of the present invention.
  • FIG. 2 shows an embodiment of a wound exudate system integrated within an NPWT device, in accordance with an embodiment of the present invention.
  • FIG. 3 is flow diagram of a wound assessment process, in accordance with an embodiment of the present invention.
  • FIG. 4 depicts a cross-sectional view of a wound exudate system, in accordance with an embodiment of the present invention
  • FIG. 5 depicts an embodiment of a wound exudate system containing multiple light sources and multiple detectors, in accordance with an embodiment of the present invention.
  • FIG. 6 depicts a wound exudate system that contains a flow disruption element, in accordance with an embodiment of the present invention.
  • FIG. 7 depicts a wound exudate system containing an inflow feature with a biomarker coating, in accordance with an embodiment of the present invention.
  • FIG. 8 depicts a wound drain tube configured with a tortuous path, in accordance with an embodiment of the present invention.
  • FIGS. 9 and 10 depict embodiments of a wound exudate system for pinching a wound drainage line, in accordance with an embodiment of the present invention.
  • FIG. 11 depicts a wound exudate system with multiple actuators for pinching a wound drain line, in accordance with an embodiment of the present invention.
  • FIG. 12 depicts an alternative embodiment of a wound exudate system having multiple pinching mechanisms disposed along opposing sides of a wound drain line, in accordance with an embodiment of the present invention.
  • FIGS. 13 and 14 depict an alternate embodiment of a wound exudate system containing a spring loaded latch in a secured state and released state, respectively, in accordance with an embodiment of the present invention.
  • FIGS. 15 and 16 depict a wound exudate system configured with a resistive heat break element in a not applied state and an applied state, respectively, in accordance with an embodiment of the present invention.
  • FIG. 17 depicts an embodiment of a wound exudate system containing thin membranes with pressure sensors disposed thereon, in accordance with an embodiment of the present invention.
  • FIG. 18 depicts a wound exudate system containing thermal mass sensors, in accordance with an embodiment of the present invention.
  • FIG. 19 depicts a wound exudate system configured within a collection chamber, in accordance with an embodiment of the present invention.
  • FIG. 20 depicts a graph showing different spectral intensities, in accordance with an embodiment of the present invention.
  • FIG. 21 is a flow diagram of a process for spectral analysis of wound exudate, in accordance with an embodiment of the present invention.
  • FIG. 22 is an exemplary two-dimensional vector map representing a range of wavelengths measured during spectral analysis of wound exudate, in accordance with an embodiment of the present invention.
  • FIG. 23 is a spectral graph of the measurements of the map of FIG. 22 , in accordance with an embodiment of the present invention.
  • FIG. 24 is an exemplary three-dimensional vector map representing a range of wavelengths measured during spectral analysis of wound exudate, in accordance with an embodiment of the present invention.
  • FIG. 25 illustrates an alternative embodiment of a wound exudate system disposed within an ancillary collection chamber, in accordance with an embodiment of the present invention.
  • FIG. 26 is a flow diagram illustrating an exemplary process for obtaining flow measurements of wound exudate measurements, in accordance with an embodiment of the present invention.
  • FIG. 27 is a two-dimensional graph depicting flow rate measurements, in accordance with an embodiment of the present invention.
  • FIG. 28 is a flow diagram illustrating the steps in a read and assess loop process, in accordance with an embodiment of the present invention.
  • FIG. 29 is a flow diagram illustrating a process for obtaining readings of wound exudate, in accordance with an embodiment of the present invention.
  • wound exudate system or “system”
  • system allow for convenient assessment of wound exudates from a wound site and may provide real time quantitative and predictive functionality, as well as an integrated inline diagnostic solution. Also, the system may be integrated into a wound treatment device.
  • FIG. 1 is a block diagram of an embodiment of a wound exudate system 1 , in accordance with the present invention.
  • sensors or detectors 11 may detect and retrieve data representing the condition of a wound.
  • This wound data may be transferred electronically via wired or wireless means 17 to one or more processors 15 .
  • the processors may, among other things, predict wound state and other treatment solutions, based on the wound data.
  • data may be stored in a memory 16 .
  • Information from the processor(s) 15 may be transmitted to an output device 19 by any means known in the art, in order to inform or alert a user about the health or state of a wound.
  • FIG. 2 depicts one embodiment of a wound exudate system 18 .
  • the system 18 is generally in fluid communication with a wound 3 (and wound exudate) of a patient 5 .
  • Fluid communication between the system 18 , and the wound 3 may be by any means known in the art, e.g., a wound drain 7 that is part of a wound therapy device 9 .
  • the wound exudate system 18 may include one or more sensors or detectors 11 , which may be used to detect various parameters, including but not limited to temperature, pH, color, viscosity and tone. These parameters are useful indicators of present wound state, and may be used in accordance with aspects of the present invention to render viable treatment options.
  • the wound exudate system may optionally employ one or more types of light sources 13 .
  • the light sources 13 may emit varying wavelengths of light, depending on their programmed functionality. The wavelengths of light may be emitted through the wound exudate and may be altered depending on the characteristics of the exudate itself.
  • the wavelengths may then be detected by the sensors or detectors 11 .
  • the wavelengths detected by the sensors or detectors 11 may represent various conditions of the wound exudate being analyzed.
  • the sensors or detectors 11 may transmit information representative of the detected wavelengths via electronic circuitry 17 , to one or more processors 15 integral within the wound exudate system 18 .
  • the one or more processors 15 may be adapted to receive the detected wavelength data, and conduct various analyses by way of programmed processes.
  • the processor(s) 15 may receive the wavelength data from the sensor(s) 11 , and use such data in appropriate process.
  • a determination of the process can be any type of diagnosis or categorization of wound health or healing, as well as a prescribed treatment regimen.
  • Various information including but not limited to historical data, processes, and vector maps may be stored in a memory 16 .
  • the determination of the process may be communicated, wirelessly or via wired means, to be displayed on an onboard or external display 19 .
  • the exudate system 18 may be integrated directly into the wound therapy device 9 .
  • the processor 15 may be integrated into the wound therapy device, and the sensors, detectors and circuitry may be integral with a wound drain that is part of an active treatment device, or a bandage or dressing.
  • the system 18 may detect the presence of blood in the exudates, as well as monitor and assess other physiological values relevant to wound exudates, such as flow rate/quantity, color, bacterial traces, temperature, pH and the like.
  • FIG. 3 is a flow diagram illustrating an exemplary wound exudate system process 500 .
  • the blocks in FIG. 3 are representative of various functions of a wound exudate system, which may be combined, omitted, added, or reordered as suitable.
  • sensors detect and/or measure one or more parameters of the wound exudate.
  • Measurement Data obtained in block S 501 is transmitted to and received by one or more processors in block S 503 .
  • the processors then analyze the received data in block S 505 . Based on results of analyzing, determination(s) may be made in block S 507 regarding the measurements by the sensors. Those determinations, which may include a diagnosis or treatment guideline may then be outputted via an alarm or warning in block S 509 , or an output display in block S 510 .
  • the wound exudates systems disclosed herein and illustrated in the attached drawings may contain various structural features.
  • the system may be configured differently to attach to an existing wound therapy device, or be integrated directly into one of these devices.
  • the structure of the system may also include sources of light for spectral analysis, as well as sensors or detectors for detecting the light emitted by these light sources. Detection of light at a particular wavelength after it has been emitted through wound exudate may indicate the value of a certain parameter of the exudate.
  • the system may also include sensors for measuring non-spectral parameters such as temperature and pressure.
  • FIG. 4 depicts an embodiment of a wound exudate system 28 integrated into an existing wound drain line.
  • the system contains a light source 29 for emitting light of a certain wavelength(s) into the exudate.
  • the system also contains a detector 30 for detecting and/or sensing the emitted wavelengths of light after it has passed through wound exudate. Amplitude of the detected wavelengths represent the spectral attributes of the exudates and may be indicative of wound state.
  • FIG. 4 depicts an optical barrier 31 disposed on the exterior of a wound drainage line 32 .
  • the optical barrier 31 is useful for avoiding ambient light from reaching the wound exudate. This increases the accuracy of the detection, as it avoids any artifacts that may be caused by light other than that emitted by the source 29 .
  • FIG. 5 depicts another alternative embodiment of the present invention, in which the system may contain multiband sources of light, including a narrowband source 33 and a broadband source 34 .
  • Multiple multiband detectors 35 may also be disposed within the system. Multiband sources and detectors may be useful for detecting various wavelengths of light and therefore different attributes of the exudates.
  • the detectors 35 may be configured to remove unwanted ambient light and obtain more complete spectral information.
  • an exudates system may be integrated within a central suction system.
  • the exudates system may be associated and operated in tandem with an existing central suction system, so as to warn and shutdown flow from the wound site in the case of an adverse event.
  • the exudates system may clamp the wound drainage line in the case of an adverse event.
  • Such an embodiment may provide a safe and low cost alternative to existing NPWT devices in a hospital setting. This mechanism may be useful in preventing inadvertent hemorrhagic crises created by undetected bleeding.
  • the central suction unit may be pre-configured with an integrated wound monitoring system as described herein.
  • FIG. 6 depicts an alternative embodiment of a wound exudate system that contains a flow disruption element 41 in combination with one or more detectors 40 and 42 and a source 44 .
  • the arrangement of the present embodiment may provide more accurate sensing, based on the deflection of the flow disruption element.
  • an exudates system may comprise a fluid channel through which exudates may pass.
  • the fluid channel may further comprise an obstruction located in the path of the exudates, as seen in FIG. 6 .
  • a disturbance in the flow is created.
  • the behavior of the flow in and around the disturbance may be useful for measuring parameters of the flow, such as viscosity, concentration and/or composition of solid matter, etc.
  • the disturbance in the flow can also be used to better mix the exudate, which may be useful for improving measurement accuracy.
  • Any signal variation between detectors 40 and 42 may be related to the flow disruption element. Viscosity may also be used to determine general water content of the exudates, as well as the presence of large molecules.
  • a wound exudate system may also be configured with a flow drain arranged in a tortuous path 60 , as seen in FIG. 8 . This configuration may function to eliminate ambient light from the sensory region 59 .
  • an exudate assessment system may also have structures and shaped tubes in the flow path to ensure that the fluid under analysis does not mix with previously collected exudates prior to being assessed, as seen in FIGS. 8, 19 and 25 .
  • the exudates system may have a chamber or trap 98 , as seen in FIG. 19 , into which fluids can pool, or low so as to assist with obtaining more precise measurements regarding the physical state of the exudates. Measurements, such as flow rate may be taken of the pooled fluid, the flowing fluid, or both. This embodiment may be particularly useful for measuring the thermal mass of the exudate.
  • the exudates system may also comprise a compartment to be filled by exudates leaving the wound site as seen in FIG. 19 .
  • the compartment may be suitable for isolating exudates for analysis or to periodically weigh exudates removed from the wound site so as to assess the rate of fluid removed from the wound site over time.
  • the compartment may include an automatic means for emptying when the fluid volume reaches a set level.
  • the compartment may have an active system such as valves, to empty the compartment when the fluid reaches a set level.
  • the exudates system may comprise one or more valves to direct and/or interrupt flow through the wound drain.
  • the exudates system may draw off fluid for a sample without fully interrupting flow through the fluid line. The separated fluid as indicated in FIG. 19 , is analyzed within the line and allowed to remix further downstream.
  • An alternative design may include a sampling port for taking a sample for analysis.
  • the exudates system may be integrated along an inner or outer surface of a canister or arranged, so as to mate with a canister.
  • the system may be arranged to detect the values of various physiological parameters of the exudates accumulated during use.
  • the system may monitor and detect the weight, height, impedance, etc. of the exudates as it accumulates in the canister. Such information may be valuable for determining if an adverse event has occurred, such as the onset of bleeding. It may also be valuable for determining the overall rate of exudates removal from the wound site, thus providing predictive planning for canister changes, or even to assess wound progression from a highly exudating state to a superficially exudating state.
  • Changes in the rate of exudates flowing from the wound site may be indicative of a change in the wound state.
  • changes in the composition of the wound exudates may indicate a clinically relevant change in the wound state.
  • Such changes in exudates removal rates may also be useful in determining how to most optimally change from one therapy to another.
  • a relative change from a highly exudating wound to one of a superficially exudating wound may be useful to monitor.
  • a transition from a highly exudating wound to a superficially exudating wound may provide useful information as to when a patient may be transferred from a more expensive to a less expensive therapy.
  • An example of an expensive therapy is NPWT, while examples of lower cost therapies are moist wound dressings or bandages.
  • the exudates system may comprise a sensor or series of sensors suitable for determining the values of the above properties of wound exudates.
  • the exudates system may also comprise one or more disposable sensors for enabling contact based measurements of the exudates.
  • sensor elements may comprise acoustic, photoacoustic, electrochemical, optical, and/or impedance spectroscopic elements arranged so as to monitor values of one or more parameters of the exudates.
  • the sensor or sensors may be arranged so as to collect information through the outer film of a dressing or through the wall of a wound drainage line.
  • the sensors may be temperature sensors, optical sensors, impedance sensor, electrochemical sensors (e.g.,: amperometric sensors), capacitive sensors, or the like.
  • the exudates system may comprise any type of flow sensor known in the art for determining the quantity or rate of fluid removed from a wound site.
  • the flow sensor may be of a contact or non-contact type.
  • the sensor may be a level sensor, a load cell, a flow event timer, a droplet counter, a velocimeter or the like.
  • the sensor may be a load cell, pressure head monitor (such as a manometer), a strain gauge, a turbine, a thermal mass sensor, pressure loss monitors, a tow line, or similar.
  • Any physiological parameter of wound exudates can be assessed using embodiments of the present invention.
  • Particular parameters of interest may include, flow of wound exudates, volume rate, pH, temperature, hemoglobin concentration, color and tone.
  • the exudates system may evaluate exudates flow rates by measuring the rate at which a collection chamber fills, as seen for example in FIGS. 19 and 25 .
  • the exudates system may comprise a combination of a load cell with a measurement chamber to measure flow rate and an accelerometer to monitor orientation of the measurement chamber with respect to the vertical axis, as seen in FIG. 19 . Combined signals from the sensors may be used to determine the correct flow rate of exudates from the wound site independent of the orientation of the exudates system.
  • the exudates system may have a chamber or trap 98 , as seen in FIG. 19 , into which fluids 97 may pool, or flow so as to assist with obtaining more precise measurements regarding the physical state of the exudates. Measurements, such as flow rate may be taken of the pooled fluid, the flowing fluid, or both by sensors 101 . This embodiment may be particularly useful for measuring the thermal mass of the exudate.
  • the exudates system may also comprise a compartment 98 to be filled by exudates leaving the wound site as seen in FIG. 19 .
  • the compartment 98 may be suitable for isolating exudates for analysis or to periodically weigh exudates removed from the wound site so as to assess the rate of fluid removed from the wound site over time.
  • the compartment may include an automatic means for emptying when the fluid volume reaches a set level.
  • the compartment may have an active system such as valves 99 , to empty the compartment 98 when the fluid 97 reaches a set level. Fluid may enter the compartment 98 through an inflow tube 96 , and exit the compartment 98 , via an exit tube 103 .
  • the exudates system may comprise one or more valves 99 to direct and/or interrupt flow through the wound drain.
  • the exudates system may draw off fluid for a sample without fully interrupting flow through the fluid line. The separated fluid as indicated in FIG. 19 , is analyzed within the line and allowed to remix further downstream.
  • An alternative design may include a sampling port for taking a sample for analysis.
  • Table 1 depicts various flow rates and their potential clinical indications. By quantifying these flow rates, and assessing them together with the other physiological parameters discussed herein, an accurate prediction of wound health may be obtained.
  • FIG. 25 is an alternative embodiment of the present invention depicting a wound exudate system and strain gauges disposed within an ancillary collection chamber. Such measurements may be taken by one or more sensors, including but not limited to strain gauges 236 , a capacitive level gauge 244 , optical gauge elements 242 , and electrical gauge elements 240 . Standard types of gauges for measuring weight or level are well known in the art. For example a strain gauge is based on a simple electrical circuit, wherein mechanical stress caused by change in weight causes the electrical resistance of the elements to change in proportion to the weight applied.
  • a capacitance gauge reads a different level of capacitance between two points.
  • the level of fluid 237 in the chamber e.g., the wound fluid
  • the level of the fluid in the container may be determined.
  • an optical gauge may use light to determine the distance between two points (e.g., the top of the canister and the fluid may indicate changes in the level of the fluid 237 .
  • the system in this particular example may include a small reservoir 230 in fluid communication with a larger reservoir 232 , an inlet port 234 feeding into the small reservoir 230 .
  • the small reservoir 230 was attached to the larger reservoir 232 with a flexible support 238 .
  • a strain gauge based load cell 236 was applied to the flexible support in order to measure flexure of the support during use 238 .
  • Saline was used to approximate the fluid under measurement during the study.
  • the system was also equipped with electrical gauge elements 240 , optical gauge elements 242 , a capacitive level gauge 244 . Therefore, the example demonstrates that individually, or if necessary in combination, different sensor types may be used to determine flow rate.
  • the signal detected the system was related to the weight of the small reservoir. This is in turn related to the time integral of the flow rate of fluid into the container. Thus the flow rate was able to be extracted from the reservoir weight signal.
  • a valve 246 was used between the small reservoir and the large reservoir in order to drain and reset the reservoir when it became too full. The flow dynamics of this emptying process can be used to determine viscosity related information about the fluid under study.
  • FIG. 26 depicts a process 260 that is further related to flow measurement of FIG. 19 and FIG. 25 .
  • the process 260 includes (1) taking a flow reading in block S 251 ; (2) removing any movement artifacts in block S 252 (1); and (3) calculating a flow rate in block S 253 based on methods known in the art and, in particular, those disclosed herein. If the calculated flow rate is acceptable, measurements will continue to be taken. If the flow rate is not acceptable an alarm or alert is triggered in block S 254 .
  • the flow rates calculated in process 260 can also be mapped in a graph as seen FIG. 27 .
  • the spectral maps described here in various values along the flow rate map may indicate an onset of infection and/or bleeding, i.e., 262 .
  • Exudate flow rate which may be measured by the methods described herein, or any of the methods known to those of ordinary skill in the art is a reliable predictor of wound health.
  • flow rate values, and changes in flow rate values may be detected through various means and may also be useful in determining how to most optimally change from one therapy to another.
  • a relative change from a highly exudating wound to one of a superficially exudating wound may be useful to monitor.
  • a transition from a highly exudating wound to a superficially exudating wound may provide useful information as to when a patient can be transferred from a more expensive to a less expensive therapy.
  • NPWT neurotrophic factor
  • moist wound dressings or bandages An example of an expensive therapy is NPWT, while an example of a lower cost therapy is moist wound dressings or bandages.
  • changes in the rate of exudates flowing from the wound site may be indicative of a change in the wound state.
  • changes in the composition of the wound exudates may indicate a clinically relevant change in the wound state.
  • color assessment of a disposable element within the device, or disposable electrodes within tube maybe possible. It may also be possible to map color profiles of exudates to pH. Several fluorescent nanoparticles systems can change color based on pH. In addition, a conjugated polymer could be used to do the same (redox potentials will change based on the pH of the local environment).
  • Temperature is useful for assessing bleeding events as well as to monitor for infection. Core blood is generally warmer than the interstitial fluids in the dermis. In general, embodiments using a disposable metallic element for measuring temperature values, as well as embodiments with reusable probes are envisaged.
  • near infrared spectroscopy/visible spectroscopy may be used to detect the values of oxygen in hemoglobin present in wound exudates.
  • the presence of oxygen may indicate the presence of hemoglobin, and therefore blood.
  • this could trigger an indicator, or cause one of the pinch mechanisms described herein to clamp a wound drain line to prevent further bleeding.
  • this event would provide a caregiver with appropriate treatment guidelines.
  • Tone and/or luminocity may be used to describe the color of the exudates. Changes in tone and/or luminocity may be indicative of changes in the physiological state of a wound and its stage of healing. A quantification system for evaluating the wideband absorption spectrum may also be useful for assessing the color and tone of the exudate.
  • a wound system may include one or more laser diodes that provide very narrow wavelengths used to perform measurements.
  • a spectral map and/or vector can be generated by using a single detector in combination with multiple laser diodes and/or one or more scanning laser diodes.
  • a scanning laser diode can produce a modulated wavelength through modulation of the driving signals produced by the drive electronics. Such modulation makes for simplified removal of artifacts caused by ambient light interference, movement and the like.
  • a method for quantitative, real time spectral detection and assessment may be a steady, pulsed or modulated near infrared spectroscopy or functional near infrared spectroscopy technique. It may use multiple wavelength spectroscopy and the like.
  • a exudates system may include a color analysis system in combination with a white light source.
  • a color analysis system may comprise one or more photodiodes in combination with one or more bandpass filters in order to provide separate responses for segments of the light spectrum.
  • One or more outputs from each band are generated, with each output providing the spectral component of a vector.
  • Output vectors can be mapped to exudates states, thereby creating vector maps useful for determining the state of the exudates and thus, statements about the physiological condition of the wound, as seen in FIGS. 22-24 .
  • FIG. 20 is one example of an absorption map or tone map for analyzing different absorption wavelengths.
  • a two-dimensional map shows absorption of a source spectrum 108 along a blue 104 , yellow 105 , red 106 , and NIR 107 wavelength.
  • This particular example depicts broadband detection for the colors indicated.
  • a single broadband detector could also be used.
  • Particular values seen in an absorption map can be translated into a particular assessment of a wound state.
  • a process performed by the processor may be encoded to signal an alarm or pinch a drain line if a particular tonal color reaches a certain level.
  • FIG. 21 depicts a flow diagram of various operations performed to assess the color or tonal characteristics of a wound exudate.
  • An initial block S 110 may obtain various spectral components.
  • any ambient light may be removed in block S 112 to increase the accuracy of any spectral readings from the wound exudate.
  • tone vectors are calculated in block S 114 from the readings obtained from block S 110 .
  • Tone vectors may be calculated by any means known in the art. However, in preferred embodiments, the vectors may be calculated using the following equation:
  • Equation 1 is a linear weighting equation that casts portions of the sensor spectrum (each portion indicated by a coordinate X i ) into an nth order vector space. Each portion of the spectrum is weighted by a scalar weighting parameter A i (in this example only, more generally the weighting parameters may be equations, or algorithms that better map responses into the vector space, adjust for subject parameters, as well as adjust for changes in ambient conditions).
  • the relationship computed in the equation may be used to map readings from individual sensors, wavelengths, and/or spectral bands into the nth dimensional figures, as disclosed herein. This process may be done to essentially create a map of the input responses into a quantifiable space such that diagnostic information may be more readily extracted from the collection of input signals. So for example, delta maps into this Nth order space, regions of which may have statistically significant relationships to various disease states, contraindications for the existing therapy, etc. By correlating where patient data falls on the map, and examining the historical data and trending data, the technology can assist in decision making with regards to therapeutic decisions.
  • tone vectors are then compared to a tone map block S 116 containing standard or acceptable tonal values.
  • the tone vectors from block S 114 are compared to the accepted values in block S 116 . If any of those values fall short of or exceed the acceptable ranges from block S 116 , a predetermined action in block S 120 is performed.
  • a programmed action may include, triggering an audible alarm from actuating one of the latch mechanisms described herein.
  • luminocity and tone may be indicative of infection, bleeding or increased edema in a wound, all conditions requiring urgent attention.
  • Certain embodiments of the present invention may compare and analyze detected tone and luminocity values with predetermined values of tone and luminocity to provide a patient or caregiver with valuable treatment guidelines (see FIGS. 22, 23, and 24 ). Values of these various parameters may be combined into vector maps.
  • FIG. 22 is a two-dimensional vector map 200 based on a range of colors at a given luminocity 201 , measured from the wound exudate.
  • Map 200 represents data points along the spectral graph 206 , as shown in FIG. 23 .
  • Different locations on the vector map 200 may indicate the likelihood or actual occurrence of various events related to wound state. For example at location 202 a normal exudate trend may be indicated, while locations 203 and 204 may indicate suspected bleeding or a high probability of bleeding, respectively.
  • Location 205 may indicate the presence of an actual bleeding event.
  • Graph 206 in FIG. 23 represents a line graph of three individual spectral profiles over a given period of time.
  • FIG. 24 is a three-dimensional vector map, similar to the two-dimensional map shown in FIG. 22 , which is based on a range of colors measured from the wound exudate. Spectral components of wound exudate translated into vectors, may be mapped in such a two or three-dimensional map. By increasing the number of color channels, and therefore the number of wavelengths able to be detected, the sensitivity and accuracy of the system can be improved.
  • Various points along the vector map, whether two or three-dimensional may also indicate a trend of wound health. For example curve 220 may indicate an initial trend while curve 222 may indicate a slight progression towards infection. Curve 224 may indicate the actual onset of infection while curve 226 may indicate various regions with a probability of infection.
  • Given points, (e.g., 227 and 228 ) in the vector map may indicate a certain wound state.
  • a wound state may correspond to a prescribed treatment guideline.
  • treatment guidelines may include, but are not limited to varying the settings of an NPWT, or closing off a wound drain. Presence of bacteria or other infection may necessitate administration of antibiotics to the patient.
  • an exudate assessment system analyze values detected from a wound, and provide decision support for the user regarding treatment options, rather than just data presentation.
  • the system of the present invention is capable of analyzing the values of the data obtained from the sensors and/or detectors. Once an analysis is conducted the system may provide an assessment of the wound, as well as treatment guidelines.
  • Embodiments of methods and apparatuses according to the present invention may detect values of various parameters in real time, and perform analyzing processes as shown in FIGS. 28 and 29 . These analyzing processes provide not only real time detection, which gives a much more accurate and reliable assessment of the wound, but also gives real time treatment suggestions, as they evaluate the current state of a wound, and not exudate that has been sitting in a collection canister for an extended period of time.
  • the exudates system may comprise processing components to perform various processes that provide or output a wound state condition or treatment option, which may include, among other things, microelectronic circuits such as discrete circuits, microcontrollers, microprocessors, ASICs, FPGAs or the like, to condition and analyze sensor data to meaningfully interpret the physiological parameters of the exudates.
  • the processing components may be located integrally within the system so that the sensors, light sources and processing components are all contained within the same device. In an alternative embodiment, the processing components may be remotely located from the other parts of the system.
  • the process performed for analysis are generally adaptive and may be based on, one or more of the following: an averaged one-dependence estimators (AODE), Kalman filters, Markov models, back propagation artificial neural networks, Baysian networks, basis functions, support vector machines, k-nearest neighbors algorithms, case-based reasoning, decision trees, Gaussian process regression, information fuzzy networks, regression analysis, self-organizing maps, logistic regression, time series models such as autoregression models, moving average models, autoregressive integrated moving average models, classification and regression trees, multivariate adaptive regression splines.
  • the sensor data may be analyzed from multiple sources using sensor fusion approaches.
  • the specific process may be evolved using supervised learning, unsupervised learning, and/or reinforcement learning approaches.
  • the device may comprise associated power sources and the like to drive the onboard electronics (sensors, microelectronic circuits, communication elements).
  • tone and luminocity values are analyzed in combination with temperature readings, flow rate and NIR readings, a comprehensive statement may be made about the actual state of the exudates.
  • a clinically appropriate set of treatment guidelines may be delivered by the system, thus eliminating the need for the caregiver or patient to have to interpret large amounts of data and make a subjective determination.
  • FIG. 28 is a flow diagram of an exemplary process to obtain and analyze parameter readings, as well as present and display warnings and treatment options.
  • the process of FIG. 28 is also referred to as a read and assess loop.
  • the wound monitoring system may be at a sleep state to reserve or reduce power consumption.
  • the system may be “woken up” during a wake-up phase S 201 , in response to some input. This input may be any type of stimuli such as motion, or as a result of a timer.
  • This input may be any type of stimuli such as motion, or as a result of a timer.
  • the system will obtain parameter readings S 203 .
  • the device may immediately return to a rest state in block S 222 . If this is the logic path followed by the device, the readings obtained in block S 203 may also be stored in a memory.
  • the device may be conditioned and cleaned in block S 205 .
  • the device In the first mode from wake up, the device may be in a loop where it simply wakes up takes a reading, potentially stores it and then rests, as already described. If instead of resetting, the device needs to switch modes to monitoring disturbances from block 207 it will need to activate a conditioning function, which may be there to obtain the raw signals from 207 and prepare them for analysis (e.g., converting from analog to digital signals depending on sensor type or other forms of data conversion/signal conditioning know in the art). It may also be necessary to clean the signals because many signals can have “noise” or spurious data which may need to be filtered out before processing in 209 .
  • the device may be conditioned and cleaned in block S 205 .
  • This cleaning step aids in obtaining an accurate reading and filtering out any extraneous data or artifacts.
  • the readings obtained in block S 203 are converted to vectors and assigned a corresponding weight S 209 .
  • the weighting of the various readings can be based on any factor known in the art. By way of representative example only, one parameter such as temperature may be given a higher weight than pH, or vice versa. Such weighting can be changed from patient to patient or as applied to the same patient. Such weighting may also be assigned based on historical weights of various parameters.
  • the processor in block S 213 compares the vectorized and weighted values to a vector map. At this point, the processor analyzes the data, and makes a determination, based on the vector's location on a vector map, as to whether the value is in a safe region in block S 217 . What constitutes a safe region is also a parameter that may be predetermined and stored in a memory associated with the processor. If, it is determined in block S 217 A the readings are in a safe region but appear to be trending toward an unsafe region, the weights of those readings may be adjusted in block S 217 ( b ) to assign a higher priority to said values.
  • the system makes a determination as to whether or not it is worth warning a user S 217 ( c ) of the trend toward an unsafe region. If based on predetermined values, the processor determines that it is in fact worth warning a user, then a warning is issued in block S 217 ( d ). If not, the system returns to the rest state in block S 222 for power minimizing consumption.
  • the processor determines whether or not the unsafe reading is a new occurrence in block S 219 . If it is a new occurrence, the alert weight of the occurrence is increased in block S 220 . Once the alert weight is increased, the processor returns to the rest state S 222 . If the device or processor determines that the unsafe reading is not a new occurrence, a determination is made as to whether the alert weight is critical in block S 219 ( b ).
  • the alert weight is merely increased in block S 220 and the device returns to rest state S 222 . If the alert weight is critical, the processor determines in block S 219 ( c ) which region of the vector map the value falls in and what type of condition is therefore indicated by the value of the readings. Based on the region and type of event detected at in block S 219 ( c ), an action is initiated in block S 219 ( d ). An action may be an alert, an alarm, a pinching of a wound drain, or any other type of event or warning, which aids the user in assessing or treating the wound.
  • the device and/or processor will record the event in block S 219 ( f ) and return to rest S 222 . If the event has not been resolved, the action at block S 219 ( d ) will be repeated or sustained.
  • FIG. 29 is a detailed logic diagram of operations performed in block S 203 .
  • the processor or device “wakes up,” the sensors 301 are then powered up.
  • parameter values may be obtained S 303 .
  • parameters such as spectral content of the wound exudate S 303 ( a ), flow S 303 ( b ), temperature S 303 ( c ), biomarker detection S 303 ( d ), and viscosity (e) are detected and measured. While these parameters are illustrated in FIG. 29 , they are by way of representative example only and the current invention can be used to measure any parameter present in wound exudate.
  • These values are then converted to digital signals in block S 305 , which may be done as a low power conversion to reduce power requirements.
  • the processor in block S 309 performs a check for values that may be statistical outliers.
  • the values may be stored in a memory to be incorporated into the historical data S 309 ( a ). If the sample is determined to be a good sample in block S 311 , the processor will perform a specific calibration S 313 to adjust to the specific present conditions. Once this adjustment is performed, the processor in block S 315 may perform the conditioning and cleaning similarly as in step S 207 . If the sample is determined by the processor in blocks to not be a good sample, the event is recorded in block S 311 ( a ). If the bad sample is a recurring problem, which may be detected by prior historical values, an error message is displayed to the user in block 311 ( c ). If the problem sample is not recurring, the processor returns to rest S 311 ( d ).
  • the processor After the processor has determined the wound state and/or treatment information, that data may be provided or communicated to a user or patient.
  • the system is capable of communicating or providing values and treatment guidelines to a user.
  • the system is also capable of communication directly with a negative pressure wound therapy device in order to effectuate necessary changes.
  • the system comprises means for alerting a patient or caregiver to the presence of an abnormal state, quantity, or condition of the exudates.
  • it may comprise one or more lights, a display, a speaker, a vibrating element, or similar in order to communicate information to a patient or caregiver.
  • the device may further include wireless communication capabilities so as to deliver relevant information about the wound exudates to the NPWT device.
  • relevant information may include the presence of blood in the exudates, the presence of bacteria, a change in the absorption spectrum of the exudates, a change in the flow rate of the exudates, and the like.
  • Results of the wound assessment may be displayed through any type of graphical user interface, monitor or other type of display. Results of wound assessment may also be conveyed to a clinician and/or patient by the use of indicators as seen. Indicators may be any visual indicators such as lights, or audible indicators such as buzzers or alarms, or a haptic communication device such as a vibration motor to alert the clinician or patient when a particular event has been detected.
  • the exudates system may comprise a means for communicating via a network such a cellular network, a wireless personal area network (WPAN), wide area network (WAN), metropolitan area network (MAN), local area network (LAN), campus area network (CAN), virtual private network (VPN), internet, intranet or near-me area network (NAN).
  • a network such as a cellular network, a wireless personal area network (WPAN), wide area network (WAN), metropolitan area network (MAN), local area network (LAN), campus area network (CAN), virtual private network (VPN), internet, intranet or near-me area network (NAN).
  • WPAN wireless personal area network
  • WAN wide area network
  • MAN metropolitan area network
  • LAN local area network
  • CAN campus area network
  • VPN virtual private network
  • internet intranet or near-me area network (NAN).
  • NAN near-me area network
  • the exudates system may be arranged as a node in a network, thus providing an element in a ring, mesh star, fully connected, line, tree or bus network topology.
  • the exudates system communicates relevant values and as a node in a mesh or star network topology.
  • the exudates system may comprise means for interfacing with a local telecommunications network, such as a cellular network via a locally positioned mobile handset, a wireless node, a wireless modem, phone adaptor or the like.
  • a local telecommunications network such as a cellular network via a locally positioned mobile handset, a wireless node, a wireless modem, phone adaptor or the like.
  • the exudates system may communicate relevant information through the network using various protocols such as IrDA, Bluetooth, UWB, Z-WAVE, ANT, or ZigBee.
  • the relevant information is sent via low power protocols such as Blue tooth low energy, ANT or ZigBee.
  • the exudates system may comprise an integrated power switch such that power is automatically provided to the onboard microcircuitry as soon as the system, or a wound device with which the system is associated, is positioned so as to effectively assess exudates.
  • the system may comprise a proximity sensor to awaken the system itself or wound device from sleep. The sleep function may be useful to reserve power during periods of nonuse.
  • the system may include a wound dressing with fluorescent biomarkers as shown in FIG. 7 .
  • Biomarkers 50 may be employed for detecting various conditions. Biomarkers 50 can be assessed by externally positioned optical sensors 52 , thus providing a non-contact way to assess exudates properties. The optical sensors 52 can use colorimetric analyses to read the biomarkers 50 and detect the presence, absence or quantity of a particular value of a physiological parameter.
  • an optional light source 56 may be used to emit light into the wound exudate.
  • optical sensors 52 may be located on the outer surface of an opaque, or optically transparent tube 54 .
  • Biomarkers can change based on local pH, local impedance, local redox potentials, color, and can fluoresce based on certain criteria, all of which are known in the art. As they interact with the exudates they are useful to detect the presence or absence of certain biological materials.
  • the exudates system may read, detect or assess the biomarkers through optical means (color change, fluorescence, etc.), or electrical means (pH, redox, impedance, etc.).
  • the system may detect presence of an infection, including but not limited to methicillin resistant staphylococcus aureus (MRSA) or vancomycin resistant enterococci (VRE), to alert a patient at home that they need in-patient hospital treatment.
  • MRSA methicillin resistant staphylococcus aureus
  • VRE vancomycin resistant enterococci
  • these various infections may be detected by assessing biomarkers integrated within the system, or by assessing the value of other physiological parameters, including but not limited to temperature.
  • each process performed by the system can be done in a non-contact fashion such that the sensors and electronics supporting the sensors do not come into contact with the exudates. This allows the components of the system to be reused, as cross contamination is avoided, thus sparing the expense of having to use replaceable sensors with each use.
  • Non-contact is defined herein as not having direct contact between the fluid under analysis, and the sensory elements.
  • Thin membranes in the drainage lines can be used to sense pressure, temperature, etc. (see FIG. 17 ).
  • FIG. 18 depicts an alternative embodiment of a wound exudate system, which contains pressure sensors.
  • the wound exudate system may contain two sections adjacent to a wound drain 89 . Those two regions are indicated in FIG. 17 as 91 and 92 at the interface of the system and the drain where the wall thickness of the system is reduced.
  • a thin membrane is disposed thereon (not shown). The thinner membrane allows pressure sensors to detect a pressure inside the drain at locations 91 a and 92 a.
  • a pressure P 1 is assigned to a pressure reading at location 91 a and a second pressure P 2 is obtained for the pressure reading at location 92 a.
  • the difference between these two pressure readings can be used to establish, for example, flow rate, viscosity.
  • the configuration described above may be self-contained within a disposable shunt for placement over an existing wound drain line, or designed as an integral component of a wound drain line.
  • FIG. 18 depicts an embodiment similar to that as seen in FIG. 17 .
  • the embodiment depicted in FIG. 18 measures thermal mass vis-à-vis a microheating element disposed in each of recesses 93 and 94 . This embodiment may be useful to estimate flow rates along the wall of a wound drain line.
  • the exudates system may comprise a means for pinching off, or otherwise closing a wound drainage line in the event of an anomaly (such as the presence of blood in the exudates).
  • the device may comprise an actuator that may be deployed so as to squeeze the line during an adverse event.
  • the actuator may be arranged such that it is forcefully retracted during normal operation and is released during an adverse event, thus clamping down onto a wound drain line and pinching off fluid flow.
  • FIGS. 9-16 depict various control mechanisms for controlling or stopping the flow of any fluid from a wound.
  • These control mechanisms may include pinch lines to control the flow of exudates upon detection of a certain physiological value.
  • These pinch mechanisms may also be referred to herein as latches.
  • Different types of latches may be activated by different mechanisms.
  • the latch is an active material element that will change shape in response to a stimulus. Suitable active materials include shape memory alloys, electroactive polymers, piezoceramics, etc.
  • the active material latch is designed such that it releases upon stimulation.
  • the system may pinch the wound drainage line so as to force a fault (blocked line fault) on the NPWT device.
  • the system need not have its own means for alerting the patient or caregiver of an adverse event, but rather may trigger an alarm that is present in existing NPWT devices to achieve this goal.
  • a suitable latch is designed with an integrated resistive heating element 80 , a reed 81 and a disbondable fastened region 83 , as seen in FIG. 15 .
  • the reed is deformed during manufacturing and bonded with the disbondable fastened region 83 in the deformed state.
  • the reed is also bonded to an attachment point 84 , in which the bond is not broken.
  • the latch system is designed such that fluid can flow through an adjacent channel when the reed is held to the disbondable region, but that fluid flow through the channel on fluid line 85 may be blocked when the reed is released 87 .
  • the disbondable fastened region 83 melts, deforms, or vaporizes, causing the deformed reed to break away from the fastened region 83 .
  • the reed bridges the fluid line 85 , as shown in FIG. 16 , preventing flow and optionally triggering a blockage alarm.
  • Other alternative latch designs will be evident to someone skilled in the art.
  • the wound drain may have a particular shape so as to maintain laminar flow of the exudate during suction, in addition to providing for an actuating means for pinching off a wound drain line in the event of an adverse event such as bleeding.
  • Representative examples of this embodiment can be seen in FIGS. 9 and 10 .
  • the mechanical elements present in this embodiment are comprised of a solenoid based pinch valve 65 .
  • the pinched valve 65 of the present embodiment contains a coil magnet 66 and a coiled actuator magnet 67 .
  • the pinched valve may be actuated to close or substantially narrow the interior wall of the wound drain 69 .
  • This change of the channel width of the wound drain assists in detecting laminar to turbulent flow and may restrict flow for better analysis or measurement.
  • the embodiment depicted in FIG. 9 may be combined with any of the other embodiments described herein, such as a flow disruption element 70 as shown in FIG. 10 .
  • flow disruption element When flow disruption element is present, analysis and detection may take place along an analysis flow region 64 by sources 62 and detectors 63 .
  • FIG. 12 depicts an alternative embodiment wherein multiple pinching actuators 73 are disposed on opposite sides of a wound drain line.
  • the actuators 73 depicted in FIG. 12 can be activated in response to a stimulus, such as the presence of blood. In the event the actuators 73 are activated and pinch the drain line to prevent further bleeding.
  • An alarm 74 can signal a blocked flow line.
  • FIG. 13 depicts yet another embodiment of the present invention containing a spring loaded, resettable latch.
  • the spring loaded latch Upon actuation, the spring loaded latch releases and causes the mechanism to pinch the wound drain line 79 in the event of the detection of some unwanted occurrence, such as bleeding, as shown in FIG. 14 .
  • the spring loaded element 75 once actuated can be reset and the latch 77 may be re-secured, as shown in FIG. 13 .
  • electronics and power sources necessary for operation may be contained on an external housing.
  • the dressing component may be modified so as to easily integrate with the exudate assessment system.
  • the dressing may have electrical traces as an interface.
  • the electrical traces may be printed using electroconductive inks (Ag, AgCl, C, Ni, etc.), or formed via several available RFID techniques known in the art, and embedded for electrically interacting with the exudate assessment system.

Abstract

An integrated system for assessing wound exudates from the wound of a patient is described. The system may contain functionality to detect, process and report various wound parameters. The system also may make treatment determinations based on these findings. The system may detect one or more physiological values of the wound exudates from the wound of the patient. The system may means for comparing the one or more detected physiological values to predetermined physiological values in order to obtain a comparison result in real time. The system may include a processor 15 which provides an electronic signal based on a comparison result in which the electronic signal may correspond to guidelines for treating the wound 13. The system may be integrated with other wound treatment devices, such as negative pressure wound therapy devices (NPWT) 9.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of, and claims the priority benefit of, U.S. application Ser. No. 16/237,421, which was filed on Dec. 31, 2018, and which is a continuation application of U.S. application Ser. No. 13/992,637, which was filed on Jul. 26, 2013 and which issued as U.S. Pat. No. 10,207,031. U.S. application Ser. No. 13/992,637 is a national stage entry of International Application No. PCT/US2011/063781, which was filed on Dec. 7, 2011, and which claims priority to U.S. Provisional Patent App. Ser. No. 61/421,003, which was filed on Dec. 8, 2010. The disclosures of those applications are incorporated by reference herein in their entireties.
  • BACKGROUND OF THE INVENTION
  • There is a need to autonomously monitor and assess the negative pressure wound therapy (“NPWT”) process and to provide a mechanism to interrupt the NPWT therapy in cases where a contraindication develops in the patient during use. There is also a further need to improve upon certain features of NPWT devices, such as safety, functionality and intelligent, real time feedback.
  • Current treatment protocols for assessing wound state involve the qualitative analysis by caregivers. Often, a caregiver may assess the condition of a wound by the way it looks or smells or the overall appearance of the exudates. Many times, however, the caregiver may not be assessing the wound regularly or quantitatively. Such assessment may only occur at daily or weekly intervals, for example. A disadvantage to this treatment protocol is that the assessment is of old exudates. The physiological parameters of these exudates may change over time, when compared to their original state in the wound. Color, microbes, oxygen, and temperature all change over time, so the assessment of the exudates at a time after they have been collected is not an accurate or reliable prediction of wound condition. Additionally, the flow of exudates may be a useful tool in wound assessment. Prior assessment techniques may not offer a viable solution for monitoring wound exudates flow.
  • SUMMARY OF THE INVENTION
  • In accordance with an aspect of the invention, a system for assessing wound exudate from the wound of a patient may include a system comprising a wound treatment device, detecting means for detecting one or more values of one or more physiological parameters of the wound exudate, analyzing means for analyzing the values of the one or more physiological parameters so as to obtain an assessment of the wound exudate, and providing means for providing treatment guidelines based on the assessment, in which the wound treatment device, the detecting means, the analyzing means, and the providing means are integrated.
  • FIG. 1 is a functional block diagram representing components of a wound exudate system, in accordance with an embodiment of the present invention.
  • FIG. 2 shows an embodiment of a wound exudate system integrated within an NPWT device, in accordance with an embodiment of the present invention.
  • FIG. 3 is flow diagram of a wound assessment process, in accordance with an embodiment of the present invention.
  • FIG. 4 depicts a cross-sectional view of a wound exudate system, in accordance with an embodiment of the present invention
  • FIG. 5 depicts an embodiment of a wound exudate system containing multiple light sources and multiple detectors, in accordance with an embodiment of the present invention.
  • FIG. 6 depicts a wound exudate system that contains a flow disruption element, in accordance with an embodiment of the present invention.
  • FIG. 7 depicts a wound exudate system containing an inflow feature with a biomarker coating, in accordance with an embodiment of the present invention.
  • FIG. 8 depicts a wound drain tube configured with a tortuous path, in accordance with an embodiment of the present invention.
  • FIGS. 9 and 10 depict embodiments of a wound exudate system for pinching a wound drainage line, in accordance with an embodiment of the present invention.
  • FIG. 11 depicts a wound exudate system with multiple actuators for pinching a wound drain line, in accordance with an embodiment of the present invention.
  • FIG. 12 depicts an alternative embodiment of a wound exudate system having multiple pinching mechanisms disposed along opposing sides of a wound drain line, in accordance with an embodiment of the present invention.
  • FIGS. 13 and 14 depict an alternate embodiment of a wound exudate system containing a spring loaded latch in a secured state and released state, respectively, in accordance with an embodiment of the present invention.
  • FIGS. 15 and 16 depict a wound exudate system configured with a resistive heat break element in a not applied state and an applied state, respectively, in accordance with an embodiment of the present invention.
  • FIG. 17 depicts an embodiment of a wound exudate system containing thin membranes with pressure sensors disposed thereon, in accordance with an embodiment of the present invention.
  • FIG. 18 depicts a wound exudate system containing thermal mass sensors, in accordance with an embodiment of the present invention.
  • FIG. 19 depicts a wound exudate system configured within a collection chamber, in accordance with an embodiment of the present invention.
  • FIG. 20 depicts a graph showing different spectral intensities, in accordance with an embodiment of the present invention.
  • FIG. 21 is a flow diagram of a process for spectral analysis of wound exudate, in accordance with an embodiment of the present invention.
  • FIG. 22 is an exemplary two-dimensional vector map representing a range of wavelengths measured during spectral analysis of wound exudate, in accordance with an embodiment of the present invention.
  • FIG. 23 is a spectral graph of the measurements of the map of FIG. 22, in accordance with an embodiment of the present invention.
  • FIG. 24 is an exemplary three-dimensional vector map representing a range of wavelengths measured during spectral analysis of wound exudate, in accordance with an embodiment of the present invention.
  • FIG. 25 illustrates an alternative embodiment of a wound exudate system disposed within an ancillary collection chamber, in accordance with an embodiment of the present invention.
  • FIG. 26 is a flow diagram illustrating an exemplary process for obtaining flow measurements of wound exudate measurements, in accordance with an embodiment of the present invention.
  • FIG. 27 is a two-dimensional graph depicting flow rate measurements, in accordance with an embodiment of the present invention.
  • FIG. 28 is a flow diagram illustrating the steps in a read and assess loop process, in accordance with an embodiment of the present invention.
  • FIG. 29 is a flow diagram illustrating a process for obtaining readings of wound exudate, in accordance with an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • A system, apparatus and method for monitoring and assessing wound exudates are disclosed herein. The system and apparatus (“wound exudate system” or “system”) allow for convenient assessment of wound exudates from a wound site and may provide real time quantitative and predictive functionality, as well as an integrated inline diagnostic solution. Also, the system may be integrated into a wound treatment device.
  • In addition, a system and method for collecting physiological data, and predicting wound healing outcomes based on trends of values of exudate flow rate and other characteristics are also disclosed.
  • FIG. 1 is a block diagram of an embodiment of a wound exudate system 1, in accordance with the present invention. In this embodiment, sensors or detectors 11 may detect and retrieve data representing the condition of a wound. This wound data may be transferred electronically via wired or wireless means 17 to one or more processors 15. The processors may, among other things, predict wound state and other treatment solutions, based on the wound data.
  • Optionally, data may be stored in a memory 16. Information from the processor(s) 15 may be transmitted to an output device 19 by any means known in the art, in order to inform or alert a user about the health or state of a wound.
  • FIG. 2 depicts one embodiment of a wound exudate system 18. In accordance with an aspect of the present invention, the system 18 is generally in fluid communication with a wound 3 (and wound exudate) of a patient 5. Fluid communication between the system 18, and the wound 3, may be by any means known in the art, e.g., a wound drain 7 that is part of a wound therapy device 9.
  • The wound exudate system 18 may include one or more sensors or detectors 11, which may be used to detect various parameters, including but not limited to temperature, pH, color, viscosity and tone. These parameters are useful indicators of present wound state, and may be used in accordance with aspects of the present invention to render viable treatment options.
  • The wound exudate system may optionally employ one or more types of light sources 13. The light sources 13 may emit varying wavelengths of light, depending on their programmed functionality. The wavelengths of light may be emitted through the wound exudate and may be altered depending on the characteristics of the exudate itself.
  • The wavelengths may then be detected by the sensors or detectors 11. The wavelengths detected by the sensors or detectors 11 may represent various conditions of the wound exudate being analyzed. The sensors or detectors 11 may transmit information representative of the detected wavelengths via electronic circuitry 17, to one or more processors 15 integral within the wound exudate system 18.
  • The one or more processors 15 may be adapted to receive the detected wavelength data, and conduct various analyses by way of programmed processes. The processor(s) 15 may receive the wavelength data from the sensor(s) 11, and use such data in appropriate process. A determination of the process can be any type of diagnosis or categorization of wound health or healing, as well as a prescribed treatment regimen. Various information including but not limited to historical data, processes, and vector maps may be stored in a memory 16.
  • The determination of the process may be communicated, wirelessly or via wired means, to be displayed on an onboard or external display 19. As shown in FIG. 2, the exudate system 18 may be integrated directly into the wound therapy device 9. In this configuration, the processor 15 may be integrated into the wound therapy device, and the sensors, detectors and circuitry may be integral with a wound drain that is part of an active treatment device, or a bandage or dressing.
  • The system 18 may detect the presence of blood in the exudates, as well as monitor and assess other physiological values relevant to wound exudates, such as flow rate/quantity, color, bacterial traces, temperature, pH and the like.
  • FIG. 3 is a flow diagram illustrating an exemplary wound exudate system process 500. The blocks in FIG. 3 are representative of various functions of a wound exudate system, which may be combined, omitted, added, or reordered as suitable.
  • In block S501, sensors detect and/or measure one or more parameters of the wound exudate. Measurement Data obtained in block S501 is transmitted to and received by one or more processors in block S503. The processors then analyze the received data in block S505. Based on results of analyzing, determination(s) may be made in block S507 regarding the measurements by the sensors. Those determinations, which may include a diagnosis or treatment guideline may then be outputted via an alarm or warning in block S509, or an output display in block S510.
  • Integrated Structure
  • The wound exudates systems disclosed herein and illustrated in the attached drawings may contain various structural features. The system may be configured differently to attach to an existing wound therapy device, or be integrated directly into one of these devices. The structure of the system may also include sources of light for spectral analysis, as well as sensors or detectors for detecting the light emitted by these light sources. Detection of light at a particular wavelength after it has been emitted through wound exudate may indicate the value of a certain parameter of the exudate. The system may also include sensors for measuring non-spectral parameters such as temperature and pressure.
  • FIG. 4 depicts an embodiment of a wound exudate system 28 integrated into an existing wound drain line. The system contains a light source 29 for emitting light of a certain wavelength(s) into the exudate. The system also contains a detector 30 for detecting and/or sensing the emitted wavelengths of light after it has passed through wound exudate. Amplitude of the detected wavelengths represent the spectral attributes of the exudates and may be indicative of wound state.
  • Additionally, the embodiment depicted by FIG. 4 depicts an optical barrier 31 disposed on the exterior of a wound drainage line 32. The optical barrier 31 is useful for avoiding ambient light from reaching the wound exudate. This increases the accuracy of the detection, as it avoids any artifacts that may be caused by light other than that emitted by the source 29.
  • FIG. 5 depicts another alternative embodiment of the present invention, in which the system may contain multiband sources of light, including a narrowband source 33 and a broadband source 34. Multiple multiband detectors 35 may also be disposed within the system. Multiband sources and detectors may be useful for detecting various wavelengths of light and therefore different attributes of the exudates. The detectors 35 may be configured to remove unwanted ambient light and obtain more complete spectral information.
  • In another embodiment, which may be suitable for use in hospital setting, an exudates system may be integrated within a central suction system. In this case, the exudates system may be associated and operated in tandem with an existing central suction system, so as to warn and shutdown flow from the wound site in the case of an adverse event. In this case, the exudates system may clamp the wound drainage line in the case of an adverse event. Such an embodiment may provide a safe and low cost alternative to existing NPWT devices in a hospital setting. This mechanism may be useful in preventing inadvertent hemorrhagic crises created by undetected bleeding. In this case, the central suction unit may be pre-configured with an integrated wound monitoring system as described herein.
  • FIG. 6 depicts an alternative embodiment of a wound exudate system that contains a flow disruption element 41 in combination with one or more detectors 40 and 42 and a source 44. The arrangement of the present embodiment may provide more accurate sensing, based on the deflection of the flow disruption element.
  • In one embodiment, an exudates system may comprise a fluid channel through which exudates may pass. In this case, the fluid channel may further comprise an obstruction located in the path of the exudates, as seen in FIG. 6. As exudates pass the obstruction, a disturbance in the flow is created. The behavior of the flow in and around the disturbance may be useful for measuring parameters of the flow, such as viscosity, concentration and/or composition of solid matter, etc. The disturbance in the flow can also be used to better mix the exudate, which may be useful for improving measurement accuracy. Any signal variation between detectors 40 and 42 may be related to the flow disruption element. Viscosity may also be used to determine general water content of the exudates, as well as the presence of large molecules.
  • A wound exudate system may also be configured with a flow drain arranged in a tortuous path 60, as seen in FIG. 8. This configuration may function to eliminate ambient light from the sensory region 59.
  • In another embodiment of the present invention, an exudate assessment system may also have structures and shaped tubes in the flow path to ensure that the fluid under analysis does not mix with previously collected exudates prior to being assessed, as seen in FIGS. 8, 19 and 25.
  • In yet another embodiment, the exudates system may have a chamber or trap 98, as seen in FIG. 19, into which fluids can pool, or low so as to assist with obtaining more precise measurements regarding the physical state of the exudates. Measurements, such as flow rate may be taken of the pooled fluid, the flowing fluid, or both. This embodiment may be particularly useful for measuring the thermal mass of the exudate.
  • The exudates system may also comprise a compartment to be filled by exudates leaving the wound site as seen in FIG. 19. In this embodiment, the compartment may be suitable for isolating exudates for analysis or to periodically weigh exudates removed from the wound site so as to assess the rate of fluid removed from the wound site over time. The compartment may include an automatic means for emptying when the fluid volume reaches a set level. Alternatively, the compartment may have an active system such as valves, to empty the compartment when the fluid reaches a set level.
  • In this embodiment, the exudates system may comprise one or more valves to direct and/or interrupt flow through the wound drain. In yet another embodiment, the exudates system may draw off fluid for a sample without fully interrupting flow through the fluid line. The separated fluid as indicated in FIG. 19, is analyzed within the line and allowed to remix further downstream. An alternative design may include a sampling port for taking a sample for analysis.
  • In an alternative embodiment, the exudates system may be integrated along an inner or outer surface of a canister or arranged, so as to mate with a canister. In this embodiment, the system may be arranged to detect the values of various physiological parameters of the exudates accumulated during use. In this case, the system may monitor and detect the weight, height, impedance, etc. of the exudates as it accumulates in the canister. Such information may be valuable for determining if an adverse event has occurred, such as the onset of bleeding. It may also be valuable for determining the overall rate of exudates removal from the wound site, thus providing predictive planning for canister changes, or even to assess wound progression from a highly exudating state to a superficially exudating state.
  • Changes in the rate of exudates flowing from the wound site may be indicative of a change in the wound state. In another instance, changes in the composition of the wound exudates may indicate a clinically relevant change in the wound state. Such changes in exudates removal rates may also be useful in determining how to most optimally change from one therapy to another. In one instance, a relative change from a highly exudating wound to one of a superficially exudating wound may be useful to monitor. A transition from a highly exudating wound to a superficially exudating wound may provide useful information as to when a patient may be transferred from a more expensive to a less expensive therapy. An example of an expensive therapy is NPWT, while examples of lower cost therapies are moist wound dressings or bandages.
  • The exudates system may comprise a sensor or series of sensors suitable for determining the values of the above properties of wound exudates.
  • The exudates system may also comprise one or more disposable sensors for enabling contact based measurements of the exudates. Such sensor elements may comprise acoustic, photoacoustic, electrochemical, optical, and/or impedance spectroscopic elements arranged so as to monitor values of one or more parameters of the exudates.
  • The sensor or sensors may be arranged so as to collect information through the outer film of a dressing or through the wall of a wound drainage line. The sensors may be temperature sensors, optical sensors, impedance sensor, electrochemical sensors (e.g.,: amperometric sensors), capacitive sensors, or the like.
  • The exudates system may comprise any type of flow sensor known in the art for determining the quantity or rate of fluid removed from a wound site. The flow sensor may be of a contact or non-contact type. In the case of a non-contact type flow sensor, the sensor may be a level sensor, a load cell, a flow event timer, a droplet counter, a velocimeter or the like. In the case of a contact type flow sensor, the sensor may be a load cell, pressure head monitor (such as a manometer), a strain gauge, a turbine, a thermal mass sensor, pressure loss monitors, a tow line, or similar.
  • Any physiological parameter of wound exudates can be assessed using embodiments of the present invention. Particular parameters of interest may include, flow of wound exudates, volume rate, pH, temperature, hemoglobin concentration, color and tone.
  • In one embodiment, the exudates system may evaluate exudates flow rates by measuring the rate at which a collection chamber fills, as seen for example in FIGS. 19 and 25. In one embodiment the exudates system may comprise a combination of a load cell with a measurement chamber to measure flow rate and an accelerometer to monitor orientation of the measurement chamber with respect to the vertical axis, as seen in FIG. 19. Combined signals from the sensors may be used to determine the correct flow rate of exudates from the wound site independent of the orientation of the exudates system.
  • In yet another embodiment, the exudates system may have a chamber or trap 98, as seen in FIG. 19, into which fluids 97 may pool, or flow so as to assist with obtaining more precise measurements regarding the physical state of the exudates. Measurements, such as flow rate may be taken of the pooled fluid, the flowing fluid, or both by sensors 101. This embodiment may be particularly useful for measuring the thermal mass of the exudate.
  • The exudates system may also comprise a compartment 98 to be filled by exudates leaving the wound site as seen in FIG. 19. In this embodiment, the compartment 98 may be suitable for isolating exudates for analysis or to periodically weigh exudates removed from the wound site so as to assess the rate of fluid removed from the wound site over time. The compartment may include an automatic means for emptying when the fluid volume reaches a set level. Alternatively, the compartment may have an active system such as valves 99, to empty the compartment 98 when the fluid 97 reaches a set level. Fluid may enter the compartment 98 through an inflow tube 96, and exit the compartment 98, via an exit tube 103.
  • In this embodiment, the exudates system may comprise one or more valves 99 to direct and/or interrupt flow through the wound drain. In yet another embodiment, the exudates system may draw off fluid for a sample without fully interrupting flow through the fluid line. The separated fluid as indicated in FIG. 19, is analyzed within the line and allowed to remix further downstream. An alternative design may include a sampling port for taking a sample for analysis.
  • Table 1 depicts various flow rates and their potential clinical indications. By quantifying these flow rates, and assessing them together with the other physiological parameters discussed herein, an accurate prediction of wound health may be obtained.
  • TABLE 1
    Exudate Volume Wound State Clinical Relevance
    Nothing dry wound desiccation
    Scant moist wound tissue (good) Normal
    Somewhat wet wound tissue Potential maceration
    Moderate saturated wound tissues Likely maceration
    Copious wound tissues are bathed in fluid maceration
  • Flow Rate Example
  • In one example of the present technology, a collection canister was built to demonstrate flow measurement using the concept illustrated by the embodiment in FIG. 25. FIG. 25 is an alternative embodiment of the present invention depicting a wound exudate system and strain gauges disposed within an ancillary collection chamber. Such measurements may be taken by one or more sensors, including but not limited to strain gauges 236, a capacitive level gauge 244, optical gauge elements 242, and electrical gauge elements 240. Standard types of gauges for measuring weight or level are well known in the art. For example a strain gauge is based on a simple electrical circuit, wherein mechanical stress caused by change in weight causes the electrical resistance of the elements to change in proportion to the weight applied. A capacitance gauge reads a different level of capacitance between two points. In the present technology, the level of fluid 237 in the chamber (e.g., the wound fluid) may have a different value of capacitance to that of air so the level of the fluid in the container may be determined. Alternatively, an optical gauge may use light to determine the distance between two points (e.g., the top of the canister and the fluid may indicate changes in the level of the fluid 237.
  • The system in this particular example may include a small reservoir 230 in fluid communication with a larger reservoir 232, an inlet port 234 feeding into the small reservoir 230. The small reservoir 230 was attached to the larger reservoir 232 with a flexible support 238. A strain gauge based load cell 236 was applied to the flexible support in order to measure flexure of the support during use 238. Saline was used to approximate the fluid under measurement during the study. The system was also equipped with electrical gauge elements 240, optical gauge elements 242, a capacitive level gauge 244. Therefore, the example demonstrates that individually, or if necessary in combination, different sensor types may be used to determine flow rate.
  • In this example, small amounts of fluid were fed through the inlet and the sensor response was recorded on a computer (PC). During injection of fluid, the reservoir was subjected to chaotic disturbances in an attempt to disrupt the sensor readings. Such inputs would be typical of movements experienced by the device during a mobile use scenario. The response data was filtered using finite impulse response and infinite impulse response filters. The filters were used to remove movement artifacts and recover a usable signal from the input.
  • In general, the signal detected the system was related to the weight of the small reservoir. This is in turn related to the time integral of the flow rate of fluid into the container. Thus the flow rate was able to be extracted from the reservoir weight signal.
  • A valve 246 was used between the small reservoir and the large reservoir in order to drain and reset the reservoir when it became too full. The flow dynamics of this emptying process can be used to determine viscosity related information about the fluid under study.
  • FIG. 26 depicts a process 260 that is further related to flow measurement of FIG. 19 and FIG. 25. The process 260 includes (1) taking a flow reading in block S251; (2) removing any movement artifacts in block S252 (1); and (3) calculating a flow rate in block S253 based on methods known in the art and, in particular, those disclosed herein. If the calculated flow rate is acceptable, measurements will continue to be taken. If the flow rate is not acceptable an alarm or alert is triggered in block S254. The flow rates calculated in process 260 can also be mapped in a graph as seen FIG. 27. As with process 260, the spectral maps described here in various values along the flow rate map may indicate an onset of infection and/or bleeding, i.e., 262.
  • Exudate flow rate, which may be measured by the methods described herein, or any of the methods known to those of ordinary skill in the art is a reliable predictor of wound health. In certain embodiments of the present invention, flow rate values, and changes in flow rate values may be detected through various means and may also be useful in determining how to most optimally change from one therapy to another. In one instance, a relative change from a highly exudating wound to one of a superficially exudating wound may be useful to monitor. A transition from a highly exudating wound to a superficially exudating wound may provide useful information as to when a patient can be transferred from a more expensive to a less expensive therapy. An example of an expensive therapy is NPWT, while an example of a lower cost therapy is moist wound dressings or bandages. In one instance, changes in the rate of exudates flowing from the wound site may be indicative of a change in the wound state. In another instance, changes in the composition of the wound exudates may indicate a clinically relevant change in the wound state.
  • In another embodiment, color assessment of a disposable element within the device, or disposable electrodes within tube maybe possible. It may also be possible to map color profiles of exudates to pH. Several fluorescent nanoparticles systems can change color based on pH. In addition, a conjugated polymer could be used to do the same (redox potentials will change based on the pH of the local environment).
  • Additionally, it is possible to have a color changing element in contact with the exudates that is responsive to local pH changes and a reusable reader element that can analyze the pH changes via monitoring color response of the color changing element.
  • Temperature is useful for assessing bleeding events as well as to monitor for infection. Core blood is generally warmer than the interstitial fluids in the dermis. In general, embodiments using a disposable metallic element for measuring temperature values, as well as embodiments with reusable probes are envisaged.
  • In one aspect of the present invention, near infrared spectroscopy/visible spectroscopy may be used to detect the values of oxygen in hemoglobin present in wound exudates. The presence of oxygen may indicate the presence of hemoglobin, and therefore blood. In aspects of the present invention this could trigger an indicator, or cause one of the pinch mechanisms described herein to clamp a wound drain line to prevent further bleeding. In yet other embodiments, this event would provide a caregiver with appropriate treatment guidelines.
  • Tone and/or luminocity may be used to describe the color of the exudates. Changes in tone and/or luminocity may be indicative of changes in the physiological state of a wound and its stage of healing. A quantification system for evaluating the wideband absorption spectrum may also be useful for assessing the color and tone of the exudate.
  • In one embodiment, a wound system may include one or more laser diodes that provide very narrow wavelengths used to perform measurements. In this case a spectral map and/or vector can be generated by using a single detector in combination with multiple laser diodes and/or one or more scanning laser diodes. A scanning laser diode can produce a modulated wavelength through modulation of the driving signals produced by the drive electronics. Such modulation makes for simplified removal of artifacts caused by ambient light interference, movement and the like.
  • A method for quantitative, real time spectral detection and assessment may be a steady, pulsed or modulated near infrared spectroscopy or functional near infrared spectroscopy technique. It may use multiple wavelength spectroscopy and the like. In one case, a exudates system may include a color analysis system in combination with a white light source. A color analysis system may comprise one or more photodiodes in combination with one or more bandpass filters in order to provide separate responses for segments of the light spectrum. One or more outputs from each band are generated, with each output providing the spectral component of a vector. Output vectors can be mapped to exudates states, thereby creating vector maps useful for determining the state of the exudates and thus, statements about the physiological condition of the wound, as seen in FIGS. 22-24.
  • FIG. 20 is one example of an absorption map or tone map for analyzing different absorption wavelengths. As depicted in FIG. 20, by representative example only, a two-dimensional map shows absorption of a source spectrum 108 along a blue 104, yellow 105, red 106, and NIR 107 wavelength. This particular example depicts broadband detection for the colors indicated. However, alternative embodiments, a single broadband detector could also be used. Particular values seen in an absorption map can be translated into a particular assessment of a wound state. By way of example only, a process performed by the processor may be encoded to signal an alarm or pinch a drain line if a particular tonal color reaches a certain level.
  • FIG. 21 depicts a flow diagram of various operations performed to assess the color or tonal characteristics of a wound exudate. An initial block S110 may obtain various spectral components. Next, any ambient light may be removed in block S112 to increase the accuracy of any spectral readings from the wound exudate. Once block S112 is completed, tone vectors are calculated in block S114 from the readings obtained from block S110. Tone vectors may be calculated by any means known in the art. However, in preferred embodiments, the vectors may be calculated using the following equation:
  • δ = i = 1 A i X i Equation 1
  • Equation 1 is a linear weighting equation that casts portions of the sensor spectrum (each portion indicated by a coordinate Xi) into an nth order vector space. Each portion of the spectrum is weighted by a scalar weighting parameter Ai (in this example only, more generally the weighting parameters may be equations, or algorithms that better map responses into the vector space, adjust for subject parameters, as well as adjust for changes in ambient conditions).
  • The relationship computed in the equation may be used to map readings from individual sensors, wavelengths, and/or spectral bands into the nth dimensional figures, as disclosed herein. This process may be done to essentially create a map of the input responses into a quantifiable space such that diagnostic information may be more readily extracted from the collection of input signals. So for example, delta maps into this Nth order space, regions of which may have statistically significant relationships to various disease states, contraindications for the existing therapy, etc. By correlating where patient data falls on the map, and examining the historical data and trending data, the technology can assist in decision making with regards to therapeutic decisions.
  • These tone vectors are then compared to a tone map block S116 containing standard or acceptable tonal values. In assessing for any potential problems block S118, the tone vectors from block S114 are compared to the accepted values in block S116. If any of those values fall short of or exceed the acceptable ranges from block S116, a predetermined action in block S120 is performed. A programmed action may include, triggering an audible alarm from actuating one of the latch mechanisms described herein.
  • In particular, luminocity and tone may be indicative of infection, bleeding or increased edema in a wound, all conditions requiring urgent attention. Certain embodiments of the present invention may compare and analyze detected tone and luminocity values with predetermined values of tone and luminocity to provide a patient or caregiver with valuable treatment guidelines (see FIGS. 22, 23, and 24). Values of these various parameters may be combined into vector maps.
  • FIG. 22 is a two-dimensional vector map 200 based on a range of colors at a given luminocity 201, measured from the wound exudate. Map 200 represents data points along the spectral graph 206, as shown in FIG. 23. Different locations on the vector map 200 may indicate the likelihood or actual occurrence of various events related to wound state. For example at location 202 a normal exudate trend may be indicated, while locations 203 and 204 may indicate suspected bleeding or a high probability of bleeding, respectively. Location 205 may indicate the presence of an actual bleeding event. Graph 206 in FIG. 23 represents a line graph of three individual spectral profiles over a given period of time.
  • FIG. 24 is a three-dimensional vector map, similar to the two-dimensional map shown in FIG. 22, which is based on a range of colors measured from the wound exudate. Spectral components of wound exudate translated into vectors, may be mapped in such a two or three-dimensional map. By increasing the number of color channels, and therefore the number of wavelengths able to be detected, the sensitivity and accuracy of the system can be improved. Various points along the vector map, whether two or three-dimensional, may also indicate a trend of wound health. For example curve 220 may indicate an initial trend while curve 222 may indicate a slight progression towards infection. Curve 224 may indicate the actual onset of infection while curve 226 may indicate various regions with a probability of infection.
  • Given points, (e.g., 227 and 228) in the vector map may indicate a certain wound state. Such a wound state may correspond to a prescribed treatment guideline. These treatment guidelines may include, but are not limited to varying the settings of an NPWT, or closing off a wound drain. Presence of bacteria or other infection may necessitate administration of antibiotics to the patient.
  • Qualitative analysis of the color spectrum of wound exudates may be another valuable tool for assessing wound health. Table 2 depicts various exudates, their color, transparency and possible clinical indications.
  • TABLE 2
    Type of Exudate Color, Transparency Viscosity Indications
    Serous-transudate clear, straw colored, low viscosity, normal (good)
    watery
    Fibrinous cloudy low viscosity, contains fibrin
    strands
    Sero-sanguinous clear, pink low viscosity normal (good)
    watery
    Sanguinous red low viscosity blood vessel trauma
    and watery
    Sero-purulent murky yellow to high viscosity infection
    creamy coffee
    Purulent yellow, grey, green high viscosity presence of inflammatory
    cells, infection,
    pyogenic organisms
    Hemo-purulent Dark, red, high viscosity established infection,
    and sticky presence of neutrophils,
    bacteria, inflammatory cells
    with blood leakage due to
    vessel damage
    Hemorrhagic Red thick infection with trauma
  • Practically, when considering diagnostic and treatment options for a patient suffering from a wound, in general, a clinician does not want to be inundated with data. It is desirable that an exudate assessment system analyze values detected from a wound, and provide decision support for the user regarding treatment options, rather than just data presentation. To that end, the system of the present invention is capable of analyzing the values of the data obtained from the sensors and/or detectors. Once an analysis is conducted the system may provide an assessment of the wound, as well as treatment guidelines.
  • Embodiments of methods and apparatuses according to the present invention may detect values of various parameters in real time, and perform analyzing processes as shown in FIGS. 28 and 29. These analyzing processes provide not only real time detection, which gives a much more accurate and reliable assessment of the wound, but also gives real time treatment suggestions, as they evaluate the current state of a wound, and not exudate that has been sitting in a collection canister for an extended period of time.
  • The exudates system may comprise processing components to perform various processes that provide or output a wound state condition or treatment option, which may include, among other things, microelectronic circuits such as discrete circuits, microcontrollers, microprocessors, ASICs, FPGAs or the like, to condition and analyze sensor data to meaningfully interpret the physiological parameters of the exudates. The processing components may be located integrally within the system so that the sensors, light sources and processing components are all contained within the same device. In an alternative embodiment, the processing components may be remotely located from the other parts of the system.
  • The process performed for analysis are generally adaptive and may be based on, one or more of the following: an averaged one-dependence estimators (AODE), Kalman filters, Markov models, back propagation artificial neural networks, Baysian networks, basis functions, support vector machines, k-nearest neighbors algorithms, case-based reasoning, decision trees, Gaussian process regression, information fuzzy networks, regression analysis, self-organizing maps, logistic regression, time series models such as autoregression models, moving average models, autoregressive integrated moving average models, classification and regression trees, multivariate adaptive regression splines. The sensor data may be analyzed from multiple sources using sensor fusion approaches. The specific process may be evolved using supervised learning, unsupervised learning, and/or reinforcement learning approaches. In addition, the device may comprise associated power sources and the like to drive the onboard electronics (sensors, microelectronic circuits, communication elements).
  • When tone and luminocity values are analyzed in combination with temperature readings, flow rate and NIR readings, a comprehensive statement may be made about the actual state of the exudates. By applying the processes described above to the various physiological parameters, including tone, luminocity, temperature and flow, a clinically appropriate set of treatment guidelines may be delivered by the system, thus eliminating the need for the caregiver or patient to have to interpret large amounts of data and make a subjective determination.
  • FIG. 28 is a flow diagram of an exemplary process to obtain and analyze parameter readings, as well as present and display warnings and treatment options.
  • The process of FIG. 28 is also referred to as a read and assess loop. The wound monitoring system may be at a sleep state to reserve or reduce power consumption. The system may be “woken up” during a wake-up phase S201, in response to some input. This input may be any type of stimuli such as motion, or as a result of a timer. Once awake, the system will obtain parameter readings S203. After block S203, the device may immediately return to a rest state in block S222. If this is the logic path followed by the device, the readings obtained in block S203 may also be stored in a memory.
  • If after obtaining readings in block S203, the system does not immediately return to rest S222, the device may be conditioned and cleaned in block S205. In the first mode from wake up, the device may be in a loop where it simply wakes up takes a reading, potentially stores it and then rests, as already described. If instead of resetting, the device needs to switch modes to monitoring disturbances from block 207 it will need to activate a conditioning function, which may be there to obtain the raw signals from 207 and prepare them for analysis (e.g., converting from analog to digital signals depending on sensor type or other forms of data conversion/signal conditioning know in the art). It may also be necessary to clean the signals because many signals can have “noise” or spurious data which may need to be filtered out before processing in 209.
  • If after obtaining readings in block S203, the system does not immediately return to rest S222, the device may be conditioned and cleaned in block S205. This cleaning step aids in obtaining an accurate reading and filtering out any extraneous data or artifacts. After blocks S205 the readings obtained in block S203 are converted to vectors and assigned a corresponding weight S209. The weighting of the various readings can be based on any factor known in the art. By way of representative example only, one parameter such as temperature may be given a higher weight than pH, or vice versa. Such weighting can be changed from patient to patient or as applied to the same patient. Such weighting may also be assigned based on historical weights of various parameters. Once the readings are vectorized and weighted, the processor in block S213 compares the vectorized and weighted values to a vector map. At this point, the processor analyzes the data, and makes a determination, based on the vector's location on a vector map, as to whether the value is in a safe region in block S217. What constitutes a safe region is also a parameter that may be predetermined and stored in a memory associated with the processor. If, it is determined in block S217A the readings are in a safe region but appear to be trending toward an unsafe region, the weights of those readings may be adjusted in block S217(b) to assign a higher priority to said values. Next, based on the adjusted weights, the system makes a determination as to whether or not it is worth warning a user S217(c) of the trend toward an unsafe region. If based on predetermined values, the processor determines that it is in fact worth warning a user, then a warning is issued in block S217(d). If not, the system returns to the rest state in block S222 for power minimizing consumption.
  • If the vectorized and weighted reading is not in a safe region, the processor determines whether or not the unsafe reading is a new occurrence in block S219. If it is a new occurrence, the alert weight of the occurrence is increased in block S220. Once the alert weight is increased, the processor returns to the rest state S222. If the device or processor determines that the unsafe reading is not a new occurrence, a determination is made as to whether the alert weight is critical in block S219(b).
  • If the alert weight is not critical, then the alert weight is merely increased in block S220 and the device returns to rest state S222. If the alert weight is critical, the processor determines in block S219(c) which region of the vector map the value falls in and what type of condition is therefore indicated by the value of the readings. Based on the region and type of event detected at in block S219(c), an action is initiated in block S219(d). An action may be an alert, an alarm, a pinching of a wound drain, or any other type of event or warning, which aids the user in assessing or treating the wound. If the action taken at block S219(d) is resolved, as determined in block S219(e) the device and/or processor will record the event in block S219(f) and return to rest S222. If the event has not been resolved, the action at block S219(d) will be repeated or sustained.
  • At block S203 at the read and assess loop, readings are obtained. FIG. 29 is a detailed logic diagram of operations performed in block S203. Once the processor or device “wakes up,” the sensors 301 are then powered up. Once the sensors are powered up, parameter values may be obtained S303. As depicted in FIG. 29, parameters such as spectral content of the wound exudate S303(a), flow S303(b), temperature S303(c), biomarker detection S303(d), and viscosity (e) are detected and measured. While these parameters are illustrated in FIG. 29, they are by way of representative example only and the current invention can be used to measure any parameter present in wound exudate. These values are then converted to digital signals in block S305, which may be done as a low power conversion to reduce power requirements. Once the values have been digitized, the processor in block S309 performs a check for values that may be statistical outliers.
  • At block S309, as part of the outlier analysis, the values may be stored in a memory to be incorporated into the historical data S309(a). If the sample is determined to be a good sample in block S311, the processor will perform a specific calibration S313 to adjust to the specific present conditions. Once this adjustment is performed, the processor in block S315 may perform the conditioning and cleaning similarly as in step S207. If the sample is determined by the processor in blocks to not be a good sample, the event is recorded in block S311(a). If the bad sample is a recurring problem, which may be detected by prior historical values, an error message is displayed to the user in block 311(c). If the problem sample is not recurring, the processor returns to rest S311(d).
  • After the processor has determined the wound state and/or treatment information, that data may be provided or communicated to a user or patient. As discussed above, the system is capable of communicating or providing values and treatment guidelines to a user. In addition, the system is also capable of communication directly with a negative pressure wound therapy device in order to effectuate necessary changes.
  • The system comprises means for alerting a patient or caregiver to the presence of an abnormal state, quantity, or condition of the exudates. In this case, it may comprise one or more lights, a display, a speaker, a vibrating element, or similar in order to communicate information to a patient or caregiver.
  • The device may further include wireless communication capabilities so as to deliver relevant information about the wound exudates to the NPWT device. Such information may include the presence of blood in the exudates, the presence of bacteria, a change in the absorption spectrum of the exudates, a change in the flow rate of the exudates, and the like.
  • Results of the wound assessment may be displayed through any type of graphical user interface, monitor or other type of display. Results of wound assessment may also be conveyed to a clinician and/or patient by the use of indicators as seen. Indicators may be any visual indicators such as lights, or audible indicators such as buzzers or alarms, or a haptic communication device such as a vibration motor to alert the clinician or patient when a particular event has been detected.
  • The exudates system may comprise a means for communicating via a network such a cellular network, a wireless personal area network (WPAN), wide area network (WAN), metropolitan area network (MAN), local area network (LAN), campus area network (CAN), virtual private network (VPN), internet, intranet or near-me area network (NAN).
  • The exudates system may be arranged as a node in a network, thus providing an element in a ring, mesh star, fully connected, line, tree or bus network topology. In one embodiment the exudates system communicates relevant values and as a node in a mesh or star network topology.
  • The exudates system may comprise means for interfacing with a local telecommunications network, such as a cellular network via a locally positioned mobile handset, a wireless node, a wireless modem, phone adaptor or the like.
  • The exudates system may communicate relevant information through the network using various protocols such as IrDA, Bluetooth, UWB, Z-WAVE, ANT, or ZigBee. Preferably, the relevant information is sent via low power protocols such as Blue tooth low energy, ANT or ZigBee.
  • The exudates system may comprise an integrated power switch such that power is automatically provided to the onboard microcircuitry as soon as the system, or a wound device with which the system is associated, is positioned so as to effectively assess exudates. In another embodiment, the system may comprise a proximity sensor to awaken the system itself or wound device from sleep. The sleep function may be useful to reserve power during periods of nonuse.
  • In another embodiment, the system may include a wound dressing with fluorescent biomarkers as shown in FIG. 7. Biomarkers 50 may be employed for detecting various conditions. Biomarkers 50 can be assessed by externally positioned optical sensors 52, thus providing a non-contact way to assess exudates properties. The optical sensors 52 can use colorimetric analyses to read the biomarkers 50 and detect the presence, absence or quantity of a particular value of a physiological parameter. In one embodiment, an optional light source 56 may be used to emit light into the wound exudate.
  • In this particular embodiment, optical sensors 52 may be located on the outer surface of an opaque, or optically transparent tube 54. Biomarkers can change based on local pH, local impedance, local redox potentials, color, and can fluoresce based on certain criteria, all of which are known in the art. As they interact with the exudates they are useful to detect the presence or absence of certain biological materials. The exudates system may read, detect or assess the biomarkers through optical means (color change, fluorescence, etc.), or electrical means (pH, redox, impedance, etc.).
  • In yet another embodiment, the system may detect presence of an infection, including but not limited to methicillin resistant staphylococcus aureus (MRSA) or vancomycin resistant enterococci (VRE), to alert a patient at home that they need in-patient hospital treatment. These various infections may be detected by assessing biomarkers integrated within the system, or by assessing the value of other physiological parameters, including but not limited to temperature.
  • In one preferred embodiment, each process performed by the system can be done in a non-contact fashion such that the sensors and electronics supporting the sensors do not come into contact with the exudates. This allows the components of the system to be reused, as cross contamination is avoided, thus sparing the expense of having to use replaceable sensors with each use.
  • Non-contact is defined herein as not having direct contact between the fluid under analysis, and the sensory elements. Thin membranes in the drainage lines can be used to sense pressure, temperature, etc. (see FIG. 17). FIG. 18 depicts an alternative embodiment of a wound exudate system, which contains pressure sensors. In the present embodiment, the wound exudate system may contain two sections adjacent to a wound drain 89. Those two regions are indicated in FIG. 17 as 91 and 92 at the interface of the system and the drain where the wall thickness of the system is reduced. At the precise interface between the system and the wound drain, a thin membrane is disposed thereon (not shown). The thinner membrane allows pressure sensors to detect a pressure inside the drain at locations 91 a and 92 a. A pressure P1 is assigned to a pressure reading at location 91 a and a second pressure P2 is obtained for the pressure reading at location 92 a. The difference between these two pressure readings can be used to establish, for example, flow rate, viscosity. The configuration described above may be self-contained within a disposable shunt for placement over an existing wound drain line, or designed as an integral component of a wound drain line.
  • FIG. 18 depicts an embodiment similar to that as seen in FIG. 17. However, the embodiment depicted in FIG. 18 measures thermal mass vis-à-vis a microheating element disposed in each of recesses 93 and 94. This embodiment may be useful to estimate flow rates along the wall of a wound drain line.
  • The exudates system may comprise a means for pinching off, or otherwise closing a wound drainage line in the event of an anomaly (such as the presence of blood in the exudates). In this case, the device may comprise an actuator that may be deployed so as to squeeze the line during an adverse event. In another case, the actuator may be arranged such that it is forcefully retracted during normal operation and is released during an adverse event, thus clamping down onto a wound drain line and pinching off fluid flow.
  • FIGS. 9-16 depict various control mechanisms for controlling or stopping the flow of any fluid from a wound. These control mechanisms may include pinch lines to control the flow of exudates upon detection of a certain physiological value. These pinch mechanisms may also be referred to herein as latches. Different types of latches may be activated by different mechanisms. In one mechanism, the latch is an active material element that will change shape in response to a stimulus. Suitable active materials include shape memory alloys, electroactive polymers, piezoceramics, etc. In this particular embodiment, the active material latch is designed such that it releases upon stimulation.
  • If used as part of an NPWT system in response to a certain parameter value, the system may pinch the wound drainage line so as to force a fault (blocked line fault) on the NPWT device. In this case, the system need not have its own means for alerting the patient or caregiver of an adverse event, but rather may trigger an alarm that is present in existing NPWT devices to achieve this goal.
  • In another embodiment, a suitable latch is designed with an integrated resistive heating element 80, a reed 81 and a disbondable fastened region 83, as seen in FIG. 15. The reed is deformed during manufacturing and bonded with the disbondable fastened region 83 in the deformed state. The reed is also bonded to an attachment point 84, in which the bond is not broken. The latch system is designed such that fluid can flow through an adjacent channel when the reed is held to the disbondable region, but that fluid flow through the channel on fluid line 85 may be blocked when the reed is released 87. Upon heating of the heating element 80, the disbondable fastened region 83 melts, deforms, or vaporizes, causing the deformed reed to break away from the fastened region 83. During this process, the reed bridges the fluid line 85, as shown in FIG. 16, preventing flow and optionally triggering a blockage alarm. Other alternative latch designs will be evident to someone skilled in the art.
  • The wound drain may have a particular shape so as to maintain laminar flow of the exudate during suction, in addition to providing for an actuating means for pinching off a wound drain line in the event of an adverse event such as bleeding. Representative examples of this embodiment can be seen in FIGS. 9 and 10. The mechanical elements present in this embodiment are comprised of a solenoid based pinch valve 65. As with traditional solenoid based apparatuses, the pinched valve 65 of the present embodiment contains a coil magnet 66 and a coiled actuator magnet 67. In the present embodiment, the pinched valve may be actuated to close or substantially narrow the interior wall of the wound drain 69.
  • This change of the channel width of the wound drain assists in detecting laminar to turbulent flow and may restrict flow for better analysis or measurement. The embodiment depicted in FIG. 9 may be combined with any of the other embodiments described herein, such as a flow disruption element 70 as shown in FIG. 10. When flow disruption element is present, analysis and detection may take place along an analysis flow region 64 by sources 62 and detectors 63.
  • As seen in FIG. 11, more than one solenoid 71 actuator can be used to enhance the pinching affect. FIG. 12 depicts an alternative embodiment wherein multiple pinching actuators 73 are disposed on opposite sides of a wound drain line. The actuators 73, depicted in FIG. 12 can be activated in response to a stimulus, such as the presence of blood. In the event the actuators 73 are activated and pinch the drain line to prevent further bleeding. An alarm 74 can signal a blocked flow line.
  • FIG. 13 depicts yet another embodiment of the present invention containing a spring loaded, resettable latch. Upon actuation, the spring loaded latch releases and causes the mechanism to pinch the wound drain line 79 in the event of the detection of some unwanted occurrence, such as bleeding, as shown in FIG. 14. The spring loaded element 75 once actuated can be reset and the latch 77 may be re-secured, as shown in FIG. 13. In this particular embodiment, electronics and power sources necessary for operation may be contained on an external housing.
  • In the case of a conventional dressing or bandage, the dressing component may be modified so as to easily integrate with the exudate assessment system. To enable this integration, the dressing may have electrical traces as an interface. The electrical traces may be printed using electroconductive inks (Ag, AgCl, C, Ni, etc.), or formed via several available RFID techniques known in the art, and embedded for electrically interacting with the exudate assessment system.
  • Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims (20)

1. A system for assessing wound exudate from a wound of a patient, the system comprising:
a wound treatment device;
a wound drain line for the passage of wound exudate;
an actuator positioned relative to the wound drain line to control wound exudate flow;
a sensor or detector for detecting one or more values of one or more physiological parameters of the wound exudate;
a processor for analyzing the values of the one or more physiological parameters so as to obtain an assessment of the wound exudate and provide a treatment guideline based on the assessment; and
wherein the wound treatment device, the sensor or detector, and the processor are integrated.
2. The system of claim 1, wherein the actuator comprises an active material element that changes shape in response to a stimulus.
3. The system of claim 1, wherein the actuator comprises a reed and a heating element.
4. The system of claim 1, wherein the actuator comprises a spring-loaded latch.
5. The system of claim 2, wherein:
the wound drain line includes a lumen and an interior wall that at least partially defines an internal channel that is sized for the passage of wound exudate;
the actuator is positioned to act directly on the interior wall to vary the width of the internal channel.
6. The system of claim 2, wherein the active material element is a shape memory alloy, an electroactive polymer, or a piezoceramic material.
7. The system of claim 3, wherein:
the wound drain line includes a lumen and an interior wall that at least partially defines an internal channel that is sized for the passage of wound exudate;
the actuator is positioned to act directly on the interior wall to vary the width of the internal channel.
8. The system of claim 3, wherein the reed is movable relative to the heating element between an unreleased position, in which the reed does not resist wound exudate flow through an internal channel of the wound drain line, and a released position, in which the reed resists wound exudate flow through the internal channel of the wound drain line.
9. The system of claim 4, wherein:
the wound drain line includes a lumen and an interior wall that at least partially defines an internal channel that is sized for the passage of wound exudate;
the actuator is positioned to act directly on the interior wall to vary the width of the internal channel.
10. The system of claim 4, wherein the spring-loaded latch is operable between a non-actuated position, in which the spring-loaded latch does not resist wound exudate flow through an internal channel of the wound drain line, and an actuated position, in which the spring-loaded latch resists wound exudate flow through the internal channel of the wound drain line.
11. The system of claim 1, further comprising a flow disruption element positioned within an internal channel of the wound drain line such that the flow disruption element is spaced from an interior wall of the wound drain line that at least partially defines the internal channel,
wherein the flow disruption element is arranged to extend lengthwise within the internal channel parallel to a first direction along which the wound drain line is arranged to conduct wound exudate therethrough.
12. A system for assessing wound exudate from a wound of a patient, the system comprising:
a wound treatment device;
a wound drain line for the passage of wound exudate; and
an actuator positioned relative to the wound drain line to control wound exudate flow.
13. The system of claim 12, wherein:
the wound drain line includes a lumen and an interior wall that at least partially defines an internal channel that is sized for the passage of wound exudate;
the wound drain line is arranged to conduct wound exudate therethrough in a first direction; and
the system further includes a flow disruption element positioned within the internal channel and spaced from the interior wall such that the flow disruption element is arranged to extend lengthwise within the internal channel parallel to the first direction.
14. The system of claim 13, wherein the actuator is positioned to act directly on the interior wall to vary the width of the internal channel.
15. The system of claim 14, wherein the actuator comprises an active material element configured to change shape in response to a stimulus.
16. The system of claim 14, wherein the actuator comprises a reed and a heating element.
17. The system of claim 14, wherein the actuator comprises a spring-loaded latch.
18. The system of claim 12, wherein the actuator comprises an active material element configured to change shape in response to a stimulus, and wherein the active material element is a shape memory alloy, an electroactive polymer, or a piezoceramic material.
19. The system of claim 12, wherein the actuator comprises a reed and a heating element, and wherein the reed is movable relative to the heating element between an unreleased position, in which the reed does not resist wound exudate flow through an internal channel of the wound drain line, and a released position, in which the reed resists wound exudate flow through the internal channel of the wound drain line.
20. The system of claim 12, wherein the actuator comprises a spring-loaded latch, and wherein the spring-loaded latch is operable between a non-actuated position, in which the spring-loaded latch does not resist wound exudate flow through an internal channel of the wound drain line, and an actuated position, in which the spring-loaded latch resists wound exudate flow through the internal channel of the wound drain line.
US17/399,271 2010-12-08 2021-08-11 Integrated system for assessing wound exudates Pending US20210369938A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/399,271 US20210369938A1 (en) 2010-12-08 2021-08-11 Integrated system for assessing wound exudates

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US42100310P 2010-12-08 2010-12-08
PCT/US2011/063781 WO2012078781A1 (en) 2010-12-08 2011-12-07 Integrated system for assessing wound exudates
US201313992637A 2013-07-26 2013-07-26
US16/237,421 US11116884B2 (en) 2010-12-08 2018-12-31 Integrated system for assessing wound exudates
US17/399,271 US20210369938A1 (en) 2010-12-08 2021-08-11 Integrated system for assessing wound exudates

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/237,421 Division US11116884B2 (en) 2010-12-08 2018-12-31 Integrated system for assessing wound exudates

Publications (1)

Publication Number Publication Date
US20210369938A1 true US20210369938A1 (en) 2021-12-02

Family

ID=46207499

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/992,637 Active 2032-05-21 US10207031B2 (en) 2010-12-08 2011-12-07 Integrated system for assessing wound exudates
US16/237,421 Active 2032-08-07 US11116884B2 (en) 2010-12-08 2018-12-31 Integrated system for assessing wound exudates
US17/398,552 Pending US20210369937A1 (en) 2010-12-08 2021-08-10 Integrated system for assessing wound exudates
US17/399,271 Pending US20210369938A1 (en) 2010-12-08 2021-08-11 Integrated system for assessing wound exudates

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US13/992,637 Active 2032-05-21 US10207031B2 (en) 2010-12-08 2011-12-07 Integrated system for assessing wound exudates
US16/237,421 Active 2032-08-07 US11116884B2 (en) 2010-12-08 2018-12-31 Integrated system for assessing wound exudates
US17/398,552 Pending US20210369937A1 (en) 2010-12-08 2021-08-10 Integrated system for assessing wound exudates

Country Status (6)

Country Link
US (4) US10207031B2 (en)
EP (1) EP2648793B1 (en)
JP (2) JP5965409B2 (en)
CN (1) CN103347561B (en)
CA (1) CA2819475C (en)
WO (1) WO2012078781A1 (en)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602007004546D1 (en) 2006-09-28 2010-03-18 Tyco Healthcare Portable wound therapy system
US10226610B2 (en) 2007-10-26 2019-03-12 Electrochemical Oxygen Concepts, Inc. Apparatus and methods for controlling tissue oxygenation for wound healing and promoting tissue viability
US8177763B2 (en) 2008-09-05 2012-05-15 Tyco Healthcare Group Lp Canister membrane for wound therapy system
US10912869B2 (en) 2008-05-21 2021-02-09 Smith & Nephew, Inc. Wound therapy system with related methods therefor
EP2441409A1 (en) 2010-10-12 2012-04-18 Smith&Nephew, Inc. Medical device
WO2012078781A1 (en) 2010-12-08 2012-06-14 Convatec Technologies Inc. Integrated system for assessing wound exudates
US9526816B2 (en) 2010-12-08 2016-12-27 Convatec Technologies Inc. Wound exudate monitor accessory
US9114054B2 (en) * 2011-07-24 2015-08-25 Oakwell Distribution, Inc. System for monitoring the use of medical devices
CN202236824U (en) * 2011-08-29 2012-05-30 惠州市华阳医疗电子有限公司 Negative-pressure wound treatment system with extravasate flow rate alarming function
US9737649B2 (en) 2013-03-14 2017-08-22 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
AU2014236701B2 (en) 2013-03-14 2018-07-19 Smith & Nephew Inc. Systems and methods for applying reduced pressure therapy
USD764654S1 (en) 2014-03-13 2016-08-23 Smith & Nephew, Inc. Canister for collecting wound exudate
CA2920850C (en) 2013-08-13 2022-08-30 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
CA3161435A1 (en) * 2014-02-07 2015-08-13 Willow Innovations, Inc. Methods, apparatus, and system for expression of human breast milk
USD764653S1 (en) 2014-05-28 2016-08-23 Smith & Nephew, Inc. Canister for collecting wound exudate
USD764048S1 (en) 2014-05-28 2016-08-16 Smith & Nephew, Inc. Device for applying negative pressure to a wound
USD764047S1 (en) 2014-05-28 2016-08-16 Smith & Nephew, Inc. Therapy unit assembly
USD770173S1 (en) 2014-06-02 2016-11-01 Smith & Nephew, Inc. Bag
USD765830S1 (en) 2014-06-02 2016-09-06 Smith & Nephew, Inc. Therapy unit assembly
WO2015195720A1 (en) 2014-06-16 2015-12-23 The Regents Of The University Of California Methods and apparatus for monitoring wound healing using impedance spectroscopy
US10744239B2 (en) 2014-07-31 2020-08-18 Smith & Nephew, Inc. Leak detection in negative pressure wound therapy system
CN104189991A (en) * 2014-09-11 2014-12-10 昆山韦睿医疗科技有限公司 Color discrimination method and device for wound exudates and negative-pressure treatment system
CN106999047A (en) * 2014-11-21 2017-08-01 埃尔瓦有限公司 The system for monitoring the damage of body part after the blow
SG11201704639WA (en) 2014-12-30 2017-07-28 Smith & Nephew Inc Systems and methods for applying reduced pressure therapy
US10556045B2 (en) 2014-12-30 2020-02-11 Smith & Nephew, Inc. Synchronous pressure sampling and supply of negative pressure in negative pressure wound therapy
KR101633497B1 (en) * 2015-02-10 2016-06-24 (주)시지바이오 A method and apparatus for measuring volum of wound
WO2017019939A1 (en) 2015-07-29 2017-02-02 Innovative Therapies, Inc. Wound therapy device pressure monitoring and control system
AU2015411394B2 (en) 2015-10-07 2021-07-08 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
CN105232229B (en) * 2015-10-19 2018-07-24 中国人民解放军第四军医大学 A kind of intelligent radio sensing dressing that can monitor wound healing in real time
WO2017100320A1 (en) * 2015-12-07 2017-06-15 Electrochemical Oxygen Concepts, Inc. Apparatus and methods for controlling tissue oxygenation for wound healing and promoting tissue viability
EP3187205B1 (en) * 2015-12-30 2021-01-27 Paul Hartmann AG Methods and devices for performing a negative pressure wound therapy
EP3413945B1 (en) * 2016-02-12 2024-04-24 Smith & Nephew, Inc. Systems and methods for detecting operational conditions of reduced pressure therapy
US10921021B2 (en) * 2016-03-23 2021-02-16 Wwt Technischer Geraetebau Gmbh Modular blood warmer
CN109069712A (en) 2016-05-13 2018-12-21 史密夫及内修公开有限公司 Enable the wound monitoring and therapy devices of sensor
WO2017197357A1 (en) * 2016-05-13 2017-11-16 Smith & Nephew Plc Automatic wound coupling detection in negative pressure wound therapy systems
EP3481360B1 (en) * 2016-07-08 2022-03-09 ConvaTec Technologies Inc. Fluid flow sensing
US11369730B2 (en) 2016-09-29 2022-06-28 Smith & Nephew, Inc. Construction and protection of components in negative pressure wound therapy systems
USD835648S1 (en) 2016-10-27 2018-12-11 Smith & Nephew, Inc. Display screen or portion thereof with a graphical user interface for a therapy device
JP7063912B2 (en) 2017-03-07 2022-05-09 スミス アンド ネフュー インコーポレイテッド Decompression therapy system and method including antenna
US11690570B2 (en) 2017-03-09 2023-07-04 Smith & Nephew Plc Wound dressing, patch member and method of sensing one or more wound parameters
US11324424B2 (en) 2017-03-09 2022-05-10 Smith & Nephew Plc Apparatus and method for imaging blood in a target region of tissue
CA3059516A1 (en) 2017-04-11 2018-10-18 Smith & Nephew Plc Component positioning and stress relief for sensor enabled wound dressings
EP3612242A1 (en) 2017-04-19 2020-02-26 Smith & Nephew, Inc Negative pressure wound therapy canisters
US11791030B2 (en) 2017-05-15 2023-10-17 Smith & Nephew Plc Wound analysis device and method
EP3406273B1 (en) * 2017-05-23 2022-03-30 Sofradim Production A surgical drain
EP3406274B1 (en) * 2017-05-23 2023-01-18 Sofradim Production A surgical drain
AU2018288530B2 (en) 2017-06-23 2024-03-28 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
US11712508B2 (en) 2017-07-10 2023-08-01 Smith & Nephew, Inc. Systems and methods for directly interacting with communications module of wound therapy apparatus
RU175660U1 (en) * 2017-07-25 2017-12-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Амурская государственная медицинская академия" Министерства здравоохранения Российской Федерации Device for recording the appearance of exudate in a postoperative wound
GB201804502D0 (en) 2018-03-21 2018-05-02 Smith & Nephew Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings
GB201809007D0 (en) 2018-06-01 2018-07-18 Smith & Nephew Restriction of sensor-monitored region for sensor-enabled wound dressings
AU2018312883A1 (en) 2017-08-10 2020-02-20 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
WO2019048624A1 (en) 2017-09-10 2019-03-14 Smith & Nephew Plc Systems and methods for inspection of encapsulation and components in sensor equipped wound dressings
GB201804971D0 (en) 2018-03-28 2018-05-09 Smith & Nephew Electrostatic discharge protection for sensors in wound therapy
GB201718870D0 (en) 2017-11-15 2017-12-27 Smith & Nephew Inc Sensor enabled wound therapy dressings and systems
GB201718859D0 (en) 2017-11-15 2017-12-27 Smith & Nephew Sensor positioning for sensor enabled wound therapy dressings and systems
WO2019063481A1 (en) 2017-09-27 2019-04-04 Smith & Nephew Plc Ph sensing for sensor enabled negative pressure wound monitoring and therapy apparatuses
EP3687396A1 (en) 2017-09-28 2020-08-05 Smith & Nephew plc Neurostimulation and monitoring using sensor enabled wound monitoring and therapy apparatus
JP6959104B2 (en) * 2017-11-02 2021-11-02 日東電工株式会社 Drainage drainage management system
BR112020006513A2 (en) * 2017-11-08 2020-09-29 Mölnlycke Health Care Ab biosensor and dressing system for associated injury
MX2020004744A (en) 2017-11-09 2020-08-13 11 Health And Tech Limited Ostomy monitoring system and method.
CN111343950A (en) 2017-11-15 2020-06-26 史密夫及内修公开有限公司 Integrated wound monitoring and/or therapy dressing and system implementing sensors
CA3090284A1 (en) 2018-02-06 2019-08-15 Adlore, Inc. Devices, methods, and systems for the treatment and/or monitoring of damaged tissue
JP7331002B2 (en) * 2018-03-29 2023-08-22 スリーエム イノベイティブ プロパティズ カンパニー Wound therapy system with wound volume estimation
US20210205140A1 (en) * 2018-06-15 2021-07-08 Coloplast A/S Accessory device of a wound dressing system, and related methods for communicating operating state
EP3823684A1 (en) 2018-07-16 2021-05-26 KCI Licensing, Inc. Fluid instillation apparatus for use with negative-pressure system incorporating wireless therapy monitoring
GB2592508B (en) 2018-09-12 2022-08-31 Smith & Nephew Device, apparatus and method of determining skin perfusion pressure
USD893514S1 (en) 2018-11-08 2020-08-18 11 Health And Technologies Limited Display screen or portion thereof with graphical user interface
GB201820388D0 (en) * 2018-12-14 2019-01-30 Smith & Nephew Changing therapy devices or wound dressings in reduced pressure wound therapy
GB201820668D0 (en) 2018-12-19 2019-01-30 Smith & Nephew Inc Systems and methods for delivering prescribed wound therapy
GB201820927D0 (en) 2018-12-21 2019-02-06 Smith & Nephew Wound therapy systems and methods with supercapacitors
US11318241B2 (en) * 2019-03-27 2022-05-03 Medsix Inc. System and method for wound monitoring
WO2021041595A1 (en) 2019-08-28 2021-03-04 Adlore, Inc. Apparatuses, systems, and methods for the treatment of damaged tissue
CN112546313B (en) * 2020-12-10 2022-09-02 广州润虹医药科技股份有限公司 Negative pressure treatment system
TWI759106B (en) * 2021-02-09 2022-03-21 明基材料股份有限公司 Wound treatment system
DE102021126851A1 (en) 2021-10-15 2023-04-20 Elixion Medical GmbH Device and method for flow determination
DE102021212234A1 (en) 2021-10-29 2023-05-04 New Ventures GmbH Sensor assembly for an organ transport system

Family Cites Families (625)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7198046B1 (en) * 1991-11-14 2007-04-03 Wake Forest University Health Sciences Wound treatment employing reduced pressure
US6511454B1 (en) * 1998-05-29 2003-01-28 Nidek Co., Ltd. Irrigation/aspiration apparatus and irrigation/aspiration cassette therefore
DK1164986T3 (en) 1999-04-02 2007-01-08 Kci Licensing Inc Vacuum-assisted closure system with heating and cooling measures
US7947033B2 (en) * 1999-04-06 2011-05-24 Kci Licensing Inc. Systems and methods for detection of wound fluid blood and application of phototherapy in conjunction with reduced pressure wound treatment system
US7799004B2 (en) 2001-03-05 2010-09-21 Kci Licensing, Inc. Negative pressure wound treatment apparatus and infection identification system and method
CA2390131C (en) 1999-11-29 2009-06-23 Hill-Rom Services, Inc. Wound treatment apparatus
GB0011202D0 (en) 2000-05-09 2000-06-28 Kci Licensing Inc Abdominal wound dressing
US7700819B2 (en) 2001-02-16 2010-04-20 Kci Licensing, Inc. Biocompatible wound dressing
US7846141B2 (en) 2002-09-03 2010-12-07 Bluesky Medical Group Incorporated Reduced pressure treatment system
GB2393120A (en) 2002-09-18 2004-03-24 Johnson & Johnson Medical Ltd Compositions for wound treatment
US8111165B2 (en) 2002-10-02 2012-02-07 Orthocare Innovations Llc Active on-patient sensor, method and system
GB0224986D0 (en) 2002-10-28 2002-12-04 Smith & Nephew Apparatus
US7608404B2 (en) 2002-11-01 2009-10-27 Hamamatsu Photonics K.K. Disease determination method, data generation method for disease determination and data generation system for disease determination
JP5528656B2 (en) 2003-01-09 2014-06-25 ポリガニックス ビー. ブイ. Biomedical form
JP3770241B2 (en) 2003-03-04 2006-04-26 株式会社日立製作所 Personal authentication device and personal authentication method
BRPI0413596A (en) 2003-08-14 2006-10-17 Milliken & Co silver-containing wound care device, its composition and production method
GB0325129D0 (en) 2003-10-28 2003-12-03 Smith & Nephew Apparatus in situ
US8157792B2 (en) 2004-02-26 2012-04-17 Haemonetics Corporation Wound drainage suction relief
JP2005293241A (en) * 2004-03-31 2005-10-20 Yamaguchi Univ Automatic diagnostic expert system
US7909805B2 (en) 2004-04-05 2011-03-22 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
GB0409446D0 (en) 2004-04-28 2004-06-02 Smith & Nephew Apparatus
US10413644B2 (en) 2004-04-27 2019-09-17 Smith & Nephew Plc Wound treatment apparatus and method
US9162005B2 (en) 2005-04-25 2015-10-20 Arch Biosurgery, Inc. Compositions for prevention of adhesions and other barrier applications
EP2708216B1 (en) 2005-09-07 2016-04-06 Smith & Nephew, Inc. Self contained wound dressing apparatus
AU2006287460A1 (en) 2005-09-07 2007-03-15 Tyco Healthcare Group Lp Wound dressing with vacuum reservoir
WO2007062024A1 (en) 2005-11-21 2007-05-31 Joshua David Smith Wound care system
RU2428209C2 (en) 2006-01-23 2011-09-10 КейСиАй ЛАЙСЕНЗИНГ, ИНК. Wound treatment system and method with using ultrasonic surgical purification
MX2008009755A (en) * 2006-02-06 2009-03-05 Kci Licensing Inc Systems and methods for improved connection to wound dressings in conjunction with reduced pressure wound treatment systems.
US7779625B2 (en) 2006-05-11 2010-08-24 Kalypto Medical, Inc. Device and method for wound therapy
GB2439928A (en) 2006-07-13 2008-01-16 Ethicon Inc Hydrogel wound dressings exhibiting reduced fiber losses
WO2008040020A2 (en) 2006-09-28 2008-04-03 Puricore, Inc. Apparatus and method for wound, cavity, and bone treatment
US8116852B2 (en) 2006-09-29 2012-02-14 Nellcor Puritan Bennett Llc System and method for detection of skin wounds and compartment syndromes
EP2438935B1 (en) 2006-10-13 2014-01-15 BlueSky Medical Group Incorporated Pressure control of a medical vacuum pump
RU2417110C2 (en) 2006-10-13 2011-04-27 КейСиАй Лайсензинг Инк. Low pressure feed system having manually activated pump for mild wound healing
AU2007327299A1 (en) * 2006-11-30 2008-06-05 Medela Holding Ag Device for treating wounds
US8152751B2 (en) 2007-02-09 2012-04-10 Baxter International Inc. Acoustic access disconnection systems and methods
US8057411B2 (en) * 2007-04-25 2011-11-15 General Patent, Llc Wound care vacuum bandaging in combination with acoustic shock wave applications
US20080269582A1 (en) 2007-04-28 2008-10-30 Hebah Noshy Mansour Methods and devices for surgical drains with sensors
FR2916356B1 (en) 2007-05-25 2009-08-28 Urgo Soc Par Actions Simplifie NOVEL AGENT FOR RELOCATING ACTIVE INGREDIENTS IN DRESSINGS CONTAINING AT LEAST ONE FATTY BODY
GB0712737D0 (en) 2007-07-02 2007-08-08 Smith & Nephew Apparatus
WO2009020612A1 (en) 2007-08-06 2009-02-12 Stb Lifesaving Technologies, Inc. Methods and dressing for sealing internal injuries
GB2452720A (en) 2007-09-11 2009-03-18 Ethicon Inc Wound dressing with an antimicrobial absorbent layer and an apertured cover sheet
JP2010538799A (en) 2007-09-17 2010-12-16 サンダー,サティシュ High precision infusion pump
WO2009044151A1 (en) * 2007-10-03 2009-04-09 Neorad As Monitoring the injection of fluid
AU2008310622B2 (en) 2007-10-11 2014-01-09 Solventum Intellectual Properties Company Closed incision negative pressure wound therapy device and methods of use
WO2009067711A2 (en) 2007-11-21 2009-05-28 T.J. Smith & Nephew, Limited Suction device and dressing
HUE043133T2 (en) 2007-11-21 2019-07-29 Smith & Nephew Wound dressing
JP5432175B2 (en) 2007-12-12 2014-03-05 スリーエム イノベイティブ プロパティズ カンパニー Article manufacturing method and article
US20090177051A1 (en) * 2008-01-09 2009-07-09 Heal-Ex, Llc Systems and methods for providing sub-dressing wound analysis and therapy
US20090234306A1 (en) 2008-03-13 2009-09-17 Tyco Healthcare Group Lp Vacuum wound therapy wound dressing with variable performance zones
US8152785B2 (en) 2008-03-13 2012-04-10 Tyco Healthcare Group Lp Vacuum port for vacuum wound therapy
GB0805162D0 (en) 2008-03-19 2008-04-23 Bristol Myers Squibb Co Antibacterial wound dressing
BRPI0906527A2 (en) 2008-04-04 2016-09-06 3Mm Innovative Properties Company apparatus for applying bandages to wounds and medical bandages
GB0808376D0 (en) 2008-05-08 2008-06-18 Bristol Myers Squibb Co Wound dressing
WO2009141820A1 (en) 2008-05-21 2009-11-26 Morris Topaz Wound healing device
ITAR20080022A1 (en) 2008-05-26 2009-11-27 Daniele Guidi DRAINAGE DEVICE, IN PARTICULAR FOR ASPIRATION IN CASE OF SUCTION THERAPIES, FISTULAS, SURGICAL WOUND DEFICIENCIES, DECUBITUS INJURIES, TRAUMAS AND SIMILAR INJURIES.
US20200113741A1 (en) 2008-05-30 2020-04-16 Kci Licensing, Inc. Dressing with tissue viewing capability
MX2010013132A (en) 2008-05-30 2010-12-20 Kci Licensing Inc Reduced-pressure, linear-wound treatment systems.
MX2010013068A (en) 2008-05-30 2010-12-21 Kci Licensing Inc Reduced-pressure, linear wound closing bolsters and systems.
US20100022990A1 (en) 2008-07-25 2010-01-28 Boehringer Technologies, L.P. Pump system for negative pressure wound therapy and improvements thereon
US8460698B2 (en) 2008-08-01 2013-06-11 Milliken & Company Composite article suitable for use as a wound dressing
WO2010017437A1 (en) 2008-08-08 2010-02-11 Tyco Healthcare Group Lp Wound dressing of continuous fibers
GB2463523B (en) 2008-09-17 2013-05-01 Medtrade Products Ltd Wound care device
GB0904582D0 (en) 2008-09-24 2009-04-29 Lumina Adhesives Switchable adhesives
GB0817796D0 (en) 2008-09-29 2008-11-05 Convatec Inc wound dressing
JP5788323B2 (en) 2008-10-02 2015-09-30 エル.アール. アールアンドディー リミテッド Interfacial layer wound dressing
US8460257B2 (en) 2008-11-07 2013-06-11 Kci Licensing, Inc. Reduced-pressure, wound-treatment dressings and systems
EP3388093B1 (en) 2008-11-14 2020-05-20 KCI Licensing, Inc. Fluid pouch, system, and method for storing fluid from a tissue site
CA2743727C (en) 2008-11-18 2017-04-11 Kci Licensing, Inc. Reduced-pressure, composite manifolds
EP2358425B1 (en) 2008-11-25 2014-11-12 Spiracur Inc. Device for delivery of reduced pressure to body surfaces
WO2010080907A1 (en) 2009-01-07 2010-07-15 Spiracur Inc. Reduced pressure therapy of the sacral region
US8162907B2 (en) 2009-01-20 2012-04-24 Tyco Healthcare Group Lp Method and apparatus for bridging from a dressing in negative pressure wound therapy
GB0902368D0 (en) 2009-02-13 2009-04-01 Smith & Nephew Wound packing
WO2010108086A2 (en) * 2009-03-20 2010-09-23 Nanolambda, Inc. Nano-optic filter array based sensor
US20190298578A1 (en) 2009-03-26 2019-10-03 Stephen Shulman Vented emergency wound dressings with anti-thrombogenic layers
US10792404B2 (en) 2009-04-10 2020-10-06 Kci Licensing, Inc. Methods and devices for applying closed incision negative pressure wound therapy
GB2470040A (en) 2009-05-06 2010-11-10 Systagenix Wound Man Ip Co Bv Wound dressing material comprising N-acetyl cysteine
CN102802683B (en) 2009-06-16 2015-11-25 巴克斯特国际公司 Sthptic sponge
US9168180B2 (en) 2009-06-16 2015-10-27 3M Innovative Properties Company Conformable medical dressing with self supporting substrate
US20100324516A1 (en) 2009-06-18 2010-12-23 Tyco Healthcare Group Lp Apparatus for Vacuum Bridging and/or Exudate Collection
US8535282B2 (en) * 2009-07-14 2013-09-17 Southwest Research Institute Wound healing sensor techniques
US8469936B2 (en) 2009-07-15 2013-06-25 Kci Licensing, Inc. Reduced-pressure dressings, systems, and methods employing desolidifying barrier layers
US20110066123A1 (en) 2009-09-15 2011-03-17 Aidan Marcus Tout Medical dressings, systems, and methods employing sealants
KR20120091339A (en) 2009-11-09 2012-08-17 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Medical articles and methods of making using immiscible material
EP2498988B1 (en) 2009-11-09 2019-02-27 3M Innovative Properties Company Medical articles and methods of making using miscible composition
GB0919659D0 (en) 2009-11-10 2009-12-23 Convatec Technologies Inc A component for a wound dressing
EP2515961B1 (en) 2009-12-22 2019-04-17 Smith & Nephew, Inc. Apparatuses for negative pressure wound therapy
US9770368B2 (en) 2010-01-20 2017-09-26 Kci Licensing, Inc. Foam wound inserts with regions of higher and lower densities, wound dressings, and methods
US8791315B2 (en) 2010-02-26 2014-07-29 Smith & Nephew, Inc. Systems and methods for using negative pressure wound therapy to manage open abdominal wounds
US10709883B2 (en) 2010-03-04 2020-07-14 Donald Spector Bandage with microneedles for antimicrobial delivery and fluid absorption from a wound
US8469935B2 (en) 2010-03-11 2013-06-25 Kci Licensing, Inc. Abdominal treatment systems, delivery devices, and methods
US8721606B2 (en) 2010-03-11 2014-05-13 Kci Licensing, Inc. Dressings, systems, and methods for treating a tissue site
US8430867B2 (en) 2010-03-12 2013-04-30 Kci Licensing, Inc. Reduced-pressure dressing connection pads, systems, and methods
US8814842B2 (en) 2010-03-16 2014-08-26 Kci Licensing, Inc. Delivery-and-fluid-storage bridges for use with reduced-pressure systems
US9358158B2 (en) 2010-03-16 2016-06-07 Kci Licensing, Inc. Patterned neo-epithelialization dressings, systems, and methods
EP2552371B1 (en) 2010-03-31 2020-06-24 Pharmaplast SAE A wound care dressing, a method and a production line for manufacturing the wound care dressing
US8632512B2 (en) 2010-04-09 2014-01-21 Kci Licensing, Inc. Apparatuses, methods, and compositions for the treatment and prophylaxis of chronic wounds
CA2796334A1 (en) 2010-04-13 2011-10-20 Kci Licensing, Inc. Compositions with reactive ingredients, and wound dressings, apparatuses, and methods
US20190381222A9 (en) 2010-04-16 2019-12-19 Kci Licensing, Inc. Reduced-Pressure Sources, Systems, And Methods Employing A Polymeric, Porous, Hydrophobic Material
US8702665B2 (en) 2010-04-16 2014-04-22 Kci Licensing, Inc. Reduced-pressure sources, systems, and methods employing a polymeric, porous, hydrophobic material
GB201008347D0 (en) 2010-05-19 2010-07-07 Smith & Nephew Wound protection
GB201006986D0 (en) 2010-04-27 2010-06-09 Smith & Nephew Wound dressing
USRE48117E1 (en) 2010-05-07 2020-07-28 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
US10639404B2 (en) 2010-06-03 2020-05-05 Wound Healing Technologies, Llc Wound dressing
ES2831299T3 (en) 2010-06-17 2021-06-08 Covalon Tech Inc Antimicrobial Silicone Based Wound Dressing
US9265665B2 (en) 2010-07-19 2016-02-23 Kci Licensing, Inc. Inflatable off-loading wound dressing assemblies, systems, and methods
US8795246B2 (en) 2010-08-10 2014-08-05 Spiracur Inc. Alarm system
US9194792B2 (en) * 2010-09-07 2015-11-24 Fresenius Medical Care Holdings, Inc. Blood chamber for an optical blood monitoring system
GB201015656D0 (en) 2010-09-20 2010-10-27 Smith & Nephew Pressure control apparatus
AU2011333538C1 (en) 2010-11-25 2015-07-30 Bluestar Silicones France Sas Composition I-II and products and uses thereof
US9526816B2 (en) 2010-12-08 2016-12-27 Convatec Technologies Inc. Wound exudate monitor accessory
WO2012078781A1 (en) 2010-12-08 2012-06-14 Convatec Technologies Inc. Integrated system for assessing wound exudates
US8613733B2 (en) 2010-12-15 2013-12-24 Kci Licensing, Inc. Foam dressing with integral porous film
GB2488749A (en) 2011-01-31 2012-09-12 Systagenix Wound Man Ip Co Bv Laminated silicone coated wound dressing
CN106974683B (en) 2011-02-04 2020-02-21 马萨诸塞州大学 Negative pressure wound closure device
US9107990B2 (en) 2011-02-14 2015-08-18 Kci Licensing, Inc. Reduced-pressure dressings, systems, and methods for use with linear wounds
WO2012142001A1 (en) 2011-04-12 2012-10-18 Kci Licensing, Inc. Reduced-pressure interfaces, systems, and methods employing a coanda device
GB201106491D0 (en) 2011-04-15 2011-06-01 Systagenix Wound Man Ip Co Bv Patterened silicone coating
CN103443117B (en) 2011-04-29 2017-05-17 凯希特许有限公司 Aptamer-modified polymeric materials for the binding of therapeutic factors in a wound environment
GB201108229D0 (en) 2011-05-17 2011-06-29 Smith & Nephew Tissue healing
WO2012162287A1 (en) 2011-05-26 2012-11-29 Kci Licensing, Inc. Systems and methods of stimulation and activation of fluids for use with instillation therapy
KR20140039024A (en) 2011-06-07 2014-03-31 스미쓰 앤드 네퓨 피엘씨 Wound contacting members and methods
WO2012170744A2 (en) 2011-06-07 2012-12-13 Spiracur, Inc. Solutions for bridging and pressure concentration reduction at wound sites
BR112014001884A2 (en) 2011-07-26 2019-10-15 Smith & Nephew systems and methods for controlling the operation of a reduced pressure therapy system
EP2736549B1 (en) 2011-07-26 2018-05-16 KCI Licensing, Inc. Systems for treating a tissue site with reduced pressure involving a reduced-pressure interface having a cutting element
GB201113515D0 (en) 2011-08-04 2011-09-21 Convatec Technologies Inc A dressing
DE102011081818A1 (en) 2011-08-30 2013-02-28 Beiersdorf Ag Active skin coatings
EP2750723B1 (en) 2011-08-30 2020-06-24 Avery Dennison Corporation Silicone absorbent adhesive layer
CN103764187B (en) 2011-08-31 2017-03-08 凯希特许有限公司 Inline storage pouch for body fluid
DE102011120492A1 (en) 2011-09-02 2013-03-07 BLüCHER GMBH Wound dressing, useful e.g. for topical wound care, comprises an air-permeable layer having a porous and/or foam-based structure, preferably in the form of a solid foam, and a sorbent in the form of an activated carbon
PL2567682T5 (en) 2011-09-09 2018-06-29 Paul Hartmann Ag Abdominal wound dressing with application aid
SG11201502833RA (en) 2011-09-12 2015-05-28 Protege Biomedical Llc Composition and dressing for wound treatment
DK2572737T3 (en) 2011-09-26 2016-06-27 Bsn Medical Gmbh improved wound dressing
US9393354B2 (en) 2011-11-01 2016-07-19 J&M Shuler Medical, Inc. Mechanical wound therapy for sub-atmospheric wound care system
GB2504872B (en) 2011-11-01 2015-07-01 Brightwake Ltd Wound dressings, and yarn useful therein
WO2013074825A1 (en) 2011-11-15 2013-05-23 Kci Licensing, Inc. Medical dressings, systems, and methods with thermally- enhanced vapor transmission
US9132040B2 (en) 2011-11-17 2015-09-15 Ethicon, Inc. Dressing device
EP2780045B1 (en) 2011-11-18 2017-11-01 KCI Licensing, Inc. Tissue treatment systems and methods having a porous substrate with a compressed region and an expanded region
EP2782606B1 (en) 2011-11-21 2021-01-20 3M Innovative Properties Company Systems, devices, and methods for identifying portions of a wound filler left at a tissue site
US10940047B2 (en) 2011-12-16 2021-03-09 Kci Licensing, Inc. Sealing systems and methods employing a hybrid switchable drape
US9114237B2 (en) 2012-01-10 2015-08-25 Kci Licensing, Inc. Systems and methods for delivering fluid to a wound therapy dressing
WO2013112863A1 (en) 2012-01-25 2013-08-01 The University Of Akron Fluorinated polymerizable hydrogels for wound dressings and methods of making same
GB201201751D0 (en) 2012-02-01 2012-03-14 Haemostatix Ltd Haemostatic wound dressing
JP6426472B2 (en) 2012-02-02 2018-11-21 ケーシーアイ ライセンシング インコーポレイテッド Intravaginal inserts of foam structure for directional granulation
JP6068513B2 (en) 2012-02-21 2017-01-25 ケーシーアイ ライセンシング インコーポレイテッド Multidirectional canister for use with decompression therapy system
CA2851870C (en) 2012-02-29 2017-03-07 Hollister Incorporated Buffered adhesive compositions for skin-adhering medical products
US10470936B2 (en) 2012-02-29 2019-11-12 Hollister Incorporated Buffered adhesive compositions for skin-adhering medical products
EP2636417B1 (en) 2012-03-05 2017-04-26 Lohmann & Rauscher GmbH Wound treatment assembly and covering device for same
WO2013136181A2 (en) 2012-03-12 2013-09-19 Smith & Nephew Plc Reduced pressure apparatus and methods
US10576037B2 (en) 2012-03-14 2020-03-03 MAM Holdings of West Florida, L.L.C. Compositions comprising placental collagen for use in wound healing
US9427505B2 (en) 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
CA2874396A1 (en) 2012-05-22 2014-01-23 Smith & Nephew Plc Wound closure device
DK3354293T3 (en) 2012-05-23 2020-02-17 Smith & Nephew Apparatus for wound treatment under negative pressure
GB201209745D0 (en) 2012-05-31 2012-07-18 Convatec Technologies Inc Wound dressing
EP2854893B1 (en) 2012-06-03 2019-10-02 Daniel Eduard Kleiner Endoluminal vacuum therapy device
AU2013280335B2 (en) 2012-06-28 2017-06-29 Kci Licensing, Inc. Wound connection pad with RFID and integrated strain gauge pressure sensor
ES2806552T3 (en) 2012-07-16 2021-02-18 Univ Massachusetts Negative pressure wound closure device
EP2874671A4 (en) 2012-07-19 2016-01-20 Innovotech Inc Anti-microbial gel formulations containing a silver (i) periodate
CA2880735C (en) 2012-07-30 2020-06-02 Kci Licensing, Inc. Reduced-pressure absorbent dressing, system for treating a tissue site, and method of manufacturing the dressing
US10667955B2 (en) 2012-08-01 2020-06-02 Smith & Nephew Plc Wound dressing and method of treatment
US9662427B2 (en) 2012-08-13 2017-05-30 Kci Licensing, Inc. Intelligent therapy system with evaporation management
CA2883373A1 (en) 2012-08-28 2014-03-06 3M Innovative Properties Company Chlorhexidine gluconate compositions, resin systems and articles
US20150320901A1 (en) 2012-08-31 2015-11-12 Stryker European Holdings I, Llc Hemostatic Foam
US20150202354A1 (en) 2012-09-04 2015-07-23 Integrated Healing Technolgies, LLC Wound Dressing
CN104619360B (en) 2012-09-12 2019-08-16 凯希特许有限公司 System and method for collecting exudate in decompression treatment
MX365816B (en) 2012-09-20 2019-06-13 Lohmann & Rauscher Gmbh Vacuum treatment array and film for producing a vacuum treatment array.
GB201216928D0 (en) 2012-09-21 2012-11-07 I2R Medical Ltd Portable medical device system
US9877875B2 (en) 2012-10-09 2018-01-30 Parasol Medical LLC Antimicrobial hydrogel formulation
US9572968B2 (en) 2012-10-11 2017-02-21 Hanuman Pelican, Inc. Compressive oxygen diffusive wound dressings
JP6183831B2 (en) 2012-10-23 2017-08-23 義之 小山 Hydrogel forming material
EP2912088B1 (en) 2012-10-24 2019-09-18 KCI Licensing, Inc. Sulfhydryl-functionalized polymeric compositions for medical devices
US9657132B2 (en) 2012-10-24 2017-05-23 Kci Licensing, Inc. Amine-functionalized polymeric compositions for medical devices
KR20150099776A (en) 2012-12-20 2015-09-01 컨바텍 테크놀러지스 인크 Processing of chemically modified cellulosic fibres
US10434284B2 (en) 2012-12-21 2019-10-08 3M Innovative Properties Company Medical dressing comprising a flap
AU2013371545B2 (en) 2013-01-03 2018-05-17 3M Innovative Properties Company Moisture absorbing seal
GB201309369D0 (en) 2013-05-24 2013-07-10 Smith & Nephew Moisture indicating system
EP2945659B1 (en) 2013-01-16 2019-10-30 KCI Licensing, Inc. Ion exchange enhanced absorbent systems
EP3019547B1 (en) 2013-03-05 2020-07-22 The Penn State Research Foundation Composite materials
US10092682B2 (en) 2013-03-13 2018-10-09 Kci Licensing, Inc. Expandable fluid collection canister
US9669139B2 (en) 2013-03-14 2017-06-06 Kci Licensing, Inc. Fluid collection canister with integrated moisture trap
EP2968704B1 (en) 2013-03-14 2020-07-15 KCI Licensing, Inc. Negative pressure therapy with dynamic profile capability
CA2901882C (en) 2013-03-14 2021-04-13 Kci Licensing, Inc. Micro-porous conduit
US10492956B2 (en) 2013-03-15 2019-12-03 Kci Licensing, Inc. Topical vacuum-press surgical incisional dressings, surgical adjuncts, hybrids and composites
GB2516561B (en) 2013-03-15 2016-03-09 Aerpio Therapeutics Inc Compositions, formulations and methods for treating ocular diseases
WO2014145255A1 (en) 2013-03-15 2014-09-18 Stb, Ltd. Compositions having absorbable materials, methods, and applicators for sealing injuries
US20160120706A1 (en) 2013-03-15 2016-05-05 Smith & Nephew Plc Wound dressing sealant and use thereof
MX2015013244A (en) 2013-03-15 2016-04-15 Smith & Nephew Inc Dissolvable gel-forming film for delivery of active agents.
EP2970729B1 (en) 2013-03-15 2023-09-06 Euromed Inc. Adhesive composition
US10493184B2 (en) 2013-03-15 2019-12-03 Smith & Nephew Plc Wound dressing and method of treatment
EP2976095B1 (en) 2013-03-15 2020-12-23 3M Innovative Properties Company Wound healing compositions
GB2512841B (en) 2013-04-08 2020-07-15 Brightwake Ltd Absorbent wound dressings
PL2983641T3 (en) 2013-04-08 2020-09-21 Yeditepe Universitesi Polymer based hydrogel
WO2014169250A1 (en) 2013-04-11 2014-10-16 President And Fellows Of Harvard College Prefabricated alginate-drug bandages
WO2014170461A1 (en) 2013-04-17 2014-10-23 Molnlycke Health Care Ab Wound pad
US10016380B2 (en) 2013-05-01 2018-07-10 Lanny Leo Johnson Antimicrobials and methods of use thereof
US9884087B1 (en) 2013-05-03 2018-02-06 Chan Soon-Shiong Nanthealth Foundation Compositions and methods of improved wound healing
CA2910854A1 (en) 2013-05-10 2014-11-20 Smith & Nephew Plc Fluidic connector for irrigation and aspiration of wounds
US11173227B2 (en) 2013-05-22 2021-11-16 The Penn State Research Foundation Wound dressings and applications thereof
EP3013294B1 (en) 2013-06-28 2019-09-25 3M Innovative Properties Company Fibrin-coated wound dressing
US9993577B2 (en) 2013-07-01 2018-06-12 Trustees Of Boston University Dissolvable hydrogel compositions for wound management and methods of use
US10765774B2 (en) 2013-07-09 2020-09-08 Ethicon, Inc. Hemostatic pad assembly kit and method
KR20160040242A (en) 2013-08-05 2016-04-12 쓰리엠 이노베이티브 프로퍼티즈 컴파니 A support device with a contained cushioning element
CA2921164C (en) 2013-08-12 2021-04-06 Bsn Medical Gmbh Wound care article having an essentially polygonal or ellipsoid base surface and at least one recess arranged on one side
EP3034085B1 (en) 2013-08-13 2019-10-23 Seikagaku Corporation Drug containing cationized chitosan
WO2015030963A1 (en) 2013-08-26 2015-03-05 Kci Licensing, Inc. Dressing interface with moisture controlling feature and sealing function
GB2518199A (en) 2013-09-13 2015-03-18 Xiros Ltd Method of producing a swellable polymer fibre
US10342891B2 (en) 2013-09-19 2019-07-09 Medline Industries, Inc. Wound dressing containing saccharide and collagen
EP3052158B1 (en) 2013-10-02 2017-11-22 KCI Licensing, Inc. Disposable reduced-pressure therapy system with mechanical feedback
WO2015052288A1 (en) 2013-10-10 2015-04-16 Roche Diagnostics Gmbh Carrier system for an object worn on the body and method of production
CN105828838B (en) 2013-10-18 2020-03-10 新加坡科技研究局 Hydrogel containing nanoparticles
JP6723917B2 (en) 2013-10-21 2020-07-15 スミス アンド ネフュー インコーポレイテッド Negative pressure wound closure device
GB201318842D0 (en) 2013-10-24 2013-12-11 First Water Ltd Flexible hydrogel wound dressings
EP3062753B1 (en) 2013-10-28 2018-11-21 KCI Licensing, Inc. Hybrid sealing tape
EP3513773A1 (en) 2013-10-30 2019-07-24 KCI Licensing, Inc. Condensate absorbing and dissipating system
AU2014345526B2 (en) 2013-11-07 2018-03-15 Bsn Medical Gmbh Medical dressing
GB2522178B (en) 2013-11-12 2018-07-18 First Water Ltd Multilayer composition
WO2015075406A1 (en) 2013-11-19 2015-05-28 Lipopeptide Ab New treatment of chronic ulcers
EP3079681B1 (en) 2013-12-12 2022-06-01 Innovation Technologies, Inc. Use of chlorhexidine gluconate for the reduction of biofilm formation on medical devices
JP6114481B2 (en) 2013-12-31 2017-04-12 スリーエム イノベイティブ プロパティズ カンパニー Shape-compatible drape cover dressing
US10568771B2 (en) 2014-01-24 2020-02-25 Avent, Inc. Traumatic wound dressing system with conformal cover
US10555838B2 (en) 2014-02-11 2020-02-11 Kci Licensing, Inc. Methods and devices for applying closed incision negative pressure wound therapy
DE102014202578A1 (en) 2014-02-12 2015-08-13 Aesculap Ag Medical product and process for its preparation
WO2015123353A1 (en) 2014-02-14 2015-08-20 Kci Licensing, Inc. Systems and methods for increasing absorbent capacity of a dressing
US10485707B2 (en) 2014-02-14 2019-11-26 Atomic Medical Innovations, Inc. Systems and methods for tissue healing
EP3848009A1 (en) 2014-02-28 2021-07-14 3M Innovative Properties Company Hybrid drape having a gel-coated perforated mesh
GB201404021D0 (en) 2014-03-05 2014-04-23 Lumina Adhesives Ab Low cytotoxity switchable adhesive compositions, medical dressings and skin coverings, and methods of treatment using same
US20150289861A1 (en) 2014-03-12 2015-10-15 Stb, Ltd. Devices for use with hemostatic materials
JP2017512564A (en) 2014-03-21 2017-05-25 メドライン インダストリーズ,インコーポレイテッド Wound management system and method of use
US10124084B2 (en) 2014-03-24 2018-11-13 Datt Life Sciences Private Limited Ready to use biodegradable and biocompatible device and a method of preparation thereof
GB2524510B (en) 2014-03-25 2020-02-19 Brightwake Ltd Wound dressing impregnated with honey
GB2535666B (en) 2014-04-30 2017-03-29 Matoke Holdings Ltd Antimicrobial compositions
US10406266B2 (en) 2014-05-02 2019-09-10 Kci Licensing, Inc. Fluid storage devices, systems, and methods
JP6749248B2 (en) 2014-05-09 2020-09-02 ケーシーアイ ライセンシング インコーポレイテッド Dressing with shrink layer for linear tissue sites
EP3354241B1 (en) 2014-05-09 2020-12-30 3M Innovative Properties Company Disruptive dressing for use with negative pressure and fluid instillation
US10398610B2 (en) 2014-05-13 2019-09-03 The Procter & Gamble Company Absorbent article with dual core
GB2526267B (en) 2014-05-14 2020-10-28 Brightwake Ltd Dressing for surgical drain
EP3854361B8 (en) 2014-06-05 2024-03-27 Solventum Intellectual Properties Company Dressing with fluid acquisition and distribution characteristics
KR101743274B1 (en) 2014-06-12 2017-06-02 주식회사 엘지화학 Super absorbent polymer
ES2790800T3 (en) 2014-06-18 2020-10-29 Toray Industries Laminate and manufacturing procedure
EP3157484B1 (en) 2014-06-18 2020-02-26 Smith & Nephew plc Wound dressing
WO2016006457A1 (en) 2014-07-07 2016-01-14 株式会社村田製作所 Negative-pressure closure therapy device
JP6873897B2 (en) 2014-07-09 2021-05-19 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド Hydrogel composition
EP3167008A2 (en) 2014-07-10 2017-05-17 Smith & Nephew PLC Improvements in and relating to devices
EP3172265B1 (en) 2014-07-24 2022-04-27 ArthroCare Corporation Resilient polysaccharide foams and uses thereof
US10744239B2 (en) 2014-07-31 2020-08-18 Smith & Nephew, Inc. Leak detection in negative pressure wound therapy system
US20200289723A1 (en) 2014-07-31 2020-09-17 Smith & Nephew, Inc. Reduced pressure therapy apparatus construction and control
PT3177329T (en) 2014-08-04 2020-02-03 Univ Catalunya Politecnica System for the immediate release of active agents
US9770369B2 (en) 2014-08-08 2017-09-26 Neogenix, Llc Wound care devices, apparatus, and treatment methods
US10583042B2 (en) 2014-08-08 2020-03-10 Neogenix, Llc Wound care devices, apparatus, and treatment methods
US10076587B2 (en) 2014-08-11 2018-09-18 Kci Licensing, Inc. Protease modulating wound interface layer for use with negative pressure wound therapy
WO2016040489A1 (en) 2014-09-09 2016-03-17 Shaoyi Jiang Functionalized zwitterionic and mixed charge polymers, related hydrogels, and methds for their use
EP2995287A1 (en) 2014-09-11 2016-03-16 Mölnlycke Health Care AB Medical dressing
EP2995324A1 (en) 2014-09-11 2016-03-16 Mölnlycke Health Care AB Medical dressing
US10709807B2 (en) 2014-10-01 2020-07-14 3M Innovative Properties Company Porous devices, kits, and methods for debridement
JP6802155B2 (en) 2014-10-06 2020-12-16 ケーシーアイ ライセンシング インコーポレイテッド Multifunctional dressing structure for negative pressure treatment
US10232077B2 (en) 2014-10-06 2019-03-19 Gatt Technologies B.V. Tissue-adhesive porous haemostatic product
US9855364B2 (en) 2014-10-15 2018-01-02 Allison Coomber Wound dressing materials incorporating anthocyanins derived from fruit or vegetable sources
ES2636823T3 (en) 2014-10-24 2017-10-09 Sefar Ag Wound coating material and manufacturing procedure
US10485893B2 (en) 2014-11-13 2019-11-26 Sarasota Medical Products, Inc. Antimicrobial hydrocolloid dressing containing sequestered peroxide and preparation thereof
EP3023083A1 (en) 2014-11-20 2016-05-25 Mölnlycke Health Care AB Wound dressings
US10653782B2 (en) 2014-11-25 2020-05-19 Nortwestern University Retroviral particles expressing Sirt1 embedded within PPCN
EP3226921B1 (en) 2014-12-04 2020-08-19 3M Innovative Properties Company Antimicrobial compositions comprising bioglass
US10525170B2 (en) 2014-12-09 2020-01-07 Tangible Science, Llc Medical device coating with a biocompatible layer
TW201622668A (en) 2014-12-16 2016-07-01 準訊生醫股份有限公司 Long-term effective patch structure
WO2016100098A1 (en) 2014-12-17 2016-06-23 Kci Licensing, Inc. Dressing with offloading capability
WO2016099986A2 (en) 2014-12-18 2016-06-23 3M Innovative Properties Company Methods of handling adhesive laminate patches
JP6791856B2 (en) 2014-12-19 2020-11-25 スリーエム イノベイティブ プロパティズ カンパニー Adhesive articles with a poly (meth) acrylate-based primer layer and methods for producing them
JP6991067B2 (en) 2014-12-22 2022-01-12 スミス アンド ネフュー ピーエルシー Negative pressure closure therapy equipment and methods
EP3240588B1 (en) 2014-12-29 2020-02-12 Smith & Nephew plc Negative pressure wound therapy apparatus and method of operating the apparatus
SG11201704639WA (en) 2014-12-30 2017-07-28 Smith & Nephew Inc Systems and methods for applying reduced pressure therapy
EP3240581B1 (en) 2014-12-30 2020-04-15 3M Innovative Properties Company Wound dressing with multiple adhesive layers
US10660851B2 (en) 2015-01-02 2020-05-26 Rxos Medical Polyfunctional radical scavenger hydrogel formulation
KR101949455B1 (en) 2015-01-07 2019-02-18 주식회사 엘지화학 Superabsorbent Polymers with Improved Anticaking Property And Method Of Preparing The Same
GB201500430D0 (en) 2015-01-12 2015-02-25 Univ Birmingham Dressing
US10806819B2 (en) 2015-01-15 2020-10-20 Marshall University Research Corporation Wound coverings comprising vitamin d and related methods
GB201501330D0 (en) 2015-01-27 2015-03-11 Medtrade Products Ltd Composition for a wound dressing
GB201501334D0 (en) 2015-01-27 2015-03-11 Medtrade Products Ltd Composition for a wound dressing
GB201501333D0 (en) 2015-01-27 2015-03-11 Medtrade Products Ltd Composition for a wound dressing
US20200093756A1 (en) 2015-01-29 2020-03-26 Sanmelix Laboratories, Inc. Buckwheat honey and povidone-iodine wound-healing dressing
CA3009754C (en) 2015-01-29 2020-11-10 Mark R. Wardell Wound healing composition comprising buckwheat honey and methylglyoxal, and methods of use
KR101841469B1 (en) 2015-01-30 2018-03-23 (주)메디팁 Method for manufacturing wound covering material using biopolymer and wound covering material using biopolymer manufactured by the same
US11207458B2 (en) 2015-02-02 2021-12-28 Kci Licensing, Inc. Pressure-operated switch
US10512707B2 (en) 2015-02-02 2019-12-24 University Of Southern California System for sutureless closure of scleral perforations and other ocular tissue discontinuities
WO2016126444A1 (en) 2015-02-02 2016-08-11 Kci Licensing, Inc. Customizable closed tissue site dressing for improved postoperative removal
CN107708752A (en) 2015-02-03 2018-02-16 玛托克控股有限公司 Antimicrobial fibre and composition
GB201501965D0 (en) 2015-02-05 2015-03-25 Lumina Adhesives Ab Polyurethane based switchable adhesives
CN107530468A (en) 2015-03-10 2018-01-02 科发龙技术公司 The local method for reducing microbial skin flora
US10485892B2 (en) 2015-03-10 2019-11-26 Covalon Technologies Inc. Method for local reduction of microbial skin flora
US10478394B2 (en) 2015-03-11 2019-11-19 Wayne State University Compositions and methods to promote wound healing
GB201506236D0 (en) 2015-04-13 2015-05-27 Jellagen Pty Ltd Modified collagen, methods of manufacture thereof
ES2773324T3 (en) 2015-04-21 2020-07-10 Moelnlycke Health Care Ab A wound pad and a self-adhesive member comprising a wound pad
CN107847633B (en) 2015-04-23 2021-06-29 佛罗里达大学研究基金会公司 Bilayer device for enhanced healing
CN113367890B (en) 2015-04-27 2023-02-21 史密夫及内修公开有限公司 Pressure reducing device
EP3291849B1 (en) 2015-05-07 2021-09-08 3M Innovative Properties Company A controlled release iodine structure for use with wound care
EP3294158B1 (en) 2015-05-08 2020-05-06 KCI Licensing, Inc. Wound debridement by irrigation with ultrasonically activated microbubbles
US20190298580A1 (en) 2015-05-08 2019-10-03 Kci Licensing, Inc. Low-acuity dressing with integral pump
WO2016182977A1 (en) 2015-05-08 2016-11-17 Kci Licensing, Inc. Low acuity dressing with integral pump
US10507259B2 (en) 2015-05-08 2019-12-17 First Quality Retail Services, Llc Flexible absorbent pad
EP3093031A1 (en) 2015-05-11 2016-11-16 3M Innovative Properties Company Wound care system
EP3092987A1 (en) 2015-05-11 2016-11-16 3M Innovative Properties Company System for treatment of wounds using serum
EP3297699B1 (en) 2015-05-18 2020-04-29 Smith & Nephew PLC Heat-assisted pumping systems for use in negative pressure wound therapy
US10076594B2 (en) 2015-05-18 2018-09-18 Smith & Nephew Plc Fluidic connector for negative pressure wound therapy
AU2016267402A1 (en) 2015-05-26 2017-11-30 Monash University Antibacterial bismuth complexes
DK3308793T3 (en) 2015-06-12 2021-01-11 Jfe Mineral Co Ltd THERAPEUTIC AGENT FOR SKIN WOUNDS OR RUDE SKIN
US11559421B2 (en) 2015-06-25 2023-01-24 Hill-Rom Services, Inc. Protective dressing with reusable phase-change material cooling insert
WO2017003938A1 (en) 2015-06-29 2017-01-05 Kci Licensing, Inc. Apparatus for negative-pressure therapy and irrigation
EP3978042A1 (en) 2015-07-14 2022-04-06 3M Innovative Properties Company Medical dressing interface devices, systems, and methods
EP3117806B1 (en) 2015-07-16 2020-06-10 Lohmann & Rauscher GmbH Wound treatment assembly
WO2017016974A1 (en) 2015-07-24 2017-02-02 Mölnlycke Health Care Ab Absorbent antimicrobial wound dressings
US10583228B2 (en) 2015-07-28 2020-03-10 J&M Shuler Medical, Inc. Sub-atmospheric wound therapy systems and methods
US10682257B2 (en) 2015-07-29 2020-06-16 Evophancie Biotech Ltd Biological fiber composite dressing
US10471122B2 (en) 2015-07-31 2019-11-12 Blue Blood Biotech Corp. Composition for use in promoting wound healing
WO2017025963A1 (en) 2015-08-10 2017-02-16 The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center Methods and pharmaceutical compositions for improving wound healing using cd24
KR101787192B1 (en) 2015-08-12 2017-10-18 주식회사 제네웰 Antimicrbacterial dressing material and method for preparing thereof
EP3135304A1 (en) 2015-08-26 2017-03-01 Mölnlycke Health Care AB Foamed silicone in wound care
EP3344206B1 (en) 2015-08-31 2020-09-23 3M Innovative Properties Company Negative pressure wound therapy dressings comprising (meth)acrylate pressure-sensitive adhesive with enhanced adhesion to wet surfaces
US10617608B2 (en) 2015-09-25 2020-04-14 Lotte Fine Chemical Co., Ltd. Composition for hydrogel sheet, hydrogel sheet manufactured therefrom, and method for manufacturing same
EP3356485B1 (en) 2015-09-30 2020-08-05 3M Innovative Properties Company Hydrogel compositions bonded to polymeric substrates
GB2543307B (en) 2015-10-14 2020-12-09 Selentus Science Ltd Haemostatic device
US10449094B2 (en) 2015-10-30 2019-10-22 Lorain County Community College Innovation Foundation Wound therapy device and method
US10617784B2 (en) 2015-11-13 2020-04-14 3M Innovative Properties Company Anti-microbial articles and methods of using same
GB2544342B (en) 2015-11-13 2020-06-03 First Water Ltd Compositions for application to wounds
US10568773B2 (en) 2015-11-18 2020-02-25 Kci Licensing, Inc. Medical drapes and methods for reducing trauma on removal
EP3377013B1 (en) 2015-11-20 2020-02-26 KCI Licensing, Inc. Medical system with flexible fluid storage bridge
GB201520990D0 (en) 2015-11-27 2016-01-13 Edixomed Ltd Dressing system
FR3044893B1 (en) 2015-12-09 2018-05-18 Emile Droche DRESSING FOR SKIN CARE IN A WET MEDIUM
US11471586B2 (en) 2015-12-15 2022-10-18 University Of Massachusetts Negative pressure wound closure devices and methods
US10575991B2 (en) 2015-12-15 2020-03-03 University Of Massachusetts Negative pressure wound closure devices and methods
EP3511031B1 (en) 2015-12-30 2023-05-03 Paul Hartmann AG Devices for controlling negative pressure wound therapy
EP3397219B1 (en) 2015-12-30 2020-10-21 Smith & Nephew plc Absorbent negative pressure wound therapy dressing
CN108472160B (en) 2015-12-30 2022-02-22 史密夫及内修公开有限公司 Negative pressure wound therapy apparatus
US11318243B2 (en) 2016-01-06 2022-05-03 Kci Licensing, Inc. System and methods for the treatment of wounds with dressing having closed cells
EP3402462B1 (en) 2016-01-12 2020-03-11 Council of Scientific & Industrial Research A nanobiocomposite formulation for wound healing and a process for the preparation thereof
DE102016000569B3 (en) 2016-01-20 2017-06-22 Lohmann & Rauscher Gmbh Method for producing a film tube
US10918770B2 (en) 2016-02-12 2021-02-16 Corning Incorporated Vacuum assisted wound closure assembly and methods of irradiating a wound using the same
FR3047901B1 (en) 2016-02-22 2018-02-23 Universite Pierre Et Marie Curie (Paris 6) BIOMATERIAL COMPOSITIONS WITH CONTROLLED RELEASE OF ACTIVE INGREDIENTS
EP3662876B1 (en) 2016-03-01 2023-03-01 3M Innovative Properties Company Drape for use with medical therapy systems
KR101958014B1 (en) 2016-03-14 2019-03-13 주식회사 엘지화학 Preparation method of super absorbent polymer
FR3048885A1 (en) 2016-03-17 2017-09-22 Bluestar Silicones France SILICONE ADHESIVE GEL WITH SKIN
EP3429643A1 (en) 2016-03-18 2019-01-23 KCI USA, Inc. Antimicrobial wound dressing
KR101959547B1 (en) 2016-03-25 2019-03-18 주식회사 엘지화학 Preparation method for super absorbent polymer
WO2017176849A1 (en) 2016-04-05 2017-10-12 Patrick Kenneth Powell Wound therapy system
GB201608099D0 (en) 2016-05-09 2016-06-22 Convatec Technologies Inc Negative pressure wound dressing
EP3246050A1 (en) 2016-05-17 2017-11-22 BSN medical GmbH Wound or skin patch
TR2021016542A2 (en) 2016-05-31 2022-01-21 Octapharma Ag Plasma-based films and methods for making and using the same
US20200282100A1 (en) 2016-06-01 2020-09-10 3-D Matrix, Ltd. Hemostatic Dressings with Self-Assembling Peptide Hydrogels
WO2018009873A1 (en) 2016-07-08 2018-01-11 Convatec Technologies Inc. Fluid collection apparatus
TWI673056B (en) 2016-07-22 2019-10-01 大江生醫股份有限公司 Bacterium-containing hydrogel and method of making the same
US10076552B2 (en) 2016-08-09 2018-09-18 DATT MEDIPRODUCTS LIMITED and DATT LIFE SCIENCE PVT. LTD. Multifunctional formulation comprised of natural ingredients and method of preparation/manufacturing thereof
DE102016114819A1 (en) 2016-08-10 2018-02-15 Paul Hartmann Ag Absorbent body for endoluminal negative pressure therapy
EP3496767A4 (en) 2016-08-10 2020-04-01 Argentum Medical, LLC Antimicrobial hydrogel dressings
EP3281617B1 (en) 2016-08-10 2020-09-23 Advanced Medical Solutions Limited Wound dressing
US20180056087A1 (en) 2016-08-26 2018-03-01 Adolfo Ribeiro Wearable Micro-LED Healing Bandage
US11111362B2 (en) 2016-09-26 2021-09-07 Becton, Dickinson And Company Breathable films with microbial barrier properties
TWI674903B (en) 2016-09-26 2019-10-21 國立陽明大學 Process for a preparation of the modified porcine plasma fibronectin for enhance wound healing
IT201600096247A1 (en) 2016-09-26 2018-03-26 Emodial S R L Polyurethane-based bandage and hydrogel comprising chlorhexidine
WO2018067622A1 (en) 2016-10-05 2018-04-12 3M Innovative Properties Company Fibrinogen composition, method and wound articles
US10293080B2 (en) 2016-10-05 2019-05-21 The Arizona Board Of Regents On Behalf Of Northern Arizona University Ionic liquids that sterilize and prevent biofilm formation in skin wound healing devices
GB2555584B (en) 2016-10-28 2020-05-27 Smith & Nephew Multi-layered wound dressing and method of manufacture
EP3548103B1 (en) 2016-11-02 2024-02-14 Unilever IP Holdings B.V. Antiperspirant device and method
WO2018085457A1 (en) 2016-11-02 2018-05-11 Smith & Nephew Inc. Wound closure devices
CN110072497B (en) 2016-11-11 2020-08-11 3M创新有限公司 Conformable wound dressing that can be trimmed
WO2018089742A1 (en) 2016-11-11 2018-05-17 Avery Dennison Corporation Rubber-based soft gel skin adhesives
EP3541336B1 (en) 2016-11-18 2020-08-19 KCI Licensing, Inc. Medical system and dressing for use under compression
CA3045800A1 (en) 2016-12-02 2018-06-07 3M Innovative Properties Company Muscle or joint support article
EP3547973A1 (en) 2016-12-02 2019-10-09 3M Innovative Properties Company Muscle or joint support article with bump
US10426874B2 (en) 2016-12-02 2019-10-01 Apex Medical Corp. Wound management assembly and negative pressure wound therapy system
US10500104B2 (en) 2016-12-06 2019-12-10 Novomer, Inc. Biodegradable sanitary articles with higher biobased content
EP3551195A4 (en) 2016-12-06 2020-07-15 Sami Shamoon College Of Engineering (R.A) Topical antimicrobial formulations containing monovalent copper ions and systems for generating monovalent copper ions
US20200078330A1 (en) 2016-12-09 2020-03-12 Sanvio,Inc. Composition for treating wounds and other dermatological conditions
EP3551147B1 (en) 2016-12-12 2023-08-09 Smith & Nephew PLC Wound dressing
EP3335740A1 (en) 2016-12-15 2018-06-20 UPM-Kymmene Corporation Medical hydrogel
DK3335696T3 (en) 2016-12-15 2020-03-16 Upm Kymmene Corp Process for drying cell-free tissue extract in a hydrogel comprising nanofibrillar cellulose and a dried hydrogel comprising nanofibrillar cellulose and cell-free tissue extract
EP3335695B1 (en) 2016-12-15 2020-02-05 UPM-Kymmene Corporation A method for freeze-drying hydrogel comprising nanofibrillar cellulose, a freeze-dried medical hydrogel comprising nanofibrillar cellulose, and a hydrogel comprising nanofibrillar cellulose
EP3338813B1 (en) 2016-12-20 2020-01-29 BSN Medical GmbH Multi-layer wound care product with perforated release layer
JP2020513909A (en) 2016-12-22 2020-05-21 アプライド ティシュ テクノロジーズ エルエルシーApplied Tissue Technologies Llc Devices and methods for wound healing
US10702626B2 (en) 2016-12-22 2020-07-07 Lg Chem. Ltd. Method for preparing superabsorbent polymer and superabsorbent polymer
CA3047832A1 (en) 2016-12-23 2018-06-28 Calgon Carbon Corporation Activated carbon composite wound dressing
DE102016125579A1 (en) 2016-12-23 2018-06-28 Paul Hartmann Ag Hydrous hydrogel composition comprising elemental silver particles
CN110461376A (en) 2016-12-28 2019-11-15 希丝塔杰尼斯创伤护理有限公司 Antimicrobial wound dressing
US11952455B2 (en) 2016-12-29 2024-04-09 Alcare Co., Ltd. Foam and composition for foam
US11229719B2 (en) 2017-01-09 2022-01-25 Kci Licensing, Inc. Wound dressing layer for improved fluid removal
TWI621453B (en) 2017-01-13 2018-04-21 廈門聖慈醫療器材有限公司 Suction disc
JP2020505132A (en) 2017-01-19 2020-02-20 リポバイオメド コーポレイションLipobiomed Corporation Pad for alleviating and treating exudative skin disease of plasma protein including atopic disease
CA3044955A1 (en) 2017-01-23 2018-07-26 Medela Holding Ag Porous wound dressing for use in negative-pressure therapy
WO2018140363A1 (en) 2017-01-27 2018-08-02 Aziyo Biologics, Inc. Lyophilized placental composite sheet and uses thereof
JP7424832B2 (en) 2017-02-06 2024-01-30 ビーエーエスエフ ソシエタス・ヨーロピア fluid absorbent articles
WO2018150263A1 (en) 2017-02-15 2018-08-23 Smith & Nephew Pte. Limited Negative pressure wound therapy apparatuses and methods for using the same
EP3582816A1 (en) 2017-02-16 2019-12-25 Covestro Deutschland AG Method for producing an adhesive-free wound contact composite material
JP7231227B2 (en) 2017-02-22 2023-03-01 コーネル ユニヴァーシティー Mechanical vacuum dressing for mechanical management, protection and aspiration of small incisions
JP2020508767A (en) 2017-02-28 2020-03-26 ティージェイ スミス アンド ネフュー リミテッド Multiple dressings negative pressure wound therapy system
US20200009289A1 (en) 2017-03-03 2020-01-09 Loma Linda University Health Compositions and methods for promoting hemostasis
JP7361606B2 (en) 2017-03-08 2023-10-16 スミス アンド ネフュー ピーエルシー Control of negative pressure wound therapy devices in the presence of fault conditions
US11690570B2 (en) 2017-03-09 2023-07-04 Smith & Nephew Plc Wound dressing, patch member and method of sensing one or more wound parameters
JP7134991B2 (en) 2017-03-09 2022-09-12 セクレタリー・デパートメント・オブ・バイオテクノロジー Wound dressings for systems that combine negative pressure and fluid delivery
EP3378450A1 (en) 2017-03-22 2018-09-26 Mölnlycke Health Care AB Method for manufacturing a wound dressing and a wound dressing
WO2018183098A1 (en) 2017-03-29 2018-10-04 3M Innovative Properties Company Hydrogel compositions bonded to polymeric substrates
KR101852718B1 (en) 2017-04-04 2018-05-18 주식회사 제네웰 Kit for pain reduction of incision site after surgical operation
JP2020513011A (en) 2017-04-04 2020-04-30 アンタイ−プラスミン テクノロジーズ, エルエルシー How to improve non-surgical treatment
EP3606573B1 (en) 2017-04-04 2021-08-25 3M Innovative Properties Company Apparatuses, systems, and methods for the treatment of a tissue site with negative pressure and oxygen
GB201800057D0 (en) 2018-01-03 2018-02-14 Smith & Nephew Inc Component Positioning And stress Relief For Sensor Enabled Wound Dressings
CN108721677B (en) 2017-04-17 2021-11-19 广西美丽肤医疗器械有限公司 Composite material
EP3612242A1 (en) 2017-04-19 2020-02-26 Smith & Nephew, Inc Negative pressure wound therapy canisters
DE102017003826A1 (en) 2017-04-20 2018-10-25 Lohmann & Rauscher Gmbh Wound treatment arrangement for the negative pressure therapy
US20200085625A1 (en) 2017-05-04 2020-03-19 Klox Technologies Inc. Absorbent biophotonic devices and systems for wound healing
CN114795657B (en) 2017-05-10 2023-07-14 墨尼克医疗用品有限公司 Syntactic foam in wound treatment
KR102510236B1 (en) 2017-05-10 2023-03-17 도레이 카부시키가이샤 medical device
EP3635733A1 (en) 2017-05-15 2020-04-15 Smith & Nephew plc Negative pressure wound therapy system using eulerian video magnification
JP7136812B2 (en) 2017-05-16 2022-09-13 スリーエム イノベイティブ プロパティズ カンパニー Absorbable Negative Pressure Dressing System for Postoperative Breast Wounds
US20200188180A1 (en) 2017-05-17 2020-06-18 Uvic Industry Partnerships Inc. Wound covering for wound monitoring and therapeutic agent delivery
US20200170841A1 (en) 2017-05-19 2020-06-04 Kci Usa, Inc. Dressings for filtering wound fluids
EP3634341A1 (en) 2017-05-22 2020-04-15 KCI USA, Inc. Post-operative surgical wound dressing
JP2020520749A (en) 2017-05-22 2020-07-16 ケーシーアイ ユーエスエイ, インコーポレイテッドKci Usa, Inc. Stretchable covering
JP2020520740A (en) 2017-05-22 2020-07-16 ケーシーアイ ユーエスエイ, インコーポレイテッドKci Usa, Inc. Elastically deformable wound dressing
EP3409248B1 (en) 2017-06-01 2019-11-06 Absorbest AB Wound dressing
US10695227B2 (en) 2017-06-07 2020-06-30 Kci Licensing, Inc. Methods for manufacturing and assembling dual material tissue interface for negative-pressure therapy
CN110799222B (en) 2017-06-07 2023-03-07 3M创新知识产权公司 Systems, devices, and methods for negative pressure therapy to reduce tissue ingrowth
US20200085629A1 (en) 2017-06-07 2020-03-19 Kci Licensing, Inc. Composite dressings with even expansion profiles for treatment of wounds using negative-pressure treatment
CA3064520A1 (en) 2017-06-07 2018-12-13 Kci Usa, Inc. Wound dressing with odor absorption and increased moisture vapor transmission
BR112019025031A2 (en) 2017-06-07 2020-08-18 Kci Licensing, Inc I think to treat a negative pressure tissue site and systems, devices and methods
US11179512B2 (en) 2017-06-07 2021-11-23 Kci Licensing, Inc. Multi-layer wound filler for extended wear time
US11819387B2 (en) 2017-06-07 2023-11-21 Kci Licensing, Inc. Composite dressings for improved granulation and reduced maceration with negative-pressure treatment
US11607342B2 (en) 2017-06-07 2023-03-21 Kci Licensing, Inc. Peel and place dressing for negative-pressure therapy
BR112019025041A2 (en) 2017-06-07 2020-06-16 Kci Licensing, Inc DRESSING FOR USE WITH NEGATIVE PRESSURE TREATMENT, DRESSING KIT FOR USE WITH NEGATIVE PRESSURE TREATMENT AND METHOD FOR TREATING A FABRIC SITE WITH NEGATIVE PRESSURE
RU2019139911A (en) 2017-06-07 2021-07-09 Кейсиай ЛАЙСЕНСИНГ, ИНК. Composite dressings for improved granulation and reduced maceration for negative pressure treatments
JP7241305B2 (en) 2017-06-07 2023-03-17 スリーエム イノベイティブ プロパティズ カンパニー Peel-and-stick dressing for thick exudates and drips
AU2018282159A1 (en) 2017-06-07 2019-12-19 3M Innovative Properties Company Composite dressings for improved granulation and reduced maceration with negative-pressure treatment
EP3634337B1 (en) 2017-06-07 2023-05-24 3M Innovative Properties Company Methods for manufacturing and assembling dual material tissue interface for negative-pressure therapy
EP3634521A1 (en) 2017-06-08 2020-04-15 KCI Licensing, Inc. Negative-pressure therapy with oxygen
EP3412319A1 (en) 2017-06-09 2018-12-12 Mölnlycke Health Care AB Foam in wound treatment
WO2018226430A1 (en) 2017-06-09 2018-12-13 Kci Licensing, Inc. Granulating dressing for low exuding chronic wounds
JP2020523115A (en) 2017-06-12 2020-08-06 ケーシーアイ ライセンシング インコーポレイテッド Foamed and textured, sintered polymeric wound filler
AU2018285236B2 (en) 2017-06-13 2024-02-29 Smith & Nephew Plc Wound closure device and method of use
JP2020523052A (en) 2017-06-14 2020-08-06 スミス アンド ネフュー インコーポレイテッド Fluid removal management and control of wound closure in wound care
WO2018229008A1 (en) 2017-06-14 2018-12-20 Smith & Nephew Plc Negative pressure wound therapy apparatus
EP3638173A1 (en) 2017-06-14 2020-04-22 Smith & Nephew, Inc Control of wound closure and fluid removal management in wound therapy
US20210145646A1 (en) 2017-06-19 2021-05-20 Kci Usa, Inc. Wound dressing with saturation indicator
AU2018288530B2 (en) 2017-06-23 2024-03-28 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
US10751212B2 (en) 2017-06-26 2020-08-25 Maryam Raza Multilayer dressing device and method for preventing and treating pressure ulcers and chronic wounds
US20200214898A1 (en) 2017-06-26 2020-07-09 Kci Usa, Inc. Absorbent wound dressing that incorporates a novel wound fluid indicating system
DE102017006025A1 (en) 2017-06-27 2018-12-27 Carl Freudenberg Kg Hydrogel-forming multicomponent fiber
JP7217241B2 (en) 2017-06-30 2023-02-02 ティージェイ スミス アンド ネフュー リミテッド Negative pressure wound therapy device
US20200121510A1 (en) 2017-07-07 2020-04-23 Smith & Nephew Plc Wound therapy system and dressing for delivering oxygen to a wound
FR3068974B1 (en) 2017-07-12 2019-08-02 Urgo Recherche Innovation Et Developpement DRESSING FOR THE CONTROLLED AND PROLONGED DELIVERY OF ASSETS
GB201711179D0 (en) 2017-07-12 2017-08-23 Smith & Nephew Wound care materials, devices and uses
FR3068975B1 (en) 2017-07-12 2020-07-17 Urgo Recherche Innovation Et Developpement COMPOSITION FOR INTERFACE DRESSING
GB201711183D0 (en) 2017-07-12 2017-08-23 Smith & Nephew Antimicrobial or wound care materials, devices and uses
GB201711181D0 (en) 2017-07-12 2017-08-23 Smith & Nephew Polymer foam material, device and use
IL271378B2 (en) 2017-07-21 2023-03-01 Speed Care Mineral Gmbh Novel wound dressing for haemostasis
GB201804502D0 (en) 2018-03-21 2018-05-02 Smith & Nephew Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings
JP6868314B2 (en) 2017-07-26 2021-05-12 ユーレー カンパニー リミテッドYoureh Co.,Ltd. Wound dressing containing hyaluronic acid-calcium and polylysine and its manufacturing method
GB201712165D0 (en) 2017-07-28 2017-09-13 Smith & Nephew Wound dressing and method of manufacture
US10780201B2 (en) 2017-07-29 2020-09-22 Edward D. Lin Control apparatus and related methods for wound therapy delivery
US10729826B2 (en) 2017-07-29 2020-08-04 Edward D. Lin Wound cover apparatus and related methods of use
EP3661469A1 (en) 2017-07-31 2020-06-10 KCI USA, Inc. Bioresorbable dressing with structural support
WO2019027731A1 (en) 2017-08-02 2019-02-07 Kci Licensing, Inc. Multi-layer compartment dressing and negative-pressure treatment method
US20200246195A1 (en) 2017-08-02 2020-08-06 Kci Licensing, Inc. Systems and methods for wound debridement
EP3664756B1 (en) 2017-08-07 2024-01-24 Smith & Nephew plc Wound closure device with protective layer
DE102017117828A1 (en) 2017-08-07 2019-02-07 Ivf Hartmann Ag Bandage, in particular compression bandage
JP6927230B2 (en) 2017-08-09 2021-08-25 東レ株式会社 Medical devices and their manufacturing methods
AU2018312883A1 (en) 2017-08-10 2020-02-20 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
WO2019040328A1 (en) 2017-08-22 2019-02-28 Kci Licensing, Inc. In-line wound fluid sampling systems and methods for use with negative pressure wound therapy
GB201713511D0 (en) 2017-08-23 2017-10-04 Scapa Uk Ltd Wound dressing
WO2019040656A1 (en) 2017-08-23 2019-02-28 Cor Medical Ventures LLC Post-operative surgical site wound treatment and method for device removal
GB2565823A (en) 2017-08-24 2019-02-27 Xiros Ltd Psyllium based moisture absorbent material
EP3672655B1 (en) 2017-08-24 2022-01-19 KCI USA, Inc. Biomaterial and methods of making and using said biomaterial
US11246756B2 (en) 2017-08-24 2022-02-15 The United States Of America, As Represented By The Secretary Of Agriculture Healthcare textiles
EP3678619B1 (en) 2017-09-05 2023-06-07 3M Innovative Properties Company Systems and methods for mitigating premature light deactivation of light deactivated adhesive drapes using a filtering layer
WO2019050855A1 (en) 2017-09-05 2019-03-14 Kci Licensing, Inc. Systems and methods for mitigating premature light deactivation of light deactivated adhesive drapes
WO2019048624A1 (en) 2017-09-10 2019-03-14 Smith & Nephew Plc Systems and methods for inspection of encapsulation and components in sensor equipped wound dressings
GB201718070D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
AU2018331954A1 (en) 2017-09-13 2020-03-19 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
WO2019055176A1 (en) 2017-09-14 2019-03-21 Kci Licensing, Inc. Oxygen therapy with fluid removal
WO2019060229A1 (en) 2017-09-15 2019-03-28 Bard Access Systems, Inc. Antimicrobial dressing with liner for a medical device
WO2019055954A1 (en) 2017-09-18 2019-03-21 Kci Licensing, Inc. Wound dressings and systems with remote oxygen generation for topical wound therapy and related methods
US11547611B2 (en) 2017-09-22 2023-01-10 Kci Licensing, Inc. Wound dressings and systems with high-flow therapeutic gas sources for topical wound therapy and related methods
IL254644B (en) 2017-09-24 2021-06-30 Reddress Ltd Wound dressing device, assembly and method
IL254636A0 (en) 2017-09-24 2017-11-30 Reddress Ltd Assembly and method for the preparation of a wound dressing
GB2566951A (en) 2017-09-27 2019-04-03 Brightwake Ltd Compositions for wound treatment
EP3687467B1 (en) 2017-09-29 2022-02-23 3M Innovative Properties Company Dressing exhibiting low tissue ingrowth and negative-pressure treatment method
EP3694457A1 (en) 2017-10-09 2020-08-19 3M Innovative Properties Company Securement dressing with conformal border
GB201716986D0 (en) 2017-10-16 2017-11-29 Matoke Holdings Ltd Antimicrobial compositions
CA3079688A1 (en) 2017-10-20 2019-04-25 Water-Jel Europe Llp Topical composition for use in the treatment of burns
WO2019083607A1 (en) 2017-10-23 2019-05-02 Kci Licensing, Inc. High-density evaporative bridge dressing
US11432967B2 (en) 2017-10-23 2022-09-06 Kci Licensing, Inc. Fluid bridge for simultaneous application of negative pressure to multiple tissue sites
EP3700598A1 (en) 2017-10-23 2020-09-02 KCI Licensing, Inc. Low profile distribution components for wound therapy
EP3700596A1 (en) 2017-10-23 2020-09-02 KCI Licensing, Inc. Wound dressing for use with anti-bacterial material
CN115645640A (en) 2017-10-23 2023-01-31 3M创新知识产权公司 Regional management of tissue sites on joints
JP7288901B2 (en) 2017-10-24 2023-06-08 スリーエム イノベイティブ プロパティズ カンパニー Wound dressing for debridement and system using same
EP4268775A3 (en) 2017-10-26 2023-12-27 3M Innovative Properties Company Manifolding apparatus
WO2019082023A1 (en) 2017-10-26 2019-05-02 3M Innovative Properties Company Composition containing a silicone-based adhesive and cellulose nanocrystals, and methods and articles
EP3700479B8 (en) 2017-10-26 2023-11-22 3M Innovative Properties Company Wound dressing with welded elastic structure
KR102566942B1 (en) 2017-10-27 2023-08-14 주식회사 엘지화학 Preparation method of super absorbent polymer
US11730631B2 (en) 2017-10-27 2023-08-22 Kci Licensing, Inc. Contoured foam dressing shaped for providing negative pressure to incisions in the breast
US11400202B2 (en) 2017-10-30 2022-08-02 Kci Licensing, Inc. Systems, apparatuses, and methods for negative-pressure treatment with pressure delivery indication
US10463760B2 (en) 2017-10-31 2019-11-05 InMEDBio, LLC Absorbent, breathable and pathogen blocking/killing wound care dressing and fabrication thereof
US11497653B2 (en) 2017-11-01 2022-11-15 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201718054D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Sterilization of integrated negative pressure wound treatment apparatuses and sterilization methods
GB201718014D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Dressing for negative pressure wound therapy with filter
IL255404B (en) 2017-11-02 2018-10-31 Technion Res & Dev Foundation Hipe-templated zwitterionic hydrogels, process of preparation and uses thereof
EP3703634A1 (en) 2017-11-02 2020-09-09 KCI Licensing, Inc. Wound dressing with humidity colorimeter sensor
US11771599B2 (en) 2017-11-03 2023-10-03 Kci Licensing, Inc. Extended wear-time dressing
WO2019089944A1 (en) 2017-11-03 2019-05-09 Kci Usa, Inc. Nutrient-enriched dressing
GB2568101B (en) 2017-11-06 2022-09-07 Brightwake Ltd Antimicrobial dressing
US20200261276A1 (en) 2017-11-08 2020-08-20 University Of Massachusetts Post-Operative Hybrid Dressing To Optimize Skin-Grafting Procedures In Reconstructive Surgery
WO2019094147A1 (en) 2017-11-09 2019-05-16 Kci Licensing, Inc. Multi-module dressing and therapy methods
US20200338228A1 (en) 2017-11-13 2020-10-29 Kci Licensing, Inc. Light-responsive pressure sensitive adhesives for wound dressings
CN107899061A (en) 2017-11-13 2018-04-13 广东泰宝医疗科技股份有限公司 A kind of alginates wound repair dressing and preparation method thereof
CN111343950A (en) 2017-11-15 2020-06-26 史密夫及内修公开有限公司 Integrated wound monitoring and/or therapy dressing and system implementing sensors
WO2019113091A1 (en) 2017-12-06 2019-06-13 Kci Licensing, Inc. Wound dressing with negative pressure retaining valve
CN111432855B (en) 2017-12-06 2024-02-23 康奈尔大学 Manually operated Negative Pressure Wound Therapy (NPWT) bandages with improved pump efficiency, automatic pressure indicator and automatic pressure limiter
EP3723819A4 (en) 2017-12-11 2021-09-29 Animal Ethics Pty Ltd Wound dressing
EP3498242A1 (en) 2017-12-15 2019-06-19 Mölnlycke Health Care AB Medical dressing
IL256405A (en) 2017-12-19 2018-01-31 Omrix Biopharmaceuticals Ltd Wound dressing and a method for producing the same
WO2019125962A1 (en) 2017-12-20 2019-06-27 Kci Licensing, Inc. Wound dressing for the harvesting of superficial epidermal grafts
US20200337904A1 (en) 2017-12-20 2020-10-29 Systagenix Wound Management, Limited Dressing including dehydrated placental tissue for wound healing
DE102017130893A1 (en) 2017-12-21 2019-06-27 Paul Hartmann Ag pH regulating wound dressing
WO2019134169A1 (en) 2018-01-08 2019-07-11 万绵水 Connecting device for wound protection dressing, and wound protection dressing
WO2019139806A1 (en) 2018-01-09 2019-07-18 Kci Licensing, Inc. Systems and methods for coupling a wearable therapy system to a dressing
MX2020010044A (en) 2018-03-26 2021-01-15 Deroyal Ind Inc Multi-lumen bridge for negative pressure wound therapy system.
US20190298882A1 (en) 2018-03-27 2019-10-03 Kevin M. Nelson Hydrogel bandage
JP7331002B2 (en) 2018-03-29 2023-08-22 スリーエム イノベイティブ プロパティズ カンパニー Wound therapy system with wound volume estimation
US20210015677A1 (en) 2018-03-30 2021-01-21 Kci Licensing, Inc. An absorbent dressing incorporating ph wound condition indication
GB201805584D0 (en) 2018-04-05 2018-05-23 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
GB2572642B (en) 2018-04-06 2021-03-31 Pellis Care Ltd Treatment of diabetic foot ulcers
US11040127B2 (en) 2018-04-09 2021-06-22 Kci Licensing, Inc. Abdominal dressing with mechanism for fascial closure
US20210379273A1 (en) 2018-04-10 2021-12-09 Kci Licensing, Inc. Bridge dressing with fluid management
BR102018007306A2 (en) 2018-04-11 2019-10-29 Maria Cristina De Paula Mesquita specific shape adhesive tape / plate making process / silicone dressing
WO2019199596A1 (en) 2018-04-12 2019-10-17 Kci Licensing, Inc. Cutting template for a negative pressure wound therapy drape
WO2019199849A1 (en) 2018-04-13 2019-10-17 Kci Licensing, Inc. Dressing bolster with area pressure indicator
JP7346443B2 (en) 2018-04-13 2023-09-19 ケーシーアイ ライセンシング インコーポレイテッド Method for dynamically measuring load and patient limb movement in negative pressure closed incision dressings
US11752253B2 (en) 2018-04-13 2023-09-12 Kci Licensing, Inc. NPWT system with selectively controllable airflow
US11406750B2 (en) 2018-04-13 2022-08-09 Kci Licensing, Inc. Compression strain and negative pressure delivery indicator for a wound dressing
US11224543B2 (en) 2018-05-03 2022-01-18 Kci Licensing, Inc. Negative pressure wound therapy system with detection of full absorbent dressing
EP3787580A1 (en) 2018-05-04 2021-03-10 Dry See LLC Liquid detecting article and method of making same
WO2019215572A1 (en) 2018-05-08 2019-11-14 Fidia Farmaceutici S.P.A. Wound dressing for treatment of damaged skin
EP3569261B1 (en) 2018-05-14 2024-04-03 Paul Hartmann AG Functional wound dressing
US10898606B2 (en) 2018-05-15 2021-01-26 Legacy Research and Development Group, LLC Self-fusing low density silicone
EP3569210B1 (en) 2018-05-15 2022-04-27 The Procter & Gamble Company Disposable absorbent articles
US11253400B2 (en) 2018-05-16 2022-02-22 Midwest Training and Development Services, LLC Negative pressure wound apposition dressing system
US20190351094A1 (en) 2018-05-21 2019-11-21 Milliken & Company Wound care device having fluid transfer and adhesive properties
US20190351095A1 (en) 2018-05-21 2019-11-21 Milliken & Company Wound care device having fluid transfer and adhesive properties
FR3082123B1 (en) 2018-06-07 2020-10-16 Urgo Rech Innovation Et Developpement CELLULARIZED DRESSING AND ITS MANUFACTURING PROCESS
NL2021186B1 (en) 2018-06-26 2020-01-06 Icap Holding B V Intelligent cap for skin tissue treatment
WO2020005546A1 (en) 2018-06-27 2020-01-02 Kci Licensing, Inc. Wound therapy system with wound volume estimation using geometric approximation
TWI693929B (en) 2018-06-27 2020-05-21 南六企業股份有限公司 Antibacterial wound dressing
US11628094B2 (en) 2018-06-27 2023-04-18 Kci Licensing, Inc. Wound dressing for wound volume estimation
US20200000642A1 (en) 2018-06-28 2020-01-02 Systagenix Wound Management, Limited Multilayer absorbent dressing construction
WO2020005577A1 (en) 2018-06-28 2020-01-02 Kci Licensing, Inc. Distributed negative pressure wound therapy system incorporating an absorbent dressing and piezo-electric pump
WO2020005535A1 (en) 2018-06-28 2020-01-02 Kci Licensing, Inc. A highly conformable wound dressing
US20200000643A1 (en) 2018-06-28 2020-01-02 Kci Licensing, Inc. Long-Duration, Deep Wound Filler With Means To Prevent Granulation In-Growth
EP3813750B1 (en) 2018-06-28 2022-03-02 KCI Licensing, Inc. Release liner with edge protection
US20200000640A1 (en) 2018-06-29 2020-01-02 Milliken & Company Multi-Layer Wound Care Device Having Absorption and Fluid Transfer Properties
CN112334162A (en) 2018-07-04 2021-02-05 科洛普拉斯特公司 Foam wound dressing comprising an antimicrobial agent
WO2020014178A1 (en) 2018-07-12 2020-01-16 Kci Licensing, Inc. Abdominal dressing with user selection of fascial closure force profile
GB201811449D0 (en) 2018-07-12 2018-08-29 Smith & Nephew Apparatuses and methods for negative pressure wound therapy
WO2020014310A1 (en) 2018-07-13 2020-01-16 Kci Licensing, Inc. Advanced wound dressing with compression and increased total fluid handling
EP3823684A1 (en) 2018-07-16 2021-05-26 KCI Licensing, Inc. Fluid instillation apparatus for use with negative-pressure system incorporating wireless therapy monitoring
CN112512469A (en) 2018-07-18 2021-03-16 凯希特许有限公司 Wound viewing dressing and customization kit
EP3829505A1 (en) 2018-07-30 2021-06-09 3M Innovative Properties Company Antimicrobial foam articles and method of making the same
US20200038252A1 (en) 2018-07-31 2020-02-06 Joseph Spiro Tri-layered wound dressing and method therefor
US11534343B2 (en) 2018-07-31 2022-12-27 Kci Licensing, Inc. Devices and methods for preventing localized pressure points in distribution components for tissue therapy
WO2020026144A1 (en) 2018-08-01 2020-02-06 Systagenix Wound Management, Limited Dressing packaging with controlled hydration of fluid-activated dressing
JP2021531899A (en) 2018-08-01 2021-11-25 ケーシーアイ ライセンシング インコーポレイテッド Soft tissue treatment using negative pressure
WO2020028514A1 (en) 2018-08-03 2020-02-06 Kci Licensing, Inc. Flexible and conformable wound dressing with enhanced fluid absorption capability
JP2021531909A (en) 2018-08-03 2021-11-25 ケーシーアイ ライセンシング インコーポレイテッド Wound therapy system for wound volume estimation
WO2020033351A1 (en) 2018-08-10 2020-02-13 Kci Licensing, Inc. Wound dressing system for management of fluids in a wound and methods for manufacturing same
US20200046876A1 (en) 2018-08-13 2020-02-13 Chuang Sheng Medicine Equipment Co. Ltd. Hydrogel surgical dressing product having a multi-dimensional flexible hydrophilic structure-linkage composite
US20200046567A1 (en) 2018-08-13 2020-02-13 Kci Licensing, Inc. Disruptive dressing for use with negative pressure and fluid instillation
US11938236B2 (en) 2018-08-17 2024-03-26 Seoul Viosys Co., Ltd. Medical dressing
WO2020035811A1 (en) 2018-08-17 2020-02-20 3M Innovative Properties Company Wound dressing system
WO2020040917A1 (en) 2018-08-21 2020-02-27 Kci Licensing, Inc. Dressing and system with improved total fluid handling
EP4302790A3 (en) 2018-08-21 2024-03-27 Solventum Intellectual Properties Company System for utilizing pressure decay to determine available fluid capacity in a negative pressure dressing
EP3840795A1 (en) 2018-08-24 2021-06-30 KCI Licensing, Inc. Methods of managing moisture when using a low profile wound connection conduit
CA3110340A1 (en) 2018-08-24 2020-02-27 The United States Government As Represented By The Department Of Veterans Affairs Devices, systems, and methods for remotely monitoring and treating wounds or wound infections
US20210252182A1 (en) 2018-08-27 2021-08-19 Advamedica Inc. Composite dressings, manufacturing methods and applications thereof
WO2020043665A1 (en) 2018-08-27 2020-03-05 Claudia Eder Antiseptic gel
WO2020046443A1 (en) 2018-08-28 2020-03-05 Kci Licensing, Inc. Dressings for reduced tissue ingrowth
US11007083B2 (en) 2018-08-28 2021-05-18 Aatru Medical, LLC Dressing
WO2020046589A1 (en) 2018-08-30 2020-03-05 Kci Licensing, Inc. Electro-mechanical pump for negative-pressure treatment
WO2020047255A1 (en) 2018-08-31 2020-03-05 Kci Licensing, Inc. Cooling dressing for improved comfort
DE202019105913U1 (en) 2018-09-04 2019-11-20 Lohmann & Rauscher Gmbh Wound cleaning device
US11419972B2 (en) 2018-09-04 2022-08-23 Kci Licensing, Inc. Wound therapy device, kit, and method for improved application to wounds on complex geometries
US11471335B2 (en) 2018-09-05 2022-10-18 University Of South Carolina Gel-within-gel wound dressing
US20200069183A1 (en) 2018-09-05 2020-03-05 Kci Licensing, Inc. Systems And Methods For Scheduling And Controlling Wound Therapy
EP3849626A1 (en) 2018-09-12 2021-07-21 KCI Licensing, Inc. Wound therapy system with instillation therapy and dynamic pressure control
US20220111138A1 (en) 2018-09-12 2022-04-14 Kci Licensing, Inc. Systems, apparatuses, and methods for negative-pressure treatment with reduced tissue in-growth
WO2020055945A1 (en) 2018-09-12 2020-03-19 Kci Licensing, Inc. Negative pressure wound therapy systems and methods to indicate total fluid handling
US20220040400A1 (en) 2018-09-14 2022-02-10 Kci Licensing, Inc. Differential Collapse Wound Dressings
WO2020060870A1 (en) 2018-09-17 2020-03-26 Kci Licensing, Inc. Negative pressure wound therapy system
US20200085632A1 (en) 2018-09-17 2020-03-19 Kci Licensing, Inc. Absorbent negative pressure dressing
US11305050B2 (en) 2018-09-19 2022-04-19 Deroyal Industries, Inc. Connector with valve for negative pressure wound therapy system
EP3852705A1 (en) 2018-09-20 2021-07-28 KCI Licensing, Inc. Super-absorbent, low trauma, advanced wound dressing
US20220047771A1 (en) 2018-09-25 2022-02-17 Systagenix Wound Management, Limited Wound dressing compositions and uses thereof
DE102018007692A1 (en) 2018-09-30 2020-04-02 Alexander Folwarzny Wound dressing
EP3632476A1 (en) 2018-10-05 2020-04-08 John J. Ryan (Sealing Products) Limited Wound contact surface and method of manufacture
US11432965B2 (en) 2018-10-05 2022-09-06 Deborah Kantor Medical bandage for the head, a limb or a stump
US11266538B2 (en) 2018-10-07 2022-03-08 Michael David Francis Adhesive wound dressing
EP3636233B1 (en) 2018-10-12 2023-06-07 IVF Hartmann AG Wet wound dressing having an adhesive edge
EP3866871A1 (en) 2018-10-15 2021-08-25 KCI Licensing, Inc. Micro balloon-on-tube wound filler
FR3087126A1 (en) 2018-10-16 2020-04-17 Jean Francois Van Cleef COMPOSITE WOUND MOLDING PROTECTION DEVICE
US20210338490A1 (en) 2018-10-17 2021-11-04 Kci Licensing, Inc. Systems, Apparatuses, And Methods For Negative-Pressure Treatment With Reduced Tissue In-Growth
CN112955100A (en) 2018-10-17 2021-06-11 凯希特许有限公司 Peel-off and placement dressing with closed cell contact layer
GB2611267B (en) 2018-10-18 2023-06-28 Smith & Nephew Tissue treatment device
GB201817052D0 (en) 2018-10-19 2018-12-05 Smith & Nephew Tissue treatment device
US11839528B2 (en) 2018-10-22 2023-12-12 Medline Industries, Lp Drypad with rapid absorption and liquid removal
EP3643328A1 (en) 2018-10-24 2020-04-29 Paul Hartmann AG Ph-triggered diagnostic wound dressing
EP3643331A1 (en) 2018-10-24 2020-04-29 Paul Hartmann AG Ph-triggered therapeutic wound dressing
EP3643330A1 (en) 2018-10-24 2020-04-29 Paul Hartmann AG Ph-triggered buffered wound dressing
US20200129648A1 (en) 2018-10-24 2020-04-30 Hydrofera, Llc Sterilization of Medical Dressings with Enhanced Antimicrobial Properties
WO2020092598A1 (en) 2018-10-30 2020-05-07 Kci Licensing, Inc. Ease of use dressing with integrated pouch and release liner
JP2022506896A (en) 2018-11-02 2022-01-17 コバロン テクノロジーズ インコーポレイテッド Foam composition, foam matrix and method
WO2020097467A1 (en) 2018-11-08 2020-05-14 Kci Licensing, Inc. Dressing with protruding layer allowing for cleansing of wound bed macro deformations
EP3876885B1 (en) 2018-11-08 2023-11-29 3M Innovative Properties Company Wound dressing with semi-rigid support to increase disruption using perforated dressing and negative pressure wound therapy
CN113507910A (en) 2018-11-09 2021-10-15 3M创新知识产权公司 Hybrid adhesive tissue cover
EP3880143B1 (en) 2018-11-13 2023-09-20 KCI Licensing, Inc. Low profile distribution components for wound therapy
GB2579211A (en) 2018-11-23 2020-06-17 Brightwake Ltd Medical tube
GB2579368B (en) 2018-11-29 2022-11-09 Nexa Medical Ltd Wound-dressing conditioning device
US20200179300A1 (en) 2018-12-10 2020-06-11 Joseph Urban Topical Formulation Cures and Heals a Variety of Skin Conditions Including Ulcers, Decubitus Ulcers, Cancer, Abrasions and other Conditions and also accelerates the curing and healing of those Conditions
GB2579800B (en) 2018-12-13 2021-11-03 Adv Med Solutions Ltd Resilient wound dressing
GB2579790B (en) 2018-12-13 2022-10-05 Adv Med Solutions Ltd Ribbon wound dressing
EP3669844A1 (en) 2018-12-21 2020-06-24 Paul Hartmann S.A. Superabsorbent wound dressing with silicone wound contact layer
EP3669843B1 (en) 2018-12-21 2023-10-25 Paul Hartmann AG Superabsorbent wound dressing with silicone wound contact layer
EP3669838A1 (en) 2018-12-21 2020-06-24 Paul Hartmann S.A. Array of absorbent dressings for the treatment of wounds
US20220081593A1 (en) 2018-12-27 2022-03-17 3M Innovative Properties Company Hot melt processable (meth)acrylate-based medical adhesives

Also Published As

Publication number Publication date
US11116884B2 (en) 2021-09-14
CN103347561B (en) 2016-09-07
US20210369937A1 (en) 2021-12-02
JP2016182343A (en) 2016-10-20
US10207031B2 (en) 2019-02-19
JP6306082B2 (en) 2018-04-04
EP2648793A1 (en) 2013-10-16
US20140058344A1 (en) 2014-02-27
WO2012078781A1 (en) 2012-06-14
US20190134280A1 (en) 2019-05-09
CA2819475A1 (en) 2012-06-14
CN103347561A (en) 2013-10-09
JP2014509875A (en) 2014-04-24
CA2819475C (en) 2019-02-12
EP2648793A4 (en) 2014-09-17
EP2648793B1 (en) 2020-03-11
JP5965409B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
US20210369938A1 (en) Integrated system for assessing wound exudates
US11241525B2 (en) Wound exudate monitor accessory
CN110868920B (en) Wearable device with multi-modal diagnostics
US20200178906A1 (en) Medical devices
US20170030758A1 (en) Fluid output measurement device and method
US20040181132A1 (en) Low-cost method and apparatus for non-invasively measuring blood glucose levels
JP2018528043A (en) Medical waste fluid collection and disposal system
KR101634738B1 (en) Wrist terminal for prevention of sudden death and system for prevention of sudden death using the same
CN210834672U (en) System for determining the volume of body exudates in an absorbent article
CN107949315A (en) Abnormity notifying system, abnormal Notification Method and program
KR20210118438A (en) Portable device and method for non-invasive blood glucose level estimation
KR20170017989A (en) Biological information measurement Necklace
KR102658607B1 (en) System for treating and managing urine and feces
JP2012013419A (en) Urine sugar meter
WO2024000074A1 (en) Systems and methods for predicting and detecting post-operative complications
Araligidad et al. IoT based Real Time Patient Surveillance

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: CONVATEC TECHNOLOGIES INC., NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TOTH, LANDY;REEL/FRAME:064636/0605

Effective date: 20150316

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED