US20210230895A1 - Building earthquake resistance structure and earthquake resistance method - Google Patents

Building earthquake resistance structure and earthquake resistance method Download PDF

Info

Publication number
US20210230895A1
US20210230895A1 US17/267,333 US201817267333A US2021230895A1 US 20210230895 A1 US20210230895 A1 US 20210230895A1 US 201817267333 A US201817267333 A US 201817267333A US 2021230895 A1 US2021230895 A1 US 2021230895A1
Authority
US
United States
Prior art keywords
building
earthquake resistance
annular
roof
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/267,333
Other versions
US11091926B1 (en
Inventor
Jifu LIU
Yiru JIA
Jiaoyang Li
Lanlan GUO
Junming LI
Yanli LYU
Guoming Zhang
Lianyou LIU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Assigned to BEIJING NORMAL UNIVERSITY reassignment BEIJING NORMAL UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUO, Lanlan, JIA, Yiru, LI, Jiaoyang, LI, JUNMING, LIU, JIFU, LIU, LIANYOU, LYU, Yanli, ZHANG, GUOMING
Publication of US20210230895A1 publication Critical patent/US20210230895A1/en
Application granted granted Critical
Publication of US11091926B1 publication Critical patent/US11091926B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/36Bearings or like supports allowing movement
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/02Roofs; Roof construction with regard to insulation with plane sloping surfaces, e.g. saddle roofs
    • E04B7/022Roofs; Roof construction with regard to insulation with plane sloping surfaces, e.g. saddle roofs consisting of a plurality of parallel similar trusses or portal frames
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0215Bearing, supporting or connecting constructions specially adapted for such buildings involving active or passive dynamic mass damping systems
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/023Bearing, supporting or connecting constructions specially adapted for such buildings and comprising rolling elements, e.g. balls, pins

Definitions

  • the invention relates to disaster reduction and emergency management technologies in the field of earthquake research, in particular to the field of earthquake resistance technology about earthquake zone buildings. Specifically, the invention relates a building earthquake resistance structure and earthquake resistance method.
  • An earthquake is a sudden natural disaster. A devastating earthquake often causes very serious economic losses and casualties in a very short time. Most of the losses and casualties are caused by the destruction of the building in the earthquake. Especially in the traditional old buildings in remote areas of China, most of them use brick walls or adobe structures without earthquake resistance measures. Many buildings are easily destroyed and collapse in an earthquake and the damage of the earthquake is particularly serious.
  • the earthquake resistance modification of existing buildings normally has two measures, one is the structural strengthening, the other is the foundation shock absorption.
  • the structural strengthening is to improve the earthquake resistance performance of the structural members by improving the strength and deformation capacity of the structural members. For example, implanting steel bars into the walls of buildings to improve the structural stiffness of the walls.
  • the foundation shock absorption is to provide a shock-absorbing structure under the foundation of the entire building. For example, lifting the foundation of the entire building and then placing dampers and so on.
  • one aspect of the earthquake resistance strengthening method of the bonded rebars of walls is that the material and construction cost is much higher than the overall value of the traditional old building. It is better to push down and rebuild.
  • the other aspect is that the weight of the walls structure increases after the walls is strengthened, and after the walls collapses in the earthquake, the threat to personal safety is greater. Therefore, the economic and social benefits of adopting structural strengthening measures for the existing traditional old buildings are very low.
  • the construction of the basic shock absorption measures is very difficult and costly. They are generally only suitable for buildings with special historical and economic value. For traditional old buildings in existing remote areas, the basic shock absorption has little practical significance.
  • the technical problem to be solved by the present invention is to provide a building earthquake resistance structure and earthquake resistance method to reduce or avoid the problems mentioned above.
  • the invention provides a building earthquake resistance structure, which is used for the earthquake resistance treatment of an existing building, wherein the building earthquake resistance structure comprises: an integrally connected roof support frame, used for supporting a roof of a building to be independent from walls of the building; a plurality of support columns, fixedly connected to the roof support frame by joint bearings; an annular trench, arranged in the ground around the building; an annular damping frame, arranged within the annular trench, the lower ends of the support column being fixedly connected to the annular damping frame through joint bearings ; a plurality of dampers, arranged between a bottom portion of the annular trench and the annular damping frame.
  • a first groove is disposed under the annular damping frame, and at the bottom portion of the annular trench is provided with a second groove corresponding to the first groove; the upper surface and lower surface of the damper can be restricted to move horizontally within the range of the first groove and the second groove respectively.
  • the damper is a cylindrical rubber pad with a through-hole penetrating through the upper and lower bottom surfaces, and the through-hole is internally provided with a steel ball whose diameter is smaller than the thickness of the uncompressed rubber pad.
  • the two edges of the second groove with the largest spacing are respectively provided with a downward water leakage hole, and the water leakage hole is communicated with a pumping well through water channels, and the pumping well is provided with a water pumping pipe connected with a water pump.
  • the upper part of the annular trench is covered with a waterproof cover.
  • the present invention also provides a building earthquake resistance method, for performing earthquake resistance treatment of an existing building, wherein the method comprises the following steps: providing an integrally connected roof support frame to support the roof of a building to be independent from the walls of the building; excavating an annular trench in the ground around the building; disposing a plurality of dampers on the bottom of the annular trench; disposing an annular damping frame above the damper; connecting a plurality of support columns fixedly to the annular damping frame via joint bearings; lifting the roof support frame together with the roof of the building by a crane; rotating the support column so that the upper ends of the support column is fixedly connected with the roof support frame through joint bearings, and using the support columns to support the roof of the building to be independent from the walls of the building.
  • the bottom of the annular trench is provided with a water leakage hole and a water channel connected with a pumping well.
  • a circular second groove is provided at the bottom of the annular trench for horizontal movement of the damper within its range, and at the two edges of the diameter of the second groove are respectively provided with a water leakage hole.
  • a circular first groove corresponding to the second groove is disposed under the annular damping frame.
  • the first groove and the second groove have the same diameter.
  • the building earthquake resistance structure and earthquake resistance method of the present invention is that it supports the roof of the existing building on the ground by supporting parts, which can avoid the loss caused by roof collapse during the earthquake.
  • the earthquake resistance structure is easy to construct, especially suitable for the reconstruction of traditional old buildings, with high economic and social benefits and easy to promote and use.
  • FIG. 1 shows a schematic diagram of the structure of an existing building
  • FIG. 2 shows a decomposition schematic diagram of a roof support structure according to a specific embodiment of the present invention
  • FIG. 3 shows a schematic view of a building earthquake resistance structure according to another specific embodiment of the present invention.
  • FIG. 4 shows the A-A sectional view as shown in FIG. 3 ;
  • FIG. 5 shows a schematic diagram of the structure of an annular damping frame according to another specific embodiment of the present invention.
  • FIG. 1 it shows a schematic diagram of the structure of an existing building, which is a typical traditional old structure building. Roof 100 of the building does not show the outermost tiles and other structures, and only a few wooden beams 300 placed on walls 200 are schematically shown. Due to the lack of suitable timber for the walls, walls 200 of traditional and old buildings in China are generally brick walls or adobe. As described in the background, if the existing building shown in FIG. 1 is reconstructed with the existing technologies, its economic and social benefits are very low.
  • the present invention provides a low-cost solution, which is used to carry out the large-scale earthquake resistance reconstruction of existing buildings with traditional old brick walls or adobe structures, so as to reduce economic losses and casualties caused by earthquakes.
  • the solution of the present invention is to support roof 100 of the existing building to be on the ground independent from walls 200 through the supporting parts.
  • roof 100 will not collapse, thereby reducing the death of people due to the collapse of roof 100 and reducing the property loss caused by the damage of roof 100 .
  • the well-preserved roof 100 can provide basic shelter and prevent the victims from sleeping on the streets after an earthquake, and walls 200 can be quickly repaired under roof 100 . It is conducive to post-disaster reconstruction.
  • the structural strength of walls 200 is insufficient and it is easy to collapse in an earthquake.
  • the height of these traditional old buildings is very small, the collapse of walls 200 usually does not cause much damage.
  • the wooden beam 300 on roof 100 is likely to cause death. Therefore, by supporting roof 100 , the present invention can avoid the loss caused by the collapse of roof 100 .
  • FIG. 2 shows a decomposition schematic diagram of a roof support structure according to a specific embodiment of the present invention.
  • the figure shows that under roof 100 of the existing building, an integrally connected roof support frame 1 is additionally provided, which is preferably adopted with a steel welded structure.
  • roof support frame 1 includes a triangular roof truss 11 arranged adjacent to each of the sidewalls, and a transverse connector 12 connecting the vertices of each triangular roof truss 11 together.
  • Roof support frame 1 in FIG. 2 shows a simple structure that can be designed in other forms according to different building structures, as long as roof 100 can be supported independent from walls 200 of the building.
  • FIG. 3 shows a schematic view of a building earthquake resistance structure according to another specific embodiment of the present invention.
  • Roof 100 of the building shown in the figure has been supported independent from walls 200 by the roof support frame 1 shown in FIG. 2 .
  • the building earthquake resistance structure of the present invention can be used for earthquake resistance treatment of an existing building.
  • the building earthquake resistance structure comprises: the integrally connected roof support frame 1 as shown in FIG. 2 , used for supporting roof 100 of the building to be independent from walls 200 of the building.
  • a plurality of support columns 2 are fixedly connected to the roof support frame 1 by joint bearings (not shown).
  • each of the four corners of the building is provided with a support column 2 .
  • the building earthquake resistance structure of the present invention comprises an annular trench 3 arranged in the ground around the building.
  • the lower end of support column 2 is connected with the shock-absorbing structure arranged in annular trench 3 , to isolate the influence of ground vibration on support column 2 and at the same time to provide further cushioning and shock absorption for support column 2 through the shock-absorbing structure.
  • FIG. 4 shows the A-A sectional view as shown in FIG. 3 .
  • the figure shows that an annular damping frame 4 is arranged within annular trench 3 , and the lower ends of support column 2 are fixedly connected to annular damping frame 4 through joint bearings 21 . Further, a plurality of dampers 5 are provided between the bottom of the annular trench 3 and the annular damping frame 4 .
  • the annular damping frame 4 used to connect the support column 2 can move as a whole relative to the ground under the support of the damper 5 .
  • the buffer of the damper 5 the impact of the seismic wave on the support column 2 can be reduced, and the stability of the roof 100 above the support column 2 can be maintained, thereby can keep the roof 100 from collapsing.
  • FIG. 5 shows a schematic diagram of the structure of an annular damping frame according to another specific embodiment of the present invention, which can show the overall structure of the annular damping frame 4 provided in the annular trench 3 .
  • the annular trench 3 is designed as a rectangular structure according to the style of the building.
  • the annular damping frame 4 provided in the annular trench 3 is also rectangular.
  • the annular trench 3 and the annular damping frame 4 can also be designed as other polygons or circles, as long as the annular trench 3 can provide sufficient shock absorption space for the annular damping frame 4 .
  • the annular trench 3 of the present invention can separate the connection between the foundation of the building and the ground, which reduces the horizontal impact of the earthquake; on the other hand, the shock absorption structure can be conveniently set in the annular trench 3 to hide the shock absorption structure under the ground, which avoids obstacles to people when enters and leaves the building. It is especially important that the annular trench 3 can be easily constructed around the building, and does not need to touch the foundation, walls and other structures of the building. It is particularly suitable for the reconstruction of traditional old buildings, with simple operation, low cost, high economic and social benefits, and easy to promote and use.
  • a first groove 51 is disposed under the annular damping frame 4 .
  • a second groove 52 corresponding to the first groove 51 .
  • the upper surface and lower surface of the damper 5 can be restricted to move horizontally within the range of the first groove 51 and the second groove 52 respectively.
  • both the first groove 51 and the second groove 52 may be arranged in a circular shape, with corresponding positions to each other and have the same diameter, so that the same horizontal movement range for the damper 5 can be provided.
  • the first groove 51 and the second groove 52 can be used to restrict the horizontal movement of the damper 5 within a certain range, to avoid the support structure being uneven due to the excessive displacement of the damper 5 results from the impact of the earthquake. That is, in the case of frequent earthquakes, the position of the damper 5 will move, if there is no restriction, some dampers 5 may gather on one side of the annular damping frame 4 , which may cause the annular damping frame 4 tilting and failure. But by the first groove 51 and the second groove 52 with limited position movement function can prevent this situation occur.
  • the damper 5 can be a cylindrical rubber pad with a through-hole 53 penetrating through the upper and lower bottom surfaces, and the through-hole 53 is internally provided with a steel ball 54 whose diameter is smaller than the thickness of the uncompressed rubber pad.
  • the damper 5 with the form of a cylindrical rubber pad, has elasticity and can be compressed so that the vertical impact of the earthquake can be reduced.
  • the steel ball 54 can provide a certain support force when the rubber pad is compressed, so as to avoid the rubber pad cracking due to excessive force, which can improve the service life of the rubber pad.
  • the damper 5 of the present invention has a simple structure and is easier to manufacture compared with the existing damping structure of the laminated structure. It is particularly suitable for the low-cost shock absorbing structure of the present invention.
  • the two edges of the second groove 52 with the largest spacing are respectively provided with a downward water leakage hole 6 .
  • the water leakage hole 6 is communicated with a pumping well 7 through water channels, and the pumping well 7 is provided with a water pumping pipe connected with a water pump 8 .
  • the two water leakage holes 6 are respectively disposed at both edges of the diameter of the second groove 52 , so that when the damper 5 moves, there is always a water leakage hole 6 that will not be blocked by the damper 5 , so as to avoid rainwater gathering in the second groove 52 .
  • the upper part of the annular trench 3 is further covered with a waterproof cover.
  • the waterproof cover can be used to prevent rainwater from entering the annular trench 3 on one hand. On the other hand, it can shield the annular trench 3 to avoid damage caused by people or objects falling into the annular trench 3 .
  • the waterproof cover is made of a stainless steel plate. It can bear the weight of people and vehicles, to facilitate the daily pass for the householder and other people.
  • the building earthquake resistance method of the present invention will be further described below with reference to the accompanying drawings.
  • the method is used for performing earthquake resistance treatment of an existing building, wherein the method comprises the following steps:
  • the bottom of the annular trench 3 is provided with a water leakage hole 6 and a water channel communicated with a pumping well 7 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

A building earthquake resistance structure includes an integrally connected roof support frame, used for supporting a roof of a building independently from walls of the building; a plurality of support columns, fixedly connected to the roof support frame; an annular trench, arranged in the ground around the building; an annular damping came, arranged within the annular trench, lower ends of the support columns being fixedly connected to the annular damping frame; a plurality of dampers, arranged between a bottom portion of the annular trench and the annular damping frame. An earthquake resistance method for the building earthquake resistance structure prevents damage caused by the roof collapsing during an earthquake by supporting the roof of the existing building in the ground via the support columns. The building earthquake resistance structure is easy to construct and suitable for transforming traditional old buildings.

Description

    FIELD OF THE INVENTION
  • The invention relates to disaster reduction and emergency management technologies in the field of earthquake research, in particular to the field of earthquake resistance technology about earthquake zone buildings. Specifically, the invention relates a building earthquake resistance structure and earthquake resistance method.
  • BACKGROUND OF THE INVENTION
  • An earthquake is a sudden natural disaster. A devastating earthquake often causes very serious economic losses and casualties in a very short time. Most of the losses and casualties are caused by the destruction of the building in the earthquake. Especially in the traditional old buildings in remote areas of China, most of them use brick walls or adobe structures without earthquake resistance measures. Many buildings are easily destroyed and collapse in an earthquake and the damage of the earthquake is particularly serious.
  • In the prior technology, the earthquake resistance modification of existing buildings normally has two measures, one is the structural strengthening, the other is the foundation shock absorption. Wherein, the structural strengthening is to improve the earthquake resistance performance of the structural members by improving the strength and deformation capacity of the structural members. For example, implanting steel bars into the walls of buildings to improve the structural stiffness of the walls. The foundation shock absorption is to provide a shock-absorbing structure under the foundation of the entire building. For example, lifting the foundation of the entire building and then placing dampers and so on.
  • However, for the traditional old brick walls or adobe structure walls, one aspect of the earthquake resistance strengthening method of the bonded rebars of walls is that the material and construction cost is much higher than the overall value of the traditional old building. It is better to push down and rebuild. The other aspect is that the weight of the walls structure increases after the walls is strengthened, and after the walls collapses in the earthquake, the threat to personal safety is greater. Therefore, the economic and social benefits of adopting structural strengthening measures for the existing traditional old buildings are very low. The construction of the basic shock absorption measures is very difficult and costly. They are generally only suitable for buildings with special historical and economic value. For traditional old buildings in existing remote areas, the basic shock absorption has little practical significance.
  • Therefore, at the present stage, for earthquake disaster reduction and emergency management, there is an urgent need to provide a low-cost solution for a large-scale earthquake resistance reconstruction of existing buildings with traditional old brick walls or adobe structures to reduce economic losses and casualties caused by the earthquake.
  • SUMMARY OF THE INVENTION
  • The technical problem to be solved by the present invention is to provide a building earthquake resistance structure and earthquake resistance method to reduce or avoid the problems mentioned above.
  • In order to solve the above technical problems, the invention provides a building earthquake resistance structure, which is used for the earthquake resistance treatment of an existing building, wherein the building earthquake resistance structure comprises: an integrally connected roof support frame, used for supporting a roof of a building to be independent from walls of the building; a plurality of support columns, fixedly connected to the roof support frame by joint bearings; an annular trench, arranged in the ground around the building; an annular damping frame, arranged within the annular trench, the lower ends of the support column being fixedly connected to the annular damping frame through joint bearings ; a plurality of dampers, arranged between a bottom portion of the annular trench and the annular damping frame.
  • Preferably, a first groove is disposed under the annular damping frame, and at the bottom portion of the annular trench is provided with a second groove corresponding to the first groove; the upper surface and lower surface of the damper can be restricted to move horizontally within the range of the first groove and the second groove respectively.
  • Preferably, the damper is a cylindrical rubber pad with a through-hole penetrating through the upper and lower bottom surfaces, and the through-hole is internally provided with a steel ball whose diameter is smaller than the thickness of the uncompressed rubber pad.
  • Preferably, at the two edges of the second groove with the largest spacing are respectively provided with a downward water leakage hole, and the water leakage hole is communicated with a pumping well through water channels, and the pumping well is provided with a water pumping pipe connected with a water pump.
  • Preferably, the upper part of the annular trench is covered with a waterproof cover.
  • The present invention also provides a building earthquake resistance method, for performing earthquake resistance treatment of an existing building, wherein the method comprises the following steps: providing an integrally connected roof support frame to support the roof of a building to be independent from the walls of the building; excavating an annular trench in the ground around the building; disposing a plurality of dampers on the bottom of the annular trench; disposing an annular damping frame above the damper; connecting a plurality of support columns fixedly to the annular damping frame via joint bearings; lifting the roof support frame together with the roof of the building by a crane; rotating the support column so that the upper ends of the support column is fixedly connected with the roof support frame through joint bearings, and using the support columns to support the roof of the building to be independent from the walls of the building.
  • Preferably, when excavating the annular trench, the bottom of the annular trench is provided with a water leakage hole and a water channel connected with a pumping well.
  • Preferably, a circular second groove is provided at the bottom of the annular trench for horizontal movement of the damper within its range, and at the two edges of the diameter of the second groove are respectively provided with a water leakage hole.
  • Preferably, a circular first groove corresponding to the second groove is disposed under the annular damping frame.
  • Preferably, the first groove and the second groove have the same diameter.
  • The building earthquake resistance structure and earthquake resistance method of the present invention is that it supports the roof of the existing building on the ground by supporting parts, which can avoid the loss caused by roof collapse during the earthquake. The earthquake resistance structure is easy to construct, especially suitable for the reconstruction of traditional old buildings, with high economic and social benefits and easy to promote and use.
  • DESCRIPTION OF THE DRAWINGS
  • The following drawings are only for the purpose of description and explanation but not for limitation. Wherein:
  • FIG. 1 shows a schematic diagram of the structure of an existing building;
  • FIG. 2 shows a decomposition schematic diagram of a roof support structure according to a specific embodiment of the present invention;
  • FIG. 3 shows a schematic view of a building earthquake resistance structure according to another specific embodiment of the present invention;
  • FIG. 4 shows the A-A sectional view as shown in FIG. 3;
  • FIG. 5 shows a schematic diagram of the structure of an annular damping frame according to another specific embodiment of the present invention.
  • DESCRIPTION OF PREFERRED EMBODIMENT
  • In order that the present invention can be more readily understood, reference will now be made to the accompanying drawings to illustrate the embodiments of the present invention. Wherein, the same components have been marked with the same reference numerals.
  • As shown in FIG. 1, it shows a schematic diagram of the structure of an existing building, which is a typical traditional old structure building. Roof 100 of the building does not show the outermost tiles and other structures, and only a few wooden beams 300 placed on walls 200 are schematically shown. Due to the lack of suitable timber for the walls, walls 200 of traditional and old buildings in China are generally brick walls or adobe. As described in the background, if the existing building shown in FIG. 1 is reconstructed with the existing technologies, its economic and social benefits are very low. Accordingly, aiming at this technical problem, the present invention provides a low-cost solution, which is used to carry out the large-scale earthquake resistance reconstruction of existing buildings with traditional old brick walls or adobe structures, so as to reduce economic losses and casualties caused by earthquakes.
  • Specifically, the solution of the present invention is to support roof 100 of the existing building to be on the ground independent from walls 200 through the supporting parts. When the earthquake occurs, because supported by the shock-absorbing structure of the supporting parts, roof 100 will not collapse, thereby reducing the death of people due to the collapse of roof 100 and reducing the property loss caused by the damage of roof 100. In addition, the well-preserved roof 100 can provide basic shelter and prevent the victims from sleeping on the streets after an earthquake, and walls 200 can be quickly repaired under roof 100. It is conducive to post-disaster reconstruction.
  • In short, due to the structural characteristics of the traditional old buildings in remote areas, the structural strength of walls 200 is insufficient and it is easy to collapse in an earthquake. However, since the height of these traditional old buildings is very small, the collapse of walls 200 usually does not cause much damage. Conversely, after the collapse of walls 200, the wooden beam 300 on roof 100 is likely to cause death. Therefore, by supporting roof 100, the present invention can avoid the loss caused by the collapse of roof 100.
  • In order to facilitate supporting roof 100 on the ground to be independent from walls 200 by the supporting parts, at first, we should provide a support structure to support the whole roof 100. FIG. 2 shows a decomposition schematic diagram of a roof support structure according to a specific embodiment of the present invention. The figure shows that under roof 100 of the existing building, an integrally connected roof support frame 1 is additionally provided, which is preferably adopted with a steel welded structure. As shown in the figure, roof support frame 1 includes a triangular roof truss 11 arranged adjacent to each of the sidewalls, and a transverse connector 12 connecting the vertices of each triangular roof truss 11 together. Roof support frame 1 in FIG. 2 shows a simple structure that can be designed in other forms according to different building structures, as long as roof 100 can be supported independent from walls 200 of the building.
  • FIG. 3 shows a schematic view of a building earthquake resistance structure according to another specific embodiment of the present invention. Roof 100 of the building shown in the figure has been supported independent from walls 200 by the roof support frame 1 shown in FIG. 2. As shown in FIG. 3, the building earthquake resistance structure of the present invention can be used for earthquake resistance treatment of an existing building. The building earthquake resistance structure comprises: the integrally connected roof support frame 1 as shown in FIG. 2, used for supporting roof 100 of the building to be independent from walls 200 of the building. In addition, a plurality of support columns 2 are fixedly connected to the roof support frame 1 by joint bearings (not shown). In the specific embodiment shown in FIG. 3, each of the four corners of the building is provided with a support column 2. Further, the building earthquake resistance structure of the present invention comprises an annular trench 3 arranged in the ground around the building. The lower end of support column 2 is connected with the shock-absorbing structure arranged in annular trench 3, to isolate the influence of ground vibration on support column 2 and at the same time to provide further cushioning and shock absorption for support column 2 through the shock-absorbing structure.
  • The shock-absorbing structure in annular trench 3 will be described in detail below according to FIG. 4, wherein FIG. 4 shows the A-A sectional view as shown in FIG. 3. The figure shows that an annular damping frame 4 is arranged within annular trench 3, and the lower ends of support column 2 are fixedly connected to annular damping frame 4 through joint bearings 21. Further, a plurality of dampers 5 are provided between the bottom of the annular trench 3 and the annular damping frame 4. When an earthquake occurs, the annular damping frame 4 used to connect the support column 2 can move as a whole relative to the ground under the support of the damper 5. By the buffer of the damper 5, the impact of the seismic wave on the support column 2 can be reduced, and the stability of the roof 100 above the support column 2 can be maintained, thereby can keep the roof 100 from collapsing.
  • FIG. 5 shows a schematic diagram of the structure of an annular damping frame according to another specific embodiment of the present invention, which can show the overall structure of the annular damping frame 4 provided in the annular trench 3. In the specific embodiment illustrated in FIG. 3-5, the annular trench 3 is designed as a rectangular structure according to the style of the building. Corresponding to the rectangular structure of the annular trench 3, the annular damping frame 4 provided in the annular trench 3 is also rectangular. Of course, those skilled in the art should understand that according to actual needs, the annular trench 3 and the annular damping frame 4 can also be designed as other polygons or circles, as long as the annular trench 3 can provide sufficient shock absorption space for the annular damping frame 4. On one hand, the annular trench 3 of the present invention can separate the connection between the foundation of the building and the ground, which reduces the horizontal impact of the earthquake; on the other hand, the shock absorption structure can be conveniently set in the annular trench 3 to hide the shock absorption structure under the ground, which avoids obstacles to people when enters and leaves the building. It is especially important that the annular trench 3 can be easily constructed around the building, and does not need to touch the foundation, walls and other structures of the building. It is particularly suitable for the reconstruction of traditional old buildings, with simple operation, low cost, high economic and social benefits, and easy to promote and use.
  • In a specific embodiment of the present invention, a first groove 51 is disposed under the annular damping frame 4. At the bottom portion of the annular trench 3 is provided with a second groove 52 corresponding to the first groove 51. The upper surface and lower surface of the damper 5 can be restricted to move horizontally within the range of the first groove 51 and the second groove 52 respectively. Preferably, both the first groove 51 and the second groove 52 may be arranged in a circular shape, with corresponding positions to each other and have the same diameter, so that the same horizontal movement range for the damper 5 can be provided. The first groove 51 and the second groove 52 can be used to restrict the horizontal movement of the damper 5 within a certain range, to avoid the support structure being uneven due to the excessive displacement of the damper 5 results from the impact of the earthquake. That is, in the case of frequent earthquakes, the position of the damper 5 will move, if there is no restriction, some dampers 5 may gather on one side of the annular damping frame 4, which may cause the annular damping frame 4 tilting and failure. But by the first groove 51 and the second groove 52 with limited position movement function can prevent this situation occur.
  • Further, in another specific embodiment, as shown in FIG. 4 and FIG. 5, the damper 5 can be a cylindrical rubber pad with a through-hole 53 penetrating through the upper and lower bottom surfaces, and the through-hole 53 is internally provided with a steel ball 54 whose diameter is smaller than the thickness of the uncompressed rubber pad. The damper 5, with the form of a cylindrical rubber pad, has elasticity and can be compressed so that the vertical impact of the earthquake can be reduced. The steel ball 54 can provide a certain support force when the rubber pad is compressed, so as to avoid the rubber pad cracking due to excessive force, which can improve the service life of the rubber pad. When subjected to the horizontal impact of the earthquake, the steel ball 54 can easily roll, the rolling steel ball 54 extrudes the inner wall of the through-hole 53, which makes the rubber pad laterally deform, thereby absorbs the horizontal impact by lateral deformation of the rubber pad. The damper 5 of the present invention has a simple structure and is easier to manufacture compared with the existing damping structure of the laminated structure. It is particularly suitable for the low-cost shock absorbing structure of the present invention.
  • In addition, in order to prevent the shock-absorbing structure from being eroded by rainwater, at the two edges of the second groove 52 with the largest spacing are respectively provided with a downward water leakage hole 6. The water leakage hole 6 is communicated with a pumping well 7 through water channels, and the pumping well 7 is provided with a water pumping pipe connected with a water pump 8. When the second groove 52 is circular, the two water leakage holes 6 are respectively disposed at both edges of the diameter of the second groove 52, so that when the damper 5 moves, there is always a water leakage hole 6 that will not be blocked by the damper 5, so as to avoid rainwater gathering in the second groove 52.
  • Preferably, the upper part of the annular trench 3 is further covered with a waterproof cover. The waterproof cover can be used to prevent rainwater from entering the annular trench 3 on one hand. On the other hand, it can shield the annular trench 3 to avoid damage caused by people or objects falling into the annular trench 3. Preferably, the waterproof cover is made of a stainless steel plate. It can bear the weight of people and vehicles, to facilitate the daily pass for the householder and other people.
  • The building earthquake resistance method of the present invention will be further described below with reference to the accompanying drawings. The method is used for performing earthquake resistance treatment of an existing building, wherein the method comprises the following steps:
  • Providing an integrally connected roof support frame 1 to supporting the roof 100 of the building independent from the walls 200 of the building; excavating an annular trench 3 in the ground around the building; and disposing a plurality of dampers 5 on the bottom of the annular trench 3; disposing an annular damping frame 4 above the damper 5; connecting a plurality of support columns 2 fixedly to the annular damping frame 4 via joint bearings 21; and lifting the roof support frame 1 together with the roof 100 of the building by a crane; rotating the support column 2 so that the upper ends of the support column 2 is fixedly connected with the roof support frame 1 through joint bearings (not shown in the figure); and using the support columns 2 to support the roof 100 of the building to be independent from the walls 200 of the building.
  • Preferably, when excavating the annular trench 3, the bottom of the annular trench 3 is provided with a water leakage hole 6 and a water channel communicated with a pumping well 7.
  • The improvement and deformation of other structures involved in the building seismic method of the present invention can be referred to the various embodiments and their combinations of the building seismic structures in the above-mentioned embodiments, and they will not be described in detail here.
  • The skilled person in the art should understand that, although the present invention has been described with multiple embodiments, each embodiment does not include only one independent technical solution. It is only for the purpose of clarity to describe like that, the person in the art should understand the specification as a whole and the technical solutions in all embodiments can be inter combined with each other to form the protection scope of the present invention.
  • Whilst the above description has been given by way of illustrative examples of the present invention, but it is not for limitation of the scope of the invention. Variations and modifications thereto will be apparent to those skilled in the art without departing from the broad ambit and scope of the invention as herein set forth in the following claims.

Claims (15)

1. A building earthquake resistance structure, which is used for the earthquake resistance treatment of an existing building, wherein the building earthquake resistance structure comprises:
an integrally connected roof support frame, used for supporting a roof of a building to be independent from walls of the building;
a plurality of support columns, fixedly connected to the roof support frame by joint bearings;
an annular trench, arranged in the ground around the building;
an annular damping frame, arranged within the annular trench, the lower ends of support column being fixedly connected to the annular damping frame through joint bearings; and
a plurality of dampers, provided between the bottom portion of the annular trench and the annular damping frame.
2. The building earthquake resistance structure according to claim 1, wherein a first groove is disposed under the annular damping fame, and at the bottom portion of the annular trench is provided with a. second groove corresponding to the first groove; the upper surface and lower surface of the damper can be restricted to move horizontally within the range of the first groove and the second groove respectively.
3. The building earthquake resistance structure according to claim 1, wherein the damper is a cylindrical rubber pad with a through-hole penetrating through the upper and lower bottom surfaces, and the through-hole is internally provided with a steel ball whose diameter is smaller than the thickness of the uncompressed rubber pad.
4. The building earthquake resistance structure according to claim 1, wherein at the two edges with the largest spacing of the second groove are respectively provided with a downward water leakage hole, and the water leakage hole is communicated with a pumping well through water channels, and the pumping well is provided with a water pumping pipe connected with a water pump.
5. The building earthquake resistance structure according to claim 1, wherein the upper part of the annular trench is covered with a waterproof cover.
6. A building earthquake resistance method, for performing earthquake resistance treatment of an existing building, wherein the method comprises the following steps:
providing an integrally connected roof support frame to support the roof of a building to be independent from the walls of the building;
excavating an annular trench in the ground around the building;
disposing a plurality of dampers on the bottom of the annular trench;
disposing an annular damping frame above the damper;
connecting a plurality of support columns fixedly to the annular damping frame via joint bearings;
lifting the roof support frame together with the roof of he building by a crane;
rotating the support column so that the upper ends of the support column is fixedly connected with the roof support frame through joint bearings, and using the support columns to support the roof of the building to be independent from the walls of the building.
7. The method according to claim 6, when excavating the annular trench, the bottom of the annular trench is provided with a water leakage hole and a water channel communicated with a pumping well.
8. The method according to claim 7, wherein a circular second groove is provided at the bottom of the annular trench for horizontal movement of the damper within its range, and at the two edges of the diameter of the second groove are respectively provided with a water, leakage hole.
9. The method according to claim 8, wherein a circular first groove corresponding to the second groove is disposed under the annular damping frame.
10. The method according; to claim 9, wherein the first groove and the second groove have the same diameter.
11. The building earthquake resistance structure according to claim 2, wherein the damper is a cylindrical rubber pad with a through-hole penetrating through the upper and lower bottom surfaces, and the through-hole is internally provided with a steel ball whose diameter is smaller than the thickness of the uncompressed rubber pad.
12. The building earthquake resistance structure according to claim 2, wherein at the two edges with the largest spacing of the second groove are respectively provided with a downward water leakage hole, and the water leakage hole is communicated with a pumping well through water channels, and the pumping well is provided with a water pumping pipe connected with a water pump.
13. The building earthquake resistance structure .according to claim 2, wherein the upper part of the annular trench is covered with a waterproof cover.
14. The building earthquake resistance structure according to claim 3, wherein the upper part of the annular trench is covered with a waterproof cover.
15. The building earthquake resistance structure according to claim 4, wherein the upper part of the annular trench is covered with a waterproof cover.
US17/267,333 2018-09-26 2018-09-26 Building earthquake resistance structure and earthquake resistance method Active US11091926B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107437 WO2019042481A1 (en) 2018-09-26 2018-09-26 Building earthquake resistance structure and earthquake resistance method

Publications (2)

Publication Number Publication Date
US20210230895A1 true US20210230895A1 (en) 2021-07-29
US11091926B1 US11091926B1 (en) 2021-08-17

Family

ID=65526160

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/267,333 Active US11091926B1 (en) 2018-09-26 2018-09-26 Building earthquake resistance structure and earthquake resistance method

Country Status (3)

Country Link
US (1) US11091926B1 (en)
CN (1) CN109844235B (en)
WO (1) WO2019042481A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114922492A (en) * 2022-05-12 2022-08-19 上海二十冶建设有限公司 Earthquake-resistant temporary building structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114135011A (en) * 2021-11-16 2022-03-04 马国斌 Building construction building structure node that takes precautions against earthquakes is built in room
CN115354767A (en) * 2022-08-16 2022-11-18 元启建设集团有限公司 Anti-seismic structure and anti-seismic method for house

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2035009A (en) * 1935-02-28 1936-03-24 Frank L Rager Shock absorbing device
US2055000A (en) * 1935-08-12 1936-09-22 Bacigalupo Joseph Building construction
CH296591A (en) * 1951-10-02 1954-02-28 Wilhelm Dr Ludowici Johann Procedure for erecting structures.
IT1274369B (en) * 1995-03-28 1997-07-17 Giorgio Vaia BUILDING PROTECTION SYSTEM
JP2000345718A (en) * 1999-06-07 2000-12-12 Shiiku Kenkyusho:Kk External reinforcing construction method of wooden building
US6088975A (en) * 1999-09-03 2000-07-18 Wiegel; J. Parr Hurricane protection for mobile homes and small buildings
DE10353907B4 (en) * 2003-11-18 2006-04-27 Isoloc Schwingungstechnik Gmbh Vibration isolation device, in particular for earthquake protection of buildings
US20060150529A1 (en) * 2005-01-11 2006-07-13 Hogg Thomas W Jr Weather protection system
RU2006143779A (en) * 2006-09-25 2008-06-20 Джонсон Хитер Корп. (Us) WALL PANEL FOR USE TOGETHER WITH PNEUMATIC STRUCTURE, INFLATABLE STRUCTURE FROM SUCH PANELS AND METHOD OF ITS CONSTRUCTION
US20090049758A1 (en) * 2007-08-23 2009-02-26 Jason Thomas Leonard System and method for decreasing susceptibility of a roof structure to hurricane forces
JP2010150814A (en) * 2008-12-25 2010-07-08 Takeshi Hayashi Flood-damage avoided and base isolated building
US8359793B2 (en) * 2010-08-26 2013-01-29 Danny Chagai Zeevi Earthquake force absorption system
AU2011372144B2 (en) 2011-06-27 2015-11-26 Ko Muroi Architectural structure
CN105940168B (en) * 2013-12-02 2018-10-02 多伦多大学管理委员会 System for mitigating seismic events influence
US20170268218A1 (en) * 2016-03-18 2017-09-21 Hilton Engineering Inc Modular, transportable, insulated building, with water, and fire resistant floor, wall, and roof panel, pre-manufactured assemblies
CN206034676U (en) * 2016-08-19 2017-03-22 山东经典重工集团股份有限公司 Shock attenuation antidetonation profiled steel structure
CN206015863U (en) * 2016-08-27 2017-03-15 浙江实强建设有限公司 A kind of novel earthquake-proof urban architecture
CN206693419U (en) * 2017-04-19 2017-12-01 镇江中谊抗震科技股份有限公司 A kind of shockproof overarm brace for movable plank house
CN207092339U (en) * 2017-06-27 2018-03-13 江苏宏宇重工科技有限公司 A kind of building roof curved surface antidetonation structural steel connecting member
CN107740504B (en) * 2017-10-10 2019-05-31 王恒希 A kind of anti-seismic structure of light house
US20200131794A1 (en) * 2018-10-27 2020-04-30 Gil Panzer Integrated Structure Protection Systems
CN112647585A (en) * 2020-12-16 2021-04-13 湖南鸿云钢模科技有限公司 Steel house device with wind-resistant shockproof structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114922492A (en) * 2022-05-12 2022-08-19 上海二十冶建设有限公司 Earthquake-resistant temporary building structure

Also Published As

Publication number Publication date
WO2019042481A1 (en) 2019-03-07
US11091926B1 (en) 2021-08-17
CN109844235A (en) 2019-06-04
CN109844235B (en) 2020-05-08

Similar Documents

Publication Publication Date Title
US11091926B1 (en) Building earthquake resistance structure and earthquake resistance method
CN110145053B (en) Energy dissipation shock attenuation wall body
CN105220891A (en) A kind of reinforced concrete frame seismic reinforcing structure and Shockproof reinforcing method thereof
CN105649236B (en) Gravity type damping filling wall
CN211596811U (en) Earthquake-resistant building foundation
CN102943572B (en) Single-floor masonry residential building steel-frame canopy guard structure and construction method thereof
CN103195854B (en) Earthquake-isolation energy dissipator for ultra-high-voltage converter transformer
CN206071091U (en) A kind of storage Reformation for Explosion Proof structural system
JP3229629U (en) Integrated foundation bearing platform for rapid construction
RU2606884C1 (en) Aseismic building
JP3827115B2 (en) Seismic isolation structure
CN108385968B (en) Heavy-load template combined supporting system
CN108678481B (en) Anti-seismic steel structure residential building
CN113431184B (en) Safe antidetonation multilayer buffering building structure
CN210002435U (en) earthquake-proof foundation for high-rise building
CN103924788A (en) Connecting structure for existing buildings and construction method
CN207244854U (en) One kind jacking supporting beam underpinning structure
CN102454235A (en) Design scheme of tunnel and underground building combined type earthquake resistant structure
CN102296833A (en) Anti-seismic heightening structure of existing building
RU2612027C1 (en) Kochetov seismic-resistant building
CN212358685U (en) Novel building earthquake-resistant structure
CN211523596U (en) High-strength damping building house
JPH09177372A (en) Seismic isolator of building
CN211037374U (en) A antidetonation support for building
CN210797933U (en) Anti-seismic device suitable for high-rise building

Legal Events

Date Code Title Description
AS Assignment

Owner name: BEIJING NORMAL UNIVERSITY, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, JIFU;JIA, YIRU;LI, JIAOYANG;AND OTHERS;REEL/FRAME:055202/0042

Effective date: 20210127

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE