US20200399089A1 - Tape attaching method - Google Patents

Tape attaching method Download PDF

Info

Publication number
US20200399089A1
US20200399089A1 US16/898,553 US202016898553A US2020399089A1 US 20200399089 A1 US20200399089 A1 US 20200399089A1 US 202016898553 A US202016898553 A US 202016898553A US 2020399089 A1 US2020399089 A1 US 2020399089A1
Authority
US
United States
Prior art keywords
workpiece
adhesive tape
gas
tape
attaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US16/898,553
Inventor
Kazuma Sekiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Assigned to DISCO CORPORATION reassignment DISCO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SEKIYA, KAZUMA
Publication of US20200399089A1 publication Critical patent/US20200399089A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H37/00Article or web delivery apparatus incorporating devices for performing specified auxiliary operations
    • B65H37/04Article or web delivery apparatus incorporating devices for performing specified auxiliary operations for securing together articles or webs, e.g. by adhesive, stitching or stapling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1056Perforating lamina
    • Y10T156/1057Subsequent to assembly of laminae

Definitions

  • the present invention relates to a tape attaching method of attaching an adhesive tape to a workpiece.
  • a wafer having respective devices formed in a plurality of regions demarcated by a plurality of division lines (streets). Such wafer is divided along the plurality of division lines into individual devices to obtain a plurality of device chips.
  • the wafer is subjected to various processing by use of a processing apparatus. Examples of processing a wafer include grinding of grinding a wafer with a grinding apparatus to thin the wafer, cutting of cutting a wafer with a cutting apparatus to divide the wafer, or the like. Also, when a wafer is processed with a processing apparatus, an adhesive tape is attached to the wafer with a view to enhancing wafer handling, protecting a device formed in the wafer, or the like.
  • Japanese Patent Laid-Open No. H6-177243 discloses a tape attaching apparatus including a holding table for holding a wafer thereon and a movable roller for attaching an adhesive tape to the wafer.
  • This tape attaching apparatus causes the movable roller to be rotated about its axis from one end of the wafer to the other end of the wafer in a state in which the adhesive tape is arranged on the wafer held on the holding table and to press the adhesive tape toward the wafer. Accordingly, the adhesive tape is automatically attached to the wafer.
  • fine dense devices such as devices configured through micro electro mechanical systems (MEMS) technology may be formed.
  • MEMS micro electro mechanical systems
  • a device may be damaged due to a large pressing force applied by the movable roller. Accordingly, depending on a structure, a characteristic, or the like of a device formed in a wafer, there is demanded a method of attaching an adhesive tape to a wafer in such a manner that a load is not applied to the wafer as much as possible.
  • a technique of attaching an adhesive tape to a wafer by arranging the wafer onto the adhesive tape which is supported in a flat state may be used in some cases.
  • a wafer is not pressed excessively, and accordingly, damages or the like of a device formed in the wafer are less likely to occur.
  • the present invention has been made in view of such a problem, and it is therefore an object of the present invention to provide a tape attaching method in which bubbles remaining between an adhesive tape and a workpiece typified by a wafer formed with devices can be removed easily.
  • a tape attaching method of attaching an adhesive tape to a workpiece including a tape attaching step of attaching the adhesive tape to the workpiece in gas having a smaller molecular weight than an average molecular weight of the atmosphere, and a gas permeating step of causing the gas remaining between the workpiece and the adhesive tape to permeate the adhesive tape to thereby be removed, after the tape attaching step is carried out.
  • the adhesive tape may be heated.
  • a pressure may be applied to one of or both the workpiece and the adhesive tape in a direction in which the workpiece and the adhesive tape come in close contact with each other.
  • the gas may be helium.
  • the tape attaching method includes a tape attaching step of attaching the adhesive tape to the workpiece in gas having a smaller molecular weight than the average molecular weight of the atmosphere, and a gas permeating step of causing the gas remaining between the workpiece and the adhesive tape to permeate the adhesive tape to thereby be removed.
  • the gas entering between the workpiece and the adhesive tape is gas having a smaller molecular weight than the average molecular weight of the atmosphere, the gas is likely to permeate the adhesive tape. Accordingly, the bubbles remaining between the workpiece and the adhesive tape are likely to be easily removed.
  • FIG. 1 is a perspective view illustrating a workpiece
  • FIG. 2A is a perspective view illustrating a manner in which an adhesive tape is attached to the workpiece of FIG. 1 ;
  • FIG. 3A is a cross-sectional view illustrating a tape attaching apparatus used in a tape attaching method according to a preferred embodiment of the present invention
  • FIG. 3B is a cross-sectional view illustrating the tape attaching apparatus in a state in which the adhesive tape is attached to the workpiece in a tape attaching step in the tape attaching method according to the preferred embodiment of the present invention
  • FIG. 4A is a partial enlarged cross-sectional view illustrating the workpiece attached to the adhesive tape and the adhesive tape after the tape attaching step is carried out;
  • FIG. 4B is a partial enlarged cross-sectional view illustrating the workpiece attached to the adhesive tape and the adhesive tape after a gas permeating step is carried out;
  • FIG. 6 is a cross-sectional view illustrating the workpiece in such a state as to be held on a holding table.
  • the workpiece 11 may be formed of a material such as a semiconductor other than silicon (gallium arsenide (GaAs), indium phosphide (InP), gallium nitride (GaN), silicon carbide (SiC), or the like), glass, ceramic, resin, or metal.
  • the devices 15 are not limited in kind, number, shape, structure, size, and layout, for example.
  • the device 15 may be an integrated circuit (IC), a large scale integration (LSI), or the like.
  • the workpiece 11 may not have any of the devices 15 formed therein.
  • each device chip includes each of the devices 15 .
  • a cutting apparatus which cuts the workpiece 11 with an annular blade
  • a laser processing apparatus which processes the workpiece 11 with irradiation of a laser beam, for example.
  • the workpiece 11 before being divided may be thinned, in some cases.
  • a grinding apparatus which grinds the workpiece 11 with grindstones
  • a polishing apparatus which polishes the workpiece 11 with a polishing pad, for example.
  • an adhesive tape is attached to the workpiece 11 .
  • the workpiece 11 may be supported by an annular frame through the adhesive tape.
  • FIG. 2A is a perspective view illustrating a manner in which an adhesive tape 17 is attached to the workpiece 11 .
  • the circular adhesive tape 17 having a diameter larger than the workpiece 11 is attached to the workpiece 11 , for example.
  • the adhesive tape 17 is formed of a gas permeable polymer film or the like.
  • An annular frame 19 has a circular opening 19 a with a diameter larger than the workpiece 11 in a central portion thereof, and the annular frame 19 is attached to a peripheral portion of the adhesive tape 17 . Then, the workpiece 11 is arranged onto the adhesive tape 17 in such a way that the back surface 11 b of the workpiece 11 comes in contact with the adhesive tape 17 which is exposed inside the opening 19 a, for example.
  • FIG. 2B is a cross-sectional view illustrating the workpiece 11 to which the adhesive tape 17 is attached.
  • the adhesive tape 17 When the adhesive tape 17 is attached to the workpiece 11 , gas is enclosed between the workpiece 11 and the adhesive tape 17 , and bubbles may be formed therebetween.
  • the air When attachment of the adhesive tape 17 is carried out in the atmosphere, the air enters a gap between the workpiece 11 and the adhesive tape 17 , and after the adhesive tape 17 is attached to the workpiece 11 , bubbles containing the air may remain between the workpiece 11 and the adhesive tape 17 . These remaining bubbles prevent appropriate adhesion between the workpiece 11 and the adhesive tape 17 , causing occurrence of processing defects upon processing the workpiece 11 .
  • Removal of the bubbles is carried out, for example, by heating the adhesive tape 17 to increase gas permeability of the gas contained in the bubbles with respect to the adhesive tape 17 . Accordingly, the gas is more likely to permeate the adhesive tape 17 , and as a result, the gas easily goes out from between the workpiece 11 and the adhesive tape 17 . It is to be noted that, however, in a case in which the gas contained in the bubbles is air, even if the heating process described above is carried out, the bubbles may not be sufficiently removed, or it may take a long period of time to remove the bubbles.
  • the adhesive tape 17 is attached to the workpiece 11 in the gas having a smaller molecular weight than the average molecular weight of the atmosphere.
  • the average molecular weight of the atmosphere corresponds to an average value of the molecular weight of gas contained in the atmosphere (air) on the ground.
  • the gas having a smaller molecular weight than the average molecular weight of the atmosphere is more likely to permeate the adhesive tape 17 than the air. Accordingly, even if this gas enters the gap between the workpiece 11 and the adhesive tape 17 and the bubbles are formed therein upon attachment of the adhesive tape 17 , these bubbles are likely to permeate the adhesive tape 17 going out from the gap between the workpiece 11 and the adhesive tape 17 . As a result, the gas remaining between the workpiece 11 and the adhesive tape 17 is easily removed.
  • Examples of the gas having a smaller molecular weight than the average molecular weight of the atmosphere include hydrogen, helium (monatomic molecule), nitrogen, neon (monatomic molecule), methane, ammonia, hydrogen fluoride, acetylene, carbon monoxide, ethylene, or the like.
  • helium has a small molecular weight (atomic weight) and high safety, helium is preferable as gas (gaseous atmosphere) to be used in attachment between the workpiece 11 and the adhesive tape 17 .
  • FIG. 3A is a cross-sectional view illustrating a tape attaching apparatus 2 , and this tape attaching apparatus 2 is used to automatically carry out a tape attaching method according to the preferred embodiment of the present invention.
  • the tape attaching apparatus 2 includes a cylindrical chamber 4 capable of accommodating the workpiece 11 and the adhesive tape 17 attached to the workpiece 11 .
  • the chamber 4 includes a cylindrical main body portion 6 which is opened on an upper side thereof, and a lid portion 8 which opens/closes the opening of the main body portion 6 .
  • Inside the chamber 4 there are formed a tape holding portion 4 a in which the adhesive tape 17 is held, and a workpiece holding portion 4 b on which the workpiece 11 is held.
  • the tape holding portion 4 a is a cylindrical space formed inside the chamber 4 .
  • the workpiece holding portion 4 b is a cylindrical space (recess) formed downward from a bottom of the tape holding portion 4 a. Note that the workpiece holding portion 4 b is smaller in diameter than the tape holding portion 4 a, and a T-shaped space in cross-sectional view is formed inside the chamber 4 .
  • An annular frame supporting portion 10 is provided in the tape holding portion 4 a to support the annular frame 19 with the adhesive tape 17 being attached thereto.
  • the frame supporting portion 10 includes a circular opening 10 a vertically extending in a central portion of the frame supporting portion 10 , and the opening 10 a is arranged so as to overlap with the workpiece holding portion 4 b.
  • a diameter of the opening 10 a is set substantially equal to the diameter of the opening 19 a of the annular frame 19 , for example.
  • the workpiece holding portion 4 b has a holding table 12 holding the workpiece 11 provided therein.
  • the holding table 12 is formed so as to have a diameter substantially equal to the diameter of the workpiece holding portion 4 b .
  • the tape holding portion 4 a is connected to a gas supplying source 18 through a flow path 14 a formed in the main body portion 6 and a valve 16 a.
  • the gas supplying source 18 supplies gas having a smaller molecular weight than the average molecular weight of the atmosphere to the tape holding portion 4 a through the valve 16 a and the flow path 14 a.
  • the tape holding portion 4 a is connected to a valve 16 b through a flow path 14 b formed in the main body portion 6 . When the valve 16 b is opened, the tape holding portion 4 a is opened to the atmosphere.
  • a lower region of the holding table 12 of the workpiece holding portion 4 b is connected to an air supplying source 20 through a flow path 14 c formed in the main body portion 6 and a valve 16 c.
  • the air supplying source 20 supplies air to the workpiece holding portion 4 b through the valve 16 c and the flow path 14 c.
  • the lower region of the holding table 12 of the workpiece holding portion 4 b is connected to a valve 16 d through a flow path 14 d formed in the main body portion 6 .
  • the valve 16 d is opened, the workpiece holding portion 4 b is opened to the atmosphere.
  • the tape holding portion 4 a and the lower region of the holding table 12 of the workpiece holding portion 4 b are separated from each other by the holding table 12 . Thus, communication of the gas between these two regions is blocked.
  • the lid portion 8 is opened, and the workpiece 11 is held on the holding table 12 in such a way that a surface of the workpiece 11 to which the adhesive tape 17 is attached is exposed upward.
  • the workpiece 11 is arranged onto the holding table 12 such that the front surface 11 a of the workpiece 11 faces the holding surface 12 a.
  • the annular frame 19 with the adhesive tape 17 being attached thereto is supported on the frame supporting portion 10 .
  • the annular frame 19 is supported such that a surface to which the adhesive tape 17 is not attached comes in contact with the frame supporting portion 10 .
  • the workpiece 11 and the annular frame 19 are arranged such that a center of the workpiece 11 and a center of the opening 19 a of the annular frame 19 overlap with each other in plan view.
  • the lid portion 8 is closed to hermetically seal the tape holding portion 4 a.
  • the valves 16 a and 16 b are opened, and helium gas is supplied by a predetermined flow rate to the tape holding portion 4 a from the gas supplying source 18 , while the atmosphere remaining inside the tape holding portion 4 a is discharged through the flow path 14 b and the valve 16 b . Accordingly, the tape holding portion 4 a is filled with helium gas.
  • the valve 16 d being closed, the valve 16 c is opened, so that air is supplied by a predetermined flow rate to the workpiece holding portion 4 b from the air supplying source 20 .
  • FIG. 3B is a cross-sectional view illustrating the tape attaching apparatus 2 in a state in which the adhesive tape 17 is attached to the workpiece 11 in the tape attaching step in the tape attaching method according to the preferred embodiment of the present invention.
  • valve 16 c is closed while the valve 16 d is opened, so that the workpiece holding portion 4 b is opened to the atmosphere. Accordingly, the pressure in the lower region of the holding table 12 of the workpiece holding portion 4 b decreases, so that the holding table 12 is lowered. At this time, the workpiece 11 is kept being attached to the adhesive tape 17 and held thereon.
  • FIGS. 3A and 3B illustrate configuration examples in which the air supplying source 20 is connected to the workpiece holding portion 4 b
  • the workpiece holding portion 4 b may be connected to the gas supplying source 18 through the flow path 14 c and the valve 16 c, for example.
  • gas to be supplied through the gas supplying source 18 controls vertical movement of the holding table 12 , so that the air supplying source 20 can be omitted.
  • the adhesive tape 17 is attached to the workpiece 11 in the gas having a smaller molecular weight than the average molecular weight of the atmosphere.
  • FIG. 4A is a partial enlarged cross-sectional view illustrating the workpiece 11 attached to the adhesive tape 17 and the adhesive tape 17 after the tape attaching step is carried out.
  • the adhesive tape 17 includes a base sheet 17 a in a circular film shape, and an adhesive layer (sticking layer) 17 b formed on the base sheet 17 a.
  • the base sheet 17 a is formed of a resin such as polyolefin, polyvinyl chloride, or polyethylene terephthalate, for example.
  • the adhesive layer 17 b is formed of an ultraviolet curable resin that can be cured by applying ultraviolet light thereto, for example.
  • the base sheet 17 a and the adhesive layer 17 b are each formed of a permeable material through which gas having a smaller molecular weight than the average molecular weight of the atmosphere can pass.
  • the air enters a gap between the workpiece 11 and the adhesive tape 17 , and bubbles 21 may be formed between the workpiece 11 and the adhesive layer 17 b of the adhesive tape 17 , in some cases.
  • attachment of the workpiece 11 and the adhesive tape 17 is carried out in the gas having a smaller molecular weight than the average molecular weight of the atmosphere.
  • the gas contained in the bubbles 21 is gas having a smaller molecular weight than the average molecular weight of the atmosphere.
  • this gas is more likely to permeate the adhesive tape 17 than the air, the gas is easily removed from between the workpiece 11 and the adhesive tape 17 .
  • FIG. 4 B is a partial enlarged cross-sectional view illustrating the workpiece 11 attached to the adhesive tape 17 and the adhesive tape 17 after the gas permeating step is carried out.
  • FIG. 5 is a cross-sectional view illustrating a manner in which the adhesive tape 17 is heated.
  • Heating the adhesive tape 17 is carried out by use of a hot plate 30 , for example.
  • the hot plate 30 is a plate which generates heat due to supply of electric power, and its upper surface constitutes a holding surface 30 a for holding the adhesive tape 17 .
  • a heating temperature of the adhesive tape 17 can be set appropriately in a range not causing degradation of the adhesive tape 17 depending on a material of the adhesive tape 17 .
  • heating of the adhesive tape 17 may be carried out by use of an oven or a heater.
  • a pressure may be applied to one of or both the workpiece 11 and the adhesive tape 17 in a direction in which the workpiece 11 and the adhesive tape 17 come in close contact with each other.
  • the workpiece 11 is pressed toward the adhesive tape 17 , and the bubbles 21 may be pressed into the adhesive tape 17 .
  • a strength to press the workpiece 11 is set in a range not causing any damages or the like of the devices 15 .
  • FIG. 6 is a cross-sectional view illustrating the workpiece 11 in such a state as to be held on a holding table 40 .
  • the holding table 40 applies a pressure by effecting a suction force on the workpiece 11 .
  • the holding table 40 is formed into a cylindrical shape larger in diameter than the workpiece 11 , for example, and its upper surface constitutes a holding surface 40 a for holding the workpiece 11 .
  • the holding table 40 includes a porous member 42 which is formed of a porous ceramic material or the like on the holding surface 40 a side.
  • the porous member 42 is formed into a disc shape smaller in diameter than the holding table 40 , for example, and is fit in the holding surface 40 a of the holding table 40 .
  • an upper surface of the porous member 42 constitutes part of the holding surface 40 a.
  • the porous member 42 is connected to a suction source 46 such as an ejector through a flow path 40 b formed inside the holding table 40 and a valve 44 .
  • a plurality of clamps 48 for gripping the annular frame 19 which supports the workpiece 11 to be fixed thereto are provided in the periphery of the holding table 40 .
  • the workpiece 11 is arranged on the holding table 40 in such a way that the surface of the workpiece 11 to which the adhesive tape 17 is attached (the back surface 11 b side) faces the holding surface 40 a.
  • the annular frame 19 is fixed with the plurality of clamps 48 .
  • a negative pressure from the suction source 46 is applied to the holding surface 40 a through the valve 44 , the flow path 40 b, and the porous member 42 .
  • a suction force is applied to the workpiece 11 through the adhesive tape 17 , and accordingly, a pressure toward the adhesive tape 17 side (holding surface 40 a side) is applied to the workpiece 11 .
  • the bubbles 21 see FIG.
  • FIG. 7 is a cross-sectional view illustrating the workpiece 11 in such a state as to be held on the holding table 40 provided with a heater 50 .
  • the heater 50 is formed in a disc shape having a diameter equal to or larger than the diameter of the workpiece 11 , and is embedded inside the holding table 40 . With the workpiece 11 being held under suction on the holding table 40 , electric power is supplied to the heater 50 , and the heater 50 is caused to generate heat, so that the adhesive tape 17 is heated. In this manner, both applying of a pressure (suction force) to the workpiece 11 and heating of the adhesive tape 17 are carried out, thereby removing the bubbles 21 rapidly.
  • a pressure suction force
  • processing with a processing apparatus or cleaning with a cleaning apparatus are carried out on the workpiece 11 held on the annular frame 19 through the adhesive tape 17 .
  • details of processing on the workpiece 11 are not limited.
  • the workpiece 11 is processed by a cutting apparatus which cuts the workpiece 11 with an annular blade, by a grinding apparatus which grinds the workpiece with grindstones, by a polishing apparatus which polishes the workpiece 11 with a polishing pad, by a laser processing apparatus which processes the workpiece 11 by irradiation of a laser beam, or the like.
  • the minute bubbles 21 may remain between the workpiece 11 and the adhesive tape 17 in a range not affecting processing or cleaning of the workpiece 11 .
  • gas is removed from between the workpiece 11 and the adhesive tape 17 and the bubbles 21 are decreased to such an extent that there is no bad influence on processing or cleaning of the workpiece 11 .
  • the tape attaching step is preferably carried out under gaseous atmosphere only containing gas having a smaller molecular weight than the average molecular weight of the atmosphere (first gas).
  • the adhesive tape 17 may be attached to the workpiece 11 under the gaseous atmosphere in which a small amount of another gas (second gas) is mixed into the first gas, in some cases.
  • the bubbles 21 may contain the first gas and the second gas.
  • the second gas contained in the bubbles 21 is in small amounts, the first gas is removed properly in the gas permeating step, so that the size of each of the bubbles 21 can be efficiently reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Textile Engineering (AREA)
  • Dicing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

A tape attaching method of attaching an adhesive tape to a workpiece includes a tape attaching step of attaching the adhesive tape to the workpiece in gas having a smaller molecular weight than an average molecular weight of the atmosphere, and a gas permeating step of causing the gas remaining between the workpiece and the adhesive tape to permeate the adhesive tape to thereby be removed, after the tape attaching step is carried out.

Description

    BACKGROUND OF THE INVENTION Field of the Invention
  • The present invention relates to a tape attaching method of attaching an adhesive tape to a workpiece.
  • Description of the Related Art
  • In a manufacturing process for device chips, there is used a wafer having respective devices formed in a plurality of regions demarcated by a plurality of division lines (streets). Such wafer is divided along the plurality of division lines into individual devices to obtain a plurality of device chips. The wafer is subjected to various processing by use of a processing apparatus. Examples of processing a wafer include grinding of grinding a wafer with a grinding apparatus to thin the wafer, cutting of cutting a wafer with a cutting apparatus to divide the wafer, or the like. Also, when a wafer is processed with a processing apparatus, an adhesive tape is attached to the wafer with a view to enhancing wafer handling, protecting a device formed in the wafer, or the like.
  • In recent years, a technique of automatically attaching an adhesive tape to a wafer has been widely used. For example, Japanese Patent Laid-Open No. H6-177243 discloses a tape attaching apparatus including a holding table for holding a wafer thereon and a movable roller for attaching an adhesive tape to the wafer. This tape attaching apparatus causes the movable roller to be rotated about its axis from one end of the wafer to the other end of the wafer in a state in which the adhesive tape is arranged on the wafer held on the holding table and to press the adhesive tape toward the wafer. Accordingly, the adhesive tape is automatically attached to the wafer.
  • SUMMARY OF THE INVENTION
  • In a wafer, fine dense devices such as devices configured through micro electro mechanical systems (MEMS) technology may be formed. In a case where the above-described tape attaching apparatus is used in attaching an adhesive tape to such a wafer formed with the devices described above, a device may be damaged due to a large pressing force applied by the movable roller. Accordingly, depending on a structure, a characteristic, or the like of a device formed in a wafer, there is demanded a method of attaching an adhesive tape to a wafer in such a manner that a load is not applied to the wafer as much as possible. In view of this, a technique of attaching an adhesive tape to a wafer by arranging the wafer onto the adhesive tape which is supported in a flat state may be used in some cases. In this technique, a wafer is not pressed excessively, and accordingly, damages or the like of a device formed in the wafer are less likely to occur.
  • However, when a method of arranging a wafer on an adhesive tape is used, gas is enclosed between the wafer and the adhesive tape, resulting in generation of bubbles, in some cases. The remaining bubbles prevent appropriate adhesion between the wafer and the adhesive tape, causing occurrence of processing defects upon processing the wafer. For example, the bubbles prevent the wafer from being held in a flat state, and as a result, it may be difficult to grind the entire wafer uniformly upon subjecting grinding processing on the wafer, in some cases. Also, when the wafer is cut and divided into a plurality of device chips, adhesion between each device chip and the adhesive tape is prevented due to the bubbles, resulting in scattering of the chip, in some cases.
  • The present invention has been made in view of such a problem, and it is therefore an object of the present invention to provide a tape attaching method in which bubbles remaining between an adhesive tape and a workpiece typified by a wafer formed with devices can be removed easily.
  • In accordance with an aspect of the present invention, there is provided a tape attaching method of attaching an adhesive tape to a workpiece, including a tape attaching step of attaching the adhesive tape to the workpiece in gas having a smaller molecular weight than an average molecular weight of the atmosphere, and a gas permeating step of causing the gas remaining between the workpiece and the adhesive tape to permeate the adhesive tape to thereby be removed, after the tape attaching step is carried out.
  • Preferably, in the gas permeating step, the adhesive tape may be heated. Preferably, in the gas permeating step, a pressure may be applied to one of or both the workpiece and the adhesive tape in a direction in which the workpiece and the adhesive tape come in close contact with each other. Still preferably, the gas may be helium.
  • The tape attaching method according to a preferred embodiment of the present invention includes a tape attaching step of attaching the adhesive tape to the workpiece in gas having a smaller molecular weight than the average molecular weight of the atmosphere, and a gas permeating step of causing the gas remaining between the workpiece and the adhesive tape to permeate the adhesive tape to thereby be removed. In this tape attaching method, since the gas entering between the workpiece and the adhesive tape is gas having a smaller molecular weight than the average molecular weight of the atmosphere, the gas is likely to permeate the adhesive tape. Accordingly, the bubbles remaining between the workpiece and the adhesive tape are likely to be easily removed.
  • The above and other objects, features and advantages of the present invention and the manner of realizing them will become more apparent, and the invention itself will best be understood from a study of the following description and appended claims with reference to the attached drawings showing a preferred embodiment of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view illustrating a workpiece;
  • FIG. 2A is a perspective view illustrating a manner in which an adhesive tape is attached to the workpiece of FIG. 1;
  • FIG. 2B is a cross-sectional view illustrating the workpiece to which the adhesive tape is attached;
  • FIG. 3A is a cross-sectional view illustrating a tape attaching apparatus used in a tape attaching method according to a preferred embodiment of the present invention;
  • FIG. 3B is a cross-sectional view illustrating the tape attaching apparatus in a state in which the adhesive tape is attached to the workpiece in a tape attaching step in the tape attaching method according to the preferred embodiment of the present invention;
  • FIG. 4A is a partial enlarged cross-sectional view illustrating the workpiece attached to the adhesive tape and the adhesive tape after the tape attaching step is carried out;
  • FIG. 4B is a partial enlarged cross-sectional view illustrating the workpiece attached to the adhesive tape and the adhesive tape after a gas permeating step is carried out;
  • FIG. 5 is a cross-sectional view illustrating a manner in which the adhesive tape is heated;
  • FIG. 6 is a cross-sectional view illustrating the workpiece in such a state as to be held on a holding table; and
  • FIG. 7 is a cross-sectional view illustrating the workpiece in such a state as to be held on the holding table provided with a heater.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Hereinafter, a detailed description will be given regarding a preferred embodiment of the present invention with reference to the drawings. First, there will be described a configuration example of a workpiece to which an adhesive tape is attached in a tape attaching method according to the preferred embodiment of the present invention. FIG. 1 is a perspective view illustrating a workpiece 11. The workpiece 11 is a member (an object to be processed or an object to be cleaned) being subjected to processing, cleaning, or other processes in a state in which an adhesive tape is attached to the workpiece 11.
  • The workpiece 11 is a disc-shaped silicon wafer, for example, and has a front surface 11 a and a back surface 11 b. The workpiece 11 is demarcated into a plurality of regions by a plurality of division lines (streets) 13 which are arrayed in a grid pattern so as to cross each other, and each region on the front surface 11 a side has a device 15 including a MEMS device formed therein. In other words, the workpiece 11 is a MEMS wafer including a plurality of MEMS devices. It is to be noted that, however, the workpiece 11 is not limited in material, shape, structure, size, or the like. For example, the workpiece 11 may be formed of a material such as a semiconductor other than silicon (gallium arsenide (GaAs), indium phosphide (InP), gallium nitride (GaN), silicon carbide (SiC), or the like), glass, ceramic, resin, or metal. In addition, the devices 15 are not limited in kind, number, shape, structure, size, and layout, for example. For example, the device 15 may be an integrated circuit (IC), a large scale integration (LSI), or the like. Moreover, the workpiece 11 may not have any of the devices 15 formed therein.
  • When the workpiece 11 is divided along the division lines 13, a plurality of device chips are obtained, and each device chip includes each of the devices 15. Note that, in the case of dividing the workpiece 11, used are a cutting apparatus which cuts the workpiece 11 with an annular blade and a laser processing apparatus which processes the workpiece 11 with irradiation of a laser beam, for example. In addition, with a view to thinning the device chips, the workpiece 11 before being divided may be thinned, in some cases. In the case of thinning the workpiece 11, used are a grinding apparatus which grinds the workpiece 11 with grindstones and a polishing apparatus which polishes the workpiece 11 with a polishing pad, for example.
  • When various types of processing apparatuses described above are used to process the workpiece 11, with a view to enhancing a handling property of the workpiece 11, protecting the devices 16 formed in the workpiece 11, or the like, an adhesive tape is attached to the workpiece 11. For example, in order to facilitate transfer and holding of the workpiece 11, the workpiece 11 may be supported by an annular frame through the adhesive tape.
  • FIG. 2A is a perspective view illustrating a manner in which an adhesive tape 17 is attached to the workpiece 11. The circular adhesive tape 17 having a diameter larger than the workpiece 11 is attached to the workpiece 11, for example. Note that the adhesive tape 17 is formed of a gas permeable polymer film or the like. An annular frame 19 has a circular opening 19 a with a diameter larger than the workpiece 11 in a central portion thereof, and the annular frame 19 is attached to a peripheral portion of the adhesive tape 17. Then, the workpiece 11 is arranged onto the adhesive tape 17 in such a way that the back surface 11 b of the workpiece 11 comes in contact with the adhesive tape 17 which is exposed inside the opening 19 a, for example. As a result, the adhesive tape 17 is attached to the back surface 11 b side of the workpiece 11, and the workpiece 11 is supported by the annular frame 19 through the adhesive tape 17. FIG. 2B is a cross-sectional view illustrating the workpiece 11 to which the adhesive tape 17 is attached.
  • When the adhesive tape 17 is attached to the workpiece 11, gas is enclosed between the workpiece 11 and the adhesive tape 17, and bubbles may be formed therebetween. For example, when attachment of the adhesive tape 17 is carried out in the atmosphere, the air enters a gap between the workpiece 11 and the adhesive tape 17, and after the adhesive tape 17 is attached to the workpiece 11, bubbles containing the air may remain between the workpiece 11 and the adhesive tape 17. These remaining bubbles prevent appropriate adhesion between the workpiece 11 and the adhesive tape 17, causing occurrence of processing defects upon processing the workpiece 11. For example, there may be a case in which the workpiece 11 is not held in a flat state due to the bubbles and it becomes difficult to grind the entire workpiece 11 uniformly in carrying out grinding processing on the workpiece 11. Also, when the workpiece 11 is cut to be divided into a plurality of device chips, adhesion between each device chip and the adhesive tape 17 is hindered by the bubbles, causing a risk of scattering of the chips. To cope with this problem, it is desirable to remove the bubbles remaining between the workpiece 11 and the adhesive tape 17.
  • Removal of the bubbles is carried out, for example, by heating the adhesive tape 17 to increase gas permeability of the gas contained in the bubbles with respect to the adhesive tape 17. Accordingly, the gas is more likely to permeate the adhesive tape 17, and as a result, the gas easily goes out from between the workpiece 11 and the adhesive tape 17. It is to be noted that, however, in a case in which the gas contained in the bubbles is air, even if the heating process described above is carried out, the bubbles may not be sufficiently removed, or it may take a long period of time to remove the bubbles.
  • In view of this, in the preferred embodiment of the present invention, the adhesive tape 17 is attached to the workpiece 11 in the gas having a smaller molecular weight than the average molecular weight of the atmosphere. Note that the average molecular weight of the atmosphere corresponds to an average value of the molecular weight of gas contained in the atmosphere (air) on the ground. When the adhesive tape 17 is attached to the workpiece 11 in this gas, in a case in which the bubbles remain between the workpiece 11 and the adhesive tape 17, the molecular weight of the gas contained in the bubbles becomes smaller than the average molecular weight of the atmosphere.
  • The gas having a smaller molecular weight than the average molecular weight of the atmosphere is more likely to permeate the adhesive tape 17 than the air. Accordingly, even if this gas enters the gap between the workpiece 11 and the adhesive tape 17 and the bubbles are formed therein upon attachment of the adhesive tape 17, these bubbles are likely to permeate the adhesive tape 17 going out from the gap between the workpiece 11 and the adhesive tape 17. As a result, the gas remaining between the workpiece 11 and the adhesive tape 17 is easily removed. Examples of the gas having a smaller molecular weight than the average molecular weight of the atmosphere include hydrogen, helium (monatomic molecule), nitrogen, neon (monatomic molecule), methane, ammonia, hydrogen fluoride, acetylene, carbon monoxide, ethylene, or the like. In particular, since helium has a small molecular weight (atomic weight) and high safety, helium is preferable as gas (gaseous atmosphere) to be used in attachment between the workpiece 11 and the adhesive tape 17.
  • Note that the attachment of the adhesive tape 17 to the workpiece 11 may be carried out with hands or by use of a dedicated apparatus (tape attaching apparatus). FIG. 3A is a cross-sectional view illustrating a tape attaching apparatus 2, and this tape attaching apparatus 2 is used to automatically carry out a tape attaching method according to the preferred embodiment of the present invention.
  • The tape attaching apparatus 2 includes a cylindrical chamber 4 capable of accommodating the workpiece 11 and the adhesive tape 17 attached to the workpiece 11. The chamber 4 includes a cylindrical main body portion 6 which is opened on an upper side thereof, and a lid portion 8 which opens/closes the opening of the main body portion 6. Inside the chamber 4, there are formed a tape holding portion 4 a in which the adhesive tape 17 is held, and a workpiece holding portion 4 b on which the workpiece 11 is held. The tape holding portion 4 a is a cylindrical space formed inside the chamber 4. Also, the workpiece holding portion 4 b is a cylindrical space (recess) formed downward from a bottom of the tape holding portion 4 a. Note that the workpiece holding portion 4 b is smaller in diameter than the tape holding portion 4 a, and a T-shaped space in cross-sectional view is formed inside the chamber 4.
  • An annular frame supporting portion 10 is provided in the tape holding portion 4 a to support the annular frame 19 with the adhesive tape 17 being attached thereto. The frame supporting portion 10 includes a circular opening 10 a vertically extending in a central portion of the frame supporting portion 10, and the opening 10 a is arranged so as to overlap with the workpiece holding portion 4 b. Note that a diameter of the opening 10 a is set substantially equal to the diameter of the opening 19 a of the annular frame 19, for example. In addition, the workpiece holding portion 4 b has a holding table 12 holding the workpiece 11 provided therein. The holding table 12 is formed so as to have a diameter substantially equal to the diameter of the workpiece holding portion 4 b. The holding table 12 is accommodated in the workpiece holding portion 4 b in such a state as to be movable in a vertical direction and supported by the main body portion 6 of the chamber 4. Note that a height of the holding table 12 is smaller than a height of the workpiece holding portion 4 b, and a gap is secured on a lower side of the holding table 12. Also, an upper surface of the holding table 12 constitutes a holding surface 12 a for holding the workpiece 11.
  • The tape holding portion 4 a is connected to a gas supplying source 18 through a flow path 14 a formed in the main body portion 6 and a valve 16 a. The gas supplying source 18 supplies gas having a smaller molecular weight than the average molecular weight of the atmosphere to the tape holding portion 4 a through the valve 16 a and the flow path 14 a. Also, the tape holding portion 4 a is connected to a valve 16 b through a flow path 14 b formed in the main body portion 6. When the valve 16 b is opened, the tape holding portion 4 a is opened to the atmosphere. A lower region of the holding table 12 of the workpiece holding portion 4 b is connected to an air supplying source 20 through a flow path 14 c formed in the main body portion 6 and a valve 16 c. The air supplying source 20 supplies air to the workpiece holding portion 4 b through the valve 16 c and the flow path 14 c. In addition, the lower region of the holding table 12 of the workpiece holding portion 4 b is connected to a valve 16 d through a flow path 14 d formed in the main body portion 6. When the valve 16 d is opened, the workpiece holding portion 4 b is opened to the atmosphere. Note that the tape holding portion 4 a and the lower region of the holding table 12 of the workpiece holding portion 4 b are separated from each other by the holding table 12. Thus, communication of the gas between these two regions is blocked.
  • Next, an operational example of the tape attaching apparatus 2 in a tape attaching step of attaching the adhesive tape 17 to the workpiece 11 in the tape attaching method according to the preferred embodiment of the present invention will be described. Note that a case in which helium is supplied from the gas supplying source 18 will be described below by way of example. However, the gas to be supplied from the gas supplying source 18 (the gas having a smaller molecular weight than the average molecular weight of the atmosphere) can be changed appropriately.
  • First, the lid portion 8 is opened, and the workpiece 11 is held on the holding table 12 in such a way that a surface of the workpiece 11 to which the adhesive tape 17 is attached is exposed upward. For example, in a case in which the adhesive tape 17 is attached to the back surface 11 b side of the workpiece 11, the workpiece 11 is arranged onto the holding table 12 such that the front surface 11 a of the workpiece 11 faces the holding surface 12 a. In addition, the annular frame 19 with the adhesive tape 17 being attached thereto is supported on the frame supporting portion 10. The annular frame 19 is supported such that a surface to which the adhesive tape 17 is not attached comes in contact with the frame supporting portion 10. Note that the workpiece 11 and the annular frame 19 are arranged such that a center of the workpiece 11 and a center of the opening 19 a of the annular frame 19 overlap with each other in plan view.
  • Next, the lid portion 8 is closed to hermetically seal the tape holding portion 4 a. Then, the valves 16 a and 16 b are opened, and helium gas is supplied by a predetermined flow rate to the tape holding portion 4 a from the gas supplying source 18, while the atmosphere remaining inside the tape holding portion 4 a is discharged through the flow path 14 b and the valve 16 b. Accordingly, the tape holding portion 4 a is filled with helium gas. Next, with the valve 16 d being closed, the valve 16 c is opened, so that air is supplied by a predetermined flow rate to the workpiece holding portion 4 b from the air supplying source 20. Accordingly, a pressure in the lower region of the holding table 12 of the workpiece holding portion 4 b increases, so that the holding table 12 is pushed upward. As a result, the workpiece 11 moves toward the adhesive tape 17. Then, the back surface 11 b side of the workpiece 11 and the adhesive tape 17 come in contact with each other under helium gas, and then, the adhesive tape 17 is attached to the workpiece 11. FIG. 3B is a cross-sectional view illustrating the tape attaching apparatus 2 in a state in which the adhesive tape 17 is attached to the workpiece 11 in the tape attaching step in the tape attaching method according to the preferred embodiment of the present invention.
  • Subsequently, the valve 16 c is closed while the valve 16 d is opened, so that the workpiece holding portion 4 b is opened to the atmosphere. Accordingly, the pressure in the lower region of the holding table 12 of the workpiece holding portion 4 b decreases, so that the holding table 12 is lowered. At this time, the workpiece 11 is kept being attached to the adhesive tape 17 and held thereon.
  • Note that, although FIGS. 3A and 3B illustrate configuration examples in which the air supplying source 20 is connected to the workpiece holding portion 4 b, the workpiece holding portion 4 b may be connected to the gas supplying source 18 through the flow path 14 c and the valve 16 c, for example. In this case, gas to be supplied through the gas supplying source 18 controls vertical movement of the holding table 12, so that the air supplying source 20 can be omitted.
  • As described above, in the tape attaching step of the preferred embodiment of the present invention, the adhesive tape 17 is attached to the workpiece 11 in the gas having a smaller molecular weight than the average molecular weight of the atmosphere. FIG. 4A is a partial enlarged cross-sectional view illustrating the workpiece 11 attached to the adhesive tape 17 and the adhesive tape 17 after the tape attaching step is carried out. For example, the adhesive tape 17 includes a base sheet 17 a in a circular film shape, and an adhesive layer (sticking layer) 17 b formed on the base sheet 17 a. The base sheet 17 a is formed of a resin such as polyolefin, polyvinyl chloride, or polyethylene terephthalate, for example. Also, the adhesive layer 17 b is formed of an ultraviolet curable resin that can be cured by applying ultraviolet light thereto, for example. Note that the base sheet 17 a and the adhesive layer 17 b are each formed of a permeable material through which gas having a smaller molecular weight than the average molecular weight of the atmosphere can pass.
  • When the adhesive tape 17 is attached to the workpiece 11, the air enters a gap between the workpiece 11 and the adhesive tape 17, and bubbles 21 may be formed between the workpiece 11 and the adhesive layer 17 b of the adhesive tape 17, in some cases. In the preferred embodiment of the present invention, attachment of the workpiece 11 and the adhesive tape 17 is carried out in the gas having a smaller molecular weight than the average molecular weight of the atmosphere. Accordingly, the gas contained in the bubbles 21 is gas having a smaller molecular weight than the average molecular weight of the atmosphere. In addition, this gas is more likely to permeate the adhesive tape 17 than the air, the gas is easily removed from between the workpiece 11 and the adhesive tape 17.
  • For example, after the tape attaching step is carried out, the workpiece 11 and the adhesive tape 17 are left for a given period of time in a state in which the workpiece 11 is arranged onto the adhesive tape 17 (see FIG. 2B). At this time, self-weight of the workpiece 11 causes the bubbles 21 to be depressed into the adhesive tape 17. Then, the gas remaining between the workpiece 11 and the adhesive tape 17 permeates the adhesive tape 17 to be removed (gas permeating step). FIG. 4B is a partial enlarged cross-sectional view illustrating the workpiece 11 attached to the adhesive tape 17 and the adhesive tape 17 after the gas permeating step is carried out. When the gas contained in the bubbles 21 permeates the adhesive tape 17 and are removed, the entire back surface 11 b side of the workpiece 11 comes in close contact with the adhesive layer 17 b of the adhesive tape 17 in a flat manner. Accordingly, when the workpiece 11 is processed in a subsequent step, occurrence of processing defects can be prevented.
  • Note that, in order to enhance removal of the bubbles 21 in the gas permeating step, a predetermined process may be carried out. For example, the adhesive tape 17 is heated, thereby causing the gas contained in the bubbles 21 to easily permeate the adhesive tape 17. FIG. 5 is a cross-sectional view illustrating a manner in which the adhesive tape 17 is heated. Heating the adhesive tape 17 is carried out by use of a hot plate 30, for example. The hot plate 30 is a plate which generates heat due to supply of electric power, and its upper surface constitutes a holding surface 30 a for holding the adhesive tape 17. By heating the hot plate 30 in a state in which the adhesive tape 17 is in contact with the holding surface 30 a of the hot plate 30, the adhesive tape 17 is heated. It has been confirmed that a period of time required for removal of the bubbles 21 is reduced after the adhesive tape 17 is heated. It is inferred that reduction in time required for removal of the bubbles 21 is because the gas more easily permeates the adhesive tape 17 resulted from a tendency of increasing in width of a gap between adjacent ones of polymer chains of polymer material constituting the adhesive tape 17 due to heating of the adhesive tape 17 and from activation of movement of the gas contained in the bubbles 21 due to heating of the bubbles 21. The adhesive tape 17 is heated to a temperature in a range of substantially 80° C. to 90° C., for example. It is to be noted that, however, a heating temperature of the adhesive tape 17 can be set appropriately in a range not causing degradation of the adhesive tape 17 depending on a material of the adhesive tape 17. Moreover, heating of the adhesive tape 17 may be carried out by use of an oven or a heater.
  • In addition, in the gas permeating step, a pressure may be applied to one of or both the workpiece 11 and the adhesive tape 17 in a direction in which the workpiece 11 and the adhesive tape 17 come in close contact with each other. For example, in a state in which the workpiece 11 is supported by the annular frame 19 (see FIG. 2B), the workpiece 11 is pressed toward the adhesive tape 17, and the bubbles 21 may be pressed into the adhesive tape 17. Note that a strength to press the workpiece 11 is set in a range not causing any damages or the like of the devices 15.
  • In addition, applying the pressure on the workpiece 11 can be also carried out by use of a holding table for holding under suction the workpiece 11. FIG. 6 is a cross-sectional view illustrating the workpiece 11 in such a state as to be held on a holding table 40. The holding table 40 applies a pressure by effecting a suction force on the workpiece 11.
  • The holding table 40 is formed into a cylindrical shape larger in diameter than the workpiece 11, for example, and its upper surface constitutes a holding surface 40 a for holding the workpiece 11. In addition, the holding table 40 includes a porous member 42 which is formed of a porous ceramic material or the like on the holding surface 40 a side. The porous member 42 is formed into a disc shape smaller in diameter than the holding table 40, for example, and is fit in the holding surface 40 a of the holding table 40. Note that an upper surface of the porous member 42 constitutes part of the holding surface 40 a. The porous member 42 is connected to a suction source 46 such as an ejector through a flow path 40 b formed inside the holding table 40 and a valve 44. In addition, a plurality of clamps 48 for gripping the annular frame 19 which supports the workpiece 11 to be fixed thereto are provided in the periphery of the holding table 40.
  • The workpiece 11 is arranged on the holding table 40 in such a way that the surface of the workpiece 11 to which the adhesive tape 17 is attached (the back surface 11 b side) faces the holding surface 40 a. In addition, the annular frame 19 is fixed with the plurality of clamps 48. In this state, a negative pressure from the suction source 46 is applied to the holding surface 40 a through the valve 44, the flow path 40 b, and the porous member 42. Then, a suction force is applied to the workpiece 11 through the adhesive tape 17, and accordingly, a pressure toward the adhesive tape 17 side (holding surface 40 a side) is applied to the workpiece 11. As a result, the bubbles 21 (see FIG. 4A) are pressed in the adhesive tape 17, while at the same time, the bubbles 21 are sucked into the holding surface 40 a. Accordingly, the gas contained in the bubbles 21 permeates the adhesive tape 17 and is more likely to be removed. As a result, a period of time required for removal of the bubbles 21 is reduced. Note that, although an example in which a pressure toward the adhesive tape 17 is applied to the workpiece 11 has been described above, a pressure toward the workpiece 11 may be applied to the adhesive tape 17.
  • Also, the holding table 40 may further include a heater for heating the adhesive tape 17. FIG. 7 is a cross-sectional view illustrating the workpiece 11 in such a state as to be held on the holding table 40 provided with a heater 50. For example, the heater 50 is formed in a disc shape having a diameter equal to or larger than the diameter of the workpiece 11, and is embedded inside the holding table 40. With the workpiece 11 being held under suction on the holding table 40, electric power is supplied to the heater 50, and the heater 50 is caused to generate heat, so that the adhesive tape 17 is heated. In this manner, both applying of a pressure (suction force) to the workpiece 11 and heating of the adhesive tape 17 are carried out, thereby removing the bubbles 21 rapidly.
  • After the gas permeating step is carried out, subsequent processes such as processing with a processing apparatus or cleaning with a cleaning apparatus are carried out on the workpiece 11 held on the annular frame 19 through the adhesive tape 17. Note that details of processing on the workpiece 11 are not limited. For example, the workpiece 11 is processed by a cutting apparatus which cuts the workpiece 11 with an annular blade, by a grinding apparatus which grinds the workpiece with grindstones, by a polishing apparatus which polishes the workpiece 11 with a polishing pad, by a laser processing apparatus which processes the workpiece 11 by irradiation of a laser beam, or the like.
  • As described above, the tape attaching method according to the preferred embodiment of the present invention includes the tape attaching step of attaching the adhesive tape 17 to the workpiece 11 in the gas having a smaller molecular weight than the average molecular weight of the atmosphere, and the gas permeating step of causing the gas remaining between the workpiece 11 and the adhesive tape 17 to permeate the adhesive tape 17 and to be removed. In this tape attaching method, the gas entering between the workpiece 11 and the adhesive tape 17 is gas having a smaller molecular weight than the average molecular weight of the atmosphere, and accordingly, the gas is likely to permeate the adhesive tape 17. As a result, the bubbles remaining between the workpiece 11 and the adhesive tape 17 are likely to be easily removed.
  • Note that, after the gas permeating step is carried out, the minute bubbles 21 may remain between the workpiece 11 and the adhesive tape 17 in a range not affecting processing or cleaning of the workpiece 11. In other words, in the gas permeating step, gas is removed from between the workpiece 11 and the adhesive tape 17 and the bubbles 21 are decreased to such an extent that there is no bad influence on processing or cleaning of the workpiece 11. For example, the tape attaching step is preferably carried out under gaseous atmosphere only containing gas having a smaller molecular weight than the average molecular weight of the atmosphere (first gas). However, in practice, the adhesive tape 17 may be attached to the workpiece 11 under the gaseous atmosphere in which a small amount of another gas (second gas) is mixed into the first gas, in some cases. In such cases, the bubbles 21 may contain the first gas and the second gas. However, if the second gas contained in the bubbles 21 is in small amounts, the first gas is removed properly in the gas permeating step, so that the size of each of the bubbles 21 can be efficiently reduced.
  • Besides, a structure, a method, and the like according to the above embodiment may be appropriately modified, and various modifications can be implemented without departing from the scope of the object of the present invention.
  • The present invention is not limited to the details of the above described preferred embodiment. The scope of the invention is defined by the appended claims and all changes and modifications as fall within the equivalence of the scope of the claims are therefore to be embraced by the invention.

Claims (4)

What is claimed is:
1. A tape attaching method of attaching an adhesive tape to a workpiece, comprising:
a tape attaching step of attaching the adhesive tape to the workpiece in gas having a smaller molecular weight than an average molecular weight of the atmosphere; and
a gas permeating step of causing the gas remaining between the workpiece and the adhesive tape to permeate the adhesive tape to thereby be removed, after the tape attaching step is carried out.
2. The tape attaching method according to claim 1,
wherein, in the gas permeating step, the adhesive tape is heated.
3. The tape attaching method according to claim 1,
wherein, in the gas permeating step, a pressure is applied to one of or both the workpiece and the adhesive tape in a direction in which the workpiece and the adhesive tape come in close contact with each other.
4. The tape attaching method according to claim 1,
wherein the gas is helium.
US16/898,553 2019-06-18 2020-06-11 Tape attaching method Pending US20200399089A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-112537 2019-06-18
JP2019112537A JP7427325B2 (en) 2019-06-18 2019-06-18 Tape attachment method

Publications (1)

Publication Number Publication Date
US20200399089A1 true US20200399089A1 (en) 2020-12-24

Family

ID=73838040

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/898,553 Pending US20200399089A1 (en) 2019-06-18 2020-06-11 Tape attaching method

Country Status (2)

Country Link
US (1) US20200399089A1 (en)
JP (1) JP7427325B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444732A (en) * 1967-06-06 1969-05-20 Albert L Robbins Method and apparatus for determining optimum bonding parameters for thermoplastic material
US3826701A (en) * 1972-10-31 1974-07-30 Us Army Controllable heat sealing process for optimum seal strength
US3925139A (en) * 1974-01-10 1975-12-09 Package Machinery Co Seal monitoring apparatus
US20150038057A1 (en) * 2012-09-07 2015-02-05 Fuji Electric Co., Ltd. Semiconductor element producing method
US20150189748A1 (en) * 2012-07-09 2015-07-02 Shikoku Chemicals Corporation Copper film-forming agent and method for forming copper film
US20200171707A1 (en) * 2018-12-04 2020-06-04 Disco Corporation Wafer dividing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855824A (en) * 1994-08-10 1996-02-27 Nikon Corp Method for sticking tape on semiconductor wafer
JP2001210701A (en) 2000-01-24 2001-08-03 Hitachi Ltd Method of sticking film for semiconductor wafer protection and its equipment
JP2009194064A (en) 2008-02-13 2009-08-27 Takatori Corp Apparatus and method for sticking adhesive film to substrate
JP6329782B2 (en) 2014-02-28 2018-05-23 株式会社ディスコ Attaching the protective tape

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444732A (en) * 1967-06-06 1969-05-20 Albert L Robbins Method and apparatus for determining optimum bonding parameters for thermoplastic material
US3826701A (en) * 1972-10-31 1974-07-30 Us Army Controllable heat sealing process for optimum seal strength
US3925139A (en) * 1974-01-10 1975-12-09 Package Machinery Co Seal monitoring apparatus
US20150189748A1 (en) * 2012-07-09 2015-07-02 Shikoku Chemicals Corporation Copper film-forming agent and method for forming copper film
US20150038057A1 (en) * 2012-09-07 2015-02-05 Fuji Electric Co., Ltd. Semiconductor element producing method
US20200171707A1 (en) * 2018-12-04 2020-06-04 Disco Corporation Wafer dividing apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Machine Translation JP H08-055824 (Year: 1996) *
Machine Translation of JP 2009194064 (Year: 2009) *

Also Published As

Publication number Publication date
JP2020205356A (en) 2020-12-24
JP7427325B2 (en) 2024-02-05

Similar Documents

Publication Publication Date Title
KR101310397B1 (en) Plasma treatment method and plasma apparatus
US20090191690A1 (en) Increasing Die Strength by Etching During or After Dicing
CN101770936B (en) Resin covering method and resin covering device
JP6904368B2 (en) Semiconductor substrate processing method and semiconductor substrate processing equipment
CN110802509B (en) Protective member forming apparatus
TWI795402B (en) Protective sheeting for use in processing wafer, handling system for wafer, and combination of wafer and protective sheeting
US11056374B2 (en) Protective member forming method
US9211625B2 (en) Sapphire substrate flattening method
KR101006526B1 (en) Wafer maount tape and apparatus and method for processing wafer using the wafer mount tape
US10804131B2 (en) Carrier plate removing method
CN114121770A (en) TAIKO ring taking fixing device and fixing method
US8895326B2 (en) Method of attaching wafer to sheet
JP2014003199A (en) Method for processing wafer
US20200399089A1 (en) Tape attaching method
KR101160266B1 (en) Wafer support member, method for manufacturing the same and wafer polishing unit
WO2012174707A1 (en) Dies prepeeling apparatus and method
US10978320B2 (en) Protective member forming apparatus
US9627241B2 (en) Resin sheet attaching method
US10964597B2 (en) Element chip manufacturing method
US11325804B2 (en) Tape attaching method
CN111312615B (en) Method for processing object to be processed
JP7305276B2 (en) Workpiece holding method
US11651978B2 (en) Protective sheet application apparatus and method
US11865634B2 (en) Processing method of workpiece
JP2009266866A (en) Adhesion device of material to be processed

Legal Events

Date Code Title Description
AS Assignment

Owner name: DISCO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SEKIYA, KAZUMA;REEL/FRAME:052905/0371

Effective date: 20200525

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED