US20190249927A1 - Heat transfer device - Google Patents

Heat transfer device Download PDF

Info

Publication number
US20190249927A1
US20190249927A1 US16/264,836 US201916264836A US2019249927A1 US 20190249927 A1 US20190249927 A1 US 20190249927A1 US 201916264836 A US201916264836 A US 201916264836A US 2019249927 A1 US2019249927 A1 US 2019249927A1
Authority
US
United States
Prior art keywords
thermally conductive
conductive layer
main body
heat transfer
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/264,836
Inventor
Sun-Ki Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joinset Co Ltd
Original Assignee
Joinset Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joinset Co Ltd filed Critical Joinset Co Ltd
Assigned to JOINSET CO., LTD. reassignment JOINSET CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, SUN-KI
Publication of US20190249927A1 publication Critical patent/US20190249927A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0241Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the tubes being flexible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2235/00Means for filling gaps between elements, e.g. between conduits within casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4878Mechanical treatment, e.g. deforming

Definitions

  • the present invention relates to a heat transfer device, and more particularly, to a heat transfer device configured to be independently fixed and easily mounted in high density.
  • Heat transfer devices such as thermal sheets or graphite sheets have high heat transfer performance in a horizontal direction.
  • heat pipes heat pipes, heat spreaders, or vapor chambers (hereinafter, these devices will be collectively referred to as heat pipes) are used for the case in which heat transfer is insufficient.
  • the apparent thermal conductivity of heat pipes is several times to several tens of times the apparent thermal conductivity of a simple metal such as copper or aluminum.
  • such a heat pipe has a tubular structure forming a vacuum therein.
  • a heat-generating electronic component such as a processor placed in contact with an end of a heat pipe
  • a small amount of a refrigerant such as water or ethylene glycol
  • the vaporized refrigerant is pushed toward the opposite end of the heat pipe by the pressure difference between gas and liquid.
  • the vaporized refrigerant is cooled and condensed into liquid.
  • heat generated from the processor is transferred to another place, and thus the processor is cooled and prevented from being overheated.
  • Heat pipes have already been widely used in general personal computers, and in recent years, heat pipes have been used to transfer heat generated from processors of smartphones.
  • a heat pipe may be used in a smartphone by forming an accommodation groove in a metal case of the smartphone, attaching a piece of thermally conductive double-sided adhesive tape to the bottom of the accommodation groove, and attaching a surface of the heat pipe to the piece of thermally conductive double-sided adhesive tape to fix the heat pipe to the metal case.
  • a heat pipe has a complex shape such as a bent shape and a large length, it is difficult to manufacture double-sided adhesive tape according to the shape of the heat pipe, and it is more difficult to manufacture double-side adhesive tape having a small thickness or a long length according to the shape of an accommodation groove to install the heat pipe in the accommodation groove.
  • double-sided adhesive tape is additionally used to fix such a heat pipe, it is inconvenient to densely mount the heat pipe, and additional costs are incurred.
  • heat pipes are formed of a metallic material, the heat pipes may not be elastically brought into thermal contact with heat sources or metal cases for cooling, and thus it is difficult to transfer heat rapidly and reliably.
  • a thermally conductive member having elasticity such as a thermal pad, thermal grease, or a thermal gap filler has to be additionally placed between a heat pipe and a heat source or a cooling case.
  • An object of the present invention is to provide a simple heat transfer device configured to be independently fixed without additionally using a thermally conductive adhesive material.
  • Another object of the present invention is to provide a heat transfer device configured to effectively transfer heat even when the heat transfer device is in contact with an object having high hardness.
  • Another object of the present invention is to provide a heat transfer device configured to be densely mounted.
  • Another object of the present invention is to provide an economical heat transfer device having fewer components and configured to be easily installed.
  • a heat pipe having improved heat transfer performance including: a main body formed of a metallic material and forming a tube sealed to maintain a vacuum therein; and a thermally conductive layer having elasticity and flexibility and adhered around the main body.
  • a heat pipe having improved heat transfer performance including: a main body formed of a metallic material and forming a tube sealed to maintain a vacuum therein; a first thermally conductive layer having elasticity and a self-adhesive outer surface and adhered to a surface of the main body; and a second thermally conductive layer having elasticity and a self-adhesive outer surface and adhered to an opposite surface of the main body.
  • a heat transfer device comprising: a main body formed of a metallic material and forming a tube sealed to maintain a vacuum therein; a thermally conductive layer having elasticity and flexibility and adhered around the main body; and a thermally conductive particle layer formed of thermally conductive particles attached to an outer surface of the thermally conductive layer.
  • thermally conductive double-sided adhesive tape or a thermally conductive adhesive is not additionally used to fix the heat transfer device to an accommodation groove of a metal case, the heat transfer device may be easily fixed and densely installed even in a small space. Thus, the heat transfer device is economical.
  • the heat transfer device is configured to be elastically brought into contact with a metal case or a heat source, heat may be effectively transferred.
  • a thermal sheet having self-adhesion may be used to easily arrange the heat transfer device on release paper or film.
  • FIG. 1 is a view illustrating a state in which a heat pipe is applied to a smartphone according to an embodiment of the present invention
  • FIG. 2 is a partial perspective view illustrating a cross-section of the heat pipe
  • FIGS. 3A and 3B are views illustrating how the heat pipe is placed in a accommodation groove
  • FIG. 4 is a cross-sectional view illustrating a heat pipe according to another embodiment.
  • FIG. 1 illustrates a state in which a heat pipe 100 is applied to a smartphone according to an embodiment of the present invention.
  • a battery 14 may be provided on a back cover 10 of the smartphone, and a circuit board 16 on which a plurality of electronic components are mounted may be provided in a region surrounding the battery 14 .
  • the back cover 10 formed of a metallic material is shown as an example of a heat releasing object.
  • the present invention is not limited thereto.
  • another metal case of a heat generating unit may be considered.
  • a heat source generating a large amount of heat such as an application processor (AP) among the electronic components mounted on the circuit board 16 is brought into contact with the heat pipe 100 such that heat generated from the heat source may be rapidly dissipated through the back cover 10 .
  • AP application processor
  • the heat pipe 100 is fixedly inserted into an accommodation groove 12 formed in the back cover 10 , and as described later, the heat pipe 100 may be fixed to the back cover 10 owing to self-adhesion of a thermally conductive layer 120 .
  • FIG. 2 is a partial perspective view illustrating a cross-section of the heat pipe 100 .
  • the heat pipe 100 includes: a metallic main body 110 forming a tube sealed to maintain a vacuum therein; and the thermally conductive layer 120 having elasticity and adhered around the main body 110 .
  • the main body 110 is formed of a metallic material such as copper or aluminum.
  • the thermally conductive layer 120 may be a thermal sheet formed of a thermally conductive silicone rubber or a thermally conductive acrylic resin.
  • the thermal sheet may surround the main body 110 , and both widthwise ends of the thermal sheet may be in contact with each other or may be separate from each other on a lower surface of the main body 110 .
  • the thermally conductive layer 120 may be adhered or bonded to the main body 110 by dipping the main body 110 in a thermally conductive liquid-phase rubber or resin in which thermally conductive particles are mixed and dispersed and then curing the thermally conductive liquid-phase rubber or resin, or by spraying the thermally conductive liquid-phase rubber or resin onto an outer surface of the main body 110 and then curing the thermally conductive liquid-phase rubber or resin with heat or ultraviolet (UV) rays.
  • a thermally conductive liquid-phase rubber or resin in which thermally conductive particles are mixed and dispersed and then curing the thermally conductive liquid-phase rubber or resin, or by spraying the thermally conductive liquid-phase rubber or resin onto an outer surface of the main body 110 and then curing the thermally conductive liquid-phase rubber or resin with heat or ultraviolet (UV) rays.
  • UV ultraviolet
  • the thermally conductive layer 120 may form a closed loop in a width direction of the main body 110 and may extend in a length direction of the main body 110 .
  • the thermally conductive layer 120 may include thermally-conductive, electrically-insulative particles such as ceramic powder, and thus the thermally conductive layer 120 may be electrically insulative.
  • the thermally conductive layer 120 may include metal powder, carbon powder, graphite powder, or graphite fiber. In this case, the thermally conductive layer 120 may have high thermal conductivity even though having electrical conductivity.
  • the thermally conductive layer 120 has elasticity and flexibility because the thermally conductive layer 120 has a structure based on a silicone rubber or acrylic resin. Therefore, the heat pipe 100 may be forcibly inserted into the accommodation groove 12 to bring the thermally conductive layer 120 into elastic contact with inner walls of the accommodation groove 12 . In this case, since gaps between the heat pipe 100 and the accommodation groove 12 are filled with the thermally conductive layer 120 , reliable thermal contact may be made over a relatively large area, thereby improving heat transfer efficiency.
  • the thickness of the thermally conductive layer 120 may be less than the thickness of the main body 110 .
  • the thickness of the thermally conductive layer 120 may range from about 0.02 mm to about 0.3 mm.
  • the thermally conductive layer 120 may be discretely formed in the length direction of the thermally conductive layer 120 .
  • the total length of the thermally conductive layer 120 may be adjusted to be equal to or greater than half (1 ⁇ 2) the total length of the main body 110 for sufficient heat transfer.
  • the outer surface of the thermally conductive layer 120 may have self-adhesion. In this case, a portion of the thermally conductive layer 120 formed on a lower surface of the main body 110 may be adhered to the bottom of the accommodation groove 12 of the back cover 10 . Therefore, the heat pipe 100 may be fixed to the accommodation groove 12 without additionally using a piece of thermally conductive double-sided adhesive tape or a thermally conductive adhesive.
  • the heat pipe 100 may be arranged on a sheet of release paper or release film by using the self-adhesion of the outer surface of the thermally conductive layer 120 .
  • FIGS. 3A and 3B illustrate how the heat pipe 100 is placed in the accommodation groove 12 .
  • the heat pipe 100 may be forcibly inserted into the accommodation groove 12 of the back cover 10 and elastically brought into contact with the bottom and both sidewalls of the accommodation groove 12 owing to the elasticity of the thermally conductive layer 120 so that thermal contact between the heat pipe 100 and the back cover 10 may be reliably improved.
  • the thermally conductive layer 120 may be adhered to the bottom and/or both sidewalls of the accommodation groove 12 by the self-adhesion of the thermally conductive layer 120 .
  • the heat pipe 100 since only the thermally conductive layer 120 having elasticity and surrounding the main body 110 of the heat pipe 100 is placed between the main body 110 and the accommodation groove 12 when fixedly inserting the heat pipe 100 into the accommodation groove 12 , the heat pipe 100 may be easily mounted in the accommodation groove 12 and may have high thermal conductivity for improved heat transfer efficiency.
  • the circuit board 16 or another heat source may be mounted directly or using a simple thermal sheet therebetween, thereby improving heat transfer efficiency and the yield of production.
  • the thermally conductive layer 120 entirely surrounds the main body 110 .
  • thermally conductive layers 120 may be adhered to only upper and lower surfaces of the main body 110 .
  • the upper and lower thermally conductive layers 120 may have different thermal conductivity and self-adhesion characteristics.
  • the upper thermally conductive layer 120 may have thermal conductivity less than the lower thermally conductive layer 120 .
  • the upper thermally conductive layer 120 may be brought into contact with a cooling case, and the lower thermally conductive layer 120 may be brought into contact with a heat source.
  • the upper thermally conductive layer 120 may have self-adhesion greater than the lower thermally conductive layer 120 .
  • the upper thermally conductive layer 120 may be brought into contact with a cooling case, and the lower thermally conductive layer 120 may be brought into contact with a heat source, such that when the cooling case is lifted, the heat pipe 100 may be on the cooling case owing to the upper thermally conductive layer 120 .
  • FIG. 4 is a cross-sectional view illustrating a heat pipe 200 according to another embodiment.
  • thermally conductive particles are attached to an outer surface of a thermally conductive layer 220 to form a thermally conductive particle layer 230 by a high-temperature and high-pressure, vacuum, or plasma coating method as shown in an enlarged circle of FIG. 4 , so as to substantially increase the surface area of the heat pipe 200 .
  • the thermally conductive particles may be metal powder, carbon powder, graphite powder, ceramic powder, or carbon fiber having high thermal conductivity.
  • thermally conductive layer 220 since the surface area of the thermally conductive layer 220 is increased, heat may rapidly transfer to the thermally conductive layer 220 and then to another object such as the back cover 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A heat transfer device configured to be independently fixed and densely mounted. The heat transfer device includes: a main body formed of a metallic material and forming a tube sealed to maintain a vacuum therein; and a thermally conductive layer having elasticity and adhered around the main body.

Description

    REFERENCE TO RELATED APPLICATIONS
  • This application claims the priority benefit of Korean Patent Application No. 10-2018-0016952 filed on Feb. 12, 2018, the entire contents of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to a heat transfer device, and more particularly, to a heat transfer device configured to be independently fixed and easily mounted in high density.
  • BACKGROUND OF THE INVENTION
  • In recent years, electronic components or modules have been highly integrated and designed to have high performance, and thus more heat is generated from such electronic components or modules. In addition, as the size of products decreases, heat is more densely generated. Therefore, measures for dissipating heat become more important.
  • This situation is more noticeable in mobile terminals such as smartphones and tablets, and direct cooling or heat transfer is necessary to handle generated heat.
  • Heat transfer devices such as thermal sheets or graphite sheets have high heat transfer performance in a horizontal direction. However, heat pipes, heat spreaders, or vapor chambers (hereinafter, these devices will be collectively referred to as heat pipes) are used for the case in which heat transfer is insufficient. In general, the apparent thermal conductivity of heat pipes is several times to several tens of times the apparent thermal conductivity of a simple metal such as copper or aluminum.
  • As is well known, such a heat pipe has a tubular structure forming a vacuum therein. For example, if heat is generated from a heat-generating electronic component such as a processor placed in contact with an end of a heat pipe, a small amount of a refrigerant such as water or ethylene glycol is vaporized by the heat, and the vaporized refrigerant is pushed toward the opposite end of the heat pipe by the pressure difference between gas and liquid. Then, the vaporized refrigerant is cooled and condensed into liquid. As this process repeats, heat generated from the processor is transferred to another place, and thus the processor is cooled and prevented from being overheated.
  • Heat pipes have already been widely used in general personal computers, and in recent years, heat pipes have been used to transfer heat generated from processors of smartphones.
  • For example, a heat pipe may be used in a smartphone by forming an accommodation groove in a metal case of the smartphone, attaching a piece of thermally conductive double-sided adhesive tape to the bottom of the accommodation groove, and attaching a surface of the heat pipe to the piece of thermally conductive double-sided adhesive tape to fix the heat pipe to the metal case.
  • Therefore, if a heat pipe has a complex shape such as a bent shape and a large length, it is difficult to manufacture double-sided adhesive tape according to the shape of the heat pipe, and it is more difficult to manufacture double-side adhesive tape having a small thickness or a long length according to the shape of an accommodation groove to install the heat pipe in the accommodation groove.
  • In addition, since double-sided adhesive tape is additionally used to fix such a heat pipe, it is inconvenient to densely mount the heat pipe, and additional costs are incurred.
  • In addition, since heat pipes are formed of a metallic material, the heat pipes may not be elastically brought into thermal contact with heat sources or metal cases for cooling, and thus it is difficult to transfer heat rapidly and reliably.
  • Therefore, in general, a thermally conductive member having elasticity such as a thermal pad, thermal grease, or a thermal gap filler has to be additionally placed between a heat pipe and a heat source or a cooling case.
  • In particular, when a heat pipe formed of a metallic material is bought into contact with and coupled to a plurality of cooling metal fins, the effect of heat transfer is not satisfactory because of direct metal-to-metal contact.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a simple heat transfer device configured to be independently fixed without additionally using a thermally conductive adhesive material.
  • Another object of the present invention is to provide a heat transfer device configured to effectively transfer heat even when the heat transfer device is in contact with an object having high hardness.
  • Another object of the present invention is to provide a heat transfer device configured to be densely mounted.
  • Another object of the present invention is to provide an economical heat transfer device having fewer components and configured to be easily installed.
  • According to an aspect of the present invention, there is provided a heat pipe having improved heat transfer performance, the heat pipe including: a main body formed of a metallic material and forming a tube sealed to maintain a vacuum therein; and a thermally conductive layer having elasticity and flexibility and adhered around the main body.
  • According to another aspect of the present invention, there is provided a heat pipe having improved heat transfer performance, the heat pipe including: a main body formed of a metallic material and forming a tube sealed to maintain a vacuum therein; a first thermally conductive layer having elasticity and a self-adhesive outer surface and adhered to a surface of the main body; and a second thermally conductive layer having elasticity and a self-adhesive outer surface and adhered to an opposite surface of the main body.
  • According to another aspect of the present invention, there is provided a heat transfer device comprising: a main body formed of a metallic material and forming a tube sealed to maintain a vacuum therein; a thermally conductive layer having elasticity and flexibility and adhered around the main body; and a thermally conductive particle layer formed of thermally conductive particles attached to an outer surface of the thermally conductive layer.
  • Therefore, since thermally conductive double-sided adhesive tape or a thermally conductive adhesive is not additionally used to fix the heat transfer device to an accommodation groove of a metal case, the heat transfer device may be easily fixed and densely installed even in a small space. Thus, the heat transfer device is economical.
  • In addition, since the contact area between the heat transfer device and the accommodation groove of the metal case is increased, heat may be transferred rapidly and reliably.
  • In addition, since the heat transfer device is configured to be elastically brought into contact with a metal case or a heat source, heat may be effectively transferred.
  • In addition, a thermal sheet having self-adhesion may be used to easily arrange the heat transfer device on release paper or film.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above objects and other advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
  • FIG. 1 is a view illustrating a state in which a heat pipe is applied to a smartphone according to an embodiment of the present invention;
  • FIG. 2 is a partial perspective view illustrating a cross-section of the heat pipe;
  • FIGS. 3A and 3B are views illustrating how the heat pipe is placed in a accommodation groove; and
  • FIG. 4 is a cross-sectional view illustrating a heat pipe according to another embodiment.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Technical terms used herein are only for explaining specific embodiments while not limiting the present invention. In addition, unless otherwise defined, technical terms used herein have the same meaning as commonly understood by those of ordinary skill in the art and will not be interpreted in an overly broad or narrow sense. In addition, if technical terms used herein are incorrect to exactly express the idea of the present invention, the technical terms should be interpreted as terms by which those of ordinary skill in the art can correctly understand the idea of the present invention. In addition, general terms used herein may be interpreted as defined in dictionaries or according to the contextual meanings, and should not be interpreted in an overly narrow sense.
  • FIG. 1 illustrates a state in which a heat pipe 100 is applied to a smartphone according to an embodiment of the present invention.
  • A battery 14 may be provided on a back cover 10 of the smartphone, and a circuit board 16 on which a plurality of electronic components are mounted may be provided in a region surrounding the battery 14.
  • In FIG. 1, the back cover 10 formed of a metallic material is shown as an example of a heat releasing object. However, the present invention is not limited thereto. For example, another metal case of a heat generating unit may be considered.
  • A heat source generating a large amount of heat such as an application processor (AP) among the electronic components mounted on the circuit board 16 is brought into contact with the heat pipe 100 such that heat generated from the heat source may be rapidly dissipated through the back cover 10.
  • To this end, the heat pipe 100 is fixedly inserted into an accommodation groove 12 formed in the back cover 10, and as described later, the heat pipe 100 may be fixed to the back cover 10 owing to self-adhesion of a thermally conductive layer 120.
  • FIG. 2 is a partial perspective view illustrating a cross-section of the heat pipe 100.
  • The heat pipe 100 includes: a metallic main body 110 forming a tube sealed to maintain a vacuum therein; and the thermally conductive layer 120 having elasticity and adhered around the main body 110.
  • The main body 110 is formed of a metallic material such as copper or aluminum.
  • The thermally conductive layer 120 may be a thermal sheet formed of a thermally conductive silicone rubber or a thermally conductive acrylic resin. In this case, the thermal sheet may surround the main body 110, and both widthwise ends of the thermal sheet may be in contact with each other or may be separate from each other on a lower surface of the main body 110.
  • Alternatively, the thermally conductive layer 120 may be adhered or bonded to the main body 110 by dipping the main body 110 in a thermally conductive liquid-phase rubber or resin in which thermally conductive particles are mixed and dispersed and then curing the thermally conductive liquid-phase rubber or resin, or by spraying the thermally conductive liquid-phase rubber or resin onto an outer surface of the main body 110 and then curing the thermally conductive liquid-phase rubber or resin with heat or ultraviolet (UV) rays.
  • The thermally conductive layer 120 may form a closed loop in a width direction of the main body 110 and may extend in a length direction of the main body 110.
  • The thermally conductive layer 120 may include thermally-conductive, electrically-insulative particles such as ceramic powder, and thus the thermally conductive layer 120 may be electrically insulative. When only the thermal conductivity of the thermally conductive layer 120 is considered, the thermally conductive layer 120 may include metal powder, carbon powder, graphite powder, or graphite fiber. In this case, the thermally conductive layer 120 may have high thermal conductivity even though having electrical conductivity.
  • The thermally conductive layer 120 has elasticity and flexibility because the thermally conductive layer 120 has a structure based on a silicone rubber or acrylic resin. Therefore, the heat pipe 100 may be forcibly inserted into the accommodation groove 12 to bring the thermally conductive layer 120 into elastic contact with inner walls of the accommodation groove 12. In this case, since gaps between the heat pipe 100 and the accommodation groove 12 are filled with the thermally conductive layer 120, reliable thermal contact may be made over a relatively large area, thereby improving heat transfer efficiency.
  • The thickness of the thermally conductive layer 120 may be less than the thickness of the main body 110. In a non-limiting example, the thickness of the thermally conductive layer 120 may range from about 0.02 mm to about 0.3 mm.
  • The thermally conductive layer 120 may be discretely formed in the length direction of the thermally conductive layer 120. In this case, the total length of the thermally conductive layer 120 may be adjusted to be equal to or greater than half (½) the total length of the main body 110 for sufficient heat transfer.
  • The outer surface of the thermally conductive layer 120 may have self-adhesion. In this case, a portion of the thermally conductive layer 120 formed on a lower surface of the main body 110 may be adhered to the bottom of the accommodation groove 12 of the back cover 10. Therefore, the heat pipe 100 may be fixed to the accommodation groove 12 without additionally using a piece of thermally conductive double-sided adhesive tape or a thermally conductive adhesive.
  • In addition, the heat pipe 100 may be arranged on a sheet of release paper or release film by using the self-adhesion of the outer surface of the thermally conductive layer 120.
  • FIGS. 3A and 3B illustrate how the heat pipe 100 is placed in the accommodation groove 12.
  • The heat pipe 100 may be forcibly inserted into the accommodation groove 12 of the back cover 10 and elastically brought into contact with the bottom and both sidewalls of the accommodation groove 12 owing to the elasticity of the thermally conductive layer 120 so that thermal contact between the heat pipe 100 and the back cover 10 may be reliably improved.
  • In particular, if the outer surface of the thermally conductive layer 120 has self-adhesion, the thermally conductive layer 120 may be adhered to the bottom and/or both sidewalls of the accommodation groove 12 by the self-adhesion of the thermally conductive layer 120.
  • Therefore, unlike the related art, it is not necessary to use a piece of thermally conductive double-sided adhesive tape or a thermally conductive adhesive, or shape a piece of thermally conductive double-sided adhesive tape according to the shape of the heat pipe 100 so as to fix the heat pipe 100 to the accommodation groove 12. Therefore, simple manufacturing processes and low manufacturing costs may be guaranteed while enabling high-density mounting of the heat pipe 100.
  • In addition, since only the thermally conductive layer 120 having elasticity and surrounding the main body 110 of the heat pipe 100 is placed between the main body 110 and the accommodation groove 12 when fixedly inserting the heat pipe 100 into the accommodation groove 12, the heat pipe 100 may be easily mounted in the accommodation groove 12 and may have high thermal conductivity for improved heat transfer efficiency.
  • Likewise, on the heat pipe 100 fixedly inserted in the accommodation groove 12, the circuit board 16 or another heat source may be mounted directly or using a simple thermal sheet therebetween, thereby improving heat transfer efficiency and the yield of production.
  • In the above-described embodiment, the thermally conductive layer 120 entirely surrounds the main body 110. However, this is a non-limiting example. In another example, thermally conductive layers 120 may be adhered to only upper and lower surfaces of the main body 110.
  • In this case, the upper and lower thermally conductive layers 120 may have different thermal conductivity and self-adhesion characteristics.
  • For example, the upper thermally conductive layer 120 may have thermal conductivity less than the lower thermally conductive layer 120. In this case, the upper thermally conductive layer 120 may be brought into contact with a cooling case, and the lower thermally conductive layer 120 may be brought into contact with a heat source.
  • In addition, the upper thermally conductive layer 120 may have self-adhesion greater than the lower thermally conductive layer 120. In this case, the upper thermally conductive layer 120 may be brought into contact with a cooling case, and the lower thermally conductive layer 120 may be brought into contact with a heat source, such that when the cooling case is lifted, the heat pipe 100 may be on the cooling case owing to the upper thermally conductive layer 120.
  • FIG. 4 is a cross-sectional view illustrating a heat pipe 200 according to another embodiment.
  • In the current embodiment, thermally conductive particles are attached to an outer surface of a thermally conductive layer 220 to form a thermally conductive particle layer 230 by a high-temperature and high-pressure, vacuum, or plasma coating method as shown in an enlarged circle of FIG. 4, so as to substantially increase the surface area of the heat pipe 200.
  • The thermally conductive particles may be metal powder, carbon powder, graphite powder, ceramic powder, or carbon fiber having high thermal conductivity.
  • As a result, since the surface area of the thermally conductive layer 220 is increased, heat may rapidly transfer to the thermally conductive layer 220 and then to another object such as the back cover 10.
  • While the present invention has been described according to the embodiments, those of ordinary skill could understand that various modifications can be made from the embodiments. Therefore, the spirit and scope of the present invention are not limited to the embodiments, but should be construed by the appended claims.

Claims (12)

What is claimed is:
1. A heat transfer device comprising:
a main body formed of a metallic material and forming a tube sealed to maintain a vacuum therein; and
a thermally conductive layer having elasticity and flexibility and adhered around the main body.
2. The heat transfer device of claim 1, wherein the thermally conductive layer is a thermal sheet extending in a length direction of the main body with both widthwise ends of the thermal sheet being in contact with each other or separate from each other.
3. The heat transfer device of claim 1, wherein the thermally conductive layer is adhered or bonded to the main body by dipping an outer surface of the main body in a thermally conductive liquid-phase rubber or resin in which thermally conductive particles are mixed and dispersed and then curing the thermally conductive liquid-phase rubber or resin, or by spraying the thermally conductive liquid-phase rubber or resin onto the outer surface of the main body and then curing the thermally conductive liquid-phase rubber or resin.
4. The heat transfer device of claim 1, wherein the heat transfer device is a heat pipe, a heat spreader, or a vapor chamber.
5. The heat transfer device of claim 1, wherein the thermally conductive layer is electrically insulative.
6. The heat transfer device of claim 1, wherein the main body is inserted in an accommodation groove of a metal case such that a portion of the thermally conductive layer corresponding to a lower surface of the main body is brought into contact with a bottom of the accommodation groove and an upper surface of the main body is exposed for direct or indirect thermal contact with a heat source,
wherein an outer surface of the thermally conductive layer has self-adhesion such that the thermally conductive layer is adhered to the bottom of the accommodation groove.
7. The heat transfer device of claim 6, wherein portions of the thermally conductive layer corresponding to lateral sides of the main body are elastically brought into contact with both sidewalls of the accommodation groove.
8. The heat transfer device of claim 1, wherein the thermally conductive layer is a thermally conductive silicone rubber or a thermally conductive acrylic resin.
9. A heat transfer device comprising:
a main body formed of a metallic material and forming a tube sealed to maintain a vacuum therein;
a first thermally conductive layer having elasticity and a self-adhesive outer surface and adhered to a surface of the main body; and
a second thermally conductive layer having elasticity and a self-adhesive outer surface and adhered to an opposite surface of the main body.
10. The heat transfer device of claim 9, wherein the first thermally conductive layer has greater self-adhesion and less thermal conductivity than the second thermally conductive layer, and
the first thermally conductive layer is brought into contact with a cooling case, and the second thermally conductive layer is brought into contact with a heat source.
11. A heat transfer device comprising:
a main body formed of a metallic material and forming a tube sealed to maintain a vacuum therein;
a thermally conductive layer having elasticity and flexibility and adhered around the main body; and
a thermally conductive particle layer formed of thermally conductive particles attached to an outer surface of the thermally conductive layer.
12. The heat transfer device of claim 11, wherein the thermally conductive particles are metal powder, carbon powder, ceramic powder, graphite power, or carbon fiber having high thermal conductivity.
US16/264,836 2018-02-12 2019-02-01 Heat transfer device Abandoned US20190249927A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180016952A KR20190097475A (en) 2018-02-12 2018-02-12 Heat pipe having improved thermal transfer
KR10-2018-0016952 2018-02-12

Publications (1)

Publication Number Publication Date
US20190249927A1 true US20190249927A1 (en) 2019-08-15

Family

ID=67541433

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/264,836 Abandoned US20190249927A1 (en) 2018-02-12 2019-02-01 Heat transfer device

Country Status (3)

Country Link
US (1) US20190249927A1 (en)
KR (1) KR20190097475A (en)
CN (1) CN110167317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230200019A1 (en) * 2021-12-20 2023-06-22 Meta Platforms Technologies, Llc Thermal conduit for electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969940A (en) * 1995-06-08 1999-10-19 International Business Machines Corporation Mechanical structure of information processing device
US6380622B1 (en) * 1998-11-09 2002-04-30 Denso Corporation Electric apparatus having a contact intermediary member and method for manufacturing the same
US9568255B2 (en) * 2014-04-21 2017-02-14 Htc Corporation Electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969940A (en) * 1995-06-08 1999-10-19 International Business Machines Corporation Mechanical structure of information processing device
US6380622B1 (en) * 1998-11-09 2002-04-30 Denso Corporation Electric apparatus having a contact intermediary member and method for manufacturing the same
US9568255B2 (en) * 2014-04-21 2017-02-14 Htc Corporation Electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230200019A1 (en) * 2021-12-20 2023-06-22 Meta Platforms Technologies, Llc Thermal conduit for electronic device

Also Published As

Publication number Publication date
KR20190097475A (en) 2019-08-21
CN110167317A (en) 2019-08-23

Similar Documents

Publication Publication Date Title
US10334716B2 (en) Multifunctional components for electronic devices and related methods of providing thermal management and board level shielding
JP6233377B2 (en) Manufacturing method of electronic equipment
US7623349B2 (en) Thermal management apparatus and method for a circuit substrate
US9258928B2 (en) Assemblies and methods for dissipating heat from handheld electronic devices
US9301429B2 (en) Thermal blocker for mobile device skin hot spot management
US9968004B2 (en) Thermal interface materials including electrically-conductive material
JP2017515300A (en) Heat dissipation assembly and electronic device
JP2003188323A (en) Graphite sheet and its manufacturing method
US20150201530A1 (en) Heat Spreading Packaging Apparatus
WO2015161051A1 (en) Thermal solutions and methods for dissipating heat from electronic devices using the same side of an anisotropic heat spreader
TW201248109A (en) Electronic equipment
US10624245B2 (en) Laser weldable brackets for attachment of heat sinks to board level shields
TW201527932A (en) Mobile terminal
US20180376618A1 (en) Thermally conductive member
US20160242321A1 (en) Mid-plates and electromagnetic interference (emi) board level shields with embedded and/or internal heat spreaders
US20140247559A1 (en) Heat dissipation structure of electronic shield cover
US20190249927A1 (en) Heat transfer device
TWI552672B (en) Central processing unit casing
KR101934573B1 (en) Thermal conductive laminated material
CN110012643A (en) Radiating subassembly, preparation method and electronic equipment
WO2016131296A1 (en) Thermal conductor and electronic terminal
JP2006013217A (en) Heatsink using carbon graphite
US9414527B2 (en) Thermal spreading for an externally pluggable electronic module
US20210112656A1 (en) Thermal management system and method therefor
US20230197564A1 (en) Heat dissipation structure and electronic apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: JOINSET CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIM, SUN-KI;REEL/FRAME:048216/0484

Effective date: 20190201

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION