US20180320990A1 - Enthalpy Exchanger Element And Method For The Production - Google Patents

Enthalpy Exchanger Element And Method For The Production Download PDF

Info

Publication number
US20180320990A1
US20180320990A1 US16/037,558 US201816037558A US2018320990A1 US 20180320990 A1 US20180320990 A1 US 20180320990A1 US 201816037558 A US201816037558 A US 201816037558A US 2018320990 A1 US2018320990 A1 US 2018320990A1
Authority
US
United States
Prior art keywords
plate element
plate
enthalpy exchanger
polymer film
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/037,558
Inventor
Christian Hirsch
Erhard Krumpholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zehnder Group International AG
Original Assignee
Zehnder Group International AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48874104&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20180320990(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Zehnder Group International AG filed Critical Zehnder Group International AG
Priority to US16/037,558 priority Critical patent/US20180320990A1/en
Publication of US20180320990A1 publication Critical patent/US20180320990A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0015Heat and mass exchangers, e.g. with permeable walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/065Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits
    • F28F21/066Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits for domestic or space-heating systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present invention refers to enthalpy exchanger elements. Furthermore, the invention discloses a method for the production of enthalpy exchanger elements. Finally, the invention refers to an enthalpy exchanger including inventive enthalpy exchanger elements.
  • heat exchangers are used to recover heat energy from one fluid or medium into another one.
  • This kind of heat energy is called sensible energy.
  • the heat energy or sensible energy of one fluid, normally air, is recovered into another one which is running adjacent, e.g. parallel, counter or cross flow, to the first where the fluid is at lower temperature. By inversing fluid flows, the exchange between the two will generate a cooler fluid.
  • Heat exchangers used for sensible energy recovery are usually made of metal or plastic plates. There are different types as there can be cross flow, parallel flow or counter flow configurations. The plates are defining flow channels between themselves so that the fluids can flow between the plates. Such devices are e.g. used in residential and commercial ventilation (HRV).
  • HRV residential and commercial ventilation
  • Another type of energy exchangers refers to the so called latent energy which is the moisture.
  • latent energy it is known to use desiccant coated metal or plastic substrates or membranes made from desiccant impregnated cellulose or polymer. Between plates made from cellulose or polymer, air passages are defined or created to allow the fluids to pass along the surface of the plates, thereby transferring moisture from one fluid to the other one.
  • the membranes usually have no structural strength, it is known to combine the membranes with frames or grids which thereby define spacings between the membranes.
  • the energy exchangers are called Enthalpy exchanger.
  • Those Enthalpy exchangers allow for the exchange of sensible and latent energy, resulting in Total Energy recovery.
  • Membrane materials as currently available are delivered by the roll.
  • the membrane material is the most critical part of an Enthalpy exchanger.
  • the membrane must be fixed and sealed to a kind of grid or frame and arranged in a way to allow for a fluid to flow between each membrane layer. So, it is obvious that Enthalpy exchangers of the known art are a compromise. They will usually lose in sensible energy exchange to gain in latent energy exchange as a result of the selective scope and characteristics of currently used membranes.
  • Such an enthalpy exchanger built from respective elements is e.g. WO 02/072242 A1.
  • On grids respective membranes made of fibers are positioned. The grids are stapled or stacked thereby altering the direction of the plates in order to create different air flow directions.
  • the plate element is a plastic plate.
  • the plate may be perforated using at least one of needles, pins, die and punch, laser, or the like.
  • a plate element with an inherent pore structure may be provided instead of perforating a plastic plate element in step a) with some of these perforating tools.
  • a plate element may comprise a porous polymer plate or a woven or non-woven fabric made from polymer fibers, inorganic fibers or metal fibers.
  • the plate element is a composite comprising a woven or non-woven fabric made from polymer fibers, inorganic fibers or metal fibers on the one hand and a porous polymeric material as a matrix on the other hand. It is to be understood that the plate element with the inherent pore structure is not necessarily selectively permeable for small molecules.
  • the border areas of the plate element are not perforated, preferably in a range of 5 to 20 mm, more preferably in a range of 10 to 20 mm, from the outer dimensions of the plate element.
  • step b) of applying to at least one side of the plate element a thin polymer film with water vapor transmission characteristics (water vapor transfer ratio, WVTR) and step c) of forming the plate element into a desired shape exhibiting a corrugation pattern, whereby the polymer film is formed into the same corrugation pattern shape as that of the plate element, are performed simultaneously.
  • WVTR water vapor transfer ratio
  • the polymer film may be bonded, preferably heat bonded and/or glued, to the plate element during the forming step of the plate element.
  • the polymer film may be made of a sulfonated copolymer, preferably a block copolymer.
  • the spatial frequency of any corrugations running in parallel within the corrugation pattern and/or the perforation density is varied, preferably in border areas, to improve frost resistance.
  • an Enthalpy exchanger element preferably produced according to the method as defined in the previous paragraphs, including a plate element with a shape exhibiting predetermined perforation and corrugation patterns, wherein at least one side of the plate element is covered by a thin polymer film with water vapor transmission characteristics (water vapor transfer ratio, WVTR).
  • the thin polymer film may be bonded, preferably heat bonded and/or glued, to the plate element.
  • the perforated area of the plate element includes corrugated or embossed surface areas.
  • the width of corrugations in the border areas of the plate element is larger than the width of corrugations in the middle area of the plate element and/or the perforation density (i.e. number of perforations per unit area) in a border area of the plate element is larger than in the middle area of the plate element.
  • the plate element has a border which allows gastight connection to another similar plate element.
  • This border preferably has border areas where the plate element is not perforated, preferably in a range of 5 to 20 mm, more preferably in a range of 10 to 20 mm, from the outer dimensions of the plate element.
  • the corrugations are oriented to guide a fluid flow.
  • the perforations may be openings of diverse shapes and with a surface area equivalent to hole diameters ranging from 30 ⁇ m to 1.2 mm, preferably providing a total open area of no less than 50% of the available plate exchange surface.
  • an Enthalpy exchanger with at least three plates like enthalpy exchanger elements fixed to each other in parallel orientation to form two fluid paths allowing fluids to flow there through, characterized in that the plate like heat exchanger elements are elements as defined in the previous paragraphs.
  • the enthalpy exchanger elements are fixed to each other by means of welding such as laser welding or ultrasonic welding, or by means of gluing.
  • a new hybrid exchanger element which on one hand has enough structural strength and density to create air flow channels for any type of cross flow and/or counter flow energy exchanger, thereby allowing for the use of a structurally strong material which is good for sensible energy exchange, on the other hand by size and number of perforations or openings or holes it is possible to define an area which is covered by a thin polymer film with latent energy exchange characteristics. It will be appreciated by a person skilled in the art that the efficiency of sensible energy exchange on one hand and latent energy exchange on the other hand can be defined, controlled and adapted to the respective needs of the environment (dry air, humidity, outside temperature and the like).
  • the plate element can be made of any plastic material.
  • the element can be provided with corrugations.
  • Corrugations can be designed to optimize the efficiency to pressure drop ratio.
  • the corrugations can be chosen to allow for creating flow channels between similar plates when those are stacked together.
  • one advantage will be the enhancement of the surface which is available for energy transfer. This can be built up as large as possible and can even reach an increase of 100% and more.
  • the corrugations can be designed in a way to allow for the easy arrangement of counter flow or cross flow configurations, e.g. by choosing oriented corrugations and alternating the position of the plate.
  • the border of the plate defines an area where similar plates can be fixed together in an appropriate way. This can be welding, e.g. laser welding, ultra sound welding and/or folding, hot crimping and the like. This stabilizes the rigidity of the package as well as allows to build up the desired flow channels.
  • the border area can be flattened, tongue/groove system, profiled or rimmed to allow for a tight sealable connection between plates.
  • the perforations can advantageously be performed prior to the plate forming step, which allows for a fast and convenient perforation step. That way plates can be perforated more easily and furthermore perforated in any desired area.
  • the thin polymer film can be made of a polymer according to the state of the art, e.g. like the product “Aquivion”, a trademark of Solvay or “Nexar”, a trademark of Kraton.
  • the material can be e.g. a ionomer in form of a copolymer produced from tetrafluoroethylene, C 2 F 4 , and Ethanesulfonyl fluoride, 1,1,2,2-tetrafluoro-2-[(trifluoroethenyl)-oxy], C 2 F 3 —O—(CF 2 ) 2 —SO 2 F, sulfonated block copolymer.
  • a ionomer in form of a copolymer produced from tetrafluoroethylene, C 2 F 4 , and Ethanesulfonyl fluoride, 1,1,2,2-tetrafluoro-2-[(trifluoroethenyl)-oxy], C 2 F 3 —O—(CF 2 ) 2 —SO 2 F, sulfonated block copolymer.
  • the thin polymer film may be a multilayer film comprising a sequence of polymer layers of different polymer types.
  • the polymer type of each polymer layer is selected from the group consisting of polyether ester, polyether amide and polyether urethane.
  • the total thickness of the thin polymer multilayer film is between 5 ⁇ m and 200 ⁇ m more preferably between 10 ⁇ m and 150 ⁇ m
  • the thickness of each individual polymer layer within the thin polymer multilayer film is between 2 ⁇ m and 20 ⁇ m, more preferably between 5 ⁇ m and 20 ⁇ m.
  • the polymers can be adapted to the desired characteristic and features.
  • the highly heat conductive materials as the structural elements for the Enthalpy membrane, high sensible efficiency is ensured.
  • the polymer for water vapor transfer By defining the perforations and choosing the polymer for water vapor transfer, high latent recovery is ensured.
  • a total “open area” for water vapor transfer of no less than 50% of the available plate exchange surface is provided.
  • the polymer can be combined with additives to manifold and magnify its attributes. It can be, for instance, efficiently anti-bacterial and can meet fire resistance requirements (UL). Its viscosity can be adjusted to achieve the optimal tunable exchange features of the plate allowing as high a moisture exchange as possible.
  • the polymer film may be applied to one side of the plate element prior to the forming step of said plate element, thereby completely covering the plate element as well as the holes or perforations. Therefore the perforations are not limited in size and can be chosen in any desired dimension.
  • the plate element is formed to exhibit the aforementioned features, e.g. corrugations, side walls, flat border areas and the like.
  • the polymer film is formed into the same shape as the plate element and can be permanently bonded or glued to said plate element. The bonding or gluing may be performed with or without heating.
  • the perforations are not permanently covered and sealed by a polymer film, but rather filled with a polymer solution, which can be the same material as the polymer film, and subsequently cured.
  • the polymer may be supplied in a dispersed or dissolved state.
  • the dispersion or solution comprising the polymer can be brought to the plate by thereby filling or covering the holes or perforations with the polymer dispersion or solution by way of spraying, dipping, serigraphy or any other lamination method.
  • one side of the flat plate element may be completely covered by a liner (placeholder-film), which does not bond to the plate element during the forming step and can easily be removed after the forming step. Subsequently to removing the liner (placeholder-film) the perforation holes can be filled with the polymer solution, as described above.
  • the sensible energy transfer and the latent energy transfer capabilities of the heat exchanger are tunable and adjustable.
  • the plates are adaptable to environmental conditions by the variable mosaic geometry of the perforations.
  • an exchanger can be designed to operate at a temperature under the freezing point ( ⁇ 10° C.) without ice build-up only by choosing the right position of the perforations and polymeric treatment of the constitutive plates.
  • the width of corrugations in the border area of the plate element is larger compared to the width of the corrugations in the middle area of the plate element.
  • the width of the resulting flow channels in the border area is increased and as a result the flow velocity of the fluid is increased, thus preventing or at least delaying ice from building up.
  • the rigidity of the structural elements could make the plate and thereby the polymer film capable of handling a pressure differential up to 1 kPa within the exchanger. This advantage opens the door to larger exchanger constructions for commercial applications.
  • the invention provides a simple method for the production of total energy exchanger plates allowing sensible as well as latent energy exchange.
  • the design and the adaptability of the plates allows for the construction and design of plate exchangers which are optimized with regard to the technical requirements and/or the environmental conditions.
  • Stamped, corrugated or embossed aluminum, stainless steel, resin based plates and/or vacuum formed plastic plates can be made using proven automation technologies including the assembly, e.g. by vacuum grip, and seal, e.g. by laser welding, ultra sound welding, folding, crimping, to obtain packages of superposed rigid plates.
  • the plates are washable, fire retardant, antibacterial, sealed e.g. leakage proof. They have all valuable advantages that are necessary to create highly efficient total energy exchangers.
  • the plate perforation can be performed by pre-programmed continuous laser processes, by mechanical systems like needle-roller and the like, or chemical etching processes.
  • FIG. 1 a flow chart illustrating a sequence of steps of the production method according to the invention.
  • FIG. 2 a sequence of states of the production of an enthalpy exchanger element in cross sectional view during the production method according to the invention.
  • FIG. 1 a sequence of steps of the production method according to the invention are shown. Each step shown in FIG. 1 corresponds to a resulting state schematically shown in FIG. 2 .
  • the illustrated geometric parameters such as a thicknesses, hole diameters, curvatures etc. in FIG. 2 are for exemplary purposes, only. Therefore, they do not necessarily represent the proper or preferred ratios of such parameters.
  • a flat yet unformed plastic plate element 1 with defined outer dimensions is provided.
  • perforating step S 2 a portion of the flat plastic plate element 1 is transferred to a perforation device (not shown) where the flat plastic plate element 1 is perforated by a needle-roller or a punching die (not shown) depending on the desired size of the holes.
  • the entire plate element 1 is perforated with a symmetric hole pattern, except for the border areas (not shown) to allow welding of the plate elements 1 in order to form the plate exchanger (not shown).
  • the perforation pattern is made up of a plurality of holes 2 extending across the entire plate thickness from a first surface 1 a to a second surface 1 b of the plate element 1 .
  • one side, i.e. surface 1 a , of the now perforated plate element 1 is completely covered by a thin polymer film 3 .
  • the polymer film is made of a proprietary sulfonated block copolymer or any type of such sulfonated block copolymers.
  • forming step S 4 the now perforated and covered flat plate element 1 is transferred to a forming device, which is embodied by a vacuum forming device, where the flat plate element 1 and the thin polymer film 3 are formed into a desired shape.
  • a forming device which is embodied by a vacuum forming device, where the flat plate element 1 and the thin polymer film 3 are formed into a desired shape.
  • the border areas, fluid inlets and outlets and corrugations 4 are formed into the plate element 1 .
  • the corrugation pattern is made up of a plurality of corrugations 4 extending across the plate area.
  • the border areas are being formed in non-perforated areas, while the corrugations are being formed in perforated areas of the plate element 1 .
  • the thin polymer film 3 is formed into the exact same shape as the plate element 1 and is permanently bonded thereto, due to the heat, which is applied by the vacuum forming device.
  • These thin-polymer-film-covered and co-formed plates 1 constitute the enthalpy exchanger plates according to the invention. They will be stacked to build an enthalpy exchanger (also referred to as a total energy exchanger) core e.g. for ventilation systems to exchange heat from outgoing to incoming air (or vice versa for free cooling in summer) as well as humidity from outgoing to incoming air in winter (or vice versa for moisture reduction in summer or all year round in hot and humid climatic zones).
  • an enthalpy exchanger also referred to as a total energy exchanger
  • core e.g. for ventilation systems to exchange heat from outgoing to incoming air (or vice versa for free cooling in summer) as well as humidity from outgoing to incoming air in winter (or vice versa for moisture reduction in summer or all year round in hot and humid climatic zones).
  • the cross sectional shape of the corrugations 4 may be rectangular, square or triangular. It may also be trapezoidal such half hexagonal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

Enthalpy exchanger elements which allow the creation of enthalpy exchangers whereby the efficiency of sensible energy exchange and latent energy exchange can be varied and controlled and especially improved. Also, a method for the production of enthalpy exchanger elements including: a) perforating a flat plate element (1) according to a predetermined perforation pattern (2, 2, . . . ) within the plate outer dimensions, or providing a plate element (1) with an inherent pore structure; b) applying to at least one side (1 a) of the plate element (1) a thin polymer film (3) with water vapor transmission characteristics; c) forming the plate element (1) into a desired shape exhibiting a corrugation pattern (4, 4, . . . ), whereby the polymer film (3) is formed into the same corrugation pattern shape as that of the plate element (1).

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 14/906,720, having a filing date of Jan. 21, 2016, which is a 371 of PCT/M2014/001355, having a filing date of Jul. 17, 2017, the disclosures of which are hereby incorporated by reference in their entirety and all commonly owned.
  • FIELD OF THE INVENTION
  • The present invention refers to enthalpy exchanger elements. Furthermore, the invention discloses a method for the production of enthalpy exchanger elements. Finally, the invention refers to an enthalpy exchanger including inventive enthalpy exchanger elements.
  • BACKGROUND OF THE INVENTION
  • It is state of the art to use different kinds of heat exchangers for different purposes. Usually, heat exchangers are used to recover heat energy from one fluid or medium into another one. This kind of heat energy is called sensible energy. The heat energy or sensible energy of one fluid, normally air, is recovered into another one which is running adjacent, e.g. parallel, counter or cross flow, to the first where the fluid is at lower temperature. By inversing fluid flows, the exchange between the two will generate a cooler fluid. Heat exchangers used for sensible energy recovery are usually made of metal or plastic plates. There are different types as there can be cross flow, parallel flow or counter flow configurations. The plates are defining flow channels between themselves so that the fluids can flow between the plates. Such devices are e.g. used in residential and commercial ventilation (HRV).
  • Another type of energy exchangers refers to the so called latent energy which is the moisture. To exchange the latent energy it is known to use desiccant coated metal or plastic substrates or membranes made from desiccant impregnated cellulose or polymer. Between plates made from cellulose or polymer, air passages are defined or created to allow the fluids to pass along the surface of the plates, thereby transferring moisture from one fluid to the other one. As the membranes usually have no structural strength, it is known to combine the membranes with frames or grids which thereby define spacings between the membranes.
  • In case of a combination of the above, the energy exchangers are called Enthalpy exchanger. Those Enthalpy exchangers allow for the exchange of sensible and latent energy, resulting in Total Energy recovery.
  • Membrane materials as currently available are delivered by the roll. The membrane material is the most critical part of an Enthalpy exchanger. The membrane must be fixed and sealed to a kind of grid or frame and arranged in a way to allow for a fluid to flow between each membrane layer. So, it is obvious that Enthalpy exchangers of the known art are a compromise. They will usually lose in sensible energy exchange to gain in latent energy exchange as a result of the selective scope and characteristics of currently used membranes.
  • Such an enthalpy exchanger built from respective elements is e.g. WO 02/072242 A1. On grids respective membranes made of fibers are positioned. The grids are stapled or stacked thereby altering the direction of the plates in order to create different air flow directions.
  • SUMMARY OF THE INVENTION
  • In view of the mentioned state of the art it is an object of the invention to provide enthalpy exchanger elements and enthalpy exchangers as well as a method for the production of enthalpy exchanger elements which allow for the creation of Enthalpy exchangers whereby the efficiency of sensible energy exchange and latent energy exchange can be varied and controlled and especially improved.
  • With the invention, the solution of the above mentioned object is presented by a method for the production of enthalpy exchanger elements comprising the steps of:
  • a) perforating a flat plate element according to a predetermined perforation pattern within the plate outer dimensions, or providing a plate element with an inherent pore structure;
  • b) applying to at least one side of the plate element a thin polymer film with water vapor transmission characteristics (water vapor transfer ratio, WVTR);
  • c) forming the plate element into a desired shape exhibiting a corrugation pattern, whereby the polymer film is formed into the same corrugation pattern shape as that of the plate element.
  • Preferably, in the method according to the invention, the plate element is a plastic plate.
  • The plate may be perforated using at least one of needles, pins, die and punch, laser, or the like.
  • Alternatively, instead of perforating a plastic plate element in step a) with some of these perforating tools, a plate element with an inherent pore structure may be provided. Such a plate element may comprise a porous polymer plate or a woven or non-woven fabric made from polymer fibers, inorganic fibers or metal fibers. Preferably, the plate element is a composite comprising a woven or non-woven fabric made from polymer fibers, inorganic fibers or metal fibers on the one hand and a porous polymeric material as a matrix on the other hand. It is to be understood that the plate element with the inherent pore structure is not necessarily selectively permeable for small molecules.
  • Preferably, the border areas of the plate element are not perforated, preferably in a range of 5 to 20 mm, more preferably in a range of 10 to 20 mm, from the outer dimensions of the plate element.
  • Preferably, in the method according to the invention, step b) of applying to at least one side of the plate element a thin polymer film with water vapor transmission characteristics (water vapor transfer ratio, WVTR) and step c) of forming the plate element into a desired shape exhibiting a corrugation pattern, whereby the polymer film is formed into the same corrugation pattern shape as that of the plate element, are performed simultaneously. This allows standard thermoforming, preferably vacuum forming, to be used for shaping the two-layer structure comprising the plastic support and the thin polymer film.
  • The polymer film may be bonded, preferably heat bonded and/or glued, to the plate element during the forming step of the plate element.
  • The polymer film may be made of a sulfonated copolymer, preferably a block copolymer.
  • Advantageously, in the method according to the invention, the spatial frequency of any corrugations running in parallel within the corrugation pattern and/or the perforation density (i.e. number of perforations per unit area) is varied, preferably in border areas, to improve frost resistance.
  • With the invention, the solution of the above mentioned object is presented by an Enthalpy exchanger element, preferably produced according to the method as defined in the previous paragraphs, including a plate element with a shape exhibiting predetermined perforation and corrugation patterns, wherein at least one side of the plate element is covered by a thin polymer film with water vapor transmission characteristics (water vapor transfer ratio, WVTR).
  • In the enthalpy exchanger element according to the invention, the thin polymer film may be bonded, preferably heat bonded and/or glued, to the plate element.
  • Preferably, the perforated area of the plate element includes corrugated or embossed surface areas.
  • Preferably, the width of corrugations in the border areas of the plate element is larger than the width of corrugations in the middle area of the plate element and/or the perforation density (i.e. number of perforations per unit area) in a border area of the plate element is larger than in the middle area of the plate element.
  • Preferably, the plate element has a border which allows gastight connection to another similar plate element. This border preferably has border areas where the plate element is not perforated, preferably in a range of 5 to 20 mm, more preferably in a range of 10 to 20 mm, from the outer dimensions of the plate element.
  • Preferably, the corrugations are oriented to guide a fluid flow.
  • The perforations may be openings of diverse shapes and with a surface area equivalent to hole diameters ranging from 30 μm to 1.2 mm, preferably providing a total open area of no less than 50% of the available plate exchange surface.
  • With the invention, the solution of the above mentioned object is presented by an Enthalpy exchanger with at least three plates like enthalpy exchanger elements fixed to each other in parallel orientation to form two fluid paths allowing fluids to flow there through, characterized in that the plate like heat exchanger elements are elements as defined in the previous paragraphs.
  • Preferably, the enthalpy exchanger elements are fixed to each other by means of welding such as laser welding or ultrasonic welding, or by means of gluing.
  • According to the invention, a new hybrid exchanger element is provided which on one hand has enough structural strength and density to create air flow channels for any type of cross flow and/or counter flow energy exchanger, thereby allowing for the use of a structurally strong material which is good for sensible energy exchange, on the other hand by size and number of perforations or openings or holes it is possible to define an area which is covered by a thin polymer film with latent energy exchange characteristics. It will be appreciated by a person skilled in the art that the efficiency of sensible energy exchange on one hand and latent energy exchange on the other hand can be defined, controlled and adapted to the respective needs of the environment (dry air, humidity, outside temperature and the like).
  • According to the invention, the plate element can be made of any plastic material. The element can be provided with corrugations. Corrugations can be designed to optimize the efficiency to pressure drop ratio. The corrugations can be chosen to allow for creating flow channels between similar plates when those are stacked together. By the definition of the corrugation, one advantage will be the enhancement of the surface which is available for energy transfer. This can be built up as large as possible and can even reach an increase of 100% and more. Furthermore, the corrugations can be designed in a way to allow for the easy arrangement of counter flow or cross flow configurations, e.g. by choosing oriented corrugations and alternating the position of the plate.
  • The border of the plate defines an area where similar plates can be fixed together in an appropriate way. This can be welding, e.g. laser welding, ultra sound welding and/or folding, hot crimping and the like. This stabilizes the rigidity of the package as well as allows to build up the desired flow channels. The border area can be flattened, tongue/groove system, profiled or rimmed to allow for a tight sealable connection between plates.
  • The perforations can advantageously be performed prior to the plate forming step, which allows for a fast and convenient perforation step. That way plates can be perforated more easily and furthermore perforated in any desired area.
  • The thin polymer film can be made of a polymer according to the state of the art, e.g. like the product “Aquivion”, a trademark of Solvay or “Nexar”, a trademark of Kraton.
  • The material can be e.g. a ionomer in form of a copolymer produced from tetrafluoroethylene, C2F4, and Ethanesulfonyl fluoride, 1,1,2,2-tetrafluoro-2-[(trifluoroethenyl)-oxy], C2F3—O—(CF2)2—SO2F, sulfonated block copolymer.
  • The thin polymer film may be a multilayer film comprising a sequence of polymer layers of different polymer types. Preferably, the polymer type of each polymer layer is selected from the group consisting of polyether ester, polyether amide and polyether urethane. Preferably the total thickness of the thin polymer multilayer film is between 5 μm and 200 μm more preferably between 10 μm and 150 μm Preferably, the thickness of each individual polymer layer within the thin polymer multilayer film is between 2 μm and 20 μm, more preferably between 5 μm and 20 μm.
  • However, the polymers can be adapted to the desired characteristic and features.
  • It will be appreciated by a person skilled in the art that the amount or efficiency of latent energy recovery depends on the surface provided by the holes or perforations, their shapes and their locations. So it is possible to adapt the heat exchanger plates to the environmental and functional conditions.
  • By using the highly heat conductive materials as the structural elements for the Enthalpy membrane, high sensible efficiency is ensured. By defining the perforations and choosing the polymer for water vapor transfer, high latent recovery is ensured. Preferably, a total “open area” for water vapor transfer of no less than 50% of the available plate exchange surface is provided.
  • The polymer can be combined with additives to manifold and magnify its attributes. It can be, for instance, efficiently anti-bacterial and can meet fire resistance requirements (UL). Its viscosity can be adjusted to achieve the optimal tunable exchange features of the plate allowing as high a moisture exchange as possible.
  • The polymer film may be applied to one side of the plate element prior to the forming step of said plate element, thereby completely covering the plate element as well as the holes or perforations. Therefore the perforations are not limited in size and can be chosen in any desired dimension.
  • Subsequently to applying the polymer film to the plate element, the plate element is formed to exhibit the aforementioned features, e.g. corrugations, side walls, flat border areas and the like. The polymer film is formed into the same shape as the plate element and can be permanently bonded or glued to said plate element. The bonding or gluing may be performed with or without heating.
  • According to an alternate embodiment of the inventions, the perforations are not permanently covered and sealed by a polymer film, but rather filled with a polymer solution, which can be the same material as the polymer film, and subsequently cured. The polymer may be supplied in a dispersed or dissolved state. The dispersion or solution comprising the polymer can be brought to the plate by thereby filling or covering the holes or perforations with the polymer dispersion or solution by way of spraying, dipping, serigraphy or any other lamination method. In order to maintain the same perforation characteristics, one side of the flat plate element may be completely covered by a liner (placeholder-film), which does not bond to the plate element during the forming step and can easily be removed after the forming step. Subsequently to removing the liner (placeholder-film) the perforation holes can be filled with the polymer solution, as described above.
  • It will be appreciated by a person skilled in the art that the sensible energy transfer and the latent energy transfer capabilities of the heat exchanger are tunable and adjustable. The plates are adaptable to environmental conditions by the variable mosaic geometry of the perforations. E.g. an exchanger can be designed to operate at a temperature under the freezing point (−10° C.) without ice build-up only by choosing the right position of the perforations and polymeric treatment of the constitutive plates.
  • However, under harsh conditions, especially plate exchangers tend to build ice in the narrow border channels, thus decreasing the exchange efficiency of the plate exchanger. This is due to a reduced flow velocity of fluids in said border channels.
  • In order to overcome this issue, the width of corrugations in the border area of the plate element is larger compared to the width of the corrugations in the middle area of the plate element. Thus, the width of the resulting flow channels in the border area is increased and as a result the flow velocity of the fluid is increased, thus preventing or at least delaying ice from building up.
  • The rigidity of the structural elements could make the plate and thereby the polymer film capable of handling a pressure differential up to 1 kPa within the exchanger. This advantage opens the door to larger exchanger constructions for commercial applications.
  • The invention provides a simple method for the production of total energy exchanger plates allowing sensible as well as latent energy exchange. The design and the adaptability of the plates allows for the construction and design of plate exchangers which are optimized with regard to the technical requirements and/or the environmental conditions.
  • Stamped, corrugated or embossed aluminum, stainless steel, resin based plates and/or vacuum formed plastic plates can be made using proven automation technologies including the assembly, e.g. by vacuum grip, and seal, e.g. by laser welding, ultra sound welding, folding, crimping, to obtain packages of superposed rigid plates. The plates are washable, fire retardant, antibacterial, sealed e.g. leakage proof. They have all valuable advantages that are necessary to create highly efficient total energy exchangers.
  • The plate perforation, too, can be performed by pre-programmed continuous laser processes, by mechanical systems like needle-roller and the like, or chemical etching processes.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further features, advantages and aspects of the invention become obvious from the following description of the drawings. The drawings show
  • FIG. 1 a flow chart illustrating a sequence of steps of the production method according to the invention; and
  • FIG. 2 a sequence of states of the production of an enthalpy exchanger element in cross sectional view during the production method according to the invention.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • In FIG. 1, a sequence of steps of the production method according to the invention are shown. Each step shown in FIG. 1 corresponds to a resulting state schematically shown in FIG. 2. It should be noted that the illustrated geometric parameters such a thicknesses, hole diameters, curvatures etc. in FIG. 2 are for exemplary purposes, only. Therefore, they do not necessarily represent the proper or preferred ratios of such parameters.
  • In providing step S1, a flat yet unformed plastic plate element 1 with defined outer dimensions is provided. In perforating step S2, a portion of the flat plastic plate element 1 is transferred to a perforation device (not shown) where the flat plastic plate element 1 is perforated by a needle-roller or a punching die (not shown) depending on the desired size of the holes. In the present case, the entire plate element 1 is perforated with a symmetric hole pattern, except for the border areas (not shown) to allow welding of the plate elements 1 in order to form the plate exchanger (not shown). The perforation pattern is made up of a plurality of holes 2 extending across the entire plate thickness from a first surface 1 a to a second surface 1 b of the plate element 1.
  • Subsequently to the perforating step, in covering step S3, one side, i.e. surface 1 a, of the now perforated plate element 1 is completely covered by a thin polymer film 3. The polymer film is made of a proprietary sulfonated block copolymer or any type of such sulfonated block copolymers.
  • Subsequently to the covering step, in forming step S4, the now perforated and covered flat plate element 1 is transferred to a forming device, which is embodied by a vacuum forming device, where the flat plate element 1 and the thin polymer film 3 are formed into a desired shape. In this forming step S4, the border areas, fluid inlets and outlets and corrugations 4 are formed into the plate element 1. The corrugation pattern is made up of a plurality of corrugations 4 extending across the plate area.
  • In the present embodiment of the invention, the border areas are being formed in non-perforated areas, while the corrugations are being formed in perforated areas of the plate element 1.
  • Thereby, during the forming step S4 which is a co-forming step of the flat plate element 1 and the thin polymer film 3, the thin polymer film 3 is formed into the exact same shape as the plate element 1 and is permanently bonded thereto, due to the heat, which is applied by the vacuum forming device.
  • These thin-polymer-film-covered and co-formed plates 1 constitute the enthalpy exchanger plates according to the invention. They will be stacked to build an enthalpy exchanger (also referred to as a total energy exchanger) core e.g. for ventilation systems to exchange heat from outgoing to incoming air (or vice versa for free cooling in summer) as well as humidity from outgoing to incoming air in winter (or vice versa for moisture reduction in summer or all year round in hot and humid climatic zones).
  • The cross sectional shape of the corrugations 4 may be rectangular, square or triangular. It may also be trapezoidal such half hexagonal.
  • The drawing and the description do in no way restrict the invention and are meant for illustrating the invention by an example, only.
  • REFERENCE NUMERALS
      • 1 flat plate element
      • 1 a first surface
      • 1 b second surface
      • 2 hole
      • 3 thin polymer film
      • 4 corrugation
      • S1 providing step
      • S2 perforating step
      • S3 covering step
      • S4 forming step (co-forming)

Claims (20)

That which is claimed is:
1. A method for the production of enthalpy exchanger elements, the method comprising:
a) perforating a flat plate element (1) according to a predetermined perforation pattern (2, 2, . . . ) within the plate outer dimensions, or providing a plate element (1) with an inherent pore structure;
b) applying to at least one side (1 a) of the plate element (1) a thin polymer film (3) with water vapor transmission characteristics (water vapor transfer ratio, WVTR), thereby completely covering the plate element as well as the holes or perforations, or the inherent pore structure;
c) forming the plate element (1) into a desired shape exhibiting a corrugation pattern (4, 4, . . . ), whereby the polymer film (3) is formed into the same corrugation pattern shape as that of the plate element (1); and
whereby the plate element is a plastic plate and whereby a total open area for water vapor transfer on no less than 50% of the available plate exchange surface is provided.
2. The method according to claim 1, wherein the plate is perforated using at least one of needles, pins, die and punch, or a laser.
3. The method according to claim 1, wherein steps b) and c) are performed simultaneously.
4. The method according to claim 3, wherein the polymer film is bonded, preferably heat bonded and/or glued, to the plate element during the forming step of the plate element.
5. The method according to claim 1, wherein said polymer film is made of a sulfonated copolymer, preferably a block copolymer.
6. The method according to claim 1 wherein the spatial frequency of the corrugations of the corrugation pattern and the density of the perforations in the perforation pattern is varied in a border area of the corrugation pattern and a border area of the perforation pattern in order to improve frost resistance.
7. An enthalpy exchanger element comprising:
a plate element (1) with a shape exhibiting a predetermined perforation pattern (2, 2, . . . ); and
a predetermined corrugation pattern (4, 4, . . . );
wherein at least one side (1 a) of the plate element (1) is covered by a thin polymer film (3) with water vapor transmission characteristics (water vapor transfer ratio, WVTR).
8. The enthalpy exchanger element of claim 7, wherein the thin polymer film is bonded, preferably heat bonded and/or glued, to the plate element.
9. The enthalpy exchanger element according to claim 7, wherein the perforated area of the plate element includes corrugated or embossed surface areas.
10. The enthalpy exchanger element according to claim 8, wherein the width of corrugations (4) in the border areas of the plate element (1) is larger than the width of corrugations (4) in the middle area of the plate element (1) and/or the perforation density (i.e. number of perforations per unit area) in a border area of the plate element is larger than in the middle area of the plate element.
11. The enthalpy exchanger element according to claim 7, wherein the corrugations are oriented to guide a fluid flow.
12. The enthalpy exchanger element according to claim 7, wherein the perforations are openings of diverse shapes and with a surface area equivalent to hole diameters ranging from 30 μm to 1.2 mm, preferably providing a total open area of no less than 50% of the available plate exchange surface.
13. The enthalpy exchanger element having the plate like heat exchanger elements according to claim 7, wherein at least three plates like enthalpy exchanger elements fixed to each other in parallel orientation to form two fluid paths allowing fluids to flow there through.
14. The enthalpy exchanger element according to claim 13, wherein the enthalpy exchanger elements are fixed to each other by means of welding such as laser welding or ultrasonic welding, or by means of gluing.
15. The enthalpy exchanger element according to claim 7, wherein the border areas of the plate element are not perforated, preferably in a range of 5 to 20 mm, more preferably in a range of 10 to 20 mm, from the outer dimensions of the plate element.
16. The enthalpy exchanger element according to claim 7, wherein the perforations may be openings of diverse shapes and with a surface area equivalent to hole diameters ranging from 30 μm to 1.2 mm, preferably providing a total open area of no less than 50% of the available plate exchange surface area.
17. The enthalpy exchanger element according to claim 7, wherein the plate element is (i) a porous polymer plate, (ii) a woven or non-woven fabric made from polymer fibers, inorganic fibers or metal fibers, (iii) a composite made using a woven or non-woven fabric made from polymer fibers, inorganic fibers or metal fibers, (iv) a composite which includes a porous polymeric material as a matrix, or (iv) combinations thereof.
18. The enthalpy exchanger element according to claim 7, wherein said thin polymer film is a multilayer film further comprising a sequence of polymer layers of different polymer types.
19. The enthalpy exchanger element according to claim 18, wherein the polymer type of each polymer layer is selected from the group consisting of polyether ester, polyether amide and polyether urethane.
20. The enthalpy exchanger element according to claim 18, wherein the total thickness of the thin polymer multilayer film is between 5 μm and 200 μm or between 10 μm and 150 μm.
US16/037,558 2013-07-22 2018-07-17 Enthalpy Exchanger Element And Method For The Production Abandoned US20180320990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/037,558 US20180320990A1 (en) 2013-07-22 2018-07-17 Enthalpy Exchanger Element And Method For The Production

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP13003673.4A EP2829836A1 (en) 2013-07-22 2013-07-22 Enthalpy exchanger element and method for the production
EP13003673.4 2013-07-22
PCT/IB2014/001355 WO2015011543A1 (en) 2013-07-22 2014-07-17 Enthalpy exchanger element and method for the production
US201614906720A 2016-01-21 2016-01-21
US16/037,558 US20180320990A1 (en) 2013-07-22 2018-07-17 Enthalpy Exchanger Element And Method For The Production

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2014/001355 Division WO2015011543A1 (en) 2013-07-22 2014-07-17 Enthalpy exchanger element and method for the production
US14/906,720 Division US10041746B2 (en) 2013-07-22 2014-07-17 Enthalpy exchanger element and method for the production

Publications (1)

Publication Number Publication Date
US20180320990A1 true US20180320990A1 (en) 2018-11-08

Family

ID=48874104

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/906,720 Expired - Fee Related US10041746B2 (en) 2013-07-22 2014-07-17 Enthalpy exchanger element and method for the production
US16/037,558 Abandoned US20180320990A1 (en) 2013-07-22 2018-07-17 Enthalpy Exchanger Element And Method For The Production

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/906,720 Expired - Fee Related US10041746B2 (en) 2013-07-22 2014-07-17 Enthalpy exchanger element and method for the production

Country Status (16)

Country Link
US (2) US10041746B2 (en)
EP (3) EP2829836A1 (en)
JP (1) JP6566945B2 (en)
KR (1) KR20160034372A (en)
CN (1) CN105531556B (en)
AP (1) AP2016009005A0 (en)
AU (1) AU2014294744B2 (en)
BR (1) BR112016001532B1 (en)
CA (1) CA2918964A1 (en)
DK (2) DK3620743T3 (en)
ES (2) ES2877073T3 (en)
LT (1) LT3025113T (en)
MX (1) MX2016000859A (en)
PL (2) PL3620743T3 (en)
WO (1) WO2015011543A1 (en)
ZA (1) ZA201600763B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10415900B2 (en) 2013-07-19 2019-09-17 Westwind Limited Heat / enthalpy exchanger element and method for the production
CN105980779B (en) 2013-12-02 2019-06-28 森德国际集团股份有限公司 The method and system of body is heated or cooled in a kind of fixation
JP6978939B2 (en) * 2015-01-23 2021-12-08 ツェンダー グループ インターナショナル アーゲー An enthalpy exchange element, an enthalpy exchanger including the element, and a method for manufacturing the same.
EA039572B1 (en) * 2015-04-11 2022-02-11 Зендер Груп Интернэшнл Аг Method for producing an enthalpy exchanger and enthalpy exchanger
EP3276292A1 (en) * 2016-07-25 2018-01-31 Zehnder Group International AG Enthalpy exchanger element, enthalpy exchanger comprising such elements and method for their production
US20220163272A1 (en) * 2017-05-18 2022-05-26 Kai Klingenburg Heat-exchanger plate
US11759753B2 (en) * 2017-07-24 2023-09-19 Zehnder Group International Ag Enthalpy exchanger element, enthalpy exchanger comprising such elements and method for their production
EP3447433B1 (en) * 2017-08-24 2020-05-13 Mahle International GmbH Heat exchanger as well as method for producing a heat exchanger
US20200368804A1 (en) * 2019-05-24 2020-11-26 Trusval Technology Co., Ltd. Manufacturing process for heat sink composite having heat dissipation function and manufacturing method for its finished product
JP2021049679A (en) 2019-09-24 2021-04-01 豊田合成株式会社 Water-repellent film having anti-frosting properties and method for manufacturing the same
EP4238669A1 (en) * 2022-03-02 2023-09-06 Recutech S.r.o. Method of manufacturing a heat-humidity exchange plate of an enthalpy air-to-air exchanger, a heat-humidity exchange plate and an enthalpy exchanger

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3430204A1 (en) * 1984-08-17 1986-02-27 Hoechst Ag, 6230 Frankfurt Apparatus for carrying out pervaporation processes
JPH08219504A (en) * 1995-02-10 1996-08-30 Japan Gore Tex Inc Humidifying element and humidifying device
US6953510B1 (en) * 1998-10-16 2005-10-11 Tredegar Film Products Corporation Method of making microporous breathable film
US6951242B1 (en) * 1999-02-04 2005-10-04 Des Champs Nicholas H Enthalpy heat exchanger with variable recirculation and filtration
WO2001027552A1 (en) * 1999-10-08 2001-04-19 Carrier Corporation A plate-type heat exchanger
WO2002072242A1 (en) 2001-03-13 2002-09-19 Dais-Analytic Corporation Heat and moisture exchange device
WO2002096537A1 (en) * 2001-05-29 2002-12-05 Pall Corporation Formed membrane and method of making
US20030056884A1 (en) * 2001-09-26 2003-03-27 Belding William A. Heat and moisture exchange media
JP2006150323A (en) * 2004-11-01 2006-06-15 Japan Gore Tex Inc Diaphragm and production method of the same and heat exchanger equipped with the same
CN2903885Y (en) * 2005-10-24 2007-05-23 陈波 Air damp and heat exchanger
KR100737695B1 (en) * 2006-06-28 2007-07-09 이찬봉 Heat conduction unit with improved laminar
US8235093B2 (en) * 2008-06-19 2012-08-07 Nutech R. Holdings Inc. Flat plate heat and moisture exchanger
JP5568231B2 (en) * 2008-11-07 2014-08-06 日本ゴア株式会社 Manufacturing method of molded products
US9943796B2 (en) * 2009-03-26 2018-04-17 Columbus Industries, Inc. Multi layer pleatable filter medium
US9562726B1 (en) * 2010-02-12 2017-02-07 Dustin Eplee Counter-flow membrane plate exchanger and method of making
US9429366B2 (en) * 2010-09-29 2016-08-30 Kraton Polymers U.S. Llc Energy recovery ventilation sulfonated block copolymer laminate membrane
WO2012081744A1 (en) * 2010-12-15 2012-06-21 Ntpia Co., Ltd. Polymer composite materials for building air conditioning or dehumidification and preparation method thereof
CA2826995A1 (en) * 2011-02-09 2012-08-16 Klingenburg Gmbh A heat- and/or moisture-exchange element
CN103747854B (en) * 2011-06-07 2016-12-07 迪博因特技术公司 Optional water steam transport membrane including nanofiber layer and preparation method thereof
CN103998888B (en) * 2011-12-19 2017-03-29 迪博因特技术公司 Adverse current energy recovery ventilator (ERV) core
EP2618090B1 (en) * 2012-01-20 2014-10-15 Westwind Limited Heat exchanger element and method for the production
US20140014289A1 (en) * 2012-07-11 2014-01-16 Kraton Polymers U.S. Llc Enhanced-efficiency energy recovery ventilation core
US20140262125A1 (en) * 2013-03-14 2014-09-18 Venmar Ces, Inc. Energy exchange assembly with microporous membrane
US10415900B2 (en) * 2013-07-19 2019-09-17 Westwind Limited Heat / enthalpy exchanger element and method for the production
US9216405B1 (en) * 2014-06-26 2015-12-22 Kraton Polymers U.S. Llc Rotary enthalpy exchange wheel having sulfonated block copolymer

Also Published As

Publication number Publication date
ZA201600763B (en) 2017-03-29
CN105531556A (en) 2016-04-27
BR112016001532B1 (en) 2020-10-13
ES2759116T3 (en) 2020-05-07
AU2014294744A1 (en) 2016-02-11
EP3025113A1 (en) 2016-06-01
EP3620743B1 (en) 2021-03-17
JP6566945B2 (en) 2019-08-28
WO2015011543A1 (en) 2015-01-29
PL3025113T3 (en) 2020-03-31
MX2016000859A (en) 2017-03-10
CA2918964A1 (en) 2015-01-29
KR20160034372A (en) 2016-03-29
EP3025113B1 (en) 2019-09-04
CN105531556B (en) 2019-05-14
EP3620743A1 (en) 2020-03-11
JP2016527469A (en) 2016-09-08
DK3025113T3 (en) 2019-12-09
AU2014294744B2 (en) 2018-11-08
PL3620743T3 (en) 2021-11-15
US10041746B2 (en) 2018-08-07
AP2016009005A0 (en) 2016-01-31
EP2829836A1 (en) 2015-01-28
ES2877073T3 (en) 2021-11-16
LT3025113T (en) 2019-12-10
DK3620743T3 (en) 2021-06-21
US20160178288A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
US20180320990A1 (en) Enthalpy Exchanger Element And Method For The Production
US20180340741A1 (en) Heat exchanger element and method for the production
AU2014294745B2 (en) Enthalpy exchanger element and method for the production
EP3022508B2 (en) Heat / enthalpy exchanger element and method for the production
OA17732A (en) Enthalpy exchanger element and method for the production.
OA17733A (en) Enthalpy exchanger element and method for the production.

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION