US20180119250A1 - Method for smelting high-arsenic copper sulfide ore - Google Patents

Method for smelting high-arsenic copper sulfide ore Download PDF

Info

Publication number
US20180119250A1
US20180119250A1 US15/801,245 US201715801245A US2018119250A1 US 20180119250 A1 US20180119250 A1 US 20180119250A1 US 201715801245 A US201715801245 A US 201715801245A US 2018119250 A1 US2018119250 A1 US 2018119250A1
Authority
US
United States
Prior art keywords
arsenic
smelting
mixed material
matte
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/801,245
Inventor
Songlin Zhou
Zheling Ge
Guanggang Dong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanggu Xiangguang Copper Co Ltd
Original Assignee
Yanggu Xiangguang Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanggu Xiangguang Copper Co Ltd filed Critical Yanggu Xiangguang Copper Co Ltd
Assigned to Yanggu Xiangguang Copper CO., Ltd reassignment Yanggu Xiangguang Copper CO., Ltd ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DONG, GUANGGANG, GE, ZHELING, ZHOU, SONGLIN
Publication of US20180119250A1 publication Critical patent/US20180119250A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/0047Smelting or converting flash smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0054Slag, slime, speiss, or dross treating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon

Definitions

  • the present invention relates to a field of non-ferrous pyrometallurgy technology, and in particular to a method for smelting high-arsenic copper sulfide ore.
  • Copper pyrometallurgy involves four processes: smelting, converting, anode refining and electrolytic refining.
  • the smelting process is mainly to remove a substantial amount of sulfur and iron, and also to remove arsenic, antimony, bismuth, lead, zinc and other impurity elements as much as possible.
  • metal smelting process slagging is a very important part, as it was, a copper-making process is a slagging process, in which more arsenic, antimony and other impurities enter the slag so that the impurity content of the matte is reduced, and the smelting slag must also has the features of good fluidity, easy separation from metal (matte) and so on.
  • the treatment of high arsenic ore is mainly through the blending of a small amount of high arsenic ore so that the arsenic content after blending falls within the scope of process design, which method is not suitable for large-scale treatment of high arsenic ore.
  • the flash smelting technology as the world's most advanced technology having the largest processing capacity, accounts for more than 60% of the world's pyrometallurgical copper production, and is recognized as an “eating fine grain” smelting technology, which generally requires low concentration of impurities in copper concentrate, such as less than 0.3% of arsenic, otherwise the crude copper and anode copper produced would have high arsenic content and thus affect the electrolytic production.
  • the currently available copper concentrates are generally hard to meet this design requirement, which results in an excessive arsenic content in anode copper and affects electrolytic production. How to develop a copper smelting technology capable of treating high-impurity, especially high-arsenic copper concentrate becomes an issue concerned by the current technicians.
  • the technical problem to be solved by this invention is to provide a method for smelting high-arsenic copper sulfide concentrate.
  • the smelting method provided by this invention can treat copper sulfide concentrate with high arsenic content, and the matte produced is of high grade and low arsenic content.
  • This invention provides a method for smelting high-arsenic copper sulfide concentrate, which comprises the steps of:
  • step (B) is specifically as follows:
  • the mixed material is allowed to go through a conveying pipe ( 3 ) with inclination of 10° to 40° and enter a fluidizing feeding device ( 2 ), and then flow into a copper concentrate nozzle ( 1 ) under the fluidization action of the fluidizing feeding device ( 2 );
  • the high-arsenic copper sulfide concentrate contains 0.3 wt % to 1.8 wt % of arsenic.
  • the CaO-containing material is selected from the group consisting of quicklime, limestone or gypsum.
  • the CaO-containing material is added in an amount of 1 wt % to 10 wt % based on the mass of the mixed material.
  • the moisture content in the mixed material is less than 0.3 wt %.
  • the oxygen content of the oxygen-containing reactant gas is 50% to 95%.
  • the grade of the matte is 50% to 70%.
  • the matte contains 0.2 wt % to 0.6 wt % of arsenic.
  • the present invention provides a method for smelting high-arsenic copper sulfide concentrate, which comprises the steps of: mixing the high-arsenic copper sulfide concentrate with quartz sand and CaO-containing material to obtain a mixed material; and charging the mixed material and oxygen-containing reactant gas into a smelting furnace for reaction to obtain matte, slag and SO 2 -containing flue gas.
  • the concentrate material, the CaO and the SiO 2 are allowed to react in a high temperature state, the arsenic sulfides in the concentrate are oxidized first and then chemically react with slagging flux CaO to enter the slag phase in the form of calcium-based compounds of arsenic, iron arsenates and etc., thus reducing the arsenic content in the copper matte.
  • the matte produced by the smelting method of this invention has a grade of 50% to 70%, the matte contains 0.2 wt % to 0.6 wt % of arsenic, and the ratio of arsenic entering the slag is more than 70%.
  • FIG. 1 is a schematic structural view of a smelting device for high-arsenic copper sulfide concentrate according to the present invention.
  • 1 is a copper concentrate nozzle
  • 2 is a vulcanization feeding device
  • 3 is a conveying pipe
  • 4 is a flash furnace reaction tower.
  • the present invention provides a method for smelting high-arsenic copper sulfide ore, which comprises the steps of:
  • the copper sulfide concentrate provided in the present invention is high-arsenic copper sulfide concentrate.
  • the high-arsenic copper sulfide concentrate contains 0.3 wt % to 1.8 wt %, preferably 0.4 wt % to 1.6 wt % of arsenic.
  • the high-arsenic copper sulfide concentrate contains 0.4 wt % of arsenic.
  • the high-arsenic copper sulfide concentrate contains 0.6 wt % of arsenic.
  • the high-arsenic copper sulfide concentrate contains 0.8 wt % of arsenic. In some other specific embodiments of the present invention, the high-arsenic copper sulfide concentrate contains 1.0 wt % of arsenic. In some other specific embodiments of the present invention, the high-arsenic copper sulfide concentrate contains 1.6 wt % of arsenic.
  • the high-arsenic copper sulfide concentrate needs to be dried prior to smelting to a moisture content after drying of less than 0.3 wt %.
  • the dried high-arsenic copper sulfide concentrate, quartz sand and CaO-containing material are mixed to obtain a mixed material.
  • a calcium oxide containing material selected from the group consisting of quicklime, limestone or gypsum is added during the smelting process of the copper sulfide ore.
  • the CaO-containing material is added in an amount of 1 wt % to 10 wt %, preferably 2 wt % to 8 wt %, more preferably 4 wt % to 6 wt % based on the mass of the mixed material.
  • the resulting mixed material has a moisture content of less than 0.3 wt %.
  • the mixed material and oxygen-containing reactant gas are charged into a smelting furnace and reacted therein to obtain matte, slag and SO 2 -containing flue gas.
  • the smelting furnace for the smelting of high-arsenic copper sulfide concentrate according to the present invention is not particularly limited and may be any smelting furnace known to those skilled in the art, which could be a flash furnace or a bath furnace.
  • the smelting time and smelting temperature in the smelting are chosen to match the equipment according to the variety of the chosen smelting equipment.
  • FIG. 1 is a schematic structural view of a smelting device for high-arsenic copper sulfide concentrate according to the present invention.
  • 1 is a copper concentrate nozzle
  • 2 is a fluidizing feeding device
  • 3 is a conveying pipe
  • 4 is a flash furnace reaction tower.
  • the smelting device for high-arsenic copper sulfide concentrate mainly comprises a conveying pipe 3 , a flash furnace reaction tower 4 , a copper concentrate nozzle 1 which communicates with the conveying pipe 3 and the flash furnace reaction tower 4 , and a fluidizing feeding device 2 provided at the portion where the copper concentrate nozzle 1 communicates with the conveying pipe 3 .
  • the additional provision of the fluidizing feeding device 2 serves to allow the mixed material to more uniformly enter the material passage of the copper concentrate nozzle 1 , and in turn more uniformly enter the reaction tower, thereby maximizing the prevention of segregation phenomenon and leading to a more prominent reaction effect.
  • the present invention is preferably to feed the mixed material to a smelting device having the structure of FIG. 1 to carry out smelting reaction.
  • the mixed material is allowed to go through the conveying pipe ( 3 ) with inclination of 10° to 40° and enter the fluidizing feeding device ( 2 ), and then flow into the copper concentrate nozzle ( 1 ) under the fluidization action of the fluidizing feeding device ( 2 );
  • the mixed material when flash smelting is adopted, the mixed material is allowed to go through the conveying pipe ( 3 ) with inclination of 10° to 40° and enter the fluidizing feeding device ( 2 ), and then flow uniformly into the copper concentrate nozzle ( 1 ) under the fluidization action of the fluidizing feeding device ( 2 ); at the same time, the oxygen-containing reactant gas enters the copper concentrate nozzle ( 1 ) through a pipeline; the mixed material and the oxygen-containing reactant gas enter the flash furnace reaction tower ( 4 ) under the action of the copper concentrate nozzle ( 1 ) to react and produce matte, slag and SO 2 -containing flue gas.
  • the oxygen content of the oxygen-containing reactant gas is 50% to 95%, which is conducive to the oxidation of impurities in copper concentrate and the entering into the smelting slag, thus reducing the content of impurities in the matte.
  • the oxygen content of the oxygen-containing reactant gas is 50% to 95%, preferably 60% to 90%, and more preferably 70% to 80%.
  • the mixed material and the reactant gas are further mixed in the smelting furnace reaction tower, and are decomposed and oxidized with the rising of the temperature before entering a sedimentation pool for slagging reaction to occur and generate matte, slag and SO 2 -containing flue gas, wherein the matte and the slag enter the sedimentation pool at the bottom of the reaction tower for sedimentation and separation, and the SO 2 -containing flue gas goes through the uptake flue of the smelting furnace for discharge.
  • the grade of the matte obtained is 50% to 70%.
  • the matte contains 0.2 wt % to 0.6 wt % of arsenic.
  • the concentrate material, the CaO and the SiO 2 are allowed to react in the furnace under high temperature.
  • the arsenic sulfides in the concentrate are oxidized first and then chemically react with slagging flux CaO to enter the slag phase in the form of calcium-based compounds of arsenic, iron arsenates and etc., thus reducing the arsenic content in the copper matte.
  • the high-arsenic copper sulfide ore contains Fe element.
  • quartz sand is added in an amount so that the ratio between the mass of Fe and the mass of SiO 2 is 1: (0.6-0.9), in this way, the FeO produced during the reaction forms slag and the reaction 2FeO+SiO 2 ⁇ 2FeO.SiO 2 occurs to ensure that the smelting slag is relatively low in viscosity and has good fluidity, which is conducive to the separation of smelting slag and copper matte and the reduction of copper content in the smelting slag.
  • the ratio of Fe/SiO 2 in the slag the overall fluidity of the slag is adjusted so that it is favorable for the discharge.
  • the smelting method according to the present invention is capable of treating copper concentrate with arsenic content of 0.3% to 1.8%, and the matte produced contains less than 0.4% of arsenic; in addition, the slag obtained has good fluidity, the copper content in the slag is stable and low; this smelting method has large capacity of treating high-arsenic copper sulfide ore and is suitable for large-scale industrial production.
  • the matte produced by the smelting method of this invention has a grade of 50% to 70%, the matte contains 0.2 wt % to 0.6 wt % of arsenic, and the ratio of arsenic entering the slag is more than 70%.
  • the mixed material and oxygen-rich reactant gas with oxygen concentration of 80% were mixed together under the action of the copper concentrate nozzle ( 1 ) into flash furnace reaction tower at a temperature of 1280° C., where they began decomposition and oxidation reactions with the rising of the temperature of the mixed material and the reactant gas, and finally went into the sedimentation pool at the bottom, which process produced matte of 36.7 tons, as well as slag and SO 2 -containing flue gas.
  • the matte contained 68% of Cu, 0.25% of As, and the ratio of arsenic entering the slag was 71.2%.
  • the mixed material and oxygen-rich reactant gas with oxygen concentration of 86% were mixed together under the action of the copper concentrate nozzle ( 1 ) into flash furnace reaction tower at a temperature of 1300° C., where they began decomposition and oxidation reactions with the rising of the temperature of the mixed material and the reactant gas, and finally went into the sedimentation pool at the bottom, which process produced matte of 35.7 tons, as well as slag and SO 2 -containing flue gas.
  • the matte contained 67.2% of Cu, 0.32% of As, and the ratio of arsenic entering the slag was 77.9%.
  • the mixed material and oxygen-rich reactant gas with oxygen concentration of 84% were allowed to enter together into flash furnace reaction tower at a temperature of 1300° C., where they began decomposition and oxidation reactions with the rising of the temperature of the mixed material and the reactant gas, and finally went into the sedimentation pool at the bottom, which process produced matte of 36 tons, as well as slag and SO 2 -containing flue gas.
  • the matte contained 65.2% of Cu, 0.38% of As, and the ratio of arsenic entering the slag was 70.2%.
  • the mixed material and oxygen-rich reactant gas with oxygen concentration of 80% were allowed to enter together into flash furnace reaction tower at a temperature of 1260° C., where they began decomposition and oxidation reactions with the rising of the temperature of the mixed material and the reactant gas, and finally went into the sedimentation pool at the bottom, which process produced matte of 36.7 tons, as well as slag and SO 2 -containing flue gas.
  • the matte contained 68% of Cu, 0.25% of As, and the ratio of arsenic entering the slag was 71.2%.
  • the mixed material and oxygen-rich reactant gas with oxygen concentration of 58% were allowed to enter together into flash furnace reaction tower at a temperature of 1300° C., where they began decomposition and oxidation reactions with the rising of the temperature of the mixed material and the reactant gas, and finally went into the sedimentation pool at the bottom, which process produced matte of 35.7 tons, as well as slag and SO 2 -containing flue gas.
  • the matte contained 67.2% of Cu, 0.29% of As, and the ratio of arsenic entering the slag was 77.9%.
  • the mixed material and oxygen-rich reactant gas with oxygen concentration of 88% were allowed to enter together into flash furnace reaction tower at a temperature of 1240° C., where they began decomposition and oxidation reactions with the rising of the temperature of the mixed material and the reactant gas, and finally went into the sedimentation pool at the bottom, which process produced matte of 36 tons, as well as slag and SO 2 -containing flue gas.
  • the matte contained 65.2% of Cu, 0.33% of As, and the ratio of arsenic entering the slag was 79.2%.
  • the mixed material and oxygen-rich reactant gas with oxygen concentration of 95% were allowed to enter together into flash furnace reaction tower at a temperature of 1250° C., where they began decomposition and oxidation reactions with the rising of the temperature of the mixed material and the reactant gas, and finally went into the sedimentation pool at the bottom, which process produced matte of 36 tons, as well as slag and SO 2 -containing flue gas.
  • the matte contained 68% of Cu, 0.43% of As, and the ratio of arsenic entering the slag was 84.7%.

Abstract

Provided herein is a method for smelting high-arsenic copper sulfide concentrate, which comprises the steps of: mixing the high-arsenic copper sulfide concentrate with quartz sand and CaO-containing material to obtain a mixed material; mixing the mixed material with oxygen-containing reactant gas and heating for reaction to obtain matte, slag and SO2-containing flue gas. By the addition of CaO and SiO2 in the smelting process, the concentrate material, the CaO and the SiO2 are allowed to react in the furnace under high temperature. The arsenic sulfides in the concentrate are oxidized first and then chemically react with slagging flux CaO to enter the slag phase in the form of calcium-based compounds of arsenic, iron arsenates and etc., thus reducing the arsenic content in the copper matte.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims the benefit of the priority to CN application No. 201610950115.6 titled “A method for smelting high-arsenic copper sulfide ore”, filed with the Chinese State Intellectual Property Office on Nov. 2, 2016, the entire disclosure of which is incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates to a field of non-ferrous pyrometallurgy technology, and in particular to a method for smelting high-arsenic copper sulfide ore.
  • BACKGROUND OF THE INVENTION
  • Copper pyrometallurgy involves four processes: smelting, converting, anode refining and electrolytic refining. The smelting process is mainly to remove a substantial amount of sulfur and iron, and also to remove arsenic, antimony, bismuth, lead, zinc and other impurity elements as much as possible. In metal smelting process, slagging is a very important part, as it was, a copper-making process is a slagging process, in which more arsenic, antimony and other impurities enter the slag so that the impurity content of the matte is reduced, and the smelting slag must also has the features of good fluidity, easy separation from metal (matte) and so on.
  • With the depletion of resources, there are more and more lean ores, correspondingly, impurity content, especially arsenic content, is getting higher and higher, and when the arsenic content goes beyond the scope of process design, the arsenic content in the copper matte produced from smelting will rise, accordingly, the arsenic content in the anode copper will also rise, which will add to the pressure of electrolyte purification, and affect the quality of cathode copper in serious cases. Presently, the treatment of high arsenic ore is mainly through the blending of a small amount of high arsenic ore so that the arsenic content after blending falls within the scope of process design, which method is not suitable for large-scale treatment of high arsenic ore.
  • The flash smelting technology, as the world's most advanced technology having the largest processing capacity, accounts for more than 60% of the world's pyrometallurgical copper production, and is recognized as an “eating fine grain” smelting technology, which generally requires low concentration of impurities in copper concentrate, such as less than 0.3% of arsenic, otherwise the crude copper and anode copper produced would have high arsenic content and thus affect the electrolytic production. However, the currently available copper concentrates are generally hard to meet this design requirement, which results in an excessive arsenic content in anode copper and affects electrolytic production. How to develop a copper smelting technology capable of treating high-impurity, especially high-arsenic copper concentrate becomes an issue concerned by the current technicians.
  • SUMMARY OF THE INVENTION
  • In view of this, the technical problem to be solved by this invention is to provide a method for smelting high-arsenic copper sulfide concentrate. The smelting method provided by this invention can treat copper sulfide concentrate with high arsenic content, and the matte produced is of high grade and low arsenic content.
  • This invention provides a method for smelting high-arsenic copper sulfide concentrate, which comprises the steps of:
  • (A) mixing the high-arsenic copper sulfide concentrate with quartz sand and CaO-containing material to obtain a mixed material; and
  • (B) charging the mixed material and oxygen-containing reactant gas into a smelting furnace for reaction to obtain matte, slag and SO2-containing flue gas.
  • Preferably, the step (B) is specifically as follows:
  • (B1) the mixed material is allowed to go through a conveying pipe (3) with inclination of 10° to 40° and enter a fluidizing feeding device (2), and then flow into a copper concentrate nozzle (1) under the fluidization action of the fluidizing feeding device (2);
  • (B2) the mixed material and the oxygen-containing reactant gas are mixed into a flash furnace reaction tower (4) under the action of the copper concentrate nozzle (1) and reacted therein to obtain matte, slag and SO2-containing flue gas.
  • Preferably, the high-arsenic copper sulfide concentrate contains 0.3 wt % to 1.8 wt % of arsenic.
  • Preferably, the CaO-containing material is selected from the group consisting of quicklime, limestone or gypsum.
  • Preferably, the CaO-containing material is added in an amount of 1 wt % to 10 wt % based on the mass of the mixed material.
  • Preferably, the moisture content in the mixed material is less than 0.3 wt %.
  • Preferably, the oxygen content of the oxygen-containing reactant gas is 50% to 95%.
  • Preferably, the grade of the matte is 50% to 70%.
  • Preferably, the matte contains 0.2 wt % to 0.6 wt % of arsenic.
  • Compared with the prior art, the present invention provides a method for smelting high-arsenic copper sulfide concentrate, which comprises the steps of: mixing the high-arsenic copper sulfide concentrate with quartz sand and CaO-containing material to obtain a mixed material; and charging the mixed material and oxygen-containing reactant gas into a smelting furnace for reaction to obtain matte, slag and SO2-containing flue gas. In the present invention, by the addition of CaO and SiO2 in the smelting process, the concentrate material, the CaO and the SiO2 are allowed to react in a high temperature state, the arsenic sulfides in the concentrate are oxidized first and then chemically react with slagging flux CaO to enter the slag phase in the form of calcium-based compounds of arsenic, iron arsenates and etc., thus reducing the arsenic content in the copper matte.
  • The results show that the matte produced by the smelting method of this invention has a grade of 50% to 70%, the matte contains 0.2 wt % to 0.6 wt % of arsenic, and the ratio of arsenic entering the slag is more than 70%.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic structural view of a smelting device for high-arsenic copper sulfide concentrate according to the present invention.
  • In which, 1 is a copper concentrate nozzle, 2 is a vulcanization feeding device, 3 is a conveying pipe, and 4 is a flash furnace reaction tower.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • The present invention provides a method for smelting high-arsenic copper sulfide ore, which comprises the steps of:
  • mixing the high-arsenic copper sulfide concentrate with quartz sand and CaO-containing material to obtain a mixed material; and
  • mixing the mixed material with oxygen-containing reactant gas and heating for reaction to obtain matte, slag and SO2-containing flue gas.
  • The copper sulfide concentrate provided in the present invention is high-arsenic copper sulfide concentrate. In the present invention, the high-arsenic copper sulfide concentrate contains 0.3 wt % to 1.8 wt %, preferably 0.4 wt % to 1.6 wt % of arsenic. In some specific embodiments of the present invention, the high-arsenic copper sulfide concentrate contains 0.4 wt % of arsenic. In some other specific embodiments of the present invention, the high-arsenic copper sulfide concentrate contains 0.6 wt % of arsenic. In some other specific embodiments of the present invention, the high-arsenic copper sulfide concentrate contains 0.8 wt % of arsenic. In some other specific embodiments of the present invention, the high-arsenic copper sulfide concentrate contains 1.0 wt % of arsenic. In some other specific embodiments of the present invention, the high-arsenic copper sulfide concentrate contains 1.6 wt % of arsenic.
  • In the present invention, the high-arsenic copper sulfide concentrate needs to be dried prior to smelting to a moisture content after drying of less than 0.3 wt %.
  • The dried high-arsenic copper sulfide concentrate, quartz sand and CaO-containing material are mixed to obtain a mixed material.
  • In order to reduce the amount of slag and to ensure a certain degree of impurity removal, a calcium oxide containing material selected from the group consisting of quicklime, limestone or gypsum is added during the smelting process of the copper sulfide ore.
  • The CaO-containing material is added in an amount of 1 wt % to 10 wt %, preferably 2 wt % to 8 wt %, more preferably 4 wt % to 6 wt % based on the mass of the mixed material.
  • The resulting mixed material has a moisture content of less than 0.3 wt %.
  • The mixed material and oxygen-containing reactant gas are charged into a smelting furnace and reacted therein to obtain matte, slag and SO2-containing flue gas.
  • The smelting furnace for the smelting of high-arsenic copper sulfide concentrate according to the present invention is not particularly limited and may be any smelting furnace known to those skilled in the art, which could be a flash furnace or a bath furnace. The smelting time and smelting temperature in the smelting are chosen to match the equipment according to the variety of the chosen smelting equipment.
  • In the present invention, a smelting device having the structure of FIG. 1 is preferably used, and FIG. 1 is a schematic structural view of a smelting device for high-arsenic copper sulfide concentrate according to the present invention.
  • In FIG. 1, 1 is a copper concentrate nozzle, 2 is a fluidizing feeding device, 3 is a conveying pipe, and 4 is a flash furnace reaction tower.
  • The smelting device for high-arsenic copper sulfide concentrate according to the present invention mainly comprises a conveying pipe 3, a flash furnace reaction tower 4, a copper concentrate nozzle 1 which communicates with the conveying pipe 3 and the flash furnace reaction tower 4, and a fluidizing feeding device 2 provided at the portion where the copper concentrate nozzle 1 communicates with the conveying pipe 3.
  • As shown in FIG. 1, in this embodiment, the additional provision of the fluidizing feeding device 2 serves to allow the mixed material to more uniformly enter the material passage of the copper concentrate nozzle 1, and in turn more uniformly enter the reaction tower, thereby maximizing the prevention of segregation phenomenon and leading to a more prominent reaction effect.
  • After obtaining the mixed material, in the present invention, it is preferably to feed the mixed material to a smelting device having the structure of FIG. 1 to carry out smelting reaction.
  • (B1) The mixed material is allowed to go through the conveying pipe (3) with inclination of 10° to 40° and enter the fluidizing feeding device (2), and then flow into the copper concentrate nozzle (1) under the fluidization action of the fluidizing feeding device (2);
  • (B2) The mixed material and the oxygen-containing reactant gas are mixed into the flash furnace reaction tower (4) under the action of the copper concentrate nozzle (1) and reacted therein to obtain matte, slag and SO2-containing flue gas.
  • Specifically, in the present invention, when flash smelting is adopted, the mixed material is allowed to go through the conveying pipe (3) with inclination of 10° to 40° and enter the fluidizing feeding device (2), and then flow uniformly into the copper concentrate nozzle (1) under the fluidization action of the fluidizing feeding device (2); at the same time, the oxygen-containing reactant gas enters the copper concentrate nozzle (1) through a pipeline; the mixed material and the oxygen-containing reactant gas enter the flash furnace reaction tower (4) under the action of the copper concentrate nozzle (1) to react and produce matte, slag and SO2-containing flue gas.
  • In order to improve the flue gas concentration and reaction efficiency, as well as to ensure the heat balance of the reaction, in the smelting process, it is generally that the oxygen content of the oxygen-containing reactant gas is 50% to 95%, which is conducive to the oxidation of impurities in copper concentrate and the entering into the smelting slag, thus reducing the content of impurities in the matte. In the present invention, the oxygen content of the oxygen-containing reactant gas is 50% to 95%, preferably 60% to 90%, and more preferably 70% to 80%.
  • The mixed material and the reactant gas are further mixed in the smelting furnace reaction tower, and are decomposed and oxidized with the rising of the temperature before entering a sedimentation pool for slagging reaction to occur and generate matte, slag and SO2-containing flue gas, wherein the matte and the slag enter the sedimentation pool at the bottom of the reaction tower for sedimentation and separation, and the SO2-containing flue gas goes through the uptake flue of the smelting furnace for discharge. According to the above smelting method, the grade of the matte obtained is 50% to 70%. The matte contains 0.2 wt % to 0.6 wt % of arsenic.
  • The chemical reactions taking place in the smelting equipment are as follows:
  • Decomposition reactions:

  • 2FeS2→2FeS+S2

  • 4CuFeS2→2Cu2S+2FeS+S2

  • CaCO3→CaO+CO2
  • Oxidation reactions:

  • 4CuFeS2+5O2→2Cu2S.FeS+2FeO+4SO2

  • 4FeS2+11O2→2Fe2O3+8SO2

  • 3FeS2+8O2→2Fe3O4+6SO2

  • CuS+O2→Cu2S+SO2

  • 2Cu2S+3O2→2Cu2O+2SO2

  • 2As2S2+7O2→2As2O3+4SO2
  • Matting reactions:

  • FeS+Cu2O→FeO+Cu2S
  • Slagging reactions:

  • 2FeO+SiO2→2FeO.SiO2

  • As2O3+3CaO+O2→Ca3(AsO4)2
  • By the addition of CaO and SiO2 in the smelting process, the concentrate material, the CaO and the SiO2 are allowed to react in the furnace under high temperature. The arsenic sulfides in the concentrate are oxidized first and then chemically react with slagging flux CaO to enter the slag phase in the form of calcium-based compounds of arsenic, iron arsenates and etc., thus reducing the arsenic content in the copper matte.
  • The high-arsenic copper sulfide ore contains Fe element. In this invention, at the time of preparing the material for the furnace, quartz sand is added in an amount so that the ratio between the mass of Fe and the mass of SiO2 is 1: (0.6-0.9), in this way, the FeO produced during the reaction forms slag and the reaction 2FeO+SiO2→2FeO.SiO2 occurs to ensure that the smelting slag is relatively low in viscosity and has good fluidity, which is conducive to the separation of smelting slag and copper matte and the reduction of copper content in the smelting slag. By controlling the ratio of Fe/SiO2 in the slag, the overall fluidity of the slag is adjusted so that it is favorable for the discharge.
  • The specific reactions are as follows:

  • CaCO3→CaO+CO2

  • 2As2S2+7O2→2As2O3+4SO2

  • As2O3+3CaO+O2→Ca3(AsO4)2
  • In addition, a small amount of As2O3 may react with the Fe2O3 generated from the concentrate oxidation and form iron arsenate. The reaction is as follows:

  • As2O3+3Fe2O3+O2→FeAsO4
  • The smelting method according to the present invention is capable of treating copper concentrate with arsenic content of 0.3% to 1.8%, and the matte produced contains less than 0.4% of arsenic; in addition, the slag obtained has good fluidity, the copper content in the slag is stable and low; this smelting method has large capacity of treating high-arsenic copper sulfide ore and is suitable for large-scale industrial production.
  • The results show that the matte produced by the smelting method of this invention has a grade of 50% to 70%, the matte contains 0.2 wt % to 0.6 wt % of arsenic, and the ratio of arsenic entering the slag is more than 70%.
  • In order to further understand the present invention, the method for smelting high-arsenic copper sulfide ore according to this invention will be described below with reference to Examples, and the scope of the present invention is not limited by the following examples.
  • EXAMPLE 1
  • 100 tons of copper sulfide concentrate containing 0.4% of arsenic, blended in which 18 tons of quartz sand and 2.5 tons of quicklime powder were mixed to obtain mixed material, the mixed material was allowed to go through conveying pipe (3) with inclination of 15° and enter fluidizing feeding device (2), and then flow into copper concentrate nozzle (1) under the fluidization action of the fluidizing feeding device (2);
  • The mixed material and oxygen-rich reactant gas with oxygen concentration of 80% were mixed together under the action of the copper concentrate nozzle (1) into flash furnace reaction tower at a temperature of 1280° C., where they began decomposition and oxidation reactions with the rising of the temperature of the mixed material and the reactant gas, and finally went into the sedimentation pool at the bottom, which process produced matte of 36.7 tons, as well as slag and SO2-containing flue gas. The matte contained 68% of Cu, 0.25% of As, and the ratio of arsenic entering the slag was 71.2%.
  • EXAMPLE 2
  • 100 tons of copper sulfide concentrate containing 0.6% of arsenic, blended in which 16 tons of quartz sand and 4 tons of quicklime powder were mixed to obtain mixed material, the mixed material was allowed to go through conveying pipe (3) with inclination of 20° and enter fluidizing feeding device (2), and then flow into copper concentrate nozzle (1) under the fluidization action of the fluidizing feeding device (2);
  • The mixed material and oxygen-rich reactant gas with oxygen concentration of 86% were mixed together under the action of the copper concentrate nozzle (1) into flash furnace reaction tower at a temperature of 1300° C., where they began decomposition and oxidation reactions with the rising of the temperature of the mixed material and the reactant gas, and finally went into the sedimentation pool at the bottom, which process produced matte of 35.7 tons, as well as slag and SO2-containing flue gas. The matte contained 67.2% of Cu, 0.32% of As, and the ratio of arsenic entering the slag was 77.9%.
  • EXAMPLE 3
  • 100 tons of copper sulfide concentrate containing 0.8% of arsenic, blended in which 17 tons of quartz sand and 6 tons of quicklime powder were mixed to obtain mixed material, the mixed material was allowed to go through conveying pipe (3) with inclination of 30° and enter fluidizing feeding device (2), and then flow into copper concentrate nozzle (1) under the fluidization action of the fluidizing feeding device (2);
  • The mixed material and oxygen-rich reactant gas with oxygen concentration of 84% were allowed to enter together into flash furnace reaction tower at a temperature of 1300° C., where they began decomposition and oxidation reactions with the rising of the temperature of the mixed material and the reactant gas, and finally went into the sedimentation pool at the bottom, which process produced matte of 36 tons, as well as slag and SO2-containing flue gas. The matte contained 65.2% of Cu, 0.38% of As, and the ratio of arsenic entering the slag was 70.2%.
  • EXAMPLE 4
  • 100 tons of copper sulfide concentrate containing 0.4% of arsenic, blended in which 18 tons of quartz sand, 2.5 tons of quicklime powder and a small amount of soot were mixed to obtain mixed material, the mixed material was allowed to go through conveying pipe (3) with inclination of 35° and enter fluidizing feeding device (2), and then flow into copper concentrate nozzle (1) under the fluidization action of the fluidizing feeding device (2);
  • The mixed material and oxygen-rich reactant gas with oxygen concentration of 80% were allowed to enter together into flash furnace reaction tower at a temperature of 1260° C., where they began decomposition and oxidation reactions with the rising of the temperature of the mixed material and the reactant gas, and finally went into the sedimentation pool at the bottom, which process produced matte of 36.7 tons, as well as slag and SO2-containing flue gas. The matte contained 68% of Cu, 0.25% of As, and the ratio of arsenic entering the slag was 71.2%.
  • EXAMPLE 5
  • 100 tons of copper sulfide concentrate containing 0.6% of arsenic, blended in which 16 tons of quartz sand, 4.5 tons of quicklime powder and a small amount of soot were mixed to obtain mixed material, the mixed material was allowed to go through conveying pipe (3) with inclination of 30° and enter fluidizing feeding device (2), and then flow into copper concentrate nozzle (1) under the fluidization action of the fluidizing feeding device (2);
  • The mixed material and oxygen-rich reactant gas with oxygen concentration of 58% were allowed to enter together into flash furnace reaction tower at a temperature of 1300° C., where they began decomposition and oxidation reactions with the rising of the temperature of the mixed material and the reactant gas, and finally went into the sedimentation pool at the bottom, which process produced matte of 35.7 tons, as well as slag and SO2-containing flue gas. The matte contained 67.2% of Cu, 0.29% of As, and the ratio of arsenic entering the slag was 77.9%.
  • EXAMPLE 6
  • 100 tons of copper sulfide concentrate containing 1% of arsenic, blended in which 17 tons of quartz sand, 7.5 tons of quicklime powder and a small amount of soot were mixed to obtain mixed material, the mixed material was allowed to go through conveying pipe (3) with inclination of 25° and enter fluidizing feeding device (2), and then flow into copper concentrate nozzle (1) under the fluidization action of the fluidizing feeding device (2);
  • The mixed material and oxygen-rich reactant gas with oxygen concentration of 88% were allowed to enter together into flash furnace reaction tower at a temperature of 1240° C., where they began decomposition and oxidation reactions with the rising of the temperature of the mixed material and the reactant gas, and finally went into the sedimentation pool at the bottom, which process produced matte of 36 tons, as well as slag and SO2-containing flue gas. The matte contained 65.2% of Cu, 0.33% of As, and the ratio of arsenic entering the slag was 79.2%.
  • EXAMPLE 7
  • 100 tons of copper sulfide concentrate containing 1.6% of arsenic, blended in which 15.5 tons of quartz sand and 9.5 tons of quicklime powder were mixed to obtain mixed material, the mixed material was allowed to go through conveying pipe (3) with inclination of 40° and enter fluidizing feeding device (2), and then flow into copper concentrate nozzle (1) under the fluidization action of the fluidizing feeding device (2);
  • The mixed material and oxygen-rich reactant gas with oxygen concentration of 95% were allowed to enter together into flash furnace reaction tower at a temperature of 1250° C., where they began decomposition and oxidation reactions with the rising of the temperature of the mixed material and the reactant gas, and finally went into the sedimentation pool at the bottom, which process produced matte of 36 tons, as well as slag and SO2-containing flue gas. The matte contained 68% of Cu, 0.43% of As, and the ratio of arsenic entering the slag was 84.7%.
  • While the preferred embodiments of the present invention have been described hereinabove, it is to be noted that, various improvements and modifications thereof will be apparent to those skilled in the art without departing from the principle of the invention. All such improvements and modifications are intended to fall within the scope of the following claims.

Claims (9)

1. A method for smelting high-arsenic copper sulfide concentrate, comprising:
(A) mixing the high-arsenic copper sulfide concentrate with quartz sand and CaO-containing material to obtain a mixed material; and
(B) charging the mixed material and oxygen-containing reactant gas into a smelting furnace for reaction to obtain matte, slag and SO2-containing flue gas.
2. The smelting method according to claim 1, wherein the step (B) is performed as follows:
(B1) the mixed material is allowed to go through a conveying pipe (3) with inclination of 10° to 40° and enter a fluidizing feeding device (2), and then flow into a copper concentrate nozzle (1) under the fluidization action of the fluidizing feeding device (2);
(B2) the mixed material and the oxygen-containing reactant gas are mixed into a flash furnace reaction tower (4) under the action of the copper concentrate nozzle (1) and reacted therein to obtain matte, slag and SO2-containing flue gas.
3. The smelting method according to claim 1, wherein the high-arsenic copper sulfide concentrate contains 0.3 wt % to 1.8 wt % of arsenic.
4. The smelting method according to claim 1, wherein the CaO-containing material is selected from the group consisting of quicklime, limestone and gypsum.
5. The smelting method according to claim 1, wherein the CaO-containing material is added in an amount of 1 wt % to 10 wt % based on the mass of the mixed material.
6. The smelting method according to claim 1, wherein the moisture content in the mixed material is less than 0.3 wt %.
7. The smelting method according to claim 1, wherein the oxygen content of the said oxygen-containing reactant gas is 50% to 95%.
8. The smelting method according to claim 1, wherein the grade of the matte is 50% to 70%.
9. The smelting method according to claim 1, wherein the matte contains 0.2 wt % to 0.6 wt % of arsenic.
US15/801,245 2016-11-02 2017-11-01 Method for smelting high-arsenic copper sulfide ore Abandoned US20180119250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610950115.6A CN106521183A (en) 2016-11-02 2016-11-02 Method for smelting high-arsenic copper sulfide ore
CN201610950115.6 2016-11-02

Publications (1)

Publication Number Publication Date
US20180119250A1 true US20180119250A1 (en) 2018-05-03

Family

ID=58325181

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/801,245 Abandoned US20180119250A1 (en) 2016-11-02 2017-11-01 Method for smelting high-arsenic copper sulfide ore

Country Status (7)

Country Link
US (1) US20180119250A1 (en)
JP (1) JP2018109223A (en)
CN (1) CN106521183A (en)
CL (1) CL2017002757A1 (en)
ES (1) ES2666396B2 (en)
MX (1) MX2017013925A (en)
RU (1) RU2683675C1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941076A (en) * 2022-06-28 2022-08-26 中国矿业大学 Method for extracting and recovering gold from aqueous solution
CN115572837A (en) * 2022-09-05 2023-01-06 楚雄滇中有色金属有限责任公司 Method for preventing flue of boiler from being blocked by high-arsenic copper concentrate during Isa smelting
CN115652102A (en) * 2022-10-26 2023-01-31 铜陵有色金属集团股份有限公司 Method for treating arsenic slag produced in copper smelting process of austenite furnace

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107164638B (en) * 2017-07-04 2018-10-02 阿拉山口市锦丰工贸有限公司 A kind of method of smelting and equipment of arsenic-containing material
CN110156353B (en) * 2019-05-31 2021-04-30 北方民族大学 Method for combined treatment of copper slag and magnesium slag and application
CN113351630A (en) * 2021-07-01 2021-09-07 中城华宇(北京)矿业技术有限公司 Harmless treatment method for arsenic sulfide slag
CN113564384B (en) * 2021-07-23 2022-12-13 湖南辰州矿业有限责任公司 Production method of refined antimony with ultralow arsenic content
CN114231754A (en) * 2021-11-08 2022-03-25 铜陵有色金属集团股份有限公司 Copper flash smelting process
CN114277245B (en) * 2021-12-14 2024-04-26 东华大学 Directional conversion and stabilization method for arsenic component in black copper mud in anode copper refining process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1921180A (en) * 1929-03-19 1933-08-08 Mathieson Alkali Works Inc Process for the purification of copper
US4521245A (en) * 1983-11-02 1985-06-04 Yarygin Vladimir I Method of processing sulphide copper- and/or sulphide copper-zinc concentrates
US20040244534A1 (en) * 2001-09-21 2004-12-09 Ilkka Kojo Method for the production of blister copper
US20130069287A1 (en) * 2011-07-25 2013-03-21 Xiang Guang Copper Co., Ltd. Floating entrainment metallurgical process and reactor
US20130269481A1 (en) * 2012-04-16 2013-10-17 Xiangguang Copper Co., Ltd. Method for producing blister copper directly from copper concentrate
US20160237522A1 (en) * 2015-02-13 2016-08-18 Yanggu Xiangguang Copper Co., Ltd. Rotation-suspension smelting method, a burner and a metallurgical equipment
DE102015107435A1 (en) * 2015-05-12 2016-11-17 Outotec (Finland) Oy Process for the partial roasting of copper- and / or gold-containing concentrates

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918962A (en) * 1972-06-28 1975-11-11 Ethyl Corp Process for winning copper using carbon monoxide
US4039324A (en) * 1975-11-14 1977-08-02 Cyprus Metallurgical Processes Corporation Fluidized hydrogen reduction process for the recovery of copper
US4389247A (en) * 1982-03-29 1983-06-21 Standard Oil Company (Indiana) Metal recovery process
SU1569346A1 (en) * 1984-03-30 1990-06-07 Химико-металлургический институт АН КазССР Method of processing dificultly milling copper ore
RO109560B1 (en) * 1990-11-20 1995-03-30 Mitsubishi Materials Corp Pyro metallurgic continuous process for the copper separation from sulphurous concentrates
NO300600B1 (en) * 1995-11-02 1997-06-23 Ellingsen O & Co Manufacture of aluminum
DE102004009176B4 (en) * 2004-02-25 2006-04-20 Outokumpu Oyj Process for the reduction of copper-containing solids in a fluidized bed
RU2348713C1 (en) * 2007-05-21 2009-03-10 Закрытое акционерное общество "Золотодобывающая компания "Полюс" Method of treatment hard gold-arsenical ores and concentrates and furnace for its implementation
RU2484155C2 (en) * 2011-03-03 2013-06-10 Государственное образовательное учреждение высшего профессионального образования "Курганский государственный университет" Method of producing metallic copper from air suspension of copper pyrite particles and device to this end
CN104388690B (en) * 2014-11-01 2016-08-24 中南大学 A kind of method for the treatment of refractory As-containing gold ore bath smelting concentration of valuable metals
CN105112683B (en) * 2015-10-05 2017-11-17 阳谷祥光铜业有限公司 The floating smelting process of one kind rotation and rotation are floated and smelt nozzle
CN106086461A (en) * 2016-08-18 2016-11-09 紫金矿业集团股份有限公司 A kind of method of Copper making process slag making arsenic removal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1921180A (en) * 1929-03-19 1933-08-08 Mathieson Alkali Works Inc Process for the purification of copper
US4521245A (en) * 1983-11-02 1985-06-04 Yarygin Vladimir I Method of processing sulphide copper- and/or sulphide copper-zinc concentrates
US20040244534A1 (en) * 2001-09-21 2004-12-09 Ilkka Kojo Method for the production of blister copper
US20130069287A1 (en) * 2011-07-25 2013-03-21 Xiang Guang Copper Co., Ltd. Floating entrainment metallurgical process and reactor
US20130269481A1 (en) * 2012-04-16 2013-10-17 Xiangguang Copper Co., Ltd. Method for producing blister copper directly from copper concentrate
US20160237522A1 (en) * 2015-02-13 2016-08-18 Yanggu Xiangguang Copper Co., Ltd. Rotation-suspension smelting method, a burner and a metallurgical equipment
DE102015107435A1 (en) * 2015-05-12 2016-11-17 Outotec (Finland) Oy Process for the partial roasting of copper- and / or gold-containing concentrates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ronan, Patrick; Mark Pritzker & Hector M. Budman. "Pseudoequilibrium Model Based Estimator of Matte Grade in a Copper Smelter." Ind. Eng. Chem. Res. 36, pages 112-121. (Year: 1997) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941076A (en) * 2022-06-28 2022-08-26 中国矿业大学 Method for extracting and recovering gold from aqueous solution
CN115572837A (en) * 2022-09-05 2023-01-06 楚雄滇中有色金属有限责任公司 Method for preventing flue of boiler from being blocked by high-arsenic copper concentrate during Isa smelting
CN115652102A (en) * 2022-10-26 2023-01-31 铜陵有色金属集团股份有限公司 Method for treating arsenic slag produced in copper smelting process of austenite furnace

Also Published As

Publication number Publication date
JP2018109223A (en) 2018-07-12
MX2017013925A (en) 2018-09-28
RU2683675C1 (en) 2019-04-01
CL2017002757A1 (en) 2018-04-13
ES2666396A1 (en) 2018-05-04
ES2666396B2 (en) 2018-11-15
CN106521183A (en) 2017-03-22

Similar Documents

Publication Publication Date Title
US20180119250A1 (en) Method for smelting high-arsenic copper sulfide ore
CN103667712B (en) A kind of method of the leaded and synchronous bath smelting of copper-bearing waste material
CN105803201B (en) An a kind of step metallurgical Flash Smelting Furnace and metallurgical method
CN102134641B (en) Gold extraction process of gold concentrate with high carbon, arsenic and sulfur
CN102051491B (en) Method for concentrating gold from pyrite inclusion-type gold ore
CN102965510B (en) Reduction sulfur-fixing bath smelting method and device of low-sulfur lead-containing secondary material and iron-rich heavy metal solid waste
CN105543489A (en) Treatment process for copper smelting smoke dust
CN104313328A (en) Method for smelting and recovering lead and gold from reduction and sulfur fixation molten pool based on refractory gold ores and lead-containing residue raw materials
US8277539B2 (en) Leaching process for copper concentrates containing arsenic and antimony compounds
CN103882243A (en) Clean production balanced lead making technology
CN111893310A (en) Harmless recycling treatment method for solid hazardous waste
CN103320614A (en) Lead matte pyrogenic process treatment technology
CN111304450B (en) Method and device for producing black copper from copper-containing sludge
CN103421958B (en) Bottom convertor oxygen-enriched air smelting is processed the method for zinc leaching residue
KR100929520B1 (en) Production method of crude or high quality mat
CN102828020A (en) Method for closed cycle high-efficiency comprehensive recovery of multiple elements of gold concentrate
CN103397214B (en) Low-carbon treatment method of ardealite in pyrometallurgy of nonferrous metal
CN106332549B (en) Process for converting copper-containing materials
CN109055759A (en) A kind of combined treatment process of the pickle liquor of Copper making electric dust and arsenic sulfide slag
US4135912A (en) Electric smelting of lead sulphate residues
CN115627367B (en) Method for cooperatively smelting lead and antimony
CN113737014B (en) Comprehensive treatment method for gold concentrate and secondary copper resource
CN110408785B (en) Method for extracting noble metals by copper-based solid waste synergistic smelting enrichment
CN110373539A (en) A kind of method that Concentration of Gold is strengthened in direct melting of difficult-treating gold mine
CN114438318A (en) Method for starting zinc hydrometallurgy

Legal Events

Date Code Title Description
AS Assignment

Owner name: YANGGU XIANGGUANG COPPER CO., LTD, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHOU, SONGLIN;GE, ZHELING;DONG, GUANGGANG;REEL/FRAME:044012/0287

Effective date: 20170928

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION