US20180114786A1 - Method of forming package-on-package structure - Google Patents

Method of forming package-on-package structure Download PDF

Info

Publication number
US20180114786A1
US20180114786A1 US15/423,597 US201715423597A US2018114786A1 US 20180114786 A1 US20180114786 A1 US 20180114786A1 US 201715423597 A US201715423597 A US 201715423597A US 2018114786 A1 US2018114786 A1 US 2018114786A1
Authority
US
United States
Prior art keywords
semiconductor package
mold compound
substrate
package
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/423,597
Inventor
Hung-Hsin Hsu
Chi-An Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powertech Technology Inc
Original Assignee
Powertech Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powertech Technology Inc filed Critical Powertech Technology Inc
Priority to US15/423,597 priority Critical patent/US20180114786A1/en
Assigned to POWERTECH TECHNOLOGY INC. reassignment POWERTECH TECHNOLOGY INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HSU, HUNG-HSIN, WANG, CHI-AN
Priority to TW106122989A priority patent/TW201828370A/en
Priority to CN201710594258.2A priority patent/CN107978532A/en
Publication of US20180114786A1 publication Critical patent/US20180114786A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4885Wire-like parts or pins
    • H01L21/4889Connection or disconnection of other leads to or from wire-like parts, e.g. wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/49Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions wire-like arrangements or pins or rods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49833Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the chip support structure consisting of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/071Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08151Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/08221Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/08245Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13023Disposition the whole bump connector protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16237Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/3224Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48235Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/82009Pre-treatment of the connector or the bonding area
    • H01L2224/8203Reshaping, e.g. forming vias
    • H01L2224/82047Reshaping, e.g. forming vias by mechanical means, e.g. severing, pressing, stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83007Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a permanent auxiliary member being left in the finished device, e.g. aids for holding or protecting the layer connector during or after the bonding process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85007Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving a permanent auxiliary member being left in the finished device, e.g. aids for holding or protecting the wire connector during or after the bonding process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85186Translational movements connecting first outside the semiconductor or solid-state body, i.e. off-chip, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92222Sequential connecting processes the first connecting process involving a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92222Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92225Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1023All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the support being an insulating substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1035All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the device being entirely enclosed by the support, e.g. high-density interconnect [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1041Special adaptations for top connections of the lowermost container, e.g. redistribution layer, integral interposer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1058Bump or bump-like electrical connections, e.g. balls, pillars, posts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1076Shape of the containers
    • H01L2225/1088Arrangements to limit the height of the assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1094Thermal management, e.g. cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1431Logic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1433Application-specific integrated circuit [ASIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a packaging method, and more particularly, to a method of forming a package-on-package (POP) structure.
  • POP package-on-package
  • POP Package-on-package
  • SMT surface mount technology
  • a POP structure includes at least two packages stacking onto one another, a common problem is that the thickness of a POP structure is too large and difficult to be reduced. For applications such as mobile devices, a large POP structure may be difficult to be embedded in a small device. Hence, a solution for reducing the thickness of a package structure is required in the field.
  • An embodiment provides a method of forming a package-on-package (POP) structure.
  • the method comprises performing a laser drilling on a mold compound of a first semiconductor package to form a plurality of through holes in the mold compound, forming a conductive layer on the mold compound such that the mold compound is covered by a conductive material and the through holes are filled with the conductive material, grinding the conductive layer to expose the mold compound, and stacking a second semiconductor package on the first semiconductor package such that a plurality of metal bumps of the second semiconductor package attach to the conductive material filled in the through holes.
  • POP package-on-package
  • FIGS. 1 to 6 are component cross-sectional views showing corresponding processing steps of the method of forming a package-on-package (POP) structure according to a first embodiment of the present invention.
  • POP package-on-package
  • FIGS. 7 to 12 are component cross-sectional views showing corresponding processing steps of the method of forming a POP structure according to a second embodiment of the present invention.
  • FIGS. 1 to 6 a method of forming a package-on-package (POP) structure is illustrated in FIGS. 1 to 6 for a cross-sectional view.
  • POP package-on-package
  • a first semiconductor package 100 is provided.
  • the first semiconductor package 100 comprises a first die 110 , a mold compound 120 , a plurality of conductive pads 132 , a substrate 140 and a plurality of metal bumps 150 .
  • the first die 110 and the conductive pads 132 are disposed on the substrate 140 and encapsulated by the mold compound 120 .
  • the metal bumps 150 are formed below the substrate 140 .
  • the first semiconductor package 100 is a flip-chip package, but the present invention is not limited thereto.
  • the first die 110 has a plurality of pillar bumps 112 disposed on the substrate 140 and electrically connected to some of the metal bumps 150 .
  • the pillar bumps 112 are used as an I/O interface of the first die 110 .
  • the substrate 140 may comprise a pad mask layer 130 and a plurality of conductive pillars 142 .
  • the conductive pillars 142 are formed in the substrate 140 and pass through the substrate 140 .
  • Some of the metal bumps 150 are electrically connected to the conductive pads 132 via the conductive pillars 142 .
  • the first semiconductor package 100 may be a fan-out package.
  • a laser drilling is performed on the mold compound 120 to form a plurality of through holes 122 in the mold compound 120 , such that the conductive pads 132 are exposed on bottoms of the through holes 122 .
  • a conductive layer 160 is formed on the mold compound 120 such that the mold compound 120 is covered by a conductive material and the through holes 122 are filled with the conductive material.
  • the conductive material may be copper (Cu), gold (Au) or a copper gold (Au-Cu) alloy.
  • the conductive layer 160 may be formed on the mold compound 120 by sputtering or electroplating the conductive material on the mold compound 120 .
  • the conductive layer 160 is grinded to expose the mold compound 120 . Accordingly, the conductive material filled in the through holes 122 forms a plurality of through hole vias 160 A.
  • the through hole vias 160 A are in contact with the conductive pads 132 .
  • a height H of each through hole via 160 A may range from 200 micrometers to 300 micrometers.
  • a distance D between bottoms of two adjacent through hole vias 160 A may be less than 300 micrometers.
  • the mold compound 120 may be grinded when grinding the conductive layer 160 . Since the conductive layer 160 and the mold compound 120 may be grinded, the thickness of the first semiconductor package 100 may be reduced.
  • the substrate 140 of the first semiconductor package 100 may be removed after the through hole vias 160 A are formed. Accordingly, the thickness of the first semiconductor package 100 may be further reduced.
  • a second semiconductor package 200 is stacked on the first semiconductor package 100 .
  • a plurality of metal bumps 250 of the second semiconductor package 200 are attached to the through hole vias 160 A when the second semiconductor package 200 is stacked on the first semiconductor package 100 .
  • the metal bumps 250 of the second semiconductor package 200 may be attached to the exposed surface of through hole vias 160 A by performing a reflow soldering process.
  • the first semiconductor package 100 and the second semiconductor package 200 are integrated as a package-on-package (POP) structure 300 . Since the through holes 122 are formed by performing a laser drilling, the POP structure 300 would be a fine pitch package.
  • the second semiconductor package 200 may be a fan-out package and/or a flip-chip package, but the present invention is not limited thereto.
  • the second semiconductor package 200 comprises a second die 210 , a mold compound 220 , a substrate 240 and the metal bumps 250 .
  • the second die 210 is disposed on the substrate 240 and encapsulated by the mold compound 220 .
  • the metal bumps 250 are formed below the substrate 240 .
  • the second die 210 is electrically connected to some of the metal bumps 150 of the first semiconductor package 100 via the metal bumps 250 of the second semiconductor package 200 , the through hole vias 160 A and the conductive circuit of the substrate 140 .
  • the second die 210 comprises a plurality of pillar bumps 212 .
  • the conductive pillars 242 are disposed in the substrate 240 and electrically connected to the metal bumps 250 .
  • FIGS. 7 to 12 another method of forming a POP structure is illustrated in FIGS. 7 to 12 for a cross-sectional view.
  • the same reference numbers used in the first embodiment and the second embodiment represent the same elements.
  • a first semiconductor package 400 according to another embodiment is provided.
  • the major difference between the two semiconductor packages 100 and 400 is that the first die 110 in FIG. 7 is coupled to the substrate 140 through wire bonding.
  • the first die 110 is coupled to a circuitry formed in the substrate 140 via a plurality of wires 114 .
  • the circuitry formed in the substrate 140 is electrically connected to some of the metal bumps 150 .
  • a laser drilling is performed on the mold compound 120 to form a plurality of through holes 122 in the mold compound 120 , such that the conductive pads 132 are exposed on bottoms of the through holes 122 .
  • a conductive layer 160 is form on the mold compound 120 such that the through holes 122 are filled with the conductive material and the mold compound 120 is covered by the conductive material.
  • the conductive layer 160 is grinded to expose the mold compound 120 .
  • the conductive material filled in the through holes 122 forms a plurality of through hole vias 160 A.
  • the through hole vias 160 A may be in contact with the conductive pads 132 .
  • a height H of each through hole via 160 A may be range from 200 micrometers to 300 micrometers.
  • a distance D between bottoms of two adjacent through hole vias 160 A may be less than 300 micrometers.
  • the mold compound 120 may be grinded when grinding the conductive layer 160 . Since the conductive layer 160 and the mold compound 120 may be grinded, the thickness of the first semiconductor package 400 may be reduced.
  • the second semiconductor package 200 is stacked on the first semiconductor package 400 .
  • a plurality of metal bumps 250 of the second semiconductor package 200 are attached to the through hole vias 160 A when the second semiconductor package 200 is stacked on the first semiconductor package 400 .
  • the metal bumps 250 of the second semiconductor package 200 may be bonded to the through hole vias 160 A of the first semiconductor package 400 by performing a reflow soldering process.
  • the first semiconductor package 400 and the second semiconductor package 200 are integrated as a package-on-package (POP) structure 500 .
  • POP package-on-package
  • a laser drilling is performed to form a plurality of through holes in the mold compound, and the through holes are filled with the conductive material to form a plurality of through hole vias.
  • the distance between the bottoms of two adjacent through hole vias may be less than 300 micrometers.
  • the POP structure would be a fine pitch package.
  • the conductive layer and the mold compound may be grinded, and the substrate of the first semiconductor package may be removed after the through hole vias are formed. Accordingly, the thickness of the POP structure would be reduced.

Abstract

A method of forming a package-on-package (POP) structure is provided. A laser drilling is performed on a mold compound of a first semiconductor package to form a plurality of through holes in the mold compound. A conductive layer is formed on the mold compound such that the mold compound is covered by a conductive material and the through holes are filled with the conductive material. The layer of the conductive material is grinded to expose the mold compound. A second semiconductor package is stacked on the first semiconductor package such that a plurality of metal bumps of the second semiconductor package attach to the conductive material filled in the through holes.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 62/410,851, filed on Oct. 21, 2016, the contents of which are incorporated herein in their entirety.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to a packaging method, and more particularly, to a method of forming a package-on-package (POP) structure.
  • 2. Description of the Prior Art
  • Package-on-package (POP) is now the fastest growing semiconductor package technology since it is a cost-effective solution to high-density system integrated in a single package. In a POP structure, various packages are integrated in a single semiconductor package to reduce the size. A conventional POP structure usually uses solder balls, solder pillars or copper pillars to connect a first package to a second package by using surface mount technology (SMT) or by performing a reflow process. A plurality of packages can therefore be integrated into one package so as to reduce their size and lower the complexity of circuitry. However, it is still difficult to reduce the thickness of a package. Since a POP structure includes at least two packages stacking onto one another, a common problem is that the thickness of a POP structure is too large and difficult to be reduced. For applications such as mobile devices, a large POP structure may be difficult to be embedded in a small device. Hence, a solution for reducing the thickness of a package structure is required in the field.
  • SUMMARY OF THE INVENTION
  • An embodiment provides a method of forming a package-on-package (POP) structure. The method comprises performing a laser drilling on a mold compound of a first semiconductor package to form a plurality of through holes in the mold compound, forming a conductive layer on the mold compound such that the mold compound is covered by a conductive material and the through holes are filled with the conductive material, grinding the conductive layer to expose the mold compound, and stacking a second semiconductor package on the first semiconductor package such that a plurality of metal bumps of the second semiconductor package attach to the conductive material filled in the through holes.
  • These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1 to 6 are component cross-sectional views showing corresponding processing steps of the method of forming a package-on-package (POP) structure according to a first embodiment of the present invention.
  • FIGS. 7 to 12 are component cross-sectional views showing corresponding processing steps of the method of forming a POP structure according to a second embodiment of the present invention.
  • DETAILED DESCRIPTION
  • With reference to the attached drawings, the present invention is described by means of the embodiment(s) below where the attached drawings are simplified for illustration purposes only to illustrate the structures or methods of the present invention by describing the relationships between the components and assembly in the present invention. Therefore, the components shown in the figures are not expressed with the actual numbers, actual shapes, actual dimensions, nor with the actual ratio. Some of the dimensions or dimension ratios have been enlarged or simplified to provide a better illustration. The actual numbers, actual shapes, or actual dimension ratios can be selectively designed and disposed and the detail component layouts may be more complicated.
  • According to a first embodiment of the present invention, a method of forming a package-on-package (POP) structure is illustrated in FIGS. 1 to 6 for a cross-sectional view.
  • As shown in FIG. 1, a first semiconductor package 100 is provided. The first semiconductor package 100 comprises a first die 110, a mold compound 120, a plurality of conductive pads 132, a substrate 140 and a plurality of metal bumps 150. The first die 110 and the conductive pads 132 are disposed on the substrate 140 and encapsulated by the mold compound 120. The metal bumps 150 are formed below the substrate 140. In the embodiment, the first semiconductor package 100 is a flip-chip package, but the present invention is not limited thereto. The first die 110 has a plurality of pillar bumps 112 disposed on the substrate 140 and electrically connected to some of the metal bumps 150. The pillar bumps 112 are used as an I/O interface of the first die 110. The substrate 140 may comprise a pad mask layer 130 and a plurality of conductive pillars 142. The conductive pillars 142 are formed in the substrate 140 and pass through the substrate 140. Some of the metal bumps 150 are electrically connected to the conductive pads 132 via the conductive pillars 142. In the embodiment, the first semiconductor package 100 may be a fan-out package.
  • As shown in FIG. 2, a laser drilling is performed on the mold compound 120 to form a plurality of through holes 122 in the mold compound 120, such that the conductive pads 132 are exposed on bottoms of the through holes 122.
  • As shown in FIG. 3, a conductive layer 160 is formed on the mold compound 120 such that the mold compound 120 is covered by a conductive material and the through holes 122 are filled with the conductive material. The conductive material may be copper (Cu), gold (Au) or a copper gold (Au-Cu) alloy. The conductive layer 160 may be formed on the mold compound 120 by sputtering or electroplating the conductive material on the mold compound 120.
  • As shown in FIG. 4, the conductive layer 160 is grinded to expose the mold compound 120. Accordingly, the conductive material filled in the through holes 122 forms a plurality of through hole vias 160A. The through hole vias 160A are in contact with the conductive pads 132. A height H of each through hole via 160A may range from 200 micrometers to 300 micrometers. A distance D between bottoms of two adjacent through hole vias 160A may be less than 300 micrometers. In another embodiment, the mold compound 120 may be grinded when grinding the conductive layer 160. Since the conductive layer 160 and the mold compound 120 may be grinded, the thickness of the first semiconductor package 100 may be reduced. In another embodiment, the substrate 140 of the first semiconductor package 100 may be removed after the through hole vias 160A are formed. Accordingly, the thickness of the first semiconductor package 100 may be further reduced.
  • As shown in FIGS. 5 and 6, a second semiconductor package 200 is stacked on the first semiconductor package 100. A plurality of metal bumps 250 of the second semiconductor package 200 are attached to the through hole vias 160A when the second semiconductor package 200 is stacked on the first semiconductor package 100. The metal bumps 250 of the second semiconductor package 200 may be attached to the exposed surface of through hole vias 160A by performing a reflow soldering process. As a result, the first semiconductor package 100 and the second semiconductor package 200 are integrated as a package-on-package (POP) structure 300. Since the through holes 122 are formed by performing a laser drilling, the POP structure 300 would be a fine pitch package.
  • In the embodiment, the second semiconductor package 200 may be a fan-out package and/or a flip-chip package, but the present invention is not limited thereto. The second semiconductor package 200 comprises a second die 210, a mold compound 220, a substrate 240 and the metal bumps 250. The second die 210 is disposed on the substrate 240 and encapsulated by the mold compound 220. The metal bumps 250 are formed below the substrate 240. The second die 210 is electrically connected to some of the metal bumps 150 of the first semiconductor package 100 via the metal bumps 250 of the second semiconductor package 200, the through hole vias 160A and the conductive circuit of the substrate 140. The second die 210 comprises a plurality of pillar bumps 212. The conductive pillars 242 are disposed in the substrate 240 and electrically connected to the metal bumps 250.
  • According to a second embodiment of the present invention, another method of forming a POP structure is illustrated in FIGS. 7 to 12 for a cross-sectional view. The same reference numbers used in the first embodiment and the second embodiment represent the same elements.
  • As shown in FIG. 7, a first semiconductor package 400 according to another embodiment is provided. The major difference between the two semiconductor packages 100 and 400 is that the first die 110 in FIG. 7 is coupled to the substrate 140 through wire bonding. The first die 110 is coupled to a circuitry formed in the substrate 140 via a plurality of wires 114. The circuitry formed in the substrate 140 is electrically connected to some of the metal bumps 150.
  • As shown in FIG. 8, a laser drilling is performed on the mold compound 120 to form a plurality of through holes 122 in the mold compound 120, such that the conductive pads 132 are exposed on bottoms of the through holes 122.
  • As shown in FIG. 9, a conductive layer 160 is form on the mold compound 120 such that the through holes 122 are filled with the conductive material and the mold compound 120 is covered by the conductive material.
  • As shown in FIG. 10, the conductive layer 160 is grinded to expose the mold compound 120. Accordingly, the conductive material filled in the through holes 122 forms a plurality of through hole vias 160A. The through hole vias 160A may be in contact with the conductive pads 132. A height H of each through hole via 160A may be range from 200 micrometers to 300 micrometers. A distance D between bottoms of two adjacent through hole vias 160A may be less than 300 micrometers. In another embodiment, the mold compound 120 may be grinded when grinding the conductive layer 160. Since the conductive layer 160 and the mold compound 120 may be grinded, the thickness of the first semiconductor package 400 may be reduced.
  • As shown in FIGS. 11 and 12, the second semiconductor package 200 is stacked on the first semiconductor package 400. A plurality of metal bumps 250 of the second semiconductor package 200 are attached to the through hole vias 160A when the second semiconductor package 200 is stacked on the first semiconductor package 400. The metal bumps 250 of the second semiconductor package 200 may be bonded to the through hole vias 160A of the first semiconductor package 400 by performing a reflow soldering process. As a result, the first semiconductor package 400 and the second semiconductor package 200 are integrated as a package-on-package (POP) structure 500.
  • In summary, a laser drilling is performed to form a plurality of through holes in the mold compound, and the through holes are filled with the conductive material to form a plurality of through hole vias. The distance between the bottoms of two adjacent through hole vias may be less than 300 micrometers. Thereby, the POP structure would be a fine pitch package. Moreover, the conductive layer and the mold compound may be grinded, and the substrate of the first semiconductor package may be removed after the through hole vias are formed. Accordingly, the thickness of the POP structure would be reduced.
  • Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims (20)

1. A method of forming a package-on-package (POP) structure, the method comprising:
performing a laser drilling on a mold compound of a first semiconductor package to form a plurality of through holes in the mold compound;
forming a conductive layer on the mold compound such that the mold compound is covered by a conductive material and the through holes are filled with the conductive material;
grinding the conductive layer to expose the mold compound; and
stacking a second semiconductor package on the first semiconductor package such that a plurality of metal bumps of the second semiconductor package attach to the conductive material filled in the through holes.
2. The method of claim 1, wherein forming the conductive layer on the mold compound includes sputtering the conductive material on the mold compound.
3. The method of claim 1, wherein forming the conductive layer on the mold compound includes electroplating the conductive material on the mold compound.
4. The method of claim 1, wherein the conductive material is copper.
5. The method of claim 1, wherein the conductive material is gold.
6. The method of claim 1, wherein the conductive material is a copper gold alloy.
7. The method of claim 1, wherein the first semiconductor package is a flip-chip package.
8. The method of claim 1, wherein the first semiconductor package comprises a first die and a first substrate, a circuitry is formed in the first substrate, and the first die is electrically connected to the circuitry via a plurality of bonding wires.
9. The method of claim 1, wherein the first semiconductor package comprises a first die, a first substrate and a plurality of conductive pads, the first die is disposed on the first substrate and encapsulated by the mold compound, and the conductive pads are exposed on bottoms of the through holes after performing the laser drilling.
10. The method of claim 9, wherein the first semiconductor package further comprises a plurality of conductive pillars formed in the first substrate and a plurality of metal bumps formed below the first substrate, and the conductive pads are electrically connected to some of the metal bumps of the first semiconductor package via the conductive pillars.
11. The method of claim 1, wherein the second semiconductor package comprises a second die, the first semiconductor package comprises a first die, a first substrate, a plurality of conductive pillars and a plurality of metal bumps, the first die is disposed on the first substrate and encapsulated by the mold compound, the conductive pillars are formed in the first substrate, the metal bumps of the first semiconductor package are formed below the first substrate, the conductive material filled in the through holes forms a plurality of through hole vias, and the second die is electrically connected to some of the metal bumps of the first semiconductor package via the metal bumps of the second semiconductor package, the through hole vias and the conductive pillars.
12. The method of claim 11, wherein the second semiconductor package further comprises a plurality of pillar bumps electrically connected to the metal bumps of the second semiconductor package.
13. The method of claim 11, wherein the second semiconductor package further comprises a second substrate, the second die is disposed on the second substrate, and the metal bumps of the second semiconductor package are formed below the second substrate.
14. The method of claim 1, wherein the conductive material filled in the through holes forms a plurality of through hole vias, and a height of each through hole via is between 200 micrometers to 300 micrometers.
15. The method of claim 1, wherein the conductive material filled in the through holes forms a plurality of through hole vias, and a distance between bottoms of two adjacent through hole vias is less than 300 micrometers.
16. The method of claim 1, wherein the mold compound is epoxy molding compound.
17. The method of claim 1, wherein the second semiconductor package is a flip-chip package.
18. The method of claim 1, wherein the first semiconductor package is a fan-out package.
19. The method of claim 1, wherein the second semiconductor package is a fan-out package.
20. The method of claim 1, wherein the conductive material filled in the through holes forms a plurality of through hole vias, and the metal bumps of the second semiconductor package are bonded to the through hole vias by performing a reflow soldering process.
US15/423,597 2016-10-21 2017-02-03 Method of forming package-on-package structure Abandoned US20180114786A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/423,597 US20180114786A1 (en) 2016-10-21 2017-02-03 Method of forming package-on-package structure
TW106122989A TW201828370A (en) 2016-10-21 2017-07-10 Method of forming package-on-package structure
CN201710594258.2A CN107978532A (en) 2016-10-21 2017-07-20 The method for forming stack encapsulation structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662410851P 2016-10-21 2016-10-21
US15/423,597 US20180114786A1 (en) 2016-10-21 2017-02-03 Method of forming package-on-package structure

Publications (1)

Publication Number Publication Date
US20180114786A1 true US20180114786A1 (en) 2018-04-26

Family

ID=61969764

Family Applications (5)

Application Number Title Priority Date Filing Date
US15/423,597 Abandoned US20180114786A1 (en) 2016-10-21 2017-02-03 Method of forming package-on-package structure
US15/717,944 Abandoned US20180114781A1 (en) 2016-10-21 2017-09-28 Package structure and manufacturing method thereof
US15/717,953 Abandoned US20180114782A1 (en) 2016-10-21 2017-09-28 Manufacturing method of package-on-package structure
US15/782,862 Expired - Fee Related US10170458B2 (en) 2016-10-21 2017-10-13 Manufacturing method of package-on-package structure
US15/787,712 Expired - Fee Related US10276553B2 (en) 2016-10-21 2017-10-19 Chip package structure and manufacturing method thereof

Family Applications After (4)

Application Number Title Priority Date Filing Date
US15/717,944 Abandoned US20180114781A1 (en) 2016-10-21 2017-09-28 Package structure and manufacturing method thereof
US15/717,953 Abandoned US20180114782A1 (en) 2016-10-21 2017-09-28 Manufacturing method of package-on-package structure
US15/782,862 Expired - Fee Related US10170458B2 (en) 2016-10-21 2017-10-13 Manufacturing method of package-on-package structure
US15/787,712 Expired - Fee Related US10276553B2 (en) 2016-10-21 2017-10-19 Chip package structure and manufacturing method thereof

Country Status (3)

Country Link
US (5) US20180114786A1 (en)
CN (4) CN107978532A (en)
TW (5) TW201828370A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210320096A1 (en) * 2018-10-26 2021-10-14 Phoenix Pioneer Technology Co., Ltd. Manufacturing method for semiconductor package structure
US11410856B2 (en) * 2020-11-10 2022-08-09 Lingsen Precision Industries, Ltd. Chip packaging method
US11791326B2 (en) 2021-05-10 2023-10-17 International Business Machines Corporation Memory and logic chip stack with a translator chip

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018103505A1 (en) * 2018-02-16 2019-08-22 Osram Opto Semiconductors Gmbh Composite semiconductor device and method of making a composite semiconductor device
US10748831B2 (en) * 2018-05-30 2020-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor packages having thermal through vias (TTV)
TWI674708B (en) * 2018-08-31 2019-10-11 唐虞企業股份有限公司 Fabrication method of chip package structure semi-finished product, chip package structure module and chip package structure
TWI733056B (en) * 2018-09-19 2021-07-11 矽品精密工業股份有限公司 Electronic package and manufacturing method thereof
CN111106096B (en) * 2018-10-26 2024-01-05 恒劲科技股份有限公司 Semiconductor packaging structure and manufacturing method thereof
TWI680553B (en) * 2018-10-26 2019-12-21 英屬開曼群島商鳳凰先驅股份有限公司 Semiconductor package structure and method of making the same
US10629575B1 (en) * 2018-12-13 2020-04-21 Infineon Techologies Ag Stacked die semiconductor package with electrical interposer
US11476200B2 (en) * 2018-12-20 2022-10-18 Nanya Technology Corporation Semiconductor package structure having stacked die structure
TWI733093B (en) * 2019-03-14 2021-07-11 力成科技股份有限公司 Semiconductor package structure and manufacturing method thereof
TWI700796B (en) * 2019-05-23 2020-08-01 矽品精密工業股份有限公司 Electronic package and manufacturing method thereof
US11587881B2 (en) * 2020-03-09 2023-02-21 Advanced Semiconductor Engineering, Inc. Substrate structure including embedded semiconductor device
US11335646B2 (en) 2020-03-10 2022-05-17 Advanced Semiconductor Engineering, Inc. Substrate structure including embedded semiconductor device and method of manufacturing the same
US20210320085A1 (en) * 2020-04-09 2021-10-14 Nanya Technology Corporation Semiconductor package
US11600562B2 (en) * 2020-10-21 2023-03-07 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor packages and method of manufacturing the same
TWI798647B (en) * 2021-02-23 2023-04-11 華泰電子股份有限公司 Electronic package and method of manufacture thereof
US11715731B2 (en) * 2021-08-29 2023-08-01 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure and method of forming the same
CN113611618A (en) * 2021-09-28 2021-11-05 深圳新声半导体有限公司 Method for chip system-in-package and chip system-in-package structure

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110068481A1 (en) * 2009-09-23 2011-03-24 Sung-Kyu Park Package-on-package type semiconductor package and method for fabricating the same
US20110304015A1 (en) * 2010-06-10 2011-12-15 Samsung Electronics Co., Ltd. Semiconductor package
US20140217604A1 (en) * 2013-02-04 2014-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Package Structure and Methods of Forming Same
US20150359098A1 (en) * 2012-12-26 2015-12-10 Hana Micron Inc. Circuit Board Having Interposer Embedded Therein, Electronic Module Using Same, and Method for Manufacturing Same
US20160163578A1 (en) * 2014-12-03 2016-06-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor Packages and Methods of Forming the Same
US20160329284A1 (en) * 2015-05-04 2016-11-10 Qualcomm Incorporated Semiconductor package with high density die to die connection and method of making the same
US20160343690A1 (en) * 2015-05-18 2016-11-24 Micron Technology, Inc. Package-on-package semiconductor assemblies and methods of manufacturing the same
US20160358899A1 (en) * 2015-06-08 2016-12-08 Qualcomm Incorporated Interposer for a package-on-package structure
US20170047264A1 (en) * 2015-08-13 2017-02-16 Yunhyeok Im Semiconductor packages and methods of fabricating the same
US20170251576A1 (en) * 2016-02-26 2017-08-31 Avago Technologies General Ip (Singapore) Pte. Ltd Module with internal wire fence shielding
US20170338207A1 (en) * 2016-05-17 2017-11-23 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor Device and Method of Manufacture

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861290B1 (en) * 1995-12-19 2005-03-01 Micron Technology, Inc. Flip-chip adaptor package for bare die
JP2001085565A (en) * 1999-09-17 2001-03-30 Hitachi Ltd Semiconductor device and manufacture thereof
US7633765B1 (en) 2004-03-23 2009-12-15 Amkor Technology, Inc. Semiconductor package including a top-surface metal layer for implementing circuit features
US20070003731A1 (en) * 2005-06-29 2007-01-04 Micron Technology, Inc. Gold-semiconductor phase change memory for archival data storage
US8026611B2 (en) * 2005-12-01 2011-09-27 Tessera, Inc. Stacked microelectronic packages having at least two stacked microelectronic elements adjacent one another
JP2009044110A (en) * 2007-08-13 2009-02-26 Elpida Memory Inc Semiconductor device and its manufacturing method
TW200910564A (en) * 2007-08-17 2009-03-01 United Test Ct Inc Multi-substrate block type package and its manufacturing method
JP2009088254A (en) * 2007-09-28 2009-04-23 Toshiba Corp Electronic component package, and manufacturing method for electronic component package
US8188586B2 (en) * 2007-11-01 2012-05-29 Stats Chippac Ltd. Mountable integrated circuit package system with mounting interconnects
TW201023308A (en) 2008-12-01 2010-06-16 Advanced Semiconductor Eng Package-on-package device, semiconductor package and method for manufacturing the same
US7955942B2 (en) * 2009-05-18 2011-06-07 Stats Chippac, Ltd. Semiconductor device and method of forming a 3D inductor from prefabricated pillar frame
US8421210B2 (en) * 2010-05-24 2013-04-16 Stats Chippac Ltd. Integrated circuit packaging system with dual side connection and method of manufacture thereof
US8349658B2 (en) * 2010-05-26 2013-01-08 Stats Chippac, Ltd. Semiconductor device and method of forming conductive posts and heat sink over semiconductor die using leadframe
US8105872B2 (en) * 2010-06-02 2012-01-31 Stats Chippac, Ltd. Semiconductor device and method of forming prefabricated EMI shielding frame with cavities containing penetrable material over semiconductor die
TWI421955B (en) * 2010-06-30 2014-01-01 矽品精密工業股份有限公司 Wafer level package with pressure sensor and fabrication method thereof
US9159708B2 (en) * 2010-07-19 2015-10-13 Tessera, Inc. Stackable molded microelectronic packages with area array unit connectors
US8581997B2 (en) * 2010-10-28 2013-11-12 Intellectual Ventures Fund 83 Llc System for locating nearby picture hotspots
US8970028B2 (en) * 2011-12-29 2015-03-03 Invensas Corporation Embedded heat spreader for package with multiple microelectronic elements and face-down connection
TWI409885B (en) * 2011-05-16 2013-09-21 矽品精密工業股份有限公司 Package structure having micromechanical element and method of making same
US8389329B2 (en) * 2011-05-31 2013-03-05 Stats Chippac Ltd. Integrated circuit packaging system with package stacking and method of manufacture thereof
US8754514B2 (en) * 2011-08-10 2014-06-17 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-chip wafer level package
US9142502B2 (en) 2011-08-31 2015-09-22 Zhiwei Gong Semiconductor device packaging having pre-encapsulation through via formation using drop-in signal conduits
US9105483B2 (en) * 2011-10-17 2015-08-11 Invensas Corporation Package-on-package assembly with wire bond vias
US8372741B1 (en) * 2012-02-24 2013-02-12 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US9040346B2 (en) * 2012-05-03 2015-05-26 Infineon Technologies Ag Semiconductor package and methods of formation thereof
US9559039B2 (en) * 2012-09-17 2017-01-31 STATS ChipPAC Pte. Ltd. Semiconductor device and method of using substrate having base and conductive posts to form vertical interconnect structure in embedded die package
US9508674B2 (en) * 2012-11-14 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Warpage control of semiconductor die package
US9368438B2 (en) * 2012-12-28 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Package on package (PoP) bonding structures
US9378982B2 (en) * 2013-01-31 2016-06-28 Taiwan Semiconductor Manufacturing Company, Ltd. Die package with openings surrounding end-portions of through package vias (TPVs) and package on package (PoP) using the die package
DE202013100760U1 (en) * 2013-02-20 2014-05-22 Eugster/Frismag Ag coffee machine
US8877554B2 (en) 2013-03-15 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Packaged semiconductor devices, methods of packaging semiconductor devices, and PoP devices
KR20140130921A (en) * 2013-05-02 2014-11-12 삼성전자주식회사 Semiconductor package and method of manufacturing the same
US9368475B2 (en) * 2013-05-23 2016-06-14 Industrial Technology Research Institute Semiconductor device and manufacturing method thereof
TWI539572B (en) * 2013-05-23 2016-06-21 財團法人工業技術研究院 Semiconductor device and manufacturing method thereof
KR101938949B1 (en) 2013-12-23 2019-01-15 인텔 코포레이션 Package on package architecture and method for making
US10049977B2 (en) 2014-08-01 2018-08-14 Qualcomm Incorporated Semiconductor package on package structure and method of forming the same
US9666730B2 (en) * 2014-08-18 2017-05-30 Optiz, Inc. Wire bond sensor package
US10177115B2 (en) * 2014-09-05 2019-01-08 Taiwan Semiconductor Manufacturing Company, Ltd. Package structures and methods of forming
US9679842B2 (en) * 2014-10-01 2017-06-13 Mediatek Inc. Semiconductor package assembly
CN105895610B (en) 2014-11-18 2019-11-22 恩智浦美国有限公司 Semiconductor device and lead frame with vertical connection strap
KR102265243B1 (en) * 2015-01-08 2021-06-17 삼성전자주식회사 Semiconductor Package and method for manufacturing the same
US9613931B2 (en) * 2015-04-30 2017-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. Fan-out stacked system in package (SIP) having dummy dies and methods of making the same
US11018025B2 (en) * 2015-07-31 2021-05-25 Taiwan Semiconductor Manufacturing Company, Ltd. Redistribution lines having stacking vias

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110068481A1 (en) * 2009-09-23 2011-03-24 Sung-Kyu Park Package-on-package type semiconductor package and method for fabricating the same
US20110304015A1 (en) * 2010-06-10 2011-12-15 Samsung Electronics Co., Ltd. Semiconductor package
US20150359098A1 (en) * 2012-12-26 2015-12-10 Hana Micron Inc. Circuit Board Having Interposer Embedded Therein, Electronic Module Using Same, and Method for Manufacturing Same
US20140217604A1 (en) * 2013-02-04 2014-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Package Structure and Methods of Forming Same
US20160163578A1 (en) * 2014-12-03 2016-06-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor Packages and Methods of Forming the Same
US20160329284A1 (en) * 2015-05-04 2016-11-10 Qualcomm Incorporated Semiconductor package with high density die to die connection and method of making the same
US20160343690A1 (en) * 2015-05-18 2016-11-24 Micron Technology, Inc. Package-on-package semiconductor assemblies and methods of manufacturing the same
US20160358899A1 (en) * 2015-06-08 2016-12-08 Qualcomm Incorporated Interposer for a package-on-package structure
US20170047264A1 (en) * 2015-08-13 2017-02-16 Yunhyeok Im Semiconductor packages and methods of fabricating the same
US20170251576A1 (en) * 2016-02-26 2017-08-31 Avago Technologies General Ip (Singapore) Pte. Ltd Module with internal wire fence shielding
US20170338207A1 (en) * 2016-05-17 2017-11-23 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor Device and Method of Manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210320096A1 (en) * 2018-10-26 2021-10-14 Phoenix Pioneer Technology Co., Ltd. Manufacturing method for semiconductor package structure
US11410856B2 (en) * 2020-11-10 2022-08-09 Lingsen Precision Industries, Ltd. Chip packaging method
US11791326B2 (en) 2021-05-10 2023-10-17 International Business Machines Corporation Memory and logic chip stack with a translator chip

Also Published As

Publication number Publication date
US20180114781A1 (en) 2018-04-26
CN107978583B (en) 2020-11-17
TWI644369B (en) 2018-12-11
CN107978571A (en) 2018-05-01
US20180114783A1 (en) 2018-04-26
TW201828371A (en) 2018-08-01
US10170458B2 (en) 2019-01-01
TWI643268B (en) 2018-12-01
TWI651828B (en) 2019-02-21
TW201828372A (en) 2018-08-01
US20180114704A1 (en) 2018-04-26
US20180114782A1 (en) 2018-04-26
TW201830527A (en) 2018-08-16
TWI665740B (en) 2019-07-11
CN107978566A (en) 2018-05-01
CN107978583A (en) 2018-05-01
TW201828370A (en) 2018-08-01
CN107978532A (en) 2018-05-01
US10276553B2 (en) 2019-04-30
TW201824500A (en) 2018-07-01

Similar Documents

Publication Publication Date Title
US20180114786A1 (en) Method of forming package-on-package structure
USRE49045E1 (en) Package on package devices and methods of packaging semiconductor dies
USRE49046E1 (en) Methods and apparatus for package on package devices
US9825005B2 (en) Semiconductor package with Pillar-Top-Interconnection (PTI) configuration and its MIS fabricating method
US8823180B2 (en) Package on package devices and methods of packaging semiconductor dies
US8889484B2 (en) Apparatus and method for a component package
US9870997B2 (en) Integrated fan-out package and method of fabricating the same
US7242081B1 (en) Stacked package structure
US20180130769A1 (en) Substrate Based Fan-Out Wafer Level Packaging
US9818683B2 (en) Electronic package and method of fabricating the same
US20070241463A1 (en) Electrode, manufacturing method of the same, and semiconductor device having the same
US10121736B2 (en) Method of fabricating packaging layer of fan-out chip package
US20230335533A1 (en) Semiconductor device package and method for manufacturing the same
US20220293482A1 (en) Semiconductor device and manufacturing method thereof
US20130256915A1 (en) Packaging substrate, semiconductor package and fabrication method thereof
US20210118839A1 (en) Chip package structure and manufacturing method thereof
US20200075554A1 (en) Electronic package and method for fabricating the same
US20100140773A1 (en) Stacked chip, micro-layered lead frame semiconductor package
US20180130720A1 (en) Substrate Based Fan-Out Wafer Level Packaging
US9219043B2 (en) Wafer-level package device having high-standoff peripheral solder bumps
CN113725198A (en) Semiconductor package
KR20120030769A (en) Semiconductor device and fabricating method thereof
CN110880481A (en) Electronic package and manufacturing method thereof
JP2006186128A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: POWERTECH TECHNOLOGY INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HSU, HUNG-HSIN;WANG, CHI-AN;REEL/FRAME:041163/0441

Effective date: 20170124

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION