US20180092776A1 - Method and device for treating and managing diseased ocular tissue - Google Patents

Method and device for treating and managing diseased ocular tissue Download PDF

Info

Publication number
US20180092776A1
US20180092776A1 US15/722,569 US201715722569A US2018092776A1 US 20180092776 A1 US20180092776 A1 US 20180092776A1 US 201715722569 A US201715722569 A US 201715722569A US 2018092776 A1 US2018092776 A1 US 2018092776A1
Authority
US
United States
Prior art keywords
microneedles
substrate
diseased
scleral
bulbar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/722,569
Inventor
Sara Heikali
Moossa Heikali
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US15/722,569 priority Critical patent/US20180092776A1/en
Publication of US20180092776A1 publication Critical patent/US20180092776A1/en
Priority to US16/119,967 priority patent/US10857028B2/en
Priority to US16/273,711 priority patent/US11419760B2/en
Priority to US17/114,263 priority patent/US20210085521A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00781Apparatus for modifying intraocular pressure, e.g. for glaucoma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0021Intradermal administration, e.g. through microneedle arrays, needleless injectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • A61K9/0051Ocular inserts, ocular implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/003Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in adsorbability or resorbability, i.e. in adsorption or resorption time
    • A61F2250/0031Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in adsorbability or resorbability, i.e. in adsorption or resorption time made from both resorbable and non-resorbable prosthetic parts, e.g. adjacent parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • A61F9/0017Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea

Definitions

  • the exemplary embodiments generally relate to methods and devices for treating ocular diseases and particularly to treating and managing diseased ocular tissue.
  • Various portions of the eye comprise a fibrous layer which is susceptible to disease and degradation.
  • diseases may be attributable to ultraviolet light exposure, which can cause collagen degeneration for example within the conjunctival stroma, as well as thinning of conjunctival epithelium. Dry or dusty environments may be other significant contributing factors.
  • diseases include Pinguecula and Pterygium, among others.
  • Pinguecula in particular, is a conjunctival degeneration of the eye tissue which consists of a benign slow growing yellow-white, opaque deposit/mass which is flat or slightly elevated and occurring in the interpalperal fissure adjacent to the limbus, usually nasal.
  • Pingueculae are occasionally pigmented or calcified and the conjunctival lesion is usually caused by exposure to the sun/ultraviolet light and/or dry, dusty environments. Moreover, it is currently believed that a pinguecula may involve elastotic degeneration (degeneration of elastic tissue) within the conjunctival stroma, in addition to collagen degeneration.
  • pinguecula Patients with a pinguecula (e) sometimes may experience symptoms of irritation, burning sensation, redness, and chronic dryness as the raised conjunctival lesion does not allow the natural tear film to spread evenly across the surface of the eye.
  • dry eye disease may be a contributing factor to pinguecula e growth.
  • pinguecula In mild cases, pinguecula generally requires no treatment. However to protect the eyes from sun, dust, and wind, an eyecare professional may recommend sunglasses. Further, to reduce ocular irritation, lubrication with artificial tears may be prescribed by an eyecare professional.
  • a topical anti-inflammatory agent may be prescribed such as mild topical steroid (ex.
  • a pinguecula interfering with contact lens wear may be another reason for recommended surgical removal of the lesion.
  • the tissue growth can result in contact lens intolerance due to the elevation of the contact lens peripheral edge overlying the pinguecula.
  • Constant mechanical irritation of the pinguecula by the edge of the contact lens may also induce pingueculitis.
  • treatment and management of diseases such as pinguecula have been limited.
  • a method of treating and managing a diseased ocular tissue in the bulbar conjunctiva comprises providing a device comprising a plurality of microneedles arranged on a substrate and contacting the device with a diseased ocular tissue region formed in the bulbar conjunctival stroma to form a plurality of micro-injury sites within the diseased bulbar conjunctival stroma. This causes release of growth factors and formation of new collagen fibrils.
  • a device for treating and managing diseased ocular tissue in the bulbar conjunctiva comprises a substrate and a plurality of microneedles positioned on a substrate.
  • the microneedles are arranged and dimensioned such that when the device is brought into contact with the diseased tissue, the microneedles penetrate a diseased ocular tissue region formed in the bulbar conjunctival stroma, to produce a plurality of micro-injury sites within the diseased bulbar conjunctival stroma region. Again, this can cause release of growth factors and formation of new collagen fibrils.
  • a device for treating and managing diseased ocular tissue in the bulbar conjunctiva comprises a contact lens substrate which comprises a substantially elliptical corneal portion and a limbus portion located radially about the corneal portion.
  • a scleral portion is also located radially about the substrate.
  • the device can be at least partially degradable and comprising a therapeutic compound.
  • at least a portion of the scleral portion can be configured to overlay, and deliver the therapeutic compound to, a diseased ocular tissue located adjacent to the cornea of a patient.
  • a device comprises a contact lens substrate comprising a substantially elliptical corneal portion and a limbus portion located radially about the corneal portion.
  • a scleral portion is located radially about the substrate.
  • the scleral portion extends nasaly and temporally to overlay nasal and temporal bulbar conjunctiva and sclera to protect against ultraviolet damage and irritants.
  • FIG. 1A is a perspective view of a microneedling device in accordance with an exemplary embodiment.
  • FIG. 1B is another perspective view of a microneedling device in accordance with an exemplary embodiment.
  • FIG. 1C is yet another perspective view of a microneedling device in accordance with an exemplary embodiment.
  • FIG. 1D is a perspective view illustrating attributes of a microneedling device in accordance with an exemplary embodiment.
  • FIG. 1E is a perspective view of a portion of a microneedling device in accordance with an exemplary embodiment.
  • FIG. 1F is a perspective view of a portion of a microneedling device in accordance with an exemplary embodiment.
  • FIG. 2A is a top view of a circular contact lens device in accordance with an exemplary embodiment.
  • FIG. 2B is a top view of a circular contact lens device in accordance with an exemplary embodiment.
  • FIG. 2C is a top view of an oval contact lens device in accordance with an exemplary embodiment.
  • FIG. 2D is a top view of a contact lens device with extensions in accordance with an exemplary embodiment.
  • FIG. 3A is a top view of a circular contact lens device in accordance with an exemplary embodiment.
  • FIG. 3B is a top view of a circular contact lens device with degradable portions in accordance with an exemplary embodiment.
  • FIG. 3C is a top view of another contact lens device with extensions in accordance with an exemplary embodiment.
  • FIG. 4A is a top view of a contact lens device in accordance with an exemplary embodiment.
  • FIG. 4B is a top view of a contact lens device with degradable portions in accordance with an exemplary embodiment.
  • FIG. 5 is a top view of a contact lens device in accordance with another exemplary embodiment.
  • FIG. 6A is a top view of a contact lens device with degradable layers in accordance with an exemplary embodiment.
  • FIG. 6B is a top view of a contact lens device in accordance with an exemplary embodiment.
  • FIG. 7A is a schematic view conceptually illustrating the interaction between a microneedling device and ocular tissue.
  • FIG. 7B is another schematic view conceptually illustrating the interaction between a microneedling device and ocular tissue.
  • FIG. 7C is a schematic view conceptually illustrating ocular tissue after interaction with a microneedling device.
  • ocular disease includes diseases, disorders, degenerative conditions, or any other abnormal ocular conditions.
  • diseased tissue or “diseased ocular tissue” denote unhealthy or abnormal tissue. Examples include, but are not limited to, misaligned, tangled, cross-linked or otherwise abnormally structured fibrils.
  • microneedling devices are provided for treating an ocular disease.
  • the microneedling device comprises a plurality of microneedles arranged on a substrate.
  • the microneedles may be in any arrangement and shape conducive to initiating collagen induction therapy as described in this disclosure.
  • the combination of the arrangement and shape of both substrate and microneedles may facilitate controlled conjunctival micro-injury to trigger neocollagenesis and neoelastinogenesis within the bulbar conjunctiva.
  • FIGS. 1A-F illustrate a few examples of microneedling devices in accordance with exemplary embodiments.
  • the device 11 comprises a substrate 12 and a plurality of microneedles 13 arranged thereon.
  • the substrate 12 shown is a rectangular in configuration. It is to be understood, of course, that the configuration and size of the substrate 12 may vary considerably depending on the particular use for which it is intended. Hence the substrate 12 may assume other configurations, such as circular, oval and triangular. Moreover, some or all corners and sides may be rounded.
  • the substrate 12 shown comprises an upper surface 14 and lower surface 15 . Moreover, the substrate 12 may be solid, hollow, or porous.
  • biocompatible material may be suited for the substrate 12 .
  • examples include, but are not limited to metals (ex. pharmaceutical grade stainless steel, gold, copper) or polymers (biodegradable or non-biodegradable).
  • biodegradable polymers include collagen, hyaluronic acid, ascorbate, methylcellulose (and other cellulose esters), chitosan, polylactides, polyglycolides, polylactide-co-glycolides (PLGA), polyanhydrides, polyorthoesters, polyetheresters, polycaprolactones, polyesteramides, poly(butyric acid), poly(valeric acid), polyurethanes and copolymers and blends thereof.
  • non-biodegradable polymers include polyacrylates, polymers of ethylene-vinyl acetates and other acyl substituted cellulose acetates, non-degradable polyurethanes, polystyrenes, polyvinyl alcohol, polysurface capillary fiber, polyhydroxy ethyl methacrylate, polyvinyl chloride, polyvinyl fluoride, poly(vinyl imidazole), chlorosulphonate polyolefins, polyethylene oxide, blends and copolymers thereof.
  • the substrate 12 may also comprise glycosaminoglycans (GAGs) such as hyaluronate, chondroitin sulfate, heparan sulfate, heparin, dermatan sulfate, keratin sulfate.
  • GAGs glycosaminoglycans
  • the substrate 12 may be a composite comprising two or more of the materials provided.
  • substrate 12 may be entirely or partly coated with a therapeutic compound which is delivered to the diseased tissue during application.
  • the substrate 12 shown bestows a smooth surface to the ocular microneedling device and should be comfortable for the patient once applied against/to ocular tissue.
  • the substrate can take on any shape that allows for safe application of the device to a patent's eye.
  • the shape of the substrate 12 may be planar, curved or a combination thereof.
  • the substrate 12 may be unicurved to fit one radius of curvature, dual curved to fit two radii of curvature or multicurved to fit multiple radii of curvature based on the ocular tissue being treated.
  • the substrate comprises sufficient flexibility to at least partially conform to the shape of a raised tissue, such as a pinguecula.
  • FIGS. 1B and 1C illustrate substrates bent in concave and convex shapes, although other modes of flexure are contemplated herein.
  • the devices of the exemplary embodiments may be designed to achieve maximum contact with the diseased tissue while avoiding certain sensitive portions of the eye.
  • the shape of the substrate may vary where all or a portion of the substrate may comprise microneedles.
  • FIGS. 1E and 1D illustrate examples where certain substrate portions 19 lack microneedles.
  • the device 11 comprises a substantially circular substrate 12 with an opening 18 therein.
  • the opening 18 may be dimensioned to receive the cornea without contacting the same.
  • the microneedles 12 may contact the Pinguecula near the cornea without contacting the cornea itself.
  • the substrate shape or microneedle coverage may accommodate for other sensitive areas besides the cornea.
  • the microneedling devices may be mechanically contacted with the diseased tissue.
  • the substrate is connected to a drive unit or a handle.
  • FIG. 1F provides an example where the substrate 12 is connected to a connector element 10 .
  • the connector element 10 may be connected to a drive unit (not shown) configured to position the device relative to the diseased tissue.
  • the drive unit may comprise a feedback loop for continuously monitoring and adjusting the position of the device. Of course, the device position may be manually controlled.
  • microneedles 13 may vary considerably depending on the desired application.
  • solid, hollow, or porous microneedle(s) 13 stem off of the upper surface 14 of substrate 12 .
  • Substrate 12 serves to provide a stable supporting structure/base for the microneedles 13 to rest on.
  • microneedle 13 has a conical configuration.
  • the microneedle 13 may assume other configurations such as, but not limited to, pyramidal or cylindrical. Essentially, any geometry that can produce the micro-injury sites described is contemplated herein.
  • microneedles 13 may be arranged at an angle (less than or greater than 90 degrees) with respect to the upper surface 14 of the substrate 12 .
  • the tip 16 of the microneedle 13 may be many different configurations such as beveled, tapered, squared-off or rounded. However, a blunt or beveled tip would likely allow more ease of microneedle insertion into the ocular tissue.
  • the base 17 of the microneedles 13 may have different size or shape diameters, and the microneedle length can vary between different regions of the substrate surface 14 . Thus, microneedles with a variety of aspect ratios on the same device are possible.
  • the spacing between microneedles 13 on the substrate 12 may vary across the substrate, if for example, more density is required.
  • the material of the microneedles 13 may be selected from various different biocompatible materials such as metals (e.g. pharmaceutical grade stainless steel, gold, copper) or polymers (e.g. biodegradable or non-biodegradable).
  • biodegradable polymers include collagen, hyaluronic acid, ascorbate, methycellulose (including other cellulose esters), chitosan, polylactides, polyglycolides, polylactide-co-glycolides (PLGA), polyanhydrides, polyorthoesters, polyetheresters, polycaprolactones, polyesteramides, poly(butyric acid), poly(valeric acid), polyurethanes and copolymers and blends thereof.
  • metals e.g. pharmaceutical grade stainless steel, gold, copper
  • polymers e.g. biodegradable or non-biodegradable
  • biodegradable polymers include collagen, hyaluronic acid, ascorbate, methycellulose (including other cellulose esters),
  • non-biodegradable polymers include polyacrylates, polymers of ethylene-vinyl acetates and other acyl substituted cellulose acetates, non-degradable polyurethanes, polystyrenes, polyvinyl chloride, polyvinyl fluoride, poly(vinyl imidazole), polyvinyl alcohol, polysurface capillary fiber, polyhydroxy ethyl methacrylate, chlorosulphonate polyolefins, polyethylene oxide, blends and copolymers thereof.
  • the microneedles 13 may be a composite comprising two or more of any of these types of materials.
  • the microneedle 13 may be entirely or partly coated with one or more therapeutic compounds or contain within it one or more therapeutic compounds, such as ethylenediaminetetraacetic acid (EDTA), steroids, non-steroidal anti-inflammatory compounds, dipyridamole and platelet-rich plasma (PRP). Therapeutic compounds providing or causing the production of growth factors are specifically contemplated herein.
  • the microneedle (s) 13 may also comprise glycosaminoglycans (GAGs) such as hyaluronate, chondroitin sulfate, heparan sulfate, heparin, dermatan sulfate or keratin sulfate.
  • GAGs glycosaminoglycans
  • microneedling device 11 is dimensioned to enter the bulbar conjunctival stroma at an appropriate length to achieve controlled injury to the fibrous layer of the conjunctival stroma where there are collagen and elastin fibers.
  • This controlled micro-injury site formation can cause collagen induction as disclosed herein.
  • the microneedle length is between about, 10 and 350 microns, preferably between 35 and 270 microns. In some cases the length is between about 250 and 300 microns. All integer values in these ranges are specifically contemplated.
  • the micro-injury sites formed in accordance with the exemplary embodiments may be regarded as a disruption in the fibrous ocular tissue layer.
  • the micro-injuries formed in the stroma may comprise, micro-pores, disrupted fibers, localized rupture of the vasculature, or combination thereof.
  • localized rupture(s) of the vasculature can result in bleeding and release of growth factors which promote growth of new collagen and elastin fibrils.
  • the micro-pores can act as a receptacle for receiving therapeutic compounds including growth factors, anti-inflammatories and collagen as well as many other compounds as described herein.
  • FIGS. 7A-C A conceptual representation of the process of forming micro-injury sites within the diseased tissue is provided in FIGS. 7A-C .
  • the relative sizes of the microneedles, the device 20 and the diseased tissue 110 can widely differ. Initially, per FIG. 7A , the microneedling device 20 is brought into contact with the diseased tissue region 110 of the conjunctiva 100 . Although this tissue is shown in cross-section as a single raised feature, the shape could contain multiple bumps, plateaus with sharper peaks or broader peaks. The arrangement and shape of the microneedles may then vary based on the shape of the tissue 110 , as further discussed below.
  • a plurality of micro-injury sites 120 remain in the diseased tissue 110 , as shown in FIG. 7B . It should be noted that, although not shown, the device 20 may contact the healthy portion of the conjunctiva 100 or the scleral layer 200 , to form micro-injuries therein as well.
  • microneedling can create inflammation, proliferation and remodeling of the diseased tissue.
  • the micro-injury sites activate matrix metalloproteinases (MMPs) which assist in several phases of wound healing.
  • MMPs matrix metalloproteinases
  • the MMPs remove damaged extracellular matrix and bacteria.
  • the MMPs play a role in degradation of capillary basement membrane for angiogenesis as well as migration of epidermal cells. Further, the MMPs assist in remodeling the healing tissue.
  • the unhealthy tissue is broken down, removed, whereby the growth factors help form new tissue 130 in place of the previous diseased tissue 120 , as shown in 7 C.
  • the device may comprise therapeutic compounds that additionally provide or enhance the efficacy of the growth factors.
  • a uni-, bi- or multi-cavity casting mold can be used to produce a device with the desired overall dimensions with particular microneedle shapes and sizes. Initially, a casting solution containing the materials for the microneedles is placed in the microneedle cavity array, followed by drying or cross-linking the material. Next the solution containing the substrate material is in the substrate cavity and also dried or cross-linked. The substrate microneedles or both may have different zones of cross-linking which can be achieved by exposure to ultraviolet radiation.
  • Crosslinking of all or parts of the ocular microneedling device could provide resistance to dissolution once applied to the ocular tissue, given that the greater degree of cross-linkage provides added resistance to enzymatic degradation.
  • the device may be sterilized using chemical treatment, irradiation or other techniques known in the art. For instance, the device may be irradiated with gamma rays prior to packaging or use.
  • a patient is prepared by applying an anesthetizing agent (ex. proparacaine eyedrop) to the eye, more specifically topically to the insertion site.
  • an anesthetizing agent ex. proparacaine eyedrop
  • the anesthetizing agent will reduce or eliminate pain that is caused by the application of the ocular microneedling device to the pinguecula.
  • the ocular microneedling devices described herein, when contacted with conjunctival stroma, would likely cause an insignificant amount of pain when compared to conventional hypodermic needle penetration within ocular tissue.
  • a dehydrated ocular microneedling device is removed from within a sterile packet with the use of a medical forcep.
  • a slit-lamp examination will be used to examine the ocular microneedle insertion site carefully.
  • the eye care professional may determine the appropriate shape and features of the microneedling device in advance or at the time of application.
  • the patient will be asked to look to his/her right to apply a microneedling device to a right eye nasal pinguecula.
  • Alternatively, when applying to a right eye temporal pinguecula patient will be asked to look to his/her left.
  • Behind a biomicroscope an eye care professional will safely use a medical forceps to apply the microneedle surface having sharp tips within the pinguecula.
  • Therapeutic compounds may be applied to the microneedles if the device does not already contain such compounds. For instance before applying the device to a Pinguecula, the device may be dipped into a solution containing therapeutic compounds such as steroids, non-steroidal anti-inflammatory agents, dipyridamoles, platelet-rich plasma, or growth factors.
  • therapeutic compounds such as steroids, non-steroidal anti-inflammatory agents, dipyridamoles, platelet-rich plasma, or growth factors.
  • the micro-injury sites formed using the microneedling device can comprise micron-size pores within the conjunctival stroma.
  • the micron-size pores may also serve as a direct pathway for drug molecule/particle introduction into ocular tissue.
  • Microneedles made from or comprising therapeutic compounds may be degradable to locally deliver such compounds that assist with wound healing and collagen production.
  • the lateral/parallel orientation of collagen fibers of the conjunctival stroma will also assist with lateral diffusion of the therapeutic agents within the conjunctival stroma.
  • Compounds such as collagen, hyularonic acid, and ascorbate may be used to reduce inflammation and assist wound healing by supporting collagen production within conjunctival stroma.
  • Chitosan and methylcellulose may contribute to lubrication of the eye and minimizing dry eye symptoms.
  • Steroid or non-steroidal anti-inflammatory agent may assist with reducing inflammation of the lesion.
  • platelet-rich plasma will further support collagen production via release of growth factors.
  • application of the microneedling device to the diseased tissue may further comprise electrical stimulation.
  • an electric potential may be applied to conductive microneedles. It is believed that contacting the diseased tissue with microneedles and applying an electric potential thereto could promote release of various proteins, as well as potassium and growth factors from the cell to the exterior. As such, fibroblasts may migrate to the micro-injury site and promote collagen induction.
  • the device comprises a substrate portion and a scleral portion.
  • the substrate comprises a substantially elliptical corneal portion.
  • the elliptical shape may be shortened or elongated about either major or minor axis.
  • the corneal portion is substantially circular.
  • a limbus portion may be located radially about the corneal portion.
  • the thickness of the radial portion may vary based on the desired coverage of the substrate, stability of the substrate, among other factors apparent from the instant disclosure.
  • the limbus portion may comprise the same material as the substrate or scleral portion, or a different material from these portions.
  • the scleral portion is located radially about the substrate portion and may comprise a therapeutic compound. Moreover, the scleral portion may be partially or entirely degradable as described further below. In the exemplary embodiments, the scleral portion may overlay one or more diseased tissue regions (treated or untreated) to protect the same from ultraviolet radiation, debris or any other type of irritant. Moreover, the scleral portion may deliver therapeutic compounds to the diseased tissue. Of course, the entire device as well may be deemed to protect the covered portions of a patient's eye from the aforementioned ultraviolet and other irritants.
  • the device 20 comprises a contact lens substrate comprising a radial portion 24 located radially about a central corneal portion 22 .
  • the device may comprise a pupil portion 21 , located centrally within the corneal portion 22 .
  • corneal portion 22 is bounded by the limbus portion 25 .
  • the limbus portion 25 is located between the corneal 22 and the scleral 24 portions.
  • the thickness of the limbus portion 25 may be significantly smaller than that shown relative to the other portions.
  • the limbus portion may overlap the patient's limbus, cornea, sclera or any combination thereof.
  • parts of or the entire scleral portion 24 may comprise microneedles as described previously.
  • the placement of the microneedles and the dimensions of the scleral portion preferably allow for maximum coverage of the diseased tissue.
  • the placement of the contact lens substrate on a patient's eye would contact the diseased tissue such as a pinguecula or pterygium with the microneedles to potentially initiate collagen induction therapy.
  • the device can take on any elliptical shape suitable for practicing the exemplary embodiments.
  • the substrate, scleral portion, or both may be circular.
  • the shape of the device is an elongated ellipse.
  • both the substrate and the scleral portion 24 are elongated ellipses.
  • the relative size difference between the corneal and scleral portions can be larger or smaller than that shown.
  • the corneal portion may be circular while the scleral portion is an elongated ellipse.
  • the substrate may be formed from non-crosslinked degradable polymers, capable of rapid decomposition in the presence of enzymes in the tears, while the outer scleral portion may be formed from crosslinked degradable polymers, capable of a more slow decomposition in the presence of enzymes in the tears. Therefore, in such an example, after placement of the device on the eye, the substrate portion dissolves leaving, for example, the scleral portion.
  • the resulting structure may be ring or a washer shaped around the eye's limbus, leaving the limbal portion, corneal portion and pupil portion of the eye uncovered. The remaining scleral portion, may or may not eventually dissolve.
  • the substrate and the scleral portion may comprise different materials.
  • the substrate may include any material suitable for disease prevention, disease treatment, correction of visual acuity, cosmetics, or a combination thereof.
  • the substrate comprises a material suitable for contact lenses. In particular, this material could be suitable for hard, soft or hybrid contact lenses.
  • a non-limiting example includes silicone hydrogel material.
  • the scleral portion may include any therapeutic compound as explained below.
  • a non-limiting example includes collagen.
  • the combination of a silicone hydrogel contact lens substrate and a collagen scleral portion allows a user to obtain the lubrication and therapeutic benefits of the collagen upon degradation of the scleral portion, while retaining the visually corrective properties of the contact lens substrate.
  • therapeutic compounds include, but are not limited to, collagen, growth factors, steroids and anti-inflammatories.
  • autologous platelet rich plasma PRP
  • PRP autologous platelet rich plasma
  • Growth factors can include platelet-derived growth factors (PDGF), transforming growth factor-beta 1 (TGF-beta 1) and vascular endothelial growth factor (VEGF). Growth factors can be released by activating the platelets.
  • PDGF platelet-derived growth factors
  • TGF-beta 1 TGF-beta 1
  • VEGF vascular endothelial growth factor
  • Growth factors can be released by activating the platelets.
  • PDGF can stimulate mitogenesis (cell replication/proliferation) and promote protein and collagen synthesis in wound healing.
  • PDGF also induces the expression of TGF-beta 1.
  • TGF-beta 1 initiates and terminates wound healing, as well as promotes cell differentiation and proliferation.
  • TGF-beta 1 can also activate fibroblasts which proliferate
  • the shape of the device may comprise one or more radii of curvature.
  • the portions of the device accommodate for different features of the eye as well as diseased tissue regions.
  • the substrate may be dual curved where the corneal portion's 22 curvature matches the curvature of the cornea, and likewise the curvature of the scleral portion 24 matches the scleral curvature.
  • dual-curved or multi-curved scleral portions 24 can accommodate for different radius of curvature of a lesion (e.g. from pinguecula) on the bulbar conjunctiva.
  • the lesion may itself contain dual or multi radii of curvature that may be designed for.
  • the device curvature may accommodate for two different lesions on the nasal and/or temporal bulbar conjunctiva, there
  • the device may further comprise extended scleral portions for further overlaying diseased tissue as well as delivering therapeutic compounds to different regions of the eye.
  • the device may have one or more lateral or vertical extension portions of the scleral portion.
  • FIG. 2D illustrates a device with lateral extensions 26 as well as vertical extensions.
  • the lateral extension portions extend over the sclera of the patient to overlay a diseased tissue such as a pinguecula.
  • the elongated oval shape of the device may essentially provide the same coverage of a lateral scleral extension portion. Therefore, the composition, structure, and mechanical properties of the extension can be different from the rest of the device.
  • the vertical scleral portions may provide an additional reach under the eyelids, for instance to locally deliver a therapeutic compound.
  • Scleral portions and extension portions may be partially or entirely degradable.
  • the degradable portion can comprise a therapeutic compound that is directly delivered to the diseased tissue.
  • the remaining portion of the device (after partial dissolution) accommodates for the lesion, such that the device does not mechanically rub and irritate the lesion.
  • the device 20 in FIG. 3B comprises a substrate comprising a corneal portion 22 and a scleral portion 24 .
  • the degradable scleral portion 27 shown may overlap the diseased tissue and upon degradation, deliver therapeutic compounds to said tissue.
  • FIG. 3C provides a similar device where the degradable scleral portion 27 comprises an extended lateral portion.
  • the resulting curved hourglass shape lacks temporal and/or nasal portions which avoid edge discomfort for contact lens patients with Pinguecula(e).
  • the shape of the device, after dissolution of the certain portions need not be hourglass shaped, and can take on other shapes to assist in minimizing edge discomfort.
  • the device may comprise vertical scleral portions that are degradable.
  • the entire scleral portion may be degradable.
  • the degradable scleral portion may take on different shapes, and could further comprise an extension portion. An example is provided in FIGS. 4A-B , where after the vertical scleral portion 29 of the device 20 dissolves, the resulting device resembles a horizontal hourglass.
  • the device comprises at least one degradable layer for delivering therapeutic compounds to the eye.
  • the device comprises a corneal portion 22 , bounded by a scleral portion 24 .
  • the scleral portion there are several therapeutic compound layers 30 .
  • the structure and overall shape of the device remain unchanged.
  • the therapeutic compound layer may be on the top side, underside, or both, of the device.
  • the exemplary embodiment illustrated in FIG. 5 provides an example where the corneal portion 22 of the substrate is colored for cosmetic purposes.
  • the device comprises a pupil portion 21 that is a central opening within the corneal portion 22 .
  • the sclera portion 24 may further comprise degradable and non-degradable portions (not shown) as well as lateral and vertical extension portions (also not shown).
  • the benefits of treating and managing ocular disease in a manner similar to above, may be achieved while provide additional cosmetic features of a colored lens substrate.
  • a patient without the need of corrective lens may derive the benefit of the entire device being formed form a degradable material comprising a therapeutic compound.

Abstract

A method of treating and managing diseased ocular tissue in the bulbar conjunctiva comprises providing a device comprising a plurality of microneedles arranged on a substrate contacting the device with a diseased ocular tissue region formed in the bulbar conjunctival stroma to form a plurality of micro-injury sites therein. A device comprises a contact lens substrate comprising a substantially elliptical corneal portion and a limbus portion located radially about the corneal portion. A scleral portion is located radially about the substrate. The device is at least partially degradable and comprises a therapeutic compound. At least a portion of the scleral portion is configured to overlay, and deliver the therapeutic compound to, a diseased ocular tissue located adjacent to the cornea of a patient.

Description

    TECHNICAL FIELD
  • The exemplary embodiments generally relate to methods and devices for treating ocular diseases and particularly to treating and managing diseased ocular tissue.
  • BACKGROUND
  • Various portions of the eye comprise a fibrous layer which is susceptible to disease and degradation. In some instances such diseases may be attributable to ultraviolet light exposure, which can cause collagen degeneration for example within the conjunctival stroma, as well as thinning of conjunctival epithelium. Dry or dusty environments may be other significant contributing factors. Examples of such diseases include Pinguecula and Pterygium, among others. Pinguecula, in particular, is a conjunctival degeneration of the eye tissue which consists of a benign slow growing yellow-white, opaque deposit/mass which is flat or slightly elevated and occurring in the interpalperal fissure adjacent to the limbus, usually nasal. Pingueculae are occasionally pigmented or calcified and the conjunctival lesion is usually caused by exposure to the sun/ultraviolet light and/or dry, dusty environments. Moreover, it is currently believed that a pinguecula may involve elastotic degeneration (degeneration of elastic tissue) within the conjunctival stroma, in addition to collagen degeneration.
  • Patients with a pinguecula (e) sometimes may experience symptoms of irritation, burning sensation, redness, and chronic dryness as the raised conjunctival lesion does not allow the natural tear film to spread evenly across the surface of the eye. For these patients, dry eye disease may be a contributing factor to pinguecula e growth. In mild cases, pinguecula generally requires no treatment. However to protect the eyes from sun, dust, and wind, an eyecare professional may recommend sunglasses. Further, to reduce ocular irritation, lubrication with artificial tears may be prescribed by an eyecare professional. In moderate or severe cases of an inflamed pinguecula (i.e. pingueculitis), a topical anti-inflammatory agent may be prescribed such as mild topical steroid (ex. flourometholone 0.1% four times a day) or non-steroidal anti-inflammatory drop (ex. ketorolac 0.4% four time a day). For patients with cosmesis concern of the pinguecula(e), an ophthalmologist may perform surgical excision of the pinguecula(e). In addition, if the patient is experiencing excessive irritation which is not relieved after attempting treatment options above, an eyecare professional may recommend surgical removal of the pinguecula.
  • A pinguecula interfering with contact lens wear may be another reason for recommended surgical removal of the lesion. Specifically, the tissue growth can result in contact lens intolerance due to the elevation of the contact lens peripheral edge overlying the pinguecula. Constant mechanical irritation of the pinguecula by the edge of the contact lens may also induce pingueculitis. To date, treatment and management of diseases such as pinguecula have been limited. In addition to the limited treatment options outlined above, there are no commercially available contact lenses, similar to those provided in this disclosure, which avoid a nasal and/or temporal peripheral bulbar conjunctival edge and/or overly a pinguecula.
  • SUMMARY
  • In an exemplary embodiment, a method of treating and managing a diseased ocular tissue in the bulbar conjunctiva comprises providing a device comprising a plurality of microneedles arranged on a substrate and contacting the device with a diseased ocular tissue region formed in the bulbar conjunctival stroma to form a plurality of micro-injury sites within the diseased bulbar conjunctival stroma. This causes release of growth factors and formation of new collagen fibrils.
  • In another exemplary embodiment, a device for treating and managing diseased ocular tissue in the bulbar conjunctiva, comprises a substrate and a plurality of microneedles positioned on a substrate. The microneedles are arranged and dimensioned such that when the device is brought into contact with the diseased tissue, the microneedles penetrate a diseased ocular tissue region formed in the bulbar conjunctival stroma, to produce a plurality of micro-injury sites within the diseased bulbar conjunctival stroma region. Again, this can cause release of growth factors and formation of new collagen fibrils.
  • In another exemplary embodiment, a device for treating and managing diseased ocular tissue in the bulbar conjunctiva, comprises a contact lens substrate which comprises a substantially elliptical corneal portion and a limbus portion located radially about the corneal portion. In this device, a scleral portion is also located radially about the substrate. The device can be at least partially degradable and comprising a therapeutic compound. Moreover, at least a portion of the scleral portion can be configured to overlay, and deliver the therapeutic compound to, a diseased ocular tissue located adjacent to the cornea of a patient.
  • In yet another exemplary embodiment, a device comprises a contact lens substrate comprising a substantially elliptical corneal portion and a limbus portion located radially about the corneal portion. A scleral portion is located radially about the substrate. Moreover, the scleral portion extends nasaly and temporally to overlay nasal and temporal bulbar conjunctiva and sclera to protect against ultraviolet damage and irritants.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a perspective view of a microneedling device in accordance with an exemplary embodiment.
  • FIG. 1B is another perspective view of a microneedling device in accordance with an exemplary embodiment.
  • FIG. 1C is yet another perspective view of a microneedling device in accordance with an exemplary embodiment.
  • FIG. 1D is a perspective view illustrating attributes of a microneedling device in accordance with an exemplary embodiment.
  • FIG. 1E is a perspective view of a portion of a microneedling device in accordance with an exemplary embodiment.
  • FIG. 1F is a perspective view of a portion of a microneedling device in accordance with an exemplary embodiment.
  • FIG. 2A is a top view of a circular contact lens device in accordance with an exemplary embodiment.
  • FIG. 2B is a top view of a circular contact lens device in accordance with an exemplary embodiment.
  • FIG. 2C is a top view of an oval contact lens device in accordance with an exemplary embodiment.
  • FIG. 2D is a top view of a contact lens device with extensions in accordance with an exemplary embodiment.
  • FIG. 3A is a top view of a circular contact lens device in accordance with an exemplary embodiment.
  • FIG. 3B is a top view of a circular contact lens device with degradable portions in accordance with an exemplary embodiment.
  • FIG. 3C is a top view of another contact lens device with extensions in accordance with an exemplary embodiment.
  • FIG. 4A is a top view of a contact lens device in accordance with an exemplary embodiment.
  • FIG. 4B is a top view of a contact lens device with degradable portions in accordance with an exemplary embodiment.
  • FIG. 5 is a top view of a contact lens device in accordance with another exemplary embodiment.
  • FIG. 6A is a top view of a contact lens device with degradable layers in accordance with an exemplary embodiment.
  • FIG. 6B is a top view of a contact lens device in accordance with an exemplary embodiment.
  • FIG. 7A is a schematic view conceptually illustrating the interaction between a microneedling device and ocular tissue.
  • FIG. 7B is another schematic view conceptually illustrating the interaction between a microneedling device and ocular tissue.
  • FIG. 7C is a schematic view conceptually illustrating ocular tissue after interaction with a microneedling device.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Methods and devices of the exemplary embodiments provide for treatment and management of a variety of ocular diseases and specifically target diseased ocular tissue. Moreover, the methods and devices can serve preventative, therapeutic and/or cosmetic purposes. As used herein “ocular disease” includes diseases, disorders, degenerative conditions, or any other abnormal ocular conditions. Furthermore, “diseased tissue” or “diseased ocular tissue” denote unhealthy or abnormal tissue. Examples include, but are not limited to, misaligned, tangled, cross-linked or otherwise abnormally structured fibrils. Finally, while some exemplary embodiments are presented in the context of pinguecula and pterygium, various other ocular diseases treatable or manageable in accordance with the embodiments are contemplated.
  • In exemplary embodiments, microneedling devices are provided for treating an ocular disease. Generally, the microneedling device comprises a plurality of microneedles arranged on a substrate. The microneedles may be in any arrangement and shape conducive to initiating collagen induction therapy as described in this disclosure. As further described in the present disclosure, the combination of the arrangement and shape of both substrate and microneedles may facilitate controlled conjunctival micro-injury to trigger neocollagenesis and neoelastinogenesis within the bulbar conjunctiva.
  • FIGS. 1A-F illustrate a few examples of microneedling devices in accordance with exemplary embodiments. In FIG. 1A, the device 11 comprises a substrate 12 and a plurality of microneedles 13 arranged thereon. The substrate 12 shown is a rectangular in configuration. It is to be understood, of course, that the configuration and size of the substrate 12 may vary considerably depending on the particular use for which it is intended. Hence the substrate 12 may assume other configurations, such as circular, oval and triangular. Moreover, some or all corners and sides may be rounded. The substrate 12 shown comprises an upper surface 14 and lower surface 15. Moreover, the substrate 12 may be solid, hollow, or porous.
  • Essentially any biocompatible material may be suited for the substrate 12. Examples include, but are not limited to metals (ex. pharmaceutical grade stainless steel, gold, copper) or polymers (biodegradable or non-biodegradable). Examples of biodegradable polymers include collagen, hyaluronic acid, ascorbate, methylcellulose (and other cellulose esters), chitosan, polylactides, polyglycolides, polylactide-co-glycolides (PLGA), polyanhydrides, polyorthoesters, polyetheresters, polycaprolactones, polyesteramides, poly(butyric acid), poly(valeric acid), polyurethanes and copolymers and blends thereof. Examples of non-biodegradable polymers include polyacrylates, polymers of ethylene-vinyl acetates and other acyl substituted cellulose acetates, non-degradable polyurethanes, polystyrenes, polyvinyl alcohol, polysurface capillary fiber, polyhydroxy ethyl methacrylate, polyvinyl chloride, polyvinyl fluoride, poly(vinyl imidazole), chlorosulphonate polyolefins, polyethylene oxide, blends and copolymers thereof. The substrate 12 may also comprise glycosaminoglycans (GAGs) such as hyaluronate, chondroitin sulfate, heparan sulfate, heparin, dermatan sulfate, keratin sulfate. Alternatively, the substrate 12 may be a composite comprising two or more of the materials provided. Moreover, substrate 12 may be entirely or partly coated with a therapeutic compound which is delivered to the diseased tissue during application.
  • The substrate 12 shown bestows a smooth surface to the ocular microneedling device and should be comfortable for the patient once applied against/to ocular tissue. Essentially, the substrate can take on any shape that allows for safe application of the device to a patent's eye. In particular, the shape of the substrate 12 may be planar, curved or a combination thereof. For instance, the substrate 12 may be unicurved to fit one radius of curvature, dual curved to fit two radii of curvature or multicurved to fit multiple radii of curvature based on the ocular tissue being treated. In an exemplary embodiment, the substrate comprises sufficient flexibility to at least partially conform to the shape of a raised tissue, such as a pinguecula. FIGS. 1B and 1C illustrate substrates bent in concave and convex shapes, although other modes of flexure are contemplated herein.
  • Advantageously, the devices of the exemplary embodiments may be designed to achieve maximum contact with the diseased tissue while avoiding certain sensitive portions of the eye. In such instances, the shape of the substrate may vary where all or a portion of the substrate may comprise microneedles. FIGS. 1E and 1D illustrate examples where certain substrate portions 19 lack microneedles. In particular, the example provided in FIG. 1D, the device 11 comprises a substantially circular substrate 12 with an opening 18 therein. The opening 18 may be dimensioned to receive the cornea without contacting the same. As such, the microneedles 12, may contact the Pinguecula near the cornea without contacting the cornea itself. Of course the substrate shape or microneedle coverage may accommodate for other sensitive areas besides the cornea.
  • The microneedling devices may be mechanically contacted with the diseased tissue. In exemplary embodiments, the substrate is connected to a drive unit or a handle. FIG. 1F provides an example where the substrate 12 is connected to a connector element 10. The connector element 10 may be connected to a drive unit (not shown) configured to position the device relative to the diseased tissue. The drive unit may comprise a feedback loop for continuously monitoring and adjusting the position of the device. Of course, the device position may be manually controlled.
  • The shape, configuration and arrangement of the microneedles may vary considerably depending on the desired application. In the example provided in FIG. 1A, solid, hollow, or porous microneedle(s) 13 stem off of the upper surface 14 of substrate 12. Substrate 12 serves to provide a stable supporting structure/base for the microneedles 13 to rest on. As illustrated, microneedle 13 has a conical configuration. However, the microneedle 13 may assume other configurations such as, but not limited to, pyramidal or cylindrical. Essentially, any geometry that can produce the micro-injury sites described is contemplated herein.
  • Additionally, all or some of the microneedles 13 may be arranged at an angle (less than or greater than 90 degrees) with respect to the upper surface 14 of the substrate 12. The tip 16 of the microneedle 13 may be many different configurations such as beveled, tapered, squared-off or rounded. However, a blunt or beveled tip would likely allow more ease of microneedle insertion into the ocular tissue. The base 17 of the microneedles 13 may have different size or shape diameters, and the microneedle length can vary between different regions of the substrate surface 14. Thus, microneedles with a variety of aspect ratios on the same device are possible. In addition, the spacing between microneedles 13 on the substrate 12 may vary across the substrate, if for example, more density is required.
  • The material of the microneedles 13 may be selected from various different biocompatible materials such as metals (e.g. pharmaceutical grade stainless steel, gold, copper) or polymers (e.g. biodegradable or non-biodegradable). Examples of biodegradable polymers include collagen, hyaluronic acid, ascorbate, methycellulose (including other cellulose esters), chitosan, polylactides, polyglycolides, polylactide-co-glycolides (PLGA), polyanhydrides, polyorthoesters, polyetheresters, polycaprolactones, polyesteramides, poly(butyric acid), poly(valeric acid), polyurethanes and copolymers and blends thereof. Examples of non-biodegradable polymers include polyacrylates, polymers of ethylene-vinyl acetates and other acyl substituted cellulose acetates, non-degradable polyurethanes, polystyrenes, polyvinyl chloride, polyvinyl fluoride, poly(vinyl imidazole), polyvinyl alcohol, polysurface capillary fiber, polyhydroxy ethyl methacrylate, chlorosulphonate polyolefins, polyethylene oxide, blends and copolymers thereof. Alternatively, the microneedles 13 may be a composite comprising two or more of any of these types of materials.
  • The microneedle 13 may be entirely or partly coated with one or more therapeutic compounds or contain within it one or more therapeutic compounds, such as ethylenediaminetetraacetic acid (EDTA), steroids, non-steroidal anti-inflammatory compounds, dipyridamole and platelet-rich plasma (PRP). Therapeutic compounds providing or causing the production of growth factors are specifically contemplated herein. The microneedle (s) 13 may also comprise glycosaminoglycans (GAGs) such as hyaluronate, chondroitin sulfate, heparan sulfate, heparin, dermatan sulfate or keratin sulfate.
  • In an exemplary embodiment, microneedling device 11 is dimensioned to enter the bulbar conjunctival stroma at an appropriate length to achieve controlled injury to the fibrous layer of the conjunctival stroma where there are collagen and elastin fibers. This controlled micro-injury site formation can cause collagen induction as disclosed herein. As a non-limiting example, the microneedle length is between about, 10 and 350 microns, preferably between 35 and 270 microns. In some cases the length is between about 250 and 300 microns. All integer values in these ranges are specifically contemplated.
  • In a general sense, the micro-injury sites formed in accordance with the exemplary embodiments may be regarded as a disruption in the fibrous ocular tissue layer. Thus in the exemplary embodiments the micro-injuries formed in the stroma may comprise, micro-pores, disrupted fibers, localized rupture of the vasculature, or combination thereof. In particular, localized rupture(s) of the vasculature can result in bleeding and release of growth factors which promote growth of new collagen and elastin fibrils. Additionally, the micro-pores can act as a receptacle for receiving therapeutic compounds including growth factors, anti-inflammatories and collagen as well as many other compounds as described herein.
  • A conceptual representation of the process of forming micro-injury sites within the diseased tissue is provided in FIGS. 7A-C. The relative sizes of the microneedles, the device 20 and the diseased tissue 110 can widely differ. Initially, per FIG. 7A, the microneedling device 20 is brought into contact with the diseased tissue region 110 of the conjunctiva 100. Although this tissue is shown in cross-section as a single raised feature, the shape could contain multiple bumps, plateaus with sharper peaks or broader peaks. The arrangement and shape of the microneedles may then vary based on the shape of the tissue 110, as further discussed below. Following contact with the diseased tissue 110 and retraction of the device 20, a plurality of micro-injury sites 120 remain in the diseased tissue 110, as shown in FIG. 7B. It should be noted that, although not shown, the device 20 may contact the healthy portion of the conjunctiva 100 or the scleral layer 200, to form micro-injuries therein as well.
  • In a sense, microneedling can create inflammation, proliferation and remodeling of the diseased tissue. Specifically, it is believed that the micro-injury sites activate matrix metalloproteinases (MMPs) which assist in several phases of wound healing. For instance in the inflammation of the tissue, the MMPs remove damaged extracellular matrix and bacteria. During the proliferation phase, the MMPs play a role in degradation of capillary basement membrane for angiogenesis as well as migration of epidermal cells. Further, the MMPs assist in remodeling the healing tissue.
  • Therefore, after forming the micro-injury sites 120, the unhealthy tissue is broken down, removed, whereby the growth factors help form new tissue 130 in place of the previous diseased tissue 120, as shown in 7C. Also the device may comprise therapeutic compounds that additionally provide or enhance the efficacy of the growth factors.
  • The following methods of manufacturing and application of a microneedling device are provided for exemplary purposes and are not intended to limit the scope of the exemplary embodiments. Other methods and variations are therefore contemplated herein. A uni-, bi- or multi-cavity casting mold can be used to produce a device with the desired overall dimensions with particular microneedle shapes and sizes. Initially, a casting solution containing the materials for the microneedles is placed in the microneedle cavity array, followed by drying or cross-linking the material. Next the solution containing the substrate material is in the substrate cavity and also dried or cross-linked. The substrate microneedles or both may have different zones of cross-linking which can be achieved by exposure to ultraviolet radiation. Crosslinking of all or parts of the ocular microneedling device could provide resistance to dissolution once applied to the ocular tissue, given that the greater degree of cross-linkage provides added resistance to enzymatic degradation. The device may be sterilized using chemical treatment, irradiation or other techniques known in the art. For instance, the device may be irradiated with gamma rays prior to packaging or use.
  • To begin application, a patient is prepared by applying an anesthetizing agent (ex. proparacaine eyedrop) to the eye, more specifically topically to the insertion site. The anesthetizing agent will reduce or eliminate pain that is caused by the application of the ocular microneedling device to the pinguecula. The ocular microneedling devices described herein, when contacted with conjunctival stroma, would likely cause an insignificant amount of pain when compared to conventional hypodermic needle penetration within ocular tissue.
  • After preparing the patient, a dehydrated ocular microneedling device is removed from within a sterile packet with the use of a medical forcep. A slit-lamp examination will be used to examine the ocular microneedle insertion site carefully. The eye care professional may determine the appropriate shape and features of the microneedling device in advance or at the time of application. The patient will be asked to look to his/her right to apply a microneedling device to a right eye nasal pinguecula. Alternatively, when applying to a right eye temporal pinguecula, patient will be asked to look to his/her left. Behind a biomicroscope, an eye care professional will safely use a medical forceps to apply the microneedle surface having sharp tips within the pinguecula. Therapeutic compounds may be applied to the microneedles if the device does not already contain such compounds. For instance before applying the device to a Pinguecula, the device may be dipped into a solution containing therapeutic compounds such as steroids, non-steroidal anti-inflammatory agents, dipyridamoles, platelet-rich plasma, or growth factors.
  • As described previously, the micro-injury sites formed using the microneedling device can comprise micron-size pores within the conjunctival stroma. In some instances it may be unlikely for certain therapeutic compounds (molecules) to normally diffuse into the epithelial barrier due to size or solubility. Therefore, advantageously, the micron-size pores may also serve as a direct pathway for drug molecule/particle introduction into ocular tissue.
  • Microneedles made from or comprising therapeutic compounds may be degradable to locally deliver such compounds that assist with wound healing and collagen production. Moreover, the lateral/parallel orientation of collagen fibers of the conjunctival stroma will also assist with lateral diffusion of the therapeutic agents within the conjunctival stroma. Compounds such as collagen, hyularonic acid, and ascorbate may be used to reduce inflammation and assist wound healing by supporting collagen production within conjunctival stroma. Chitosan and methylcellulose may contribute to lubrication of the eye and minimizing dry eye symptoms. Steroid or non-steroidal anti-inflammatory agent may assist with reducing inflammation of the lesion. In addition, platelet-rich plasma will further support collagen production via release of growth factors.
  • In one embodiment, application of the microneedling device to the diseased tissue may further comprise electrical stimulation. For instance, an electric potential may be applied to conductive microneedles. It is believed that contacting the diseased tissue with microneedles and applying an electric potential thereto could promote release of various proteins, as well as potassium and growth factors from the cell to the exterior. As such, fibroblasts may migrate to the micro-injury site and promote collagen induction.
  • Diseased ocular tissue in the bulbar conjunctiva may be treated and managed using a device comprising contact lens substrate, as provided in this disclosure. In the exemplary embodiments, the device comprises a substrate portion and a scleral portion. In particular, the substrate comprises a substantially elliptical corneal portion. Essentially any elliptical shape suitable for enabling the device functionality is contemplated herein. As such, the elliptical shape may be shortened or elongated about either major or minor axis. In an exemplary embodiment, the corneal portion is substantially circular.
  • A limbus portion may be located radially about the corneal portion. The thickness of the radial portion may vary based on the desired coverage of the substrate, stability of the substrate, among other factors apparent from the instant disclosure. Moreover, the limbus portion may comprise the same material as the substrate or scleral portion, or a different material from these portions.
  • The scleral portion is located radially about the substrate portion and may comprise a therapeutic compound. Moreover, the scleral portion may be partially or entirely degradable as described further below. In the exemplary embodiments, the scleral portion may overlay one or more diseased tissue regions (treated or untreated) to protect the same from ultraviolet radiation, debris or any other type of irritant. Moreover, the scleral portion may deliver therapeutic compounds to the diseased tissue. Of course, the entire device as well may be deemed to protect the covered portions of a patient's eye from the aforementioned ultraviolet and other irritants.
  • In the exemplary embodiment shown in FIG. 2A, the device 20 comprises a contact lens substrate comprising a radial portion 24 located radially about a central corneal portion 22. In particular, as shown in FIG. 2B, the device may comprise a pupil portion 21, located centrally within the corneal portion 22. Also, as shown corneal portion 22 is bounded by the limbus portion 25. Thus here, the limbus portion 25 is located between the corneal 22 and the scleral 24 portions. The thickness of the limbus portion 25 may be significantly smaller than that shown relative to the other portions. Moreover, when placed over the patient's eye, the limbus portion may overlap the patient's limbus, cornea, sclera or any combination thereof.
  • In exemplary embodiments, parts of or the entire scleral portion 24 may comprise microneedles as described previously. Here, the placement of the microneedles and the dimensions of the scleral portion preferably allow for maximum coverage of the diseased tissue. As such, the placement of the contact lens substrate on a patient's eye, would contact the diseased tissue such as a pinguecula or pterygium with the microneedles to potentially initiate collagen induction therapy.
  • The device can take on any elliptical shape suitable for practicing the exemplary embodiments. For instance the substrate, scleral portion, or both may be circular. In the example shown in FIG. 2C, the shape of the device is an elongated ellipse. Specifically here both the substrate and the scleral portion 24 are elongated ellipses. Moreover, the relative size difference between the corneal and scleral portions can be larger or smaller than that shown. Also, the corneal portion may be circular while the scleral portion is an elongated ellipse.
  • All or portions of the device may be degradable. For example, the substrate may be formed from non-crosslinked degradable polymers, capable of rapid decomposition in the presence of enzymes in the tears, while the outer scleral portion may be formed from crosslinked degradable polymers, capable of a more slow decomposition in the presence of enzymes in the tears. Therefore, in such an example, after placement of the device on the eye, the substrate portion dissolves leaving, for example, the scleral portion. The resulting structure may be ring or a washer shaped around the eye's limbus, leaving the limbal portion, corneal portion and pupil portion of the eye uncovered. The remaining scleral portion, may or may not eventually dissolve.
  • In exemplary embodiments, the substrate and the scleral portion may comprise different materials. The substrate may include any material suitable for disease prevention, disease treatment, correction of visual acuity, cosmetics, or a combination thereof. In an exemplary embodiment, the substrate comprises a material suitable for contact lenses. In particular, this material could be suitable for hard, soft or hybrid contact lenses. A non-limiting example includes silicone hydrogel material. The scleral portion may include any therapeutic compound as explained below. A non-limiting example includes collagen. Advantageously, the combination of a silicone hydrogel contact lens substrate and a collagen scleral portion allows a user to obtain the lubrication and therapeutic benefits of the collagen upon degradation of the scleral portion, while retaining the visually corrective properties of the contact lens substrate.
  • Examples of therapeutic compounds include, but are not limited to, collagen, growth factors, steroids and anti-inflammatories. In particular, autologous platelet rich plasma (PRP) may be used which comprises a natural protein extracellular matrix that entraps various growth factors which stimulate cell proliferation, tissue healing and/or regeneration. Growth factors can include platelet-derived growth factors (PDGF), transforming growth factor-beta 1 (TGF-beta 1) and vascular endothelial growth factor (VEGF). Growth factors can be released by activating the platelets. In particular, PDGF can stimulate mitogenesis (cell replication/proliferation) and promote protein and collagen synthesis in wound healing. PDGF also induces the expression of TGF-beta 1. TGF-beta 1 initiates and terminates wound healing, as well as promotes cell differentiation and proliferation. TGF-beta 1 can also activate fibroblasts which proliferate to produce collagen.
  • The shape of the device may comprise one or more radii of curvature. Preferably, the portions of the device accommodate for different features of the eye as well as diseased tissue regions. For example, the substrate may be dual curved where the corneal portion's 22 curvature matches the curvature of the cornea, and likewise the curvature of the scleral portion 24 matches the scleral curvature. Advantageously, dual-curved or multi-curved scleral portions 24 can accommodate for different radius of curvature of a lesion (e.g. from pinguecula) on the bulbar conjunctiva. Also, the lesion may itself contain dual or multi radii of curvature that may be designed for. Further advantageously, the device curvature may accommodate for two different lesions on the nasal and/or temporal bulbar conjunctiva, there
  • The device may further comprise extended scleral portions for further overlaying diseased tissue as well as delivering therapeutic compounds to different regions of the eye. In exemplary embodiments, the device may have one or more lateral or vertical extension portions of the scleral portion. For instance, FIG. 2D illustrates a device with lateral extensions 26 as well as vertical extensions. Preferably, the lateral extension portions extend over the sclera of the patient to overlay a diseased tissue such as a pinguecula. In some instance, such as the example of FIG. 2C, the elongated oval shape of the device may essentially provide the same coverage of a lateral scleral extension portion. Therefore, the composition, structure, and mechanical properties of the extension can be different from the rest of the device. The vertical scleral portions may provide an additional reach under the eyelids, for instance to locally deliver a therapeutic compound.
  • Scleral portions and extension portions may be partially or entirely degradable. Advantageously, the degradable portion can comprise a therapeutic compound that is directly delivered to the diseased tissue. Further advantageously, the remaining portion of the device (after partial dissolution) accommodates for the lesion, such that the device does not mechanically rub and irritate the lesion. This is illustrated in 3A-C and 4A-B. As shown, the device 20 in FIG. 3B comprises a substrate comprising a corneal portion 22 and a scleral portion 24. The degradable scleral portion 27 shown may overlap the diseased tissue and upon degradation, deliver therapeutic compounds to said tissue. FIG. 3C, provides a similar device where the degradable scleral portion 27 comprises an extended lateral portion. After dissolution of the degradable scleral portion 27, the rest of the device 20 remains, as shown in FIG. 3A. Advantageously, the resulting curved hourglass shape lacks temporal and/or nasal portions which avoid edge discomfort for contact lens patients with Pinguecula(e). Of course, the shape of the device, after dissolution of the certain portions, need not be hourglass shaped, and can take on other shapes to assist in minimizing edge discomfort.
  • In some instances, it is beneficial to deliver a therapeutic compound to the tissue of the inner portion of the eyelid. To that end, the device may comprise vertical scleral portions that are degradable. Of course, it may be possible to contain both lateral and vertical degradable portions on the same device. Furthermore, the entire scleral portion may be degradable. As in the previous examples, the degradable scleral portion may take on different shapes, and could further comprise an extension portion. An example is provided in FIGS. 4A-B, where after the vertical scleral portion 29 of the device 20 dissolves, the resulting device resembles a horizontal hourglass.
  • In an exemplary embodiment, the device comprises at least one degradable layer for delivering therapeutic compounds to the eye. For instance, in FIG. 6A, the device comprises a corneal portion 22, bounded by a scleral portion 24. On the scleral portion there are several therapeutic compound layers 30. Here, after dissolution which is shown in FIG. 6B, the structure and overall shape of the device remain unchanged. In some instances, it may be desirable to provide one continuous layer 30 covering the entire, scleral portion, and substrate portions. Moreover, in some instances, the therapeutic compound layer may be on the top side, underside, or both, of the device.
  • The exemplary embodiment illustrated in FIG. 5, provides an example where the corneal portion 22 of the substrate is colored for cosmetic purposes. Here, the device comprises a pupil portion 21 that is a central opening within the corneal portion 22. Similar to other embodiments the sclera portion 24 may further comprise degradable and non-degradable portions (not shown) as well as lateral and vertical extension portions (also not shown). Here, the benefits of treating and managing ocular disease, in a manner similar to above, may be achieved while provide additional cosmetic features of a colored lens substrate. Moreover, a patient without the need of corrective lens may derive the benefit of the entire device being formed form a degradable material comprising a therapeutic compound.
  • The detailed description and drawings presented in this disclosure are intended as a description of presently-preferred embodiments and are not intended to represent the only forms of the exemplary embodiments. Those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the exemplary embodiments.

Claims (22)

What is claimed is:
1. A method of treating and managing diseased ocular tissue in the bulbar conjunctiva comprising:
providing a device comprising a plurality of microneedles arranged on a substrate; and
contacting the device with a diseased ocular tissue region formed in the bulbar conjunctival stroma to form a plurality of micro-injury sites within the diseased bulbar conjunctival stroma, and cause release of growth factors and formation of new collagen fibrils.
2. The method of claim 1, comprising contacting the microneedles with the vasculature located in the bulbar conjunctival stroma to initiate bleeding and release of growth factors.
3. The method of claim 1, comprising contacting the microneedles in bulbar conjunctival stroma to cause formation of aligned collagen and elastin fibrils.
4. The method of claim 1, comprising penetrating the microneedles into the bulbar conjunctival stroma without penetrating through the scleral tissue located below the bulbar conjunctiva.
5. The method of claim 1, wherein the diseased ocular tissue region comprises a pinguecula or pterygium.
6. The method of claim 1, further comprising the step of determining the dimensions of the diseased ocular tissue region and determining the arrangement and dimensions of the microneedles based on the diseased tissue dimensions.
7. The method of claim 1, wherein the device microneedles are arranged and dimensioned to penetrate a curved path on the diseased tissue around the cornea.
8. The method of claim 1, wherein the microneedles are degradable and comprise a therapeutic compound.
9. A device for treating and managing diseased ocular tissue in the bulbar conjunctiva, comprising:
a substrate; and
a plurality of microneedles positioned on a substrate;
wherein the microneedles are arranged and dimensioned such that when the device is brought into contact with the diseased tissue, the microneedles penetrate a diseased ocular tissue region formed in the bulbar conjunctival stroma, to produce a plurality of micro-injury sites within the diseased bulbar conjunctival stroma region, and cause release of growth factors and formation of new collagen fibrils.
10. The device of claim 9, wherein the shape of the substrate and arrangement of the microneedles provides coverage of the surface of diseased tissue penetrated without contacting the cornea.
11. The device of claim 9, wherein the microneedles are arranged and dimensioned to interact with the vasculature located in the bulbar conjunctival stroma to initiate bleeding and release of growth factors.
12. The device of claim 9, wherein the substrate is curved to substantially fit at least one radius of curvature of the diseased tissue.
13. The device of claim 9, wherein the microneedles are degradable and comprising a therapeutic compound.
14. A device for treating and managing diseased ocular tissue in the bulbar conjunctiva, comprising:
a contact lens substrate comprising:
a substantially elliptical corneal portion;
a limbus portion located radially about the corneal portion; and
a scleral portion located radially about the substrate;
wherein the device is at least partially degradable and comprises a therapeutic compound, and wherein at least a portion of the scleral portion is configured to overlay, and deliver the therapeutic compound to, a diseased ocular tissue located adjacent to the cornea of a patient.
15. The device of claim 14, comprising plurality of microneedles positioned on the scleral portion of the device, wherein the microneedles are arranged and dimensioned such that when the device is brought into contact with the diseased tissue, the microneedles penetrate a diseased ocular tissue region formed in the bulbar conjunctival stroma, to produce a plurality of micro-injury sites within the diseased bulbar conjunctival stroma region, and cause release of growth factors and formation of new collagen fibrils.
16. The device of claim 14, wherein the scleral portion is at least partially degradable.
17. The device of claim 14, wherein the scleral portion comprises at least one lateral extension portion configured to overlay a Pinguecula located on the nasal or temporal bulbar conjunctiva.
18. The device of claim 14, wherein the scleral portion comprises at least one vertical extension portion configured to contact the interior eyelid wall.
19. The device of claim 14, wherein the substrate comprises an optical material and is configured to correct a patient's visual acuity.
20. The device of claim 14, wherein the device has a top side opposite an underside, and at least one degradable layer of a therapeutic compound on the top side or underside of the device.
21. The device of claim 14, wherein the substrate comprises an open central pupil portion, the corneal portion comprises a colored portion, and wherein both the substrate and scleral portions comprise a therapeutic compound and are degradable.
22. A device for treating and managing diseased ocular tissue in the bulbar conjunctiva, comprising:
a contact lens substrate comprising:
a substantially elliptical corneal portion;
a limbus portion located radially about the corneal portion; and
a scleral portion located radially about the substrate;
wherein the scleral portion extends nasaly and temporally to overlay nasal and temporal bulbar conjunctiva and the sclera, to protect against ultraviolet damage and irritants.
US15/722,569 2016-09-30 2017-10-02 Method and device for treating and managing diseased ocular tissue Abandoned US20180092776A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/722,569 US20180092776A1 (en) 2016-09-30 2017-10-02 Method and device for treating and managing diseased ocular tissue
US16/119,967 US10857028B2 (en) 2016-09-30 2018-08-31 Method and device for treating and managing diseased ocular tissue
US16/273,711 US11419760B2 (en) 2016-09-30 2019-02-12 Method and device for treating and managing diseased ocular tissue
US17/114,263 US20210085521A1 (en) 2016-09-30 2020-12-07 Method and device for treating and managing diseased ocular tissue

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662495976P 2016-09-30 2016-09-30
US201662496501P 2016-10-18 2016-10-18
US15/722,569 US20180092776A1 (en) 2016-09-30 2017-10-02 Method and device for treating and managing diseased ocular tissue

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/119,967 Continuation US10857028B2 (en) 2016-09-30 2018-08-31 Method and device for treating and managing diseased ocular tissue
US16/273,711 Continuation US11419760B2 (en) 2016-09-30 2019-02-12 Method and device for treating and managing diseased ocular tissue

Publications (1)

Publication Number Publication Date
US20180092776A1 true US20180092776A1 (en) 2018-04-05

Family

ID=61757540

Family Applications (4)

Application Number Title Priority Date Filing Date
US15/722,569 Abandoned US20180092776A1 (en) 2016-09-30 2017-10-02 Method and device for treating and managing diseased ocular tissue
US16/119,967 Active US10857028B2 (en) 2016-09-30 2018-08-31 Method and device for treating and managing diseased ocular tissue
US16/273,711 Active 2039-05-19 US11419760B2 (en) 2016-09-30 2019-02-12 Method and device for treating and managing diseased ocular tissue
US17/114,263 Pending US20210085521A1 (en) 2016-09-30 2020-12-07 Method and device for treating and managing diseased ocular tissue

Family Applications After (3)

Application Number Title Priority Date Filing Date
US16/119,967 Active US10857028B2 (en) 2016-09-30 2018-08-31 Method and device for treating and managing diseased ocular tissue
US16/273,711 Active 2039-05-19 US11419760B2 (en) 2016-09-30 2019-02-12 Method and device for treating and managing diseased ocular tissue
US17/114,263 Pending US20210085521A1 (en) 2016-09-30 2020-12-07 Method and device for treating and managing diseased ocular tissue

Country Status (1)

Country Link
US (4) US20180092776A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020047142A1 (en) * 2018-08-30 2020-03-05 Liu Yunxiang Micro-stud formulation preparing and oculopathy treating and preventing
CN114081716A (en) * 2022-01-22 2022-02-25 南方医科大学深圳医院 Device for delivering drugs to meibomian glands
CN114129889A (en) * 2021-11-30 2022-03-04 温州医科大学 Annular microneedle for ophthalmology
US20230200638A1 (en) * 2019-09-18 2023-06-29 Verily Life Sciences Llc Retinal camera with dynamic illuminator for expanding eyebox
WO2023171360A1 (en) * 2022-03-08 2023-09-14 テルモ株式会社 Administration device and administration method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080269666A1 (en) * 2005-05-25 2008-10-30 Georgia Tech Research Corporation Microneedles and Methods for Microinfusion

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268131A (en) 1979-04-11 1981-05-19 Opticol Corporation Fiber collagen contact lens
US4983181A (en) 1986-10-16 1991-01-08 Cbs Lens, Collagen hydrogel for promoting epithelial cell growth and artificial lens using the same
US5114627A (en) 1986-10-16 1992-05-19 Cbs Lens Method for producing a collagen hydrogel
US5185152A (en) 1990-01-10 1993-02-09 Peyman Gholam A Method and apparatus for controlled release drug delivery to the cornea and anterior chamber of the eye
WO1999064580A1 (en) 1998-06-10 1999-12-16 Georgia Tech Research Corporation Microneedle devices and methods of manufacture and use thereof
US6503231B1 (en) 1998-06-10 2003-01-07 Georgia Tech Research Corporation Microneedle device for transport of molecules across tissue
EP1187653B1 (en) 1999-06-04 2010-03-31 Georgia Tech Research Corporation Devices for enhanced microneedle penetration of biological barriers
WO2003024507A2 (en) * 2001-09-19 2003-03-27 Biovalve Technologies, Inc. Microneedles, microneedle arrays, and systems and methods relating to same
US6649072B2 (en) 2001-11-16 2003-11-18 Robert Brandt Method for producing autologous platelet-rich plasma
AU2003277306A1 (en) 2002-10-07 2004-05-04 Biovalve Technologies, Inc. Microneedle array patch
DE102005002465B4 (en) 2005-01-18 2007-05-24 Geuder Ag Ophthalmic instrument
US7665467B2 (en) 2005-04-26 2010-02-23 Biolase Technology, Inc. Methods for treating eye conditions
US9804295B2 (en) 2005-05-05 2017-10-31 Novartis Ag Ophthalmic devices for sustained delivery of active compounds
US8197435B2 (en) 2006-05-02 2012-06-12 Emory University Methods and devices for drug delivery to ocular tissue using microneedle
US7918814B2 (en) 2006-05-02 2011-04-05 Georgia Tech Research Corporation Method for drug delivery to ocular tissue using microneedle
US9308125B2 (en) 2007-01-09 2016-04-12 Fovea Pharmaceuticals Apparatus for intra-ocular injection
JP2008284318A (en) 2007-05-15 2008-11-27 Kosumedei Seiyaku Kk Microneedle for dosing, including living body origin matter
US8591481B2 (en) 2008-03-21 2013-11-26 Ut-Battelle, Llc Microfabricated instruments and methods to treat recurrent corneal erosion
US7985208B2 (en) * 2008-09-18 2011-07-26 Oasis Research LLC Ring shaped contoured collagen shield for ophthalmic drug delivery
NZ591391A (en) 2008-10-22 2012-10-26 Quark Pharmaceuticals Inc Non-invasive methods for treating eye disorders using a topical oligonucleotide composition
CN101502458A (en) 2009-03-03 2009-08-12 温州医学院眼视光研究院 Therapeutic corneal contact lens
JP5886204B2 (en) 2009-10-30 2016-03-16 アトーン ファルマ、インコーポレイテッドAton Pharma,Inc. Intraocular drug delivery device
US9320647B2 (en) 2010-03-31 2016-04-26 Ocuject, Llc Device and method for intraocular drug delivery
CA2882184C (en) 2012-08-27 2021-09-07 Clearside Biomedical, Inc. Apparatus and methods for drug delivery using microneedles
KR101371685B1 (en) 2012-10-30 2014-03-10 김선호 Therapeutic contact lens
IL225179A (en) 2013-03-12 2017-01-31 Rogosnitzky Moshe Compositions for use in treating eye disorders using dipyridamole
WO2014179698A2 (en) 2013-05-03 2014-11-06 Clearside Biomedical, Inc. Apparatus and methods for ocular injection
US9664927B2 (en) 2014-03-31 2017-05-30 Johnson & Johnson Vision Care, Inc. Contact lens with pearlescent sclera
US20170056637A1 (en) 2014-05-06 2017-03-02 Mupharma Pty Ltd Non-invasive agent applicator
KR101746747B1 (en) 2016-03-03 2017-06-14 배원규 Microneedle system that improves the delivery of drugs using the capillary force

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080269666A1 (en) * 2005-05-25 2008-10-30 Georgia Tech Research Corporation Microneedles and Methods for Microinfusion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020047142A1 (en) * 2018-08-30 2020-03-05 Liu Yunxiang Micro-stud formulation preparing and oculopathy treating and preventing
US20230200638A1 (en) * 2019-09-18 2023-06-29 Verily Life Sciences Llc Retinal camera with dynamic illuminator for expanding eyebox
US11871990B2 (en) * 2019-09-18 2024-01-16 Verily Life Sciences Llc Retinal camera with dynamic illuminator for expanding eyebox
CN114129889A (en) * 2021-11-30 2022-03-04 温州医科大学 Annular microneedle for ophthalmology
CN114081716A (en) * 2022-01-22 2022-02-25 南方医科大学深圳医院 Device for delivering drugs to meibomian glands
WO2023171360A1 (en) * 2022-03-08 2023-09-14 テルモ株式会社 Administration device and administration method

Also Published As

Publication number Publication date
US20210085521A1 (en) 2021-03-25
US11419760B2 (en) 2022-08-23
US10857028B2 (en) 2020-12-08
US20190167476A1 (en) 2019-06-06
US20180369018A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
US11419760B2 (en) Method and device for treating and managing diseased ocular tissue
Bertens et al. Topical drug delivery devices: A review
US9814567B2 (en) Method of altering the refractive properties of an eye
US9370446B2 (en) Method of altering the refractive properties of an eye
JP5528356B2 (en) Lacrimal implant and related methods
Kiliç et al. Riboflavin injection into the corneal channel for combined collagen crosslinking and intrastromal corneal ring segment implantation
CA2814874C (en) Device for corneal delivery of riboflavin by iontophoresis for the treatment of keratoconus
JP5880985B2 (en) Lacrimal implant and related methods
Simon et al. Optics of the corneal epithelium
US20100040670A1 (en) Drug delivery via ocular implant
JPH10504730A (en) Collagen treatment device
JP2014503317A5 (en)
FR2830766A1 (en) Transpalpebral iontophoresis medication delivery system has main electrode with zone designed to make contact with eyelid
MXPA04006954A (en) Methods for producing epithelial flaps on the cornea and for placement of ocular devices and lenses beneath an epithelial flap or membrane, epithelial delaminating devices, and structures of epithelium and ocular devices and lenses.
KR20150095628A (en) A device for a medical treatment of a sclera
US20160022493A1 (en) Method of altering the refractive properties of an eye
JPH11507269A (en) Intrastromal corneal radial insert and insertion method
JP2017514564A (en) Device for treating the sclera
US11259914B2 (en) Molding or 3-D printing of a synthetic refractive corneal lenslet
US20080161780A1 (en) Methods and Compositions for Optimizing the Outcomes of Refractive Laser Surgery of the Cornea
JP3349700B2 (en) Equipment for drug administration to the eye
Bradford et al. Nonlinear optical crosslinking (NLO CXL) for correcting refractive errors
RU2626598C1 (en) Method for treatment of painful bullous keratopathy
RU2510258C1 (en) Method of treating corneal ectatic disorders
Tekko et al. Microneedles for ocular drug delivery and targeting: challenges and opportunities

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION