US20160010181A1 - Composition for titanium-tungsten metal alloy - Google Patents

Composition for titanium-tungsten metal alloy Download PDF

Info

Publication number
US20160010181A1
US20160010181A1 US14/579,617 US201414579617A US2016010181A1 US 20160010181 A1 US20160010181 A1 US 20160010181A1 US 201414579617 A US201414579617 A US 201414579617A US 2016010181 A1 US2016010181 A1 US 2016010181A1
Authority
US
United States
Prior art keywords
composition
percent
approximately
amount
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/579,617
Inventor
Yong Kyu Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/330,274 external-priority patent/US20160010180A1/en
Application filed by Individual filed Critical Individual
Priority to US14/579,617 priority Critical patent/US20160010181A1/en
Publication of US20160010181A1 publication Critical patent/US20160010181A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides

Definitions

  • This present disclosure relates generally to metal alloy compositions, and more particularly, to a titanium-tungsten metallic composition, comprising various percentages by weight of titanium, tungsten, nickel, chromium, molybdenum, and carbon.
  • Tungsten carbide is usually used for making jewelry that is harder and more scratch-resistant than that of traditional metal jewelry, such as gold, silver, and platinum. Tungsten is also generally a much more affordable metal than its precious metal counterparts, thereby permitting jewelers to sell their designs at much lower prices.
  • tungsten carbide jewelry also has its drawbacks.
  • U.S. Pat. Nos. 6,928,734; 6,062,045; 6,553,667; 6,990,736; 6,993,842; 7,032,314; 7,076,972; 7,761,996; 8,061,033; and 8,584,360, issued to West (“West”) disclose at least one or more compositions and/or methods used to create jewelry using tungsten carbide. These methods for manufacturing tungsten carbide may lead to fibrosis due to accidental inhalation of the carbide dust. Additionally, the stiffness of the material tungsten carbide itself generally does not allow for engraving or resizing of the jewelry.
  • tungsten carbide Due to the disadvantages of tungsten carbide, some jewelers have looked to use other materials in jewelry, such as titanium. With titanium, the jeweler is afforded the benefits of tungsten, such as its scratch-resistance and hard material properties. Additionally, titanium has the added benefit of a lighter metal that could be finished in multiple colors and is more malleable, thereby allowing one to engrave and resize titanium jewelry. Furthermore, titanium jewelry manufacturing also generally does not have the added risk of fibrosis, as carbide is not needed. Unfortunately, however, titanium is much more expensive than tungsten.
  • the new metal composition will utilize tungsten and titanium in order to take advantage of the benefits of both metals such as lower material costs, scratch-resistance properties, favorable color, and malleability.
  • One embodiment may be a metallic alloy composition, comprising: a titanium component; a tungsten component; a nickel component; a chromium component; a molybdenum component; a copper component; and a carbon component.
  • the titanium component may be an amount of approximately between 45.0 to 55.0 percent by weight based on a total weight of the composition.
  • the tungsten component may be an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition.
  • the nickel component may be an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition.
  • the chromium component may be an amount of approximately between 0.5 to 5.0 percent by weight based on a total weight of the composition.
  • the molybdenum component may be an amount of approximately between 5.0 to 15.0 percent by weight based on a total weight of the composition.
  • the copper component may be an amount of approximately between 0.1 to 3.0 percent by weight based on a total weight of the composition.
  • the carbon component may be an amount of approximately between 5.0 to 10.0 percent by weight based on a total weight of the composition.
  • the metallic alloy may be scratch-resistant.
  • the metallic alloy may be rust resistant.
  • the metallic alloy may be tarnish-resistant.
  • Another embodiment may be a process for producing a metal alloy composition, comprising the steps of: providing a mold; providing one or more raw materials; melting the one or more raw materials into the mold to create a cast; breaking the cast; and smoothing and polishing the cast to create the metal alloy composition.
  • the mold may be constructed of rubber.
  • the cast may be formed by injecting a wax into the mold.
  • the raw materials may comprise: a titanium component; a tungsten component; a nickel component; a chromium component; a molybdenum component; a copper component; and a carbon component.
  • the titanium component may be approximately between 51.0 percent by weight based on a total weight of the composition.
  • the tungsten component may be an amount of approximately between 14.0 percent by weight based on a total weight of the composition.
  • the nickel component may be in an amount of approximately between 15.0 percent by weight based on a total weight of the composition.
  • the chromium component may be in an amount of approximately between from 1.0 percent by weight based on a total weight of the composition.
  • the molybdenum component may be in an amount of approximately between 10.0 percent by weight based on a total weight of the composition.
  • the copper component may be in an amount of approximately between 2.0 percent by weight based on a total weight of the composition.
  • the carbon component may be in an amount of approximately between 7.0 percent by weight based on a total weight of the composition.
  • the raw materials may be melted at a temperature of at least approximately between 1,400-1,500° C. and then poured into the cast. The melted raw materials may be allowed to cool before the cast is broken and unfinished metal alloy is removed.
  • Another embodiment may be a metallic alloy composition, comprising: a titanium component in an amount of approximately between 45.0 to 55.0 percent by weight based on a total weight of the composition; a tungsten component in an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition; a nickel component in an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition; a chromium component in an amount of approximately between 0.5 to 5.0 percent by weight based on a total weight of the composition; a molybdenum component in an amount of approximately between 0.5 to 15.0 percent by weight based on a total weight of the composition; a copper component in an amount of approximately between 0.1 to 3.0 percent by weight based on a total weight of the composition; and a carbon component is an amount of approximately between 5.0 to 10.0 percent by weight based on a total weight of the composition.
  • the titanium component may be approximately between 51.0 percent by weight based on a total weight of the composition.
  • the tungsten component may be in an amount of approximately between 14.0 percent by weight based on a total weight of the composition; wherein the nickel component may be in an amount of approximately between 15.0 percent by weight based on a total weight of the composition; wherein the chromium component may be in an amount of approximately between 1.0 percent by weight based on a total weight of the composition; wherein the molybdenum component may be in an amount of approximately between 10.0 percent by weight based on a total weight of the composition; wherein the copper component may be in an amount of approximately between 2.0 percent by weight based on a total weight of the composition; and wherein the carbon component may be in an amount of approximately between 7.0 percent by weight based on a total weight of the composition.
  • One embodiment may be a metal alloy composition, comprising: a titanium component; a tungsten component; a nickel component; a chromium component; a molybdenum component; a copper component; and a carbon component.
  • the titanium component may be an amount from approximately between 45.0 to 55.0 percent by weight based on a total weight of the composition; the tungsten component may be an amount from approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition; the nickel component may be an amount from approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition; the chromium component may be an amount from approximately between 0.5 to 5.0 percent by weight based on a total weight of the composition; the molybdenum component may be an amount from approximately between 5.0 to 15.0 percent by weight based on a total weight of the composition; the copper component may be an amount from 0.1 to 3.0 percent by weight based on a total weight of the composition; and the carbon component may be an amount from approximately between 5.0
  • the aforementioned mentioned embodiments generally avoid the problems of prior metals to make jewelry because the costs of tungsten and titanium are lower than other precious metals.
  • By combining tungsten and titanium one is able to take advantages of tungsten and titanium. Through the use of tungsten, one is afforded the qualities of low cost, durability, and scratch-resistance.
  • Titanium on the other hand, has its own advantages of being malleable, a light-weight material, hypo-allergenic, rust resistant, and tarnish-resistant.
  • tungsten and titanium have sought after characteristics, combining solely the two elements is not feasible, as it leads to an unstable compound, causing one to include additional elements and metals.
  • an alloy of solely tungsten, titanium, and stabilizing elements will lead to a metal with a color similar, if not the same, of existing jewelry.
  • additional metallic components such as chromium, molybdenum, nickel, and copper, one is able to change the hue of the metal.
  • Another embodiment may be a metallic alloy composition, comprising: a titanium component; a tungsten component; a nickel component; a chromium component; a molybdenum component; and a carbon component.
  • the titanium component may be an amount of approximately between 33.0 to 42.0 percent by weight based on a total weight of the composition.
  • the tungsten component may be an amount of approximately between 25.0 to 35.0 percent by weight based on a total weight of the composition.
  • the nickel component may be an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition.
  • the chromium component may be an amount of approximately between 0.5 to 5.0 percent by weight based on a total weight of the composition.
  • the molybdenum component may be an amount of approximately between 3.0 to 10.0 percent by weight based on a total weight of the composition.
  • the carbon component may be an amount of approximately between 5.0 to 12.0 percent by weight based on a total weight of the composition.
  • the metallic alloy may be scratch-resistant.
  • the metallic alloy may be rust resistant.
  • the metallic alloy may be tarnish-resistant.
  • Another embodiment may be a process for producing a metal alloy composition, comprising the steps of: providing a mold; providing one or more raw materials; melting the one or more raw materials into the mold to create a cast; breaking the cast; and smoothing and polishing the cast to create the metal alloy composition.
  • the mold may be constructed of rubber.
  • the cast may be formed by injecting a wax into the mold.
  • the raw materials may comprise: a titanium component; a tungsten component; a nickel component; a chromium component; a molybdenum component; and a carbon component.
  • the titanium component may be approximately between 35.0 percent by weight based on a total weight of the composition.
  • the tungsten component may be an amount of approximately between 32.0 percent by weight based on a total weight of the composition.
  • the nickel component may be in an amount of approximately between 15.0 percent by weight based on a total weight of the composition.
  • the chromium component may be in an amount of approximately between from 1.80 percent by weight based on a total weight of the composition.
  • the molybdenum component may be in an amount of approximately between 6.0 percent by weight based on a total weight of the composition.
  • the carbon component may be in an amount of approximately between 10.20 percent by weight based on a total weight of the composition.
  • the raw materials may be melted at a temperature of at least approximately between 1,400-1,500° C. and then poured into the cast. The melted raw materials may be allowed to cool before the cast is broken and unfinished metal alloy is removed.
  • Another embodiment may be a metallic alloy composition, comprising: a titanium component; a tungsten component; a nickel component; a chromium component; a molybdenum component; and a carbon component.
  • the titanium component may be an amount of approximately between 33.0 to 42.0 percent by weight based on a total weight of the composition.
  • the tungsten component may be an amount of approximately between 25.0 to 35.0 percent by weight based on a total weight of the composition.
  • the nickel component may be an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition.
  • the chromium component may be an amount of approximately between 0.5 to 5.0 percent by weight based on a total weight of the composition.
  • the molybdenum component may be an amount of approximately between 3.0 to 10.0 percent by weight based on a total weight of the composition.
  • the carbon component may be an amount of approximately between 5.0 to 12.0 percent by weight based on a total weight of the composition.
  • the metal alloy may further comprise the qualities of scratch-resistance, rust resistance, malleability, and corrosion resistance.
  • a preferred embodiment may be a metallic alloy composition, comprising: a titanium component in an amount of approximately between 33.0 to 42.0 percent by weight based on a total weight of the composition; a tungsten component in an amount of approximately between 25.0 to 35.0 percent by weight based on a total weight of the composition; a nickel component in an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition; a chromium component in an amount of approximately between 0.5 to 5.0 percent by weight based on a total weight of the composition; a molybdenum component in an amount of approximately between 3.0 to 10.0 percent by weight based on a total weight of the composition; and a carbon component is an amount of approximately between 5.0 to 12.0 percent by weight based on a total weight of the composition.
  • the titanium component may be approximately between 35.0 percent by weight based on a total weight of the composition; the tungsten component may be in an amount of approximately between 32.0 percent by weight based on a total weight of the composition; wherein the nickel component may be in an amount of approximately between 15.0 percent by weight based on a total weight of the composition; wherein the chromium component may be in an amount of approximately between 1.80 percent by weight based on a total weight of the composition; wherein the molybdenum component may be in an amount of approximately between 6.0 percent by weight based on a total weight of the composition; and wherein the carbon component may be in an amount of approximately between 10.20 percent by weight based on a total weight of the composition.
  • the present embodiment generally avoids the problems of prior metals to make jewelry because the costs of tungsten and titanium are lower than other precious metals.
  • tungsten and titanium By combining tungsten and titanium, one is able to take advantages of tungsten and titanium. Through the use of tungsten, one is afforded the qualities of low cost, durability, and scratch-resistance.
  • Titanium on the other hand, has its own advantages of being malleable, a light-weight material, hypo-allergenic, rust resistant, and tarnish-resistant.
  • tungsten and titanium have sought after characteristics, combining solely the two elements is not feasible, as it leads to an unstable compound, causing one to include additional elements and metals. By increasing the ratio of tungsten to carbon, the alloy may be more ductile and less brittle.
  • an alloy of solely tungsten, titanium, and stabilizing elements will lead to a metal with a color similar, if not the same, of existing jewelry.
  • additional metallic components such as chromium, molybdenum, and nickel, one may be able to change the hue of the metal.
  • Another embodiment may be a process for producing a metal alloy composition, the steps comprising: a setup step; a production step; and a finishing step.
  • the setup step may comprise: forming a mold and a cast; wherein the mold may be made of rubber and the cast may be formed by injecting wax into the mold.
  • the production step may comprise: a melting of a raw materials and a breaking of the cast; wherein the raw materials may be melted at a temperature of at least 1,400-1,500° C., poured into the cast, and allowed to cool before the cast is broken and an unfinished metal alloy is removed.
  • the finishing step may comprise: a smoothing and polishing of the metallic alloy; wherein the unfinished metal alloy may be smoothed and then polished.
  • the present disclosure provides an attractive metal alloy composition that may be used to create low cost jewelry with properties that are desirable to consumers.
  • the metal alloy composition is preferably made up of metals that have a lower cost than precious metals and that are more attractive than non-precious metals, such as steel, which are currently used within the majority of jewelry made.
  • Precious metals may include, without limitation, gold, silver, and platinum, all of which are relatively expensive metals.
  • the materials costs of tungsten and titanium are lower than the costs of precious metals. As such, jewelry made using tungsten and titanium can be made at a lower cost.
  • the composition of the present disclosure may preferably include tungsten, which is relatively inexpensive, durable, and scratch-resistance, and titanium, which is malleable, light-weight, hypo-allergenic, rust resistant, and corrosion resistant.
  • composition of the present disclosure may include the inclusion of additional metals, such as chromium, molybdenum, nickel, and copper.
  • additional metals such as chromium, molybdenum, nickel, and copper.
  • the addition of other metals may also be used to change the hue and color of the resulting jewelry.
  • the metal composition may be created via a casting method. First, a mold of the desired design may be formed, typically from rubber. Next, a wax cast of the design may be created from the rubber mold. The raw metals and elements may then be combined and melted together to create the cast. The melted composition of the present disclosure may then be poured into the cast. Once the composition cools and hardens, the cast may be broken and the hardened metallic alloy, now in the shape of the desired design, may be removed from the cast. The metallic alloy's surfaces may then smoothed with sandpaper and polished.
  • FIG. 1 is an illustration of one embodiment of tungsten carbide and shows the structure of tungsten carbide.
  • metal alloy composition refers to any combination of materials which may comprise one or more embodiments of present disclosure.
  • alloy generally refers to a mixture, composition, or combination of metals.
  • malleable or “malleability” generally refer to the capability to stretch, bend, design, or change a metal.
  • Table 1 is a table of one embodiment of the metallic alloy composition. As shown in Table 1, one embodiment of the metallic alloy composition may be comprised of one or more raw material metals such as tungsten, carbon, titanium, nickel, chromium, molybdenum, and copper, which are melted together to form the composition.
  • raw material metals such as tungsten, carbon, titanium, nickel, chromium, molybdenum, and copper
  • the raw material metals may be combined to create a metal alloy that is cost effective, durable, and of a variety of colors, many of which may not currently be found in jewelry.
  • Table 1 also lists the weight (Wt) percentage (%) range of each material for one embodiment and the primary purpose of the material.
  • Tungsten is generally a very hard, brittle metal. The hardness of tungsten may allow the metallic alloy composition to be scratch resistant, thereby increasing its durability. Because tungsten is a very hard metal, other materials may generally be needed in the metallic alloy composition in order to increase the metallic alloy composition's malleability. Tungsten is also a very heavy metal, which may benefit from combining it with other metals that are lighter. Jewelry that is too heavy is undesirable. Another benefit to using tungsten in jewelry is the relative affordability of tungsten. Tungsten is much less expensive than gold or silver.
  • the tungsten component of the metal alloy composition may be in an amount up to 20.0 percent by weight, more preferably approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition. In another embodiment, the metal alloy composition may contain tungsten at approximately between 14.0 percent by weight based on the total weight percent of the composition.
  • the metal alloy composition may further comprise carbon.
  • tungsten may be combined with carbon, which may decrease the brittleness and increase the ductility of the resulting alloy.
  • Two of the possible compounds of tungsten and carbon are tungsten carbide and tungsten semi-carbide.
  • Tungsten semi-carbide is generally a compound in which the amount of tungsten is double that of carbon, whereas tungsten carbide utilizes the same amount of tungsten as carbon.
  • tungsten carbide tends to be much stiffer (brittle), stronger, heavier, and more scratch-resistant than the semi-carbide form.
  • this embodiment utilizes tungsten semi-carbide to preferably reduce the weight and brittleness of the resulting alloy.
  • FIG. 1 is an illustration of one embodiment of tungsten semi-carbide and shows the structure of tungsten semi-carbide.
  • carbon may be used in this composition in order to increase the strength and scratch resistance properties of tungsten.
  • the form of carbon used in this embodiment may have a chemical formula W2C with the structure shown in FIG. 1 .
  • One embodiment of the present composition may contain an amount of carbon of up to approximately 10.0 percent by weight, and more preferably between approximately 5.0 to 10.0 percent by weight.
  • the metal alloy composition may contain a carbon composition of approximately 7.0 percent by weight based on the total weight percent of the composition.
  • Titanium may be added to the composition to increase the composition's durability, scratch resistance, and rust resistance. Titanium has a high tensile strength and is malleable, thereby allowing the compound to be manipulated more easily while allowing more intricate designs to be completed. Titanium is significantly lighter in weight than tungsten and may also be used because of its biocompatibility, which makes it hypoallergenic. Titanium generally has a silvery-white appearance and hue, which is similar to more expensive, silver jewelry, which is desirable.
  • the titanium component of the present composition may be in an amount up to 55.0 percent by weight, and more preferably between 45.0 to 55.0 percent by weight. In another embodiment, the titanium component may contain about approximately 51.0 percent by weight based on the total weight percent of the composition.
  • the present composition may be further comprised of nickel, which has slow oxidation properties, which generally makes nickel an ideal metal for rust resistance. Additionally, nickel is may be an excellent binder of tungsten carbide or tungsten semi-carbide. Nickel also may add corrosion-resistance properties to tungsten carbide or tungsten semi-carbide. In an embodiment, nickel may be included in the present composition in an amount up to approximately 20.0 percent by weight, and more preferably between approximately 10.0 to 20.0 percent by weight. In another embodiment, the composition may be comprised of nickel at approximately 15.0 percent by weight based on the total weight percent of the composition.
  • the present composition may be comprised of chromium, which has strong corrosion resistant properties and tends to form stable carbides at grain boundaries.
  • the chromium component of the metal alloy composition may be in an amount of up to approximately 5.0 percent by weight, and more preferably between 0.5 to 5.0 percent by weight. In another embodiment, chromium may be approximately 1.0 percent by weight based on the total weight percent of the composition.
  • the present composition may be further comprised of molybdenum.
  • Molybdenum generally helps increase the strength of the composition and helps prevent corrosion due to its corrosion resistant properties. Molybdenum may also be used to decrease the density of the composition, especially when tungsten is present, as tungsten is very dense.
  • the molybdenum component may be in an amount up to approximately 15.0 percent by weight, and more preferably between approximately 5.0 to 15.0 percent by weight. In another embodiment, the molybdenum component may be approximately 10.0 percent by weight based on the total weight percent of the composition.
  • the present composition may be further comprised of copper, which adds color and malleability.
  • the copper component may be in an amount of up to approximately 3.0 percent by weight, and more preferably between approximately 0.1 to 3.0 percent by weight. In another embodiment, the copper component may contain about approximately 2.0 percent by weight based on the total weight percent of the composition.
  • Table 2 is a table of an embodiment of the metallic alloy composition.
  • an embodiment of the metallic alloy composition may comprise: tungsten, carbon, titanium, nickel, chromium, molybdenum, and copper.
  • the titanium component may be approximately 51.0 percent by weight based on a total weight of said composition.
  • the tungsten component may be in an amount of approximately 14.0 percent by weight based on a total weight of said composition.
  • the nickel component may be in an amount of approximately 15.0 percent by weight based on a total weight of said composition.
  • the chromium component may be in an amount of approximately 1.0 percent by weight based on a total weight of said composition.
  • the molybdenum component may be in an amount of approximately 10.0 percent by weight based on a total weight of said composition.
  • the copper component may be in an amount of approximately 2.0 percent by weight based on a total weight of said composition.
  • the carbon component may be in an amount of approximately 7.0 percent by weight based on a total weight of said composition.
  • Table 3 is a table of another embodiment of the metallic alloy composition.
  • one embodiment of the metallic alloy composition may comprise one or more raw material metals such as tungsten, carbon, titanium, nickel, chromium, and molybdenum, which are melted together to form the composition.
  • the raw material metals may be combined to create a metal alloy that is cost effective, durable, and of a variety of colors, many of which may not currently be found in jewelry.
  • Table 3 also lists the preferred weight (Wt) percentage (%) range of each material and the primary purpose of the material.
  • the tungsten component of the metal alloy composition may be in an amount up to 35.0 percent by weight, and more preferably between approximately 25.0 to 35.0 percent by weight based on a total weight of the composition.
  • the metal alloy composition may contain tungsten at approximately 32.0 percent by weight based on the total weight percent of the composition.
  • the metal alloy composition may further comprise carbon.
  • Tungsten may be combined with carbon, which may decrease the brittleness and increase the ductility of the resulting alloy. As the presence of carbon increases the brittleness of a compound, the preferred embodiment uses more tungsten than carbon to preferably reduce the weight and brittleness of the resulting alloy.
  • One embodiment of the present composition may contain an amount of carbon of up to approximately 12.0 percent by weight, and more preferably between approximately 5.0 to 12.0 percent by weight.
  • the metal alloy composition may contain a carbon composition of approximately 10.20 percent by weight based on the total weight percent of the composition.
  • the present composition may be further comprised of titanium.
  • the titanium component of the present composition may be in an amount up to 42.0 percent by weight, and more preferably between 33.0 to 42.0 percent by weight. In a preferred embodiment, the titanium component may contain about approximately 35.0 percent by weight based on the total weight percent of the composition.
  • the present composition may be further comprised of nickel.
  • nickel may be included in the present composition in an amount up to approximately 20.0 percent by weight, and more preferably between approximately 10.0 to 20.0 percent by weight.
  • the composition may be comprised of nickel at approximately 15.0 percent by weight based on the total weight percent of the composition.
  • the present composition may be further comprised of chromium.
  • the chromium component of the metal alloy composition may be in an amount of up to approximately 5.0 percent by weight, and more preferably between 0.5 to 5.0 percent by weight. In a preferred embodiment, chromium may be approximately 1.80 percent by weight based on the total weight percent of the composition.
  • the present embodiment may be further comprised of molybdenum.
  • the molybdenum component may be in an amount up to approximately 10.0 percent by weight, and more preferably between approximately 3.0 to 10.0 percent by weight. In a preferred embodiment, the molybdenum component may be approximately 6.0 percent by weight based on the total weight percent of the composition.
  • Table 4 is a table of a preferred embodiment of the metallic alloy composition.
  • a preferred embodiment of the metallic alloy composition may comprise: tungsten, carbon, titanium, nickel, chromium, and molybdenum.
  • the titanium component may be approximately 35.0 percent by weight based on a total weight of said composition.
  • the tungsten component may be in an amount of approximately 32.0 percent by weight based on a total weight of said composition.
  • the nickel component may be in an amount of approximately 15.0 percent by weight based on a total weight of said composition.
  • the chromium component may be in an amount of approximately 1.80 percent by weight based on a total weight of said composition.
  • the molybdenum component may be in an amount of approximately 6.0 percent by weight based on a total weight of said composition.
  • the carbon component may be in an amount of approximately 10.20 percent by weight based on a total weight of said composition.
  • composition of the present disclosure may be made using a casting process, comprising the steps of: a setup step; a production step; and a finishing step.
  • the setup step may comprise: formation of a mold and the creation of a cast.
  • the mold may be formed by fashioning a piece of rubber into the desired shape.
  • the cast may then be created by injecting wax into the rubber mold. Once the wax hardens, the cast can be removed from the rubber mold.
  • the production step may comprise: a melting of raw materials together, pouring the composition into the cast, and breaking of the cast.
  • the raw materials which may comprise the following: tungsten; carbon; titanium; nickel; chromium; molybdenum; and copper, may be melted together at a temperature of 1,400-1,500° C. to form a liquid composition, which may then be poured into the cast. Once the liquid composition cools and hardens in the cast, the cast may be broken and the hardened composition removed.
  • the finishing step may comprise: a smoothing and polishing of the hardened composition. Once the hardened composition is removed from the cast, the composition may be smoothed of any rough edges via a sanding tool. Once smoothed, the hardened composition may be polished.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Adornments (AREA)

Abstract

A composition for titanium-tungsten metal alloy. A composition for titanium-tungsten metal alloy may comprise: a titanium component in an amount of approximately 35.0 percent by weight based on a total weight of the composition; a tungsten component in an amount of approximately 32.0 percent by weight; a nickel component in an amount of approximately 15.0 percent by weight; a chromium component in an amount of approximately 1.80 percent by weight; a molybdenum component in an amount of approximately 6.0 percent by weight; and a carbon component is an amount of approximately 10.20 percent by weight.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This Application is a continuation-in-part of U.S. patent application Ser. No. 14/330,274, filed on Jul. 14, 2014, titled “Composition for Titanium-Tungsten Metal Alloy” by inventor Yong Kyu Choi, the contents of which are expressly incorporated herein by this reference, and to which priority is claimed.
  • FIELD OF USE
  • This present disclosure relates generally to metal alloy compositions, and more particularly, to a titanium-tungsten metallic composition, comprising various percentages by weight of titanium, tungsten, nickel, chromium, molybdenum, and carbon.
  • BACKGROUND
  • Since the dawn of time, humans have shaped metal into jewelry. Recently, while exploring new metals to create jewelry, many jewelers may have discovered that tungsten carbide could potentially be a valuable jewelry material. Tungsten carbide is usually used for making jewelry that is harder and more scratch-resistant than that of traditional metal jewelry, such as gold, silver, and platinum. Tungsten is also generally a much more affordable metal than its precious metal counterparts, thereby permitting jewelers to sell their designs at much lower prices.
  • Despite the advantages of tungsten carbide, tungsten carbide jewelry also has its drawbacks. For example, U.S. Pat. Nos. 6,928,734; 6,062,045; 6,553,667; 6,990,736; 6,993,842; 7,032,314; 7,076,972; 7,761,996; 8,061,033; and 8,584,360, issued to West (“West”), disclose at least one or more compositions and/or methods used to create jewelry using tungsten carbide. These methods for manufacturing tungsten carbide may lead to fibrosis due to accidental inhalation of the carbide dust. Additionally, the stiffness of the material tungsten carbide itself generally does not allow for engraving or resizing of the jewelry.
  • Due to the disadvantages of tungsten carbide, some jewelers have looked to use other materials in jewelry, such as titanium. With titanium, the jeweler is afforded the benefits of tungsten, such as its scratch-resistance and hard material properties. Additionally, titanium has the added benefit of a lighter metal that could be finished in multiple colors and is more malleable, thereby allowing one to engrave and resize titanium jewelry. Furthermore, titanium jewelry manufacturing also generally does not have the added risk of fibrosis, as carbide is not needed. Unfortunately, however, titanium is much more expensive than tungsten.
  • Therefore, what is needed is a metal alloy composition and a method of making a tungsten and titanium metal alloy composition. Preferably, the new metal composition will utilize tungsten and titanium in order to take advantage of the benefits of both metals such as lower material costs, scratch-resistance properties, favorable color, and malleability.
  • SUMMARY
  • To minimize the limitations in the prior art, and to minimize other limitations that will become apparent upon reading and understanding the present specification, the following discloses a new and improved metal alloy composition, comprising titanium and tungsten.
  • One embodiment may be a metallic alloy composition, comprising: a titanium component; a tungsten component; a nickel component; a chromium component; a molybdenum component; a copper component; and a carbon component. The titanium component may be an amount of approximately between 45.0 to 55.0 percent by weight based on a total weight of the composition. The tungsten component may be an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition. The nickel component may be an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition. The chromium component may be an amount of approximately between 0.5 to 5.0 percent by weight based on a total weight of the composition. The molybdenum component may be an amount of approximately between 5.0 to 15.0 percent by weight based on a total weight of the composition. The copper component may be an amount of approximately between 0.1 to 3.0 percent by weight based on a total weight of the composition. The carbon component may be an amount of approximately between 5.0 to 10.0 percent by weight based on a total weight of the composition. The metallic alloy may be scratch-resistant. The metallic alloy may be rust resistant. The metallic alloy may be tarnish-resistant.
  • Another embodiment may be a process for producing a metal alloy composition, comprising the steps of: providing a mold; providing one or more raw materials; melting the one or more raw materials into the mold to create a cast; breaking the cast; and smoothing and polishing the cast to create the metal alloy composition. The mold may be constructed of rubber. The cast may be formed by injecting a wax into the mold. The raw materials may comprise: a titanium component; a tungsten component; a nickel component; a chromium component; a molybdenum component; a copper component; and a carbon component. The titanium component may be approximately between 51.0 percent by weight based on a total weight of the composition. The tungsten component may be an amount of approximately between 14.0 percent by weight based on a total weight of the composition. The nickel component may be in an amount of approximately between 15.0 percent by weight based on a total weight of the composition. The chromium component may be in an amount of approximately between from 1.0 percent by weight based on a total weight of the composition. The molybdenum component may be in an amount of approximately between 10.0 percent by weight based on a total weight of the composition. The copper component may be in an amount of approximately between 2.0 percent by weight based on a total weight of the composition. The carbon component may be in an amount of approximately between 7.0 percent by weight based on a total weight of the composition. The raw materials may be melted at a temperature of at least approximately between 1,400-1,500° C. and then poured into the cast. The melted raw materials may be allowed to cool before the cast is broken and unfinished metal alloy is removed.
  • Another embodiment may be a metallic alloy composition, comprising: a titanium component in an amount of approximately between 45.0 to 55.0 percent by weight based on a total weight of the composition; a tungsten component in an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition; a nickel component in an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition; a chromium component in an amount of approximately between 0.5 to 5.0 percent by weight based on a total weight of the composition; a molybdenum component in an amount of approximately between 0.5 to 15.0 percent by weight based on a total weight of the composition; a copper component in an amount of approximately between 0.1 to 3.0 percent by weight based on a total weight of the composition; and a carbon component is an amount of approximately between 5.0 to 10.0 percent by weight based on a total weight of the composition. The titanium component may be approximately between 51.0 percent by weight based on a total weight of the composition. The tungsten component may be in an amount of approximately between 14.0 percent by weight based on a total weight of the composition; wherein the nickel component may be in an amount of approximately between 15.0 percent by weight based on a total weight of the composition; wherein the chromium component may be in an amount of approximately between 1.0 percent by weight based on a total weight of the composition; wherein the molybdenum component may be in an amount of approximately between 10.0 percent by weight based on a total weight of the composition; wherein the copper component may be in an amount of approximately between 2.0 percent by weight based on a total weight of the composition; and wherein the carbon component may be in an amount of approximately between 7.0 percent by weight based on a total weight of the composition.
  • One embodiment may be a metal alloy composition, comprising: a titanium component; a tungsten component; a nickel component; a chromium component; a molybdenum component; a copper component; and a carbon component. The titanium component may be an amount from approximately between 45.0 to 55.0 percent by weight based on a total weight of the composition; the tungsten component may be an amount from approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition; the nickel component may be an amount from approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition; the chromium component may be an amount from approximately between 0.5 to 5.0 percent by weight based on a total weight of the composition; the molybdenum component may be an amount from approximately between 5.0 to 15.0 percent by weight based on a total weight of the composition; the copper component may be an amount from 0.1 to 3.0 percent by weight based on a total weight of the composition; and the carbon component may be an amount from approximately between 5.0 to 10.0 percent by weight based on a total weight of the composition. The metal alloy may further comprise the qualities of scratch-resistance, rust resistance, and corrosion resistance.
  • The aforementioned mentioned embodiments generally avoid the problems of prior metals to make jewelry because the costs of tungsten and titanium are lower than other precious metals. By combining tungsten and titanium, one is able to take advantages of tungsten and titanium. Through the use of tungsten, one is afforded the qualities of low cost, durability, and scratch-resistance. Titanium, on the other hand, has its own advantages of being malleable, a light-weight material, hypo-allergenic, rust resistant, and tarnish-resistant. Although tungsten and titanium have sought after characteristics, combining solely the two elements is not feasible, as it leads to an unstable compound, causing one to include additional elements and metals. Additionally, an alloy of solely tungsten, titanium, and stabilizing elements will lead to a metal with a color similar, if not the same, of existing jewelry. By adding additional metallic components, such as chromium, molybdenum, nickel, and copper, one is able to change the hue of the metal.
  • Another embodiment may be a metallic alloy composition, comprising: a titanium component; a tungsten component; a nickel component; a chromium component; a molybdenum component; and a carbon component. The titanium component may be an amount of approximately between 33.0 to 42.0 percent by weight based on a total weight of the composition. The tungsten component may be an amount of approximately between 25.0 to 35.0 percent by weight based on a total weight of the composition. The nickel component may be an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition. The chromium component may be an amount of approximately between 0.5 to 5.0 percent by weight based on a total weight of the composition. The molybdenum component may be an amount of approximately between 3.0 to 10.0 percent by weight based on a total weight of the composition. The carbon component may be an amount of approximately between 5.0 to 12.0 percent by weight based on a total weight of the composition. The metallic alloy may be scratch-resistant. The metallic alloy may be rust resistant. The metallic alloy may be tarnish-resistant.
  • Another embodiment may be a process for producing a metal alloy composition, comprising the steps of: providing a mold; providing one or more raw materials; melting the one or more raw materials into the mold to create a cast; breaking the cast; and smoothing and polishing the cast to create the metal alloy composition. The mold may be constructed of rubber. The cast may be formed by injecting a wax into the mold. The raw materials may comprise: a titanium component; a tungsten component; a nickel component; a chromium component; a molybdenum component; and a carbon component. The titanium component may be approximately between 35.0 percent by weight based on a total weight of the composition. The tungsten component may be an amount of approximately between 32.0 percent by weight based on a total weight of the composition. The nickel component may be in an amount of approximately between 15.0 percent by weight based on a total weight of the composition. The chromium component may be in an amount of approximately between from 1.80 percent by weight based on a total weight of the composition. The molybdenum component may be in an amount of approximately between 6.0 percent by weight based on a total weight of the composition. The carbon component may be in an amount of approximately between 10.20 percent by weight based on a total weight of the composition. The raw materials may be melted at a temperature of at least approximately between 1,400-1,500° C. and then poured into the cast. The melted raw materials may be allowed to cool before the cast is broken and unfinished metal alloy is removed.
  • Another embodiment may be a metallic alloy composition, comprising: a titanium component; a tungsten component; a nickel component; a chromium component; a molybdenum component; and a carbon component. The titanium component may be an amount of approximately between 33.0 to 42.0 percent by weight based on a total weight of the composition. The tungsten component may be an amount of approximately between 25.0 to 35.0 percent by weight based on a total weight of the composition. The nickel component may be an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition. The chromium component may be an amount of approximately between 0.5 to 5.0 percent by weight based on a total weight of the composition. The molybdenum component may be an amount of approximately between 3.0 to 10.0 percent by weight based on a total weight of the composition. The carbon component may be an amount of approximately between 5.0 to 12.0 percent by weight based on a total weight of the composition. The metal alloy may further comprise the qualities of scratch-resistance, rust resistance, malleability, and corrosion resistance.
  • A preferred embodiment may be a metallic alloy composition, comprising: a titanium component in an amount of approximately between 33.0 to 42.0 percent by weight based on a total weight of the composition; a tungsten component in an amount of approximately between 25.0 to 35.0 percent by weight based on a total weight of the composition; a nickel component in an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition; a chromium component in an amount of approximately between 0.5 to 5.0 percent by weight based on a total weight of the composition; a molybdenum component in an amount of approximately between 3.0 to 10.0 percent by weight based on a total weight of the composition; and a carbon component is an amount of approximately between 5.0 to 12.0 percent by weight based on a total weight of the composition. The titanium component may be approximately between 35.0 percent by weight based on a total weight of the composition; the tungsten component may be in an amount of approximately between 32.0 percent by weight based on a total weight of the composition; wherein the nickel component may be in an amount of approximately between 15.0 percent by weight based on a total weight of the composition; wherein the chromium component may be in an amount of approximately between 1.80 percent by weight based on a total weight of the composition; wherein the molybdenum component may be in an amount of approximately between 6.0 percent by weight based on a total weight of the composition; and wherein the carbon component may be in an amount of approximately between 10.20 percent by weight based on a total weight of the composition.
  • The present embodiment generally avoids the problems of prior metals to make jewelry because the costs of tungsten and titanium are lower than other precious metals. By combining tungsten and titanium, one is able to take advantages of tungsten and titanium. Through the use of tungsten, one is afforded the qualities of low cost, durability, and scratch-resistance. Titanium, on the other hand, has its own advantages of being malleable, a light-weight material, hypo-allergenic, rust resistant, and tarnish-resistant. Although tungsten and titanium have sought after characteristics, combining solely the two elements is not feasible, as it leads to an unstable compound, causing one to include additional elements and metals. By increasing the ratio of tungsten to carbon, the alloy may be more ductile and less brittle. Additionally, an alloy of solely tungsten, titanium, and stabilizing elements will lead to a metal with a color similar, if not the same, of existing jewelry. By adding additional metallic components, such as chromium, molybdenum, and nickel, one may be able to change the hue of the metal.
  • Another embodiment may be a process for producing a metal alloy composition, the steps comprising: a setup step; a production step; and a finishing step. The setup step may comprise: forming a mold and a cast; wherein the mold may be made of rubber and the cast may be formed by injecting wax into the mold. The production step may comprise: a melting of a raw materials and a breaking of the cast; wherein the raw materials may be melted at a temperature of at least 1,400-1,500° C., poured into the cast, and allowed to cool before the cast is broken and an unfinished metal alloy is removed. The finishing step may comprise: a smoothing and polishing of the metallic alloy; wherein the unfinished metal alloy may be smoothed and then polished.
  • The present disclosure provides an attractive metal alloy composition that may be used to create low cost jewelry with properties that are desirable to consumers. The metal alloy composition is preferably made up of metals that have a lower cost than precious metals and that are more attractive than non-precious metals, such as steel, which are currently used within the majority of jewelry made. Precious metals may include, without limitation, gold, silver, and platinum, all of which are relatively expensive metals.
  • The materials costs of tungsten and titanium are lower than the costs of precious metals. As such, jewelry made using tungsten and titanium can be made at a lower cost. The composition of the present disclosure may preferably include tungsten, which is relatively inexpensive, durable, and scratch-resistance, and titanium, which is malleable, light-weight, hypo-allergenic, rust resistant, and corrosion resistant.
  • Although tungsten and titanium may have sought-after characteristics, combining solely the two elements is generally not feasible, as it leads to an unstable compound. Accordingly, the composition of the present disclosure may include the inclusion of additional metals, such as chromium, molybdenum, nickel, and copper. The addition of other metals may also be used to change the hue and color of the resulting jewelry.
  • The metal composition may be created via a casting method. First, a mold of the desired design may be formed, typically from rubber. Next, a wax cast of the design may be created from the rubber mold. The raw metals and elements may then be combined and melted together to create the cast. The melted composition of the present disclosure may then be poured into the cast. Once the composition cools and hardens, the cast may be broken and the hardened metallic alloy, now in the shape of the desired design, may be removed from the cast. The metallic alloy's surfaces may then smoothed with sandpaper and polished.
  • It is an object to provide a new metal alloy composition using tungsten semi-carbide rather than tungsten carbide.
  • It is an object to overcome the limitations of the prior art.
  • Additional embodiments of the invention will be understood from the detailed description of the illustrative embodiments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The figures are of illustrative embodiments. They do not illustrate all embodiments. Other embodiments may be used in addition or instead. Details which may be apparent or unnecessary may be omitted to save space or for more effective illustration. Some embodiments may be practiced with additional components or steps and/or without all of the components or steps which are illustrated.
  • FIG. 1 is an illustration of one embodiment of tungsten carbide and shows the structure of tungsten carbide.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • In the following detailed description numerous specific details are set forth in order to provide a thorough understanding of various aspects of one or more embodiments. However, one or more embodiments may be practiced without some or all of these specific details. In other instances, well-known methods, procedures, and/or components have not been described in detail so as not to unnecessarily obscure aspects of embodiments.
  • While multiple embodiments are disclosed, still other embodiments of the present disclosure will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments. As will be realized, the embodiments are capable of modifications in various obvious aspects, all without departing from the spirit and scope. Also, the reference or non-reference to a particular embodiment shall not be interpreted to limit the scope of protection.
  • Definitions
  • In the following description, certain terminology is used to describe certain features of one or more embodiments. For example, as used herein, the terms “metallic alloy composition,” “metal alloy composition,” “metal alloy,” or “composition,” refers to any combination of materials which may comprise one or more embodiments of present disclosure.
  • As used herein, the term “alloy” generally refers to a mixture, composition, or combination of metals.
  • As used herein, the terms “malleable” or “malleability” generally refer to the capability to stretch, bend, design, or change a metal.
  • As used herein, the terms “tarnish” or “corrosion” generally refer to the gradual degradation of a metal.
  • Table 1 is a table of one embodiment of the metallic alloy composition. As shown in Table 1, one embodiment of the metallic alloy composition may be comprised of one or more raw material metals such as tungsten, carbon, titanium, nickel, chromium, molybdenum, and copper, which are melted together to form the composition.
  • The raw material metals may be combined to create a metal alloy that is cost effective, durable, and of a variety of colors, many of which may not currently be found in jewelry. Table 1 also lists the weight (Wt) percentage (%) range of each material for one embodiment and the primary purpose of the material.
  • TABLE 1
    Ingredient Wt % Range Purpose
    Tungsten 10.0-20.0 Increases durability and scratch resistance;
    decreases cost; alters color of alloy;
    hypoallergenic
    Carbon  5.0-10.0 Increase strength; scratch resistance
    Titanium 45.0-55.0 Increases durability; hypoallergenic;
    corrosion resistant; decreases weight; alters
    color of alloy
    Nickel 10.0-20.0 Binder; corrosion resistance
    Chromium 0.5-5.0 Corrosion resistance
    Molybdenum  5.0-15.0 Increases strength; scratch resistance;
    corrosion resistance
    Copper 0.1-3.0 Increases malleability; alters color of alloy
  • Tungsten is generally a very hard, brittle metal. The hardness of tungsten may allow the metallic alloy composition to be scratch resistant, thereby increasing its durability. Because tungsten is a very hard metal, other materials may generally be needed in the metallic alloy composition in order to increase the metallic alloy composition's malleability. Tungsten is also a very heavy metal, which may benefit from combining it with other metals that are lighter. Jewelry that is too heavy is undesirable. Another benefit to using tungsten in jewelry is the relative affordability of tungsten. Tungsten is much less expensive than gold or silver.
  • In one embodiment, the tungsten component of the metal alloy composition may be in an amount up to 20.0 percent by weight, more preferably approximately between 10.0 to 20.0 percent by weight based on a total weight of the composition. In another embodiment, the metal alloy composition may contain tungsten at approximately between 14.0 percent by weight based on the total weight percent of the composition.
  • The metal alloy composition may further comprise carbon. Currently, tungsten may be combined with carbon, which may decrease the brittleness and increase the ductility of the resulting alloy. Two of the possible compounds of tungsten and carbon are tungsten carbide and tungsten semi-carbide. Tungsten semi-carbide is generally a compound in which the amount of tungsten is double that of carbon, whereas tungsten carbide utilizes the same amount of tungsten as carbon. As the presence of carbon increases the brittleness of a compound, tungsten carbide tends to be much stiffer (brittle), stronger, heavier, and more scratch-resistant than the semi-carbide form. Rather than using tungsten carbide, this embodiment utilizes tungsten semi-carbide to preferably reduce the weight and brittleness of the resulting alloy.
  • FIG. 1 is an illustration of one embodiment of tungsten semi-carbide and shows the structure of tungsten semi-carbide. As stated above, carbon may be used in this composition in order to increase the strength and scratch resistance properties of tungsten. The form of carbon used in this embodiment may have a chemical formula W2C with the structure shown in FIG. 1. One embodiment of the present composition may contain an amount of carbon of up to approximately 10.0 percent by weight, and more preferably between approximately 5.0 to 10.0 percent by weight. In another embodiment, the metal alloy composition may contain a carbon composition of approximately 7.0 percent by weight based on the total weight percent of the composition.
  • Titanium may be added to the composition to increase the composition's durability, scratch resistance, and rust resistance. Titanium has a high tensile strength and is malleable, thereby allowing the compound to be manipulated more easily while allowing more intricate designs to be completed. Titanium is significantly lighter in weight than tungsten and may also be used because of its biocompatibility, which makes it hypoallergenic. Titanium generally has a silvery-white appearance and hue, which is similar to more expensive, silver jewelry, which is desirable. In an embodiment, the titanium component of the present composition may be in an amount up to 55.0 percent by weight, and more preferably between 45.0 to 55.0 percent by weight. In another embodiment, the titanium component may contain about approximately 51.0 percent by weight based on the total weight percent of the composition.
  • The present composition may be further comprised of nickel, which has slow oxidation properties, which generally makes nickel an ideal metal for rust resistance. Additionally, nickel is may be an excellent binder of tungsten carbide or tungsten semi-carbide. Nickel also may add corrosion-resistance properties to tungsten carbide or tungsten semi-carbide. In an embodiment, nickel may be included in the present composition in an amount up to approximately 20.0 percent by weight, and more preferably between approximately 10.0 to 20.0 percent by weight. In another embodiment, the composition may be comprised of nickel at approximately 15.0 percent by weight based on the total weight percent of the composition.
  • The present composition may be comprised of chromium, which has strong corrosion resistant properties and tends to form stable carbides at grain boundaries. In an embodiment, the chromium component of the metal alloy composition may be in an amount of up to approximately 5.0 percent by weight, and more preferably between 0.5 to 5.0 percent by weight. In another embodiment, chromium may be approximately 1.0 percent by weight based on the total weight percent of the composition.
  • The present composition may be further comprised of molybdenum. Molybdenum generally helps increase the strength of the composition and helps prevent corrosion due to its corrosion resistant properties. Molybdenum may also be used to decrease the density of the composition, especially when tungsten is present, as tungsten is very dense. In an embodiment, the molybdenum component may be in an amount up to approximately 15.0 percent by weight, and more preferably between approximately 5.0 to 15.0 percent by weight. In another embodiment, the molybdenum component may be approximately 10.0 percent by weight based on the total weight percent of the composition.
  • The present composition may be further comprised of copper, which adds color and malleability. In an embodiment, the copper component may be in an amount of up to approximately 3.0 percent by weight, and more preferably between approximately 0.1 to 3.0 percent by weight. In another embodiment, the copper component may contain about approximately 2.0 percent by weight based on the total weight percent of the composition.
  • Table 2 is a table of an embodiment of the metallic alloy composition. As shown in Table 2, an embodiment of the metallic alloy composition may comprise: tungsten, carbon, titanium, nickel, chromium, molybdenum, and copper. The titanium component may be approximately 51.0 percent by weight based on a total weight of said composition. The tungsten component may be in an amount of approximately 14.0 percent by weight based on a total weight of said composition. The nickel component may be in an amount of approximately 15.0 percent by weight based on a total weight of said composition. The chromium component may be in an amount of approximately 1.0 percent by weight based on a total weight of said composition. The molybdenum component may be in an amount of approximately 10.0 percent by weight based on a total weight of said composition. The copper component may be in an amount of approximately 2.0 percent by weight based on a total weight of said composition. The carbon component may be in an amount of approximately 7.0 percent by weight based on a total weight of said composition.
  • TABLE 2
    Composition Component Preferred Wt % Range
    Tungsten 14.0%
    Carbon 7.0%
    Titanium 51.0%
    Nickel 15.0%
    Chromium 1.0%
    Molybdenum 10.0%
    Copper 2.0%
  • Unless otherwise noted, all parts, percentages, and ratios reported in the table above are generally used on a weight basis, and all materials used in the table were obtained, or are available, from chemical suppliers, or may be synthesized by conventional techniques.
  • Table 3 is a table of another embodiment of the metallic alloy composition. As shown in Table 3, one embodiment of the metallic alloy composition may comprise one or more raw material metals such as tungsten, carbon, titanium, nickel, chromium, and molybdenum, which are melted together to form the composition.
  • The raw material metals may be combined to create a metal alloy that is cost effective, durable, and of a variety of colors, many of which may not currently be found in jewelry. Table 3 also lists the preferred weight (Wt) percentage (%) range of each material and the primary purpose of the material.
  • TABLE 3
    Preferred Wt
    Ingredient % Range Purpose
    Tungsten 25.0-35.0 Increases durability and scratch resistance;
    decreases cost; alters color of alloy;
    hypoallergenic
    Carbon  5.0-12.0 Increase strength; scratch resistance
    Titanium 33.0-42.0 Increases durability; hypoallergenic;
    corrosion resistant; decreases weight;
    alters color of alloy
    Nickel 10.0-20.0 Binder; corrosion resistance
    Chromium 0.5-5.0 Corrosion resistance
    Molybdenum  3.0-10.0 Increases strength; scratch resistance;
    corrosion resistance
  • In another embodiment, the tungsten component of the metal alloy composition may be in an amount up to 35.0 percent by weight, and more preferably between approximately 25.0 to 35.0 percent by weight based on a total weight of the composition. In a preferred embodiment, the metal alloy composition may contain tungsten at approximately 32.0 percent by weight based on the total weight percent of the composition.
  • The metal alloy composition may further comprise carbon. Tungsten may be combined with carbon, which may decrease the brittleness and increase the ductility of the resulting alloy. As the presence of carbon increases the brittleness of a compound, the preferred embodiment uses more tungsten than carbon to preferably reduce the weight and brittleness of the resulting alloy.
  • One embodiment of the present composition may contain an amount of carbon of up to approximately 12.0 percent by weight, and more preferably between approximately 5.0 to 12.0 percent by weight. In a preferred embodiment, the metal alloy composition may contain a carbon composition of approximately 10.20 percent by weight based on the total weight percent of the composition.
  • The present composition may be further comprised of titanium. In an embodiment, the titanium component of the present composition may be in an amount up to 42.0 percent by weight, and more preferably between 33.0 to 42.0 percent by weight. In a preferred embodiment, the titanium component may contain about approximately 35.0 percent by weight based on the total weight percent of the composition.
  • The present composition may be further comprised of nickel. In an embodiment, nickel may be included in the present composition in an amount up to approximately 20.0 percent by weight, and more preferably between approximately 10.0 to 20.0 percent by weight. In a preferred embodiment, the composition may be comprised of nickel at approximately 15.0 percent by weight based on the total weight percent of the composition.
  • The present composition may be further comprised of chromium. In an embodiment, the chromium component of the metal alloy composition may be in an amount of up to approximately 5.0 percent by weight, and more preferably between 0.5 to 5.0 percent by weight. In a preferred embodiment, chromium may be approximately 1.80 percent by weight based on the total weight percent of the composition.
  • The present embodiment may be further comprised of molybdenum. In an embodiment, the molybdenum component may be in an amount up to approximately 10.0 percent by weight, and more preferably between approximately 3.0 to 10.0 percent by weight. In a preferred embodiment, the molybdenum component may be approximately 6.0 percent by weight based on the total weight percent of the composition.
  • Table 4 is a table of a preferred embodiment of the metallic alloy composition. As shown in Table 4, a preferred embodiment of the metallic alloy composition may comprise: tungsten, carbon, titanium, nickel, chromium, and molybdenum. The titanium component may be approximately 35.0 percent by weight based on a total weight of said composition. The tungsten component may be in an amount of approximately 32.0 percent by weight based on a total weight of said composition. The nickel component may be in an amount of approximately 15.0 percent by weight based on a total weight of said composition. The chromium component may be in an amount of approximately 1.80 percent by weight based on a total weight of said composition. The molybdenum component may be in an amount of approximately 6.0 percent by weight based on a total weight of said composition. The carbon component may be in an amount of approximately 10.20 percent by weight based on a total weight of said composition.
  • TABLE 4
    Composition Component Preferred Wt % Range
    Tungsten 32.0%
    Carbon 10.20% 
    Titanium 35.0%
    Nickel 15.0%
    Chromium 1.80%
    Molybdenum  6.0%
  • Unless otherwise noted, all parts, percentages, and ratios reported in the table above are generally used on a weight basis, and all materials used in the table were obtained, or are available, from chemical suppliers, or may be synthesized by conventional techniques.
  • The composition of the present disclosure may be made using a casting process, comprising the steps of: a setup step; a production step; and a finishing step.
  • The setup step may comprise: formation of a mold and the creation of a cast. The mold may be formed by fashioning a piece of rubber into the desired shape. The cast may then be created by injecting wax into the rubber mold. Once the wax hardens, the cast can be removed from the rubber mold.
  • The production step may comprise: a melting of raw materials together, pouring the composition into the cast, and breaking of the cast. The raw materials, which may comprise the following: tungsten; carbon; titanium; nickel; chromium; molybdenum; and copper, may be melted together at a temperature of 1,400-1,500° C. to form a liquid composition, which may then be poured into the cast. Once the liquid composition cools and hardens in the cast, the cast may be broken and the hardened composition removed.
  • The finishing step may comprise: a smoothing and polishing of the hardened composition. Once the hardened composition is removed from the cast, the composition may be smoothed of any rough edges via a sanding tool. Once smoothed, the hardened composition may be polished.
  • While the foregoing written description enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiment, method, and examples herein. This disclosure should therefore not be limited by the above described embodiment, method, and examples, but by all embodiments and methods within the scope and spirit of the disclosure as claimed.
  • The foregoing description of the preferred embodiment has been presented for the purposes of illustration and description. While multiple embodiments are disclosed, still other embodiments will become apparent to those skilled in the art from the above detailed description, which shows and describes illustrative embodiments. As will be realized, the embodiments are capable of modifications in various obvious aspects, all without departing from the spirit and scope. Accordingly, the detailed description is to be regarded as illustrative in nature and not restrictive. Also, although not explicitly recited, one or more embodiments may be practiced in combination or conjunction with one another. Furthermore, the reference or non-reference to a particular embodiment shall not be interpreted to limit the scope. It is intended that the scope not be limited by this detailed description, but by the claims and the equivalents to the claims that are appended hereto.
  • Except as stated immediately above, nothing which has been stated or illustrated is intended or should be interpreted to cause a dedication of any component, step, feature, object, benefit, advantage, or equivalent to the public, regardless of whether it is or is not recited in the claims.

Claims (17)

What is claimed is:
1. A metallic alloy composition, comprising: a titanium; a tungsten; a nickel; a chromium; a molybdenum; and a carbon.
2. The metal alloy composition of claim 1, wherein said titanium is approximately between 33.0 to 42.0 percent by weight based on a total weight of said composition.
3. The metal alloy composition of claim 1, wherein said tungsten is an amount of approximately between 25.0 to 35.0 percent by weight based on a total weight of said composition.
4. The metal alloy composition of claim 1, wherein said nickel is an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of said composition.
5. The metal alloy composition of claim 1, wherein said chromium is an amount of approximately between 0.5 to 5.0 percent by weight based on a total weight of said composition.
6. The metal alloy composition of claim 1, wherein said molybdenum is an amount of approximately between 3.0 to 10.0 percent by weight based on a total weight of said composition.
7. The metal alloy composition of claim 1, wherein said carbon is an amount of approximately between 5.0 to 12.0 percent by weight based on a total weight of said composition.
8. The metal alloy composition of claim 1, wherein said metallic alloy is scratch-resistant.
9. The metal alloy composition of claim 1, wherein said metallic alloy is corrosion resistant.
10. The metal alloy composition of claim 1, wherein said metallic alloy is rust resistant.
11. The metal alloy composition of claim 2, wherein said tungsten is an amount of approximately between 25.0 to 35.0 percent by weight based on a total weight of said composition.
12. The metal alloy composition of claim 11, wherein said nickel is an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of said composition.
13. The metal alloy composition of claim 12, wherein said chromium is an amount of approximately between 0.5 to 5.0 percent by weight based on a total weight of said composition.
14. The metal alloy composition of claim 13, wherein said molybdenum is an amount of approximately between 3.0 to 10.0 percent by weight based on a total weight of said composition.
15. The metal alloy composition of claim 14, wherein said carbon is an amount of approximately between 5.0 to 12.0 percent by weight based on a total weight of said composition.
16. A metallic alloy composition, comprising:
a titanium in an amount of approximately between 33.0 to 42.0 percent by weight based on a total weight of said composition;
a tungsten in an amount of approximately between 25.0 to 35.0 percent by weight based on a total weight of said composition;
a nickel in an amount of approximately between 10.0 to 20.0 percent by weight based on a total weight of said composition;
a chromium in an amount of approximately between 0.5 to 5.0 percent by weight based on a total weight of said composition;
a molybdenum in an amount of approximately between 3.0 to 10.0 percent by weight based on a total weight of said composition; and
a carbon component is an amount of approximately between 5.0 to 12.0 percent by weight based on a total weight of said composition;
wherein said metallic alloy is scratch-resistant; and
wherein said metallic alloy is corrosion resistant.
17. A metallic alloy composition, comprising: a titanium; a tungsten; a nickel; a chromium; a molybdenum; and a carbon;
wherein said titanium is approximately between 35.0 percent by weight based on a total weight of said composition;
wherein said tungsten is in an amount of approximately between 32.0 percent by weight based on a total weight of said composition;
wherein said nickel is in an amount of approximately between 15.0 percent by weight based on a total weight of said composition;
wherein said chromium is in an amount of approximately between 1.80 percent by weight based on a total weight of said composition;
wherein said molybdenum is in an amount of approximately between 6.0 percent by weight based on a total weight of said composition; and
wherein said carbon is in an amount of approximately between 10.20 percent by weight based on a total weight of said composition.
US14/579,617 2014-07-14 2014-12-22 Composition for titanium-tungsten metal alloy Abandoned US20160010181A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/579,617 US20160010181A1 (en) 2014-07-14 2014-12-22 Composition for titanium-tungsten metal alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/330,274 US20160010180A1 (en) 2014-07-14 2014-07-14 Composition for titanium-tungsten metal alloy
US14/579,617 US20160010181A1 (en) 2014-07-14 2014-12-22 Composition for titanium-tungsten metal alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/330,274 Continuation-In-Part US20160010180A1 (en) 2014-07-14 2014-07-14 Composition for titanium-tungsten metal alloy

Publications (1)

Publication Number Publication Date
US20160010181A1 true US20160010181A1 (en) 2016-01-14

Family

ID=55067137

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/579,617 Abandoned US20160010181A1 (en) 2014-07-14 2014-12-22 Composition for titanium-tungsten metal alloy

Country Status (1)

Country Link
US (1) US20160010181A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624511A (en) * 2016-03-11 2016-06-01 河源泳兴硬质合金有限公司 Tungsten-carbide titanium-based steel-bonded hard alloy and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624511A (en) * 2016-03-11 2016-06-01 河源泳兴硬质合金有限公司 Tungsten-carbide titanium-based steel-bonded hard alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
US5340529A (en) Gold jewelry alloy
US8454766B2 (en) Extruded material of a free-cutting aluminum alloy excellent in embrittlement resistance at a high temperature
TWI426939B (en) Alloy material for a golf club head and manufacturing method therefor
JP2007297707A (en) Multicomponent copper alloy and its use
US10808303B2 (en) Copper-nickel-zinc alloy and use thereof
US20180371585A1 (en) Hardened cobalt based alloy jewelry and related methods
JP2016160500A (en) Wc-based cemented carbide and production method therefor
US20160010181A1 (en) Composition for titanium-tungsten metal alloy
US20160010180A1 (en) Composition for titanium-tungsten metal alloy
EP3444364B1 (en) Platinium based alloy, use thereof
JP2007002333A5 (en)
US1981403A (en) Surface coating castings
JP6692317B2 (en) High corrosion resistance leadless brass alloy
TWI468531B (en) The golf club head is made of stainless steel alloy
JP6397618B2 (en) Abrasion rod for wear-resistant coating
JP5095669B2 (en) Cylinder lining material for centrifugal casting and centrifugal casting method for producing cylinder lining material
JP2020188901A (en) Platinum material, ornament and its manufacturing method
JP6326310B2 (en) Press mold material
JP6179996B2 (en) Cu alloy with excellent machinability, extruded pipe member and Cu alloy synchronizer ring
JPH03258424A (en) Die for forming aluminum can made of tungsten carbide base sintered hard alloy
JP2007275622A (en) Golf club head
JP2002275588A (en) Wear resistant and corrosion resistant alloy and cylinder for molding machine
JP3122444B2 (en) Super hard alloy
US878691A (en) Cast metal.
JPH04100693A (en) Filler metal for surface reforming of aluminum material

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION