JP6397618B2 - Abrasion rod for wear-resistant coating - Google Patents

Abrasion rod for wear-resistant coating Download PDF

Info

Publication number
JP6397618B2
JP6397618B2 JP2013243977A JP2013243977A JP6397618B2 JP 6397618 B2 JP6397618 B2 JP 6397618B2 JP 2013243977 A JP2013243977 A JP 2013243977A JP 2013243977 A JP2013243977 A JP 2013243977A JP 6397618 B2 JP6397618 B2 JP 6397618B2
Authority
JP
Japan
Prior art keywords
mass
less
wear
metal matrix
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013243977A
Other languages
Japanese (ja)
Other versions
JP2015100818A (en
Inventor
敏治 松本
敏治 松本
昌伸 藤田
昌伸 藤田
康徳 春山
康徳 春山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOBATA MANUFACTURING CO., LTD.
Original Assignee
TOBATA MANUFACTURING CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOBATA MANUFACTURING CO., LTD. filed Critical TOBATA MANUFACTURING CO., LTD.
Priority to JP2013243977A priority Critical patent/JP6397618B2/en
Publication of JP2015100818A publication Critical patent/JP2015100818A/en
Application granted granted Critical
Publication of JP6397618B2 publication Critical patent/JP6397618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blast Furnaces (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、高温雰囲気中で使用されるCu(純銅又は銅合金)製品の耐摩耗性を向上させるために用いる耐摩耗性被覆用溶加棒(溶接棒)に関する。   The present invention relates to a wear-resistant coating filler rod (welding rod) used for improving the wear resistance of a Cu (pure copper or copper alloy) product used in a high-temperature atmosphere.

高温雰囲気中で使用されるCu製品の摩耗対策として、従来、Niベースの合金をCu母材に直接溶着させていた。このNiベースの合金は、TIG溶接又はMIG溶接によりCu母材に対して直接肉盛している。
このように、Niベースの合金を肉盛することにより、Cu母材のみの製品と比較して、耐摩耗性の向上効果がある。
Conventionally, as a countermeasure against wear of Cu products used in a high temperature atmosphere, a Ni-based alloy has been directly welded to a Cu base material. This Ni-based alloy is directly deposited on the Cu base material by TIG welding or MIG welding.
In this way, by overlaying a Ni-based alloy, there is an effect of improving wear resistance as compared with a product made only of a Cu base material.

しかし、Niベースの合金では、高温領域における硬度及びその融点において限界がある。例えば、Niベースの合金を溶着した硬化肉盛羽口においては、Niベースの合金の硬度が、常温ではHv180を有しているが、600℃になるとHv130程度まで低下する。また、Niベースの合金の融点は1300℃程度である。
従って、従来の硬化肉盛羽口においても、高温度での摩耗に対して限界があるという問題があった。
However, Ni-based alloys are limited in hardness and melting point in the high temperature region. For example, in a hard-facing tuyere with a Ni-based alloy welded, the hardness of the Ni-based alloy has Hv180 at room temperature, but decreases to about Hv130 at 600 ° C. The melting point of the Ni-based alloy is about 1300 ° C.
Therefore, there is a problem that the conventional hard-facing tuyere has a limit to wear at high temperatures.

そこで、本出願人は、先に、特許文献1のCu製品を提案した。
具体的には、金属マトリックスに炭化系粉体セラミックス又はホウ化系粉体セラミックスの単体、あるいは炭化系粉体セラミックス及び/又はホウ化系粉体セラミックスからなる複合添加物を散在状態で含む硬化肉盛材を溶着させた硬化肉盛羽口である。
Therefore, the present applicant has previously proposed the Cu product of Patent Document 1.
Specifically, a hardened meat containing carbon powder powder or boride powder ceramic alone or a composite additive composed of carbon powder and / or boride powder ceramic in a dispersed state in a metal matrix. It is a hardened meat tuyere with welded material.

特開平11−217610号公報JP-A-11-217610

しかしながら、上記した硬化肉盛材は粉体からなり、使用にあっては、粉体プラズマ溶接機を用いて粉体を対象物に溶着させるため、例えば、以下のように作業性が悪かった。
・湿度や温度などの影響で粉体が固まる。
・粉体プラズマ溶接機を長時間使用しなければ、粉体を供給する管が汚れたり、また、湿気を帯びたりして、溶接機を直ちに使用できないなどのトラブルを招く。
・粉体プラズマ溶接では、溶接作業そのもので細かい溶接形状ができない(自由度が小さい)。
However, the above-described hardfacing material is made of powder, and in use, the powder is welded to the object using a powder plasma welding machine, so that the workability is poor as follows, for example.
・ The powder hardens due to the influence of humidity and temperature.
・ If the powder plasma welding machine is not used for a long time, the powder supply pipes become dirty or wet, causing problems such as the welding machine being unable to be used immediately.
・ With powder plasma welding, the welding work itself cannot make a fine weld shape (the degree of freedom is small).

本発明はかかる事情に鑑みてなされたもので、耐摩耗性の被覆層をCu製品の表面に作業性よく形成でき、被覆層を形成した製品の生産性を向上可能とする耐摩耗性被覆用溶加棒を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to form a wear-resistant coating layer on the surface of a Cu product with good workability, and to improve the productivity of the product formed with the coating layer. The object is to provide a filler bar.

前記目的に沿う第1の発明に係る耐摩耗性被覆用溶加棒は、Cuを主成分とする製品の表面に、Ni又はNi基合金からなる下地層を介して、耐摩耗性の被覆層を形成するために用いる耐摩耗性被覆用溶加棒であって、
金属マトリックスに炭化系粉体セラミックスが散在状態で含まれる複合材を焼結させて棒状とし、
前記複合材は、前記金属マトリックスと前記炭化系粉体セラミックスからなり、
前記金属マトリックスは、Ni、Cr、Fe、添加材、及び、不可避的不純物で構成され、
前記炭化系粉体セラミックスは、TiC、Cr、及び、不可避的不純物で構成され、
前記複合材の全量を100質量%として、
Ni:20質量%以上28質量%以下、
Cr:5質量%以上7質量%以下、
Fe:2質量%以下
、Si、及び、Bのいずれか1又は2以上からなる添加材:1質量%以上5質量%以下、
TiC:40質量%以上55質量%以下、
Cr:15質量%以上25質量%以下、
とした。
The filler rod for wear-resistant coating according to the first invention that meets the above-mentioned object is provided with a wear-resistant coating layer on the surface of a product mainly composed of Cu via a base layer made of Ni or a Ni-based alloy. A wear-resistant coating filler rod used to form
A composite material containing carbon powder ceramics dispersed in a metal matrix is sintered into a rod shape.
The composite material is composed of the metal matrix and the carbonized powder ceramics,
The metal matrix is composed of Ni, Cr, Fe, additives, and inevitable impurities,
The carbonized powder ceramic is composed of TiC, Cr 3 C 2 , and inevitable impurities,
When the total amount of the composite material is 100% by mass,
Ni: 20% by mass or more and 28% by mass or less,
Cr: 5 mass% or more and 7 mass% or less,
Fe: 2% by mass or less ,
Additive consisting of any one or more of C 1 , Si, and B: 1% by mass to 5% by mass,
TiC: 40 mass% or more and 55 mass% or less,
Cr 3 C 2 : 15% by mass or more and 25% by mass or less,
It was.

前記目的に沿う第2の発明に係る耐摩耗性被覆用溶加棒は、Cuを主成分とする製品の表面に、Ni又はNi基合金からなる下地層を介して、耐摩耗性の被覆層を形成するために用いる耐摩耗性被覆用溶加棒であって、
金属マトリックスに炭化系粉体セラミックスが散在状態で含まれる複合材を焼結させて棒状とし、
前記複合材は、前記金属マトリックスと前記炭化系粉体セラミックスからなり、
前記金属マトリックスは、Fe、Cr、添加材、及び、不可避的不純物で構成され、
前記炭化系粉体セラミックスは、TiC、Cr、及び、不可避的不純物で構成され、
前記複合材の全量を100質量%として、
Fe:20質量%以上30質量%以下、
Cr:10質量%以上15質量%以下
i、C、Si、及び、Bのいずれか1又は2以上からなる添加材:3質量%以上10質量%以下、
TiC:40質量%以上55質量%以下、
Cr:10質量%以上15質量%以下、
とした。
The filler rod for wear-resistant coating according to the second invention that meets the above-mentioned object is provided with a wear-resistant coating layer on the surface of a product mainly composed of Cu via an underlayer made of Ni or a Ni-based alloy. A wear-resistant coating filler rod used to form
A composite material containing carbon powder ceramics dispersed in a metal matrix is sintered into a rod shape.
The composite material is composed of the metal matrix and the carbonized powder ceramics,
The metal matrix is composed of Fe, Cr, additives, and inevitable impurities,
The carbonized powder ceramic is composed of TiC, Cr 3 C 2 , and inevitable impurities,
When the total amount of the composite material is 100% by mass,
Fe: 20% by mass or more and 30% by mass or less,
Cr: 10% by mass or more and 15% by mass or less ,
N i, C, Si, and any one or more consisting of an additional material of B: 3 wt% to 10 wt% or less,
TiC: 40 mass% or more and 55 mass% or less,
Cr 3 C 2 : 10% by mass or more and 15% by mass or less,
It was.

前記目的に沿う第3の発明に係る耐摩耗性被覆用溶加棒は、Cuを主成分とする製品の表面に、Ni又はNi基合金からなる下地層を介して、耐摩耗性の被覆層を形成するために用いる耐摩耗性被覆用溶加棒であって、
金属マトリックスに炭化系粉体セラミックスが散在状態で含まれる複合材を焼結させて棒状とし、
前記複合材は、前記金属マトリックスと前記炭化系粉体セラミックスからなり、
前記金属マトリックスは、Co、Cr、添加材、及び、不可避的不純物で構成され、
前記炭化系粉体セラミックスは、TiC、Cr、及び、不可避的不純物で構成され、
前記複合材の全量を100質量%として、
Co:20質量%以上30質量%以下、
Cr:5質量%以上12質量%以下
i、C、Si、及び、Bのいずれか1又は2以上からなる添加材:8質量%以上15質量%以下、
TiC:30質量%以上70質量%以下、
Cr:5質量%以上20質量%以下、
とした。
According to the third aspect of the present invention, the wear-resistant coating filler rod is provided with a wear-resistant coating layer on the surface of a product mainly composed of Cu via an underlayer made of Ni or a Ni-based alloy. A wear-resistant coating filler rod used to form
A composite material containing carbon powder ceramics dispersed in a metal matrix is sintered into a rod shape.
The composite material is composed of the metal matrix and the carbonized powder ceramics,
The metal matrix is composed of Co, Cr, additives, and inevitable impurities,
The carbonized powder ceramic is composed of TiC, Cr 3 C 2 , and inevitable impurities,
When the total amount of the composite material is 100% by mass,
Co: 20% by mass or more and 30% by mass or less,
Cr: 5% by mass or more and 12% by mass or less ,
N i, C, Si, and any one or more consisting of an additional material of B: 8 wt% to 15 wt% or less,
TiC: 30% by mass to 70% by mass,
Cr 3 C 2 : 5% by mass or more and 20% by mass or less,
It was.

第1〜第3の発明に係る耐摩耗性被覆用溶加棒において、前記製品は、高炉用の羽口本体又はステーブクーラであることが好ましい。   In the wear-resistant coating filler rod according to the first to third inventions, the product is preferably a blast furnace tuyere body or a stave cooler.

本発明に係る耐摩耗性被覆用溶加棒は、Cuを主成分とする製品の表面に耐摩耗性の被覆層を形成するために用いるものであり、金属マトリックスに炭化系粉体セラミックスが散在状態で含まれる複合材を焼結させて棒状としているので、粉体プラズマ溶接実施時の諸問題を解消でき、耐摩耗性の被覆層をCu製品の表面に作業性よく形成できる。
従って、被覆層を形成した製品の生産性を向上できる。
The wear-resistant coating filler rod according to the present invention is used to form a wear-resistant coating layer on the surface of a product mainly composed of Cu, and carbon powder ceramics are scattered in a metal matrix. Since the composite material included in the state is sintered into a rod shape, various problems during powder plasma welding can be solved, and a wear-resistant coating layer can be formed on the surface of the Cu product with good workability.
Therefore, the productivity of the product on which the coating layer is formed can be improved.

更に、製品が、高炉用の羽口本体又はステーブクーラである場合、製品は、特に高温での耐摩耗性が求められるものであるため、本発明の効果がより顕著になる。   Furthermore, when the product is a tuyere main body or a stave cooler for a blast furnace, since the product is required to have wear resistance particularly at a high temperature, the effect of the present invention becomes more remarkable.

各種複合材のビッカース硬度と温度の関係を示すグラフである。It is a graph which shows the relationship between Vickers hardness of various composite materials, and temperature.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
本発明の一実施の形態に係る耐摩耗性被覆用溶加棒(以下、単に溶加棒ともいう)は、Cu(銅)を主成分とする製品の表面に、耐摩耗性の被覆層を形成するために用いる溶接棒である。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
The wear-resistant coating filler rod according to an embodiment of the present invention (hereinafter also simply referred to as a filler rod) has a wear-resistant coating layer on the surface of a product mainly composed of Cu (copper). It is a welding rod used for forming. This will be described in detail below.

製品は、純銅製又は銅合金製(銅の含有量:80質量%以上)の製品であり、例えば、高炉用の羽口本体やステーブクーラがあるが、高温雰囲気中(例えば、1000〜1600℃程度)で使用され、耐摩耗性を向上させる必要がある製品であれば、これらに限定されるものではない。なお、上記した羽口本体やステーブクーラは、内部に冷却水が流れる通路が形成された水冷構造となっている。   The product is a product made of pure copper or copper alloy (copper content: 80% by mass or more), for example, a tuyere main body or stave cooler for blast furnace, but in a high temperature atmosphere (for example, 1000 to 1600 ° C. However, the product is not limited to these products as long as it is necessary to improve the wear resistance. The tuyere body and the stave cooler described above have a water cooling structure in which a passage through which cooling water flows is formed.

製品の表面に被覆層を形成するに際しては、製品の表面に予め下地層を形成しておく。
下地層は、その材質が、製品と被覆層の双方に接合性がよい材料からなり、その熱膨張係数が、製品と被覆層の中間となるもの、即ち、Ni(純ニッケル)又はNi基合金(例えば、Ni−Cr(ニッケルクロム)合金等)である。なお、下地層の厚みは、施工性と経済性を考慮して、例えば、2〜5mm程度とするのがよい。
この下地層の製品への溶着は、通常のTIG溶接機やMIG溶接機を用いて行う。
When forming the coating layer on the surface of the product, a base layer is formed in advance on the surface of the product.
The underlayer is made of a material that has good bonding properties to both the product and the coating layer, and the thermal expansion coefficient is intermediate between the product and the coating layer, that is, Ni (pure nickel) or a Ni-based alloy. (For example, Ni-Cr (nickel chromium) alloy etc.). In addition, the thickness of the base layer is preferably about 2 to 5 mm in consideration of workability and economy.
The welding of the underlayer to the product is performed using a normal TIG welding machine or MIG welding machine.

下地層の表面への被覆層の形成は、金属マトリックスに炭化系粉体セラミックスが散在状態で含まれる複合材の粉末を焼結させて棒状とした溶加棒(例えば、直径が3〜8mm程度)を用いて行う。
具体的には、例えば、TIG溶接機やMIG溶接機と上記した溶加棒を使用し、複合材を下地層の表面に溶着させることにより行う。なお、被覆層の厚みは、摩耗環境下での寿命等を考慮して、例えば、2〜5mm程度とするのがよい。
The formation of the coating layer on the surface of the underlayer is performed by sintering a composite powder containing carbon powder ceramics dispersed in a metal matrix into a rod shape (for example, a diameter of about 3 to 8 mm) ).
Specifically, for example, a TIG welder or a MIG welder and the above-described filler rod are used, and the composite material is welded to the surface of the base layer. The thickness of the coating layer is preferably about 2 to 5 mm, for example, considering the life in a wear environment.

溶加棒を構成する複合材の材質は、前記したように、高温雰囲気中で製品の耐摩耗性を向上させる材質(金属マトリックスに炭化系粉体セラミックスを散在させたもの)であり、しかも、棒状に成形(溶加棒を製造)できる材質であれば、特に限定されるものではないが、これらの性質を満足できる材質を考慮すれば、例えば、被覆層のビッカース硬度(Hv)が、600℃で550以上(好ましくは、580以上、更には900以上)となる材質が好ましい。一方、上限値については、棒状に成形可能な範囲で、被覆層の耐摩耗性が向上すればよいため、特に規定していないが、例えば、Hv1000程度である。   As described above, the material of the composite material that constitutes the filler rod is a material that improves the wear resistance of the product in a high-temperature atmosphere (a metal matrix in which carbonized powder ceramics are dispersed), and The material is not particularly limited as long as it is a material that can be formed into a rod shape (manufacturing a filler rod), but considering a material that can satisfy these properties, for example, the coating layer has a Vickers hardness (Hv) of 600. A material having a temperature of 550 or higher (preferably 580 or higher, more preferably 900 or higher) at ° C is preferable. On the other hand, the upper limit is not particularly specified because the wear resistance of the coating layer only needs to be improved within a range that can be formed into a rod shape, and is, for example, about Hv1000.

なお、複合材を構成する炭化系粉体セラミックスは、被覆層の耐摩耗性を向上させる機能を有するものであり、金属マトリックスは、硬度が高く、しかも、炭化系粉体セラミックスを被覆層中に留めるバインダー機能を備えるものである。この複合材中の金属マトリックスの粒径は、例えば、20〜200μm程度であり、炭化系粉体セラミックスの粒径は、例えば、3〜100μm程度である。
このような機能を備える複合材の材質としては、例えば、以下に示す複合材A〜Cがある。
The carbonized powder ceramics constituting the composite material have a function of improving the wear resistance of the coating layer, the metal matrix has a high hardness, and the carbonized powder ceramics are contained in the coating layer. It has a binder function to fasten. The particle size of the metal matrix in the composite material is, for example, about 20 to 200 μm, and the particle size of the carbonized powder ceramic is, for example, about 3 to 100 μm.
Examples of the material of the composite material having such a function include composite materials A to C shown below.

まず、複合材Aは、金属マトリックスとして、NiとCrを含み、炭化系粉体セラミックスとして、TiC(チタンカーバイト)とCr(クロムカーバイト)を含む。
ここで、金属マトリックスの各成分の含有量は、複合材の全量(全質量)を100質量%として、Niが20質量%以上28質量%以下(更には、下限を22質量%、上限を26質量%、とするのがよい)であり、かつ、Crが5質量%以上7質量%以下(更には、下限を5.5質量%、上限を6.5質量%、とするのがよい)である。
First, the composite material A includes Ni and Cr as a metal matrix, and includes TiC (titanium carbide) and Cr 3 C 2 (chrome carbide) as carbonized powder ceramics.
Here, the content of each component of the metal matrix is such that the total amount (total mass) of the composite material is 100% by mass, and Ni is 20% by mass to 28% by mass (further, the lower limit is 22% by mass and the upper limit is 26%. And Cr is preferably 5% by mass or more and 7% by mass or less (more preferably, the lower limit is 5.5% by mass and the upper limit is 6.5% by mass). It is.

この金属マトリックスには、更に、C(炭素)、Si(ケイ素)、及び、B(ホウ素)のいずれか1又は2以上からなる添加材が含まれてもよい。これら添加材の含有量は、複合材の全量を100質量%として、1質量%以上5質量%以下(更には、下限を2質量%、上限を4質量%、とするのがよい)である。このように、金属マトリックスに添加材(特に、Si、B)を加えることで、金属マトリックスの融点を下げ(凝固温度範囲を広くし)、溶加棒を製造する際の焼結温度を低く抑えることができる。
なお、金属マトリックスは、上記した成分と不可避的不純物で構成できるが、例えば、更に、Fe(鉄)等が含まれてもよい(2質量%以下程度)。
The metal matrix may further contain an additive composed of one or more of C (carbon), Si (silicon), and B (boron). The content of these additives is 1% by mass or more and 5% by mass or less (the lower limit is preferably 2% by mass and the upper limit is 4% by mass) with the total amount of the composite material being 100% by mass. . Thus, by adding additives (especially Si, B) to the metal matrix, the melting point of the metal matrix is lowered (the solidification temperature range is widened), and the sintering temperature when producing the filler rod is kept low. be able to.
In addition, although a metal matrix can be comprised with an above-described component and an unavoidable impurity, for example, Fe (iron) etc. may further be contained (about 2 mass% or less).

また、炭化系粉体セラミックスの各成分の含有量は、複合材の全量を100質量%として、TiCが40質量%以上55質量%以下(更には、下限を42質量%、上限を50質量%、とするのがよい)であり、Crが15質量%以上25質量%以下(更には、下限を17質量%、上限を23質量%、とするのがよい)であり、しかも、炭化系粉体セラミックスの量(TiCとCrの合計量)が、複合材の全量の75質量%以下である。ここで、炭化系粉体セラミックスの量が75質量%を超えると、金属マトリックスの量が少なくなり、下地層の表面から被覆層(炭化系粉体セラミックス)が剥がれ易くなる。
なお、炭化系粉体セラミックスは、上記した成分と不可避的不純物で構成できるが、例えば、更に、他の硬質材等が含まれてもよい。
Further, the content of each component of the carbonized powder ceramic is 40% by mass or more and 55% by mass or less of TiC with the total amount of the composite material being 100% by mass (moreover, the lower limit is 42% by mass and the upper limit is 50% by mass). And Cr 3 C 2 is 15% by mass or more and 25% by mass or less (more preferably, the lower limit is 17% by mass and the upper limit is 23% by mass), and The amount of the carbonized powder ceramics (total amount of TiC and Cr 3 C 2 ) is 75% by mass or less of the total amount of the composite material. Here, when the amount of the carbonized powder ceramic exceeds 75% by mass, the amount of the metal matrix decreases, and the coating layer (carbonized powder ceramic) is easily peeled off from the surface of the underlayer.
Carbonized powder ceramics can be composed of the above-described components and unavoidable impurities, but may include other hard materials, for example.

上記したように、複合材の金属マトリックスとして、上記した構成のNi−Cr合金を使用することで、金属マトリックスそのものの硬度を、従来のNiベースの合金と比較して高めることができると共に、炭化系粉体セラミックスを被覆層中に留めることができる。
また、複合材の炭化系粉体セラミックスとしてTiCとCrを使用することで、被覆層を、高硬度(TiC:Hv2900、Cr:Hv1300)、かつ、高融点(TiC:3100℃、Cr:2435℃)にすることができる。
従って、複合材の構成を上記した構成とすることで、例えば、図1中の◆印で示すように、被覆層のビッカース硬度を、600℃で900以上にすることができる。なお、図1中の×印は、従来のNiベースの合金(成分として、Ni:73質量%、Cr:19質量%、Mn:3質量%、Fe:1質量%、を含有するNi−Cr合金)である。
As described above, by using the Ni—Cr alloy having the above-described structure as the metal matrix of the composite material, the hardness of the metal matrix itself can be increased as compared with a conventional Ni-based alloy, and carbonization can be performed. -Based powder ceramics can be retained in the coating layer.
Further, by using TiC and Cr 3 C 2 as the carbonized powder ceramic of the composite material, the coating layer has a high hardness (TiC: Hv2900, Cr 3 C 2 : Hv1300) and a high melting point (TiC: 3100). ° C, Cr 3 C 2 : 2435 ° C).
Therefore, by setting the composition of the composite material as described above, for example, the Vickers hardness of the coating layer can be made 900 or more at 600 ° C., as indicated by the ♦ mark in FIG. In addition, the x mark in FIG. 1 indicates a conventional Ni-based alloy (Ni—Cr containing Ni: 73 mass%, Cr: 19 mass%, Mn: 3 mass%, Fe: 1 mass% as components). Alloy).

次に、複合材Bは、金属マトリックスとして、FeとCrを含み、炭化系粉体セラミックスとして、TiCとCrを含む。
ここで、金属マトリックスの各成分の含有量は、複合材の全量を100質量%として、Feが20質量%以上30質量%以下(更には、下限を21質量%、上限を25質量%、とするのがよい)であり、かつ、Crが10質量%以上15質量%以下(更には、下限を11質量%、上限を13質量%、とするのがよい)である。
Next, the composite material B includes Fe and Cr as a metal matrix, and includes TiC and Cr 3 C 2 as carbonized powder ceramics.
Here, the content of each component of the metal matrix is such that the total amount of the composite is 100% by mass, Fe is 20% by mass to 30% by mass (further, the lower limit is 21% by mass and the upper limit is 25% by mass, And Cr is 10% by mass or more and 15% by mass or less (more preferably, the lower limit is 11% by mass and the upper limit is 13% by mass).

この金属マトリックスには、更に、Ni、C、Si、及び、Bのいずれか1又は2以上からなる添加材が含まれてもよい。これら添加材の含有量は、複合材の全量を100質量%として、3質量%以上10質量%以下(更には、下限を4質量%、上限を8質量%、とするのがよい)である。この添加材の添加理由は、上記と同様の理由である。
なお、金属マトリックスは、上記した成分と不可避的不純物で構成できるが、例えば、更に、Mn(マンガン)等が含まれてもよい(1質量%以下程度)。
The metal matrix may further contain an additive composed of one or more of Ni, C, Si, and B. The content of these additive materials is 3% by mass or more and 10% by mass or less (the lower limit is preferably 4% by mass and the upper limit is 8% by mass) with the total amount of the composite material being 100% by mass. . The reason for adding this additive is the same as described above.
In addition, although a metal matrix can be comprised with an above-described component and an unavoidable impurity, for example, Mn (manganese) etc. may be further contained (about 1 mass% or less).

また、炭化系粉体セラミックスの各成分の含有量は、複合材の全量を100質量%として、TiCが40質量%以上55質量%以下(更には、下限を45質量%、上限を50質量%、とするのがよい)であり、Crが10質量%以上15質量%以下(更には、下限を11質量%、上限を14質量%、とするのがよい)であり、しかも、炭化系粉体セラミックスの量(TiCとCrの合計量)が、複合材の全量の70質量%以下である。この炭化系粉体セラミックス量の上限値は、上記と同様の理由から設定した。
なお、炭化系粉体セラミックスは、上記した成分と不可避的不純物で構成できるが、例えば、更に、他の硬質材が含まれてもよい。
Further, the content of each component of the carbonized powder ceramic is 40% by mass to 55% by mass of TiC with the total amount of the composite material being 100% by mass (moreover, the lower limit is 45% by mass and the upper limit is 50% by mass). And Cr 3 C 2 is 10% by mass or more and 15% by mass or less (more preferably, the lower limit is 11% by mass and the upper limit is 14% by mass), and The amount of the carbonized powder ceramics (total amount of TiC and Cr 3 C 2 ) is 70% by mass or less of the total amount of the composite material. The upper limit of the amount of the carbonized powder ceramic was set for the same reason as described above.
In addition, although carbonized-type powder ceramics can be comprised with an above-described component and an unavoidable impurity, for example, another hard material may be further contained.

上記したように、複合材の金属マトリックスとして、上記した構成のFe−Cr合金を使用することで、金属マトリックスそのものの硬度を、従来のNiベースの合金と比較して高めることができると共に、炭化系粉体セラミックスを被覆層中に留めることができる。
従って、複合材の構成を上記した構成とすることで、例えば、図1中の■印で示すように、被覆層のビッカース硬度を、600℃で550以上にすることができる。
As described above, by using the Fe—Cr alloy having the above-described configuration as the metal matrix of the composite material, the hardness of the metal matrix itself can be increased as compared with a conventional Ni-based alloy, and carbonization can be performed. -Based powder ceramics can be retained in the coating layer.
Therefore, by setting the composition of the composite material as described above, the Vickers hardness of the coating layer can be increased to 550 or more at 600 ° C., for example, as indicated by the ▪ marks in FIG.

続いて、複合材Cは、金属マトリックスとして、Co(コバルト)とCrを含み、炭化系粉体セラミックスとして、TiCとCrを含む。
ここで、金属マトリックスの各成分の含有量は、複合材の全量を100質量%として、Coが20質量%以上30質量%以下(更には、下限を23質量%、上限を28質量%、とするのがよい)であり、Crが5質量%以上12質量%以下(更には、下限を7質量%、上限を11質量%、とするのがよい)である。
Subsequently, the composite material C includes Co (cobalt) and Cr as a metal matrix, and includes TiC and Cr 3 C 2 as carbonized powder ceramics.
Here, the content of each component of the metal matrix is such that the total amount of the composite is 100% by mass, and Co is 20% by mass to 30% by mass (further, the lower limit is 23% by mass and the upper limit is 28% by mass, Cr is 5% by mass or more and 12% by mass or less (more preferably, the lower limit is 7% by mass and the upper limit is 11% by mass).

この金属マトリックスには、更に、Ni、C、Si、及び、Bのいずれか1又は2以上からなる添加材が含まれてもよい。これら添加材の含有量は、複合材の全量を100質量%として、8質量%以上15質量%以下(更には、下限を9質量%、上限を13質量%、とするのがよい)である。この添加材の添加理由は、上記と同様の理由である。
なお、金属マトリックスは、上記した成分と不可避的不純物で構成できるが、例えば、更に、W(タングステン)やFe等が含まれてもよい(5質量%以下程度)。
The metal matrix may further contain an additive composed of one or more of Ni, C, Si, and B. The content of these additives is 8% by mass or more and 15% by mass or less (the lower limit is preferably 9% by mass, and the upper limit is preferably 13% by mass) with the total amount of the composite material being 100% by mass. . The reason for adding this additive is the same as described above.
In addition, although a metal matrix can be comprised with an above-described component and an unavoidable impurity, for example, W (tungsten), Fe, etc. may further be contained (about 5 mass% or less).

また、炭化系粉体セラミックスの各成分の含有量は、複合材の全量を100質量%として、TiCが30質量%以上70質量%以下(更には、下限を35質量%、上限を60質量%、とするのがよい)であり、Crが5質量%以上20質量%以下(更には、下限を7質量%、上限を15質量%、とするのがよい)であり、しかも、炭化系粉体セラミックスの量(TiCとCrの合計量)が、複合材の全量の75質量%以下である。この炭化系粉体セラミックス量の上限値は、上記と同様の理由から設定した。
なお、炭化系粉体セラミックスは、上記した成分と不可避的不純物で構成できるが、例えば、更に、他の硬質材等が含まれてもよい。
In addition, the content of each component of the carbonized powder ceramic is 30% by mass to 70% by mass of TiC with the total amount of the composite material being 100% by mass (moreover, the lower limit is 35% by mass and the upper limit is 60% by mass). And Cr 3 C 2 is 5% by mass or more and 20% by mass or less (more preferably, the lower limit is 7% by mass and the upper limit is 15% by mass), and The amount of the carbonized powder ceramics (total amount of TiC and Cr 3 C 2 ) is 75% by mass or less of the total amount of the composite material. The upper limit of the amount of the carbonized powder ceramic was set for the same reason as described above.
Carbonized powder ceramics can be composed of the above-described components and unavoidable impurities, but may include other hard materials, for example.

上記したように、複合材の金属マトリックスとしてCo−Cr合金を使用することで、金属マトリックスそのものの硬度を、従来のNiベースの合金と比較して高めることができる(例えば、Hv420〜430程度)と共に、炭化系粉体セラミックスを被覆層中に留めることができる。
従って、複合材の構成を上記した構成とすることで、例えば、図1中の▲印で示すように、被覆層のビッカース硬度を、600℃で580以上にすることができる。
As described above, by using a Co—Cr alloy as the metal matrix of the composite material, the hardness of the metal matrix itself can be increased as compared with a conventional Ni-based alloy (for example, about Hv 420 to 430). At the same time, the carbonized powder ceramics can be retained in the coating layer.
Therefore, by setting the composition of the composite material as described above, the Vickers hardness of the coating layer can be set to 580 or more at 600 ° C., for example, as indicated by the ▲ mark in FIG.

以上に示した耐摩耗性被覆用溶加棒を製造するに際しては、まず、金属マトリックスと炭化系粉体セラミックスの各成分を、上記した量に配合した後、金属マトリックスの粉体に炭化系粉体セラミックスの粉体を散在させて複合材を作成する。なお、金属マトリックスの粉体に炭化系粉体セラミックスの粉体を散在させる方法としては、従来公知の方法を使用できる。
次に、この複合材に必要に応じてバインダーを加え、焼結させて棒状とすることで、耐摩耗性被覆用溶加棒を製造する。なお、溶加棒の直径は、例えば、3〜8mm程度である。
In producing the above-described filler rod for wear-resistant coating, first, the components of the metal matrix and the carbonized powder ceramics are blended in the above amounts, and then the carbonized powder is added to the metal matrix powder. A composite material is made by dispersing powder of body ceramics. A conventionally known method can be used as a method of dispersing the carbonized powder ceramic powder in the metal matrix powder.
Next, a binder is added to the composite material as necessary, and the mixture is sintered to form a rod shape, thereby producing a wear rod for wear-resistant coating. In addition, the diameter of a filler rod is about 3-8 mm, for example.

以上に示した耐摩耗性被覆用溶加棒を使用することで、粉体プラズマ溶接実施時の諸問題を解消でき、耐摩耗性の被覆層をCu製品の表面に作業性よく形成できるので、被覆層を形成した製品の生産性を向上できる。   By using the above-mentioned filler rod for wear-resistant coating, it is possible to eliminate various problems during powder plasma welding, and to form a wear-resistant coating layer on the surface of Cu products with good workability. Productivity of a product having a coating layer can be improved.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の耐摩耗性被覆用溶加棒を構成する場合も本発明の権利範囲に含まれる。   As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the wear rod for wear-resistant coating according to the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.

Claims (4)

Cuを主成分とする製品の表面に、Ni又はNi基合金からなる下地層を介して、耐摩耗性の被覆層を形成するために用いる耐摩耗性被覆用溶加棒であって、
金属マトリックスに炭化系粉体セラミックスが散在状態で含まれる複合材を焼結させて棒状とし、
前記複合材は、前記金属マトリックスと前記炭化系粉体セラミックスからなり、
前記金属マトリックスは、Ni、Cr、Fe、添加材、及び、不可避的不純物で構成され、
前記炭化系粉体セラミックスは、TiC、Cr、及び、不可避的不純物で構成され、
前記複合材の全量を100質量%として、
Ni:20質量%以上28質量%以下、
Cr:5質量%以上7質量%以下、
Fe:2質量%以下
、Si、及び、Bのいずれか1又は2以上からなる添加材:1質量%以上5質量%以下、
TiC:40質量%以上55質量%以下、
Cr:15質量%以上25質量%以下、
としたことを特徴とする耐摩耗性被覆用溶加棒。
A wear-resistant coating filler rod used to form a wear-resistant coating layer on the surface of a product mainly composed of Cu via an underlayer made of Ni or a Ni-based alloy,
A composite material containing carbon powder ceramics dispersed in a metal matrix is sintered into a rod shape.
The composite material is composed of the metal matrix and the carbonized powder ceramics,
The metal matrix is composed of Ni, Cr, Fe, additives, and inevitable impurities,
The carbonized powder ceramic is composed of TiC, Cr 3 C 2 , and inevitable impurities,
When the total amount of the composite material is 100% by mass,
Ni: 20% by mass or more and 28% by mass or less,
Cr: 5 mass% or more and 7 mass% or less,
Fe: 2% by mass or less ,
Additive consisting of any one or more of C 1 , Si, and B: 1% by mass to 5% by mass,
TiC: 40 mass% or more and 55 mass% or less,
Cr 3 C 2 : 15% by mass or more and 25% by mass or less,
A welding rod for a wear-resistant coating characterized by the above.
Cuを主成分とする製品の表面に、Ni又はNi基合金からなる下地層を介して、耐摩耗性の被覆層を形成するために用いる耐摩耗性被覆用溶加棒であって、
金属マトリックスに炭化系粉体セラミックスが散在状態で含まれる複合材を焼結させて棒状とし、
前記複合材は、前記金属マトリックスと前記炭化系粉体セラミックスからなり、
前記金属マトリックスは、Fe、Cr、添加材、及び、不可避的不純物で構成され、
前記炭化系粉体セラミックスは、TiC、Cr、及び、不可避的不純物で構成され、
前記複合材の全量を100質量%として、
Fe:20質量%以上30質量%以下、
Cr:10質量%以上15質量%以下
i、C、Si、及び、Bのいずれか1又は2以上からなる添加材:3質量%以上10質量%以下、
TiC:40質量%以上55質量%以下、
Cr:10質量%以上15質量%以下、
としたことを特徴とする耐摩耗性被覆用溶加棒。
A wear-resistant coating filler rod used to form a wear-resistant coating layer on the surface of a product mainly composed of Cu via an underlayer made of Ni or a Ni-based alloy,
A composite material containing carbon powder ceramics dispersed in a metal matrix is sintered into a rod shape.
The composite material is composed of the metal matrix and the carbonized powder ceramics,
The metal matrix is composed of Fe, Cr, additives, and inevitable impurities,
The carbonized powder ceramic is composed of TiC, Cr 3 C 2 , and inevitable impurities,
When the total amount of the composite material is 100% by mass,
Fe: 20% by mass or more and 30% by mass or less,
Cr: 10% by mass or more and 15% by mass or less ,
N i, C, Si, and any one or more consisting of an additional material of B: 3 wt% to 10 wt% or less,
TiC: 40 mass% or more and 55 mass% or less,
Cr 3 C 2 : 10% by mass or more and 15% by mass or less,
A welding rod for a wear-resistant coating characterized by the above.
Cuを主成分とする製品の表面に、Ni又はNi基合金からなる下地層を介して、耐摩耗性の被覆層を形成するために用いる耐摩耗性被覆用溶加棒であって、
金属マトリックスに炭化系粉体セラミックスが散在状態で含まれる複合材を焼結させて棒状とし、
前記複合材は、前記金属マトリックスと前記炭化系粉体セラミックスからなり、
前記金属マトリックスは、Co、Cr、添加材、及び、不可避的不純物で構成され、
前記炭化系粉体セラミックスは、TiC、Cr、及び、不可避的不純物で構成され、
前記複合材の全量を100質量%として、
Co:20質量%以上30質量%以下、
Cr:5質量%以上12質量%以下
i、C、Si、及び、Bのいずれか1又は2以上からなる添加材:8質量%以上15質量%以下、
TiC:30質量%以上70質量%以下、
Cr:5質量%以上20質量%以下、
としたことを特徴とする耐摩耗性被覆用溶加棒。
A wear-resistant coating filler rod used to form a wear-resistant coating layer on the surface of a product mainly composed of Cu via an underlayer made of Ni or a Ni-based alloy,
A composite material containing carbon powder ceramics dispersed in a metal matrix is sintered into a rod shape.
The composite material is composed of the metal matrix and the carbonized powder ceramics,
The metal matrix is composed of Co, Cr, additives, and inevitable impurities,
The carbonized powder ceramic is composed of TiC, Cr 3 C 2 , and inevitable impurities,
When the total amount of the composite material is 100% by mass,
Co: 20% by mass or more and 30% by mass or less,
Cr: 5% by mass or more and 12% by mass or less ,
N i, C, Si, and any one or more consisting of an additional material of B: 8 wt% to 15 wt% or less,
TiC: 30% by mass to 70% by mass,
Cr 3 C 2 : 5% by mass or more and 20% by mass or less,
A welding rod for a wear-resistant coating characterized by the above.
請求項1〜のいずれか1項に記載の耐摩耗性被覆用溶加棒において、前記製品は、高炉用の羽口本体又はステーブクーラであることを特徴とする耐摩耗性被覆用溶加棒。 The wear-resistant coating filler rod according to any one of claims 1 to 3 , wherein the product is a tuyere main body or a stave cooler for a blast furnace. rod.
JP2013243977A 2013-11-26 2013-11-26 Abrasion rod for wear-resistant coating Active JP6397618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013243977A JP6397618B2 (en) 2013-11-26 2013-11-26 Abrasion rod for wear-resistant coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013243977A JP6397618B2 (en) 2013-11-26 2013-11-26 Abrasion rod for wear-resistant coating

Publications (2)

Publication Number Publication Date
JP2015100818A JP2015100818A (en) 2015-06-04
JP6397618B2 true JP6397618B2 (en) 2018-09-26

Family

ID=53377001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013243977A Active JP6397618B2 (en) 2013-11-26 2013-11-26 Abrasion rod for wear-resistant coating

Country Status (1)

Country Link
JP (1) JP6397618B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087756B2 (en) * 2018-07-18 2022-06-21 日本製鉄株式会社 Blast furnace tuyere and its manufacturing method
JP7225883B2 (en) * 2019-02-14 2023-02-21 日本製鉄株式会社 tuyere for blast furnace

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140805A (en) * 1975-05-30 1976-12-04 Tookaro Kk A blast furnace tuyere provided with high temperature abrasion resista nt covering
JPS5947370A (en) * 1982-09-09 1984-03-17 Mishima Kosan Co Ltd Tuyere of blast furnace provided with thermal shock resistant coating
JPS61186190A (en) * 1985-02-13 1986-08-19 Kubota Ltd Composite filter rod for building up by welding
JPS626794A (en) * 1985-07-01 1987-01-13 Kubota Ltd Composite filler rod for build-up welding
JPH0342024Y2 (en) * 1986-03-18 1991-09-03
JPS63242490A (en) * 1987-03-27 1988-10-07 Sumitomo Metal Ind Ltd Composite filler metal for build-up welding
JPS6431595A (en) * 1987-07-28 1989-02-01 Hitachi Metals Ltd Welding rod of co-base alloy and its production
JP2597105B2 (en) * 1987-09-18 1997-04-02 株式会社クボタ Copper member surface hardening method
JPH086019Y2 (en) * 1991-01-17 1996-02-21 新日本製鐵株式会社 Tuyere with excellent wear and peeling resistance at high temperatures
JP3198611B2 (en) * 1992-04-13 2001-08-13 三菱マテリアル株式会社 Decorative cemented carbide
JPH11217610A (en) * 1998-01-28 1999-08-10 Tobata Seisakusho:Kk Hard padded tuyere
JP2004066317A (en) * 2002-08-08 2004-03-04 Ishikawajima Harima Heavy Ind Co Ltd Heat resistive and abrasion resistive metallic rod for build-up welding

Also Published As

Publication number Publication date
JP2015100818A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
US10272497B2 (en) Cladded articles and methods of making the same
CA2830543C (en) Fine grained ni-based alloys for resistance to stress corrosion cracking and methods for their design
JP5486093B2 (en) Wear-resistant cobalt base alloy and engine valve
RU2619547C1 (en) Flux cored wire for welding deposition
TWI302949B (en)
WO2013133944A1 (en) Alloys for hardbanding weld overlays
Zhou et al. Effects of metal phases and carbides on the microstructure and mechanical properties of Ti (C, N)-based cermets cutting tool materials
US20140272388A1 (en) Molten metal resistant composite coatings
WO2012063511A1 (en) High-toughness cobalt-based alloy and engine valve coated with same
JP6528106B2 (en) NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy and method for manufacturing the same, steel material provided with corrosion-resistant and wear-resistant surface overlay welding layer and method for manufacturing the same, and cold tool
JP4463763B2 (en) Abrasion and corrosion resistant cobalt alloys
JP6397618B2 (en) Abrasion rod for wear-resistant coating
US2507195A (en) Composite surfacing weld rod
CN102605289A (en) Fire grate strip of sintering machine and manufacturing method of fire grate strip
JP6818530B2 (en) Blast furnace tuyere
JP2009248237A (en) Titanium carbonitride-based cermet cutting tool excellent in wear resistance
JP2015143372A (en) Ni-BASED SELF FLUXING ALLOY POWDER HAVING SUPPRESSED FLUIDITY DURING REMELTING TREATMENT IN SPRAY COATING AND PARTS EXCELLENT IN CORROSION RESISTANCE AND ABRASION RESISTANCE USING THE POWDER
JP7168331B2 (en) copper base alloy
JP6246499B2 (en) Method for producing corrosion-resistant and wear-resistant alloy with controlled secondary precipitated particles
US1981403A (en) Surface coating castings
CN107363431A (en) A kind of self-shield open arc built-up welding austenitic matrix flux-cored wire and its application process
JP4170273B2 (en) Die casting mold repair powder and die casting mold repair method using the same
JP5292007B2 (en) Thermal spray alloy, member provided with surface layer and method for manufacturing the same
JP5195274B2 (en) Abrasion resistant screen and method of manufacturing the same
CN104894502A (en) Preparation method of plasma cladding nickel base/zirconium oxide fiber composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6397618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250