US20140233765A1 - Conformable pad bone conduction device - Google Patents

Conformable pad bone conduction device Download PDF

Info

Publication number
US20140233765A1
US20140233765A1 US13/768,206 US201313768206A US2014233765A1 US 20140233765 A1 US20140233765 A1 US 20140233765A1 US 201313768206 A US201313768206 A US 201313768206A US 2014233765 A1 US2014233765 A1 US 2014233765A1
Authority
US
United States
Prior art keywords
pad
recipient
material comprises
newtonian
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/768,206
Other versions
US11095994B2 (en
Inventor
Marcus ANDERSSON
Goran Bjorn
Stefan MAGNANDER
Henrik Fyrlund
Koen Van den Heuvel
Tobias Good
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cochlear Ltd
Original Assignee
Cochlear Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/768,206 priority Critical patent/US11095994B2/en
Application filed by Cochlear Ltd filed Critical Cochlear Ltd
Priority to KR1020157014447A priority patent/KR20150117636A/en
Priority to CN201480003216.1A priority patent/CN104813681B/en
Priority to EP14751228.9A priority patent/EP2888891B1/en
Priority to JP2015557545A priority patent/JP2016512978A/en
Priority to PCT/IB2014/058927 priority patent/WO2014125417A1/en
Publication of US20140233765A1 publication Critical patent/US20140233765A1/en
Assigned to COCHLEAR LIMITED reassignment COCHLEAR LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOOD, TOBIAS, ANDERSSON, MARCUS, BJORN, GORAN, FYRLUND, Henrik, MAGNANDER, Stefan, VAN DEN HEUVEL, KOEN
Application granted granted Critical
Publication of US11095994B2 publication Critical patent/US11095994B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/46Special adaptations for use as contact microphones, e.g. on musical instrument, on stethoscope
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • H04R25/606Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers

Definitions

  • This disclosure relates generally to bone conduction devices, and more particularly, to transcutaneous bone conduction devices.
  • Hearing loss which may be due to many different causes, is generally of two types: conductive and sensorineural.
  • Sensorineural hearing loss is due to the absence or destruction of the hair cells in the cochlea that transduce sound signals into nerve impulses.
  • Various hearing prostheses are commercially available to provide individuals suffering from sensorineural hearing loss with the ability to perceive sound.
  • cochlear implants include an electrode array for implantation in the cochlea to deliver electrical stimuli to the auditory nerve, thereby causing a hearing percept.
  • Conductive hearing loss occurs when the normal mechanical pathways that provide sound to hair cells in the cochlea are impeded, for example, by damage to the ossicular chain or ear canal. Individuals suffering from conductive hearing loss may retain some form of residual hearing because the hair cells in the cochlea may remain undamaged.
  • Hearing aids rely on principles of air conduction to transmit acoustic signals to the cochlea.
  • a hearing aid typically uses a component positioned at the recipient's auricle or ear canal which amplifies received sound. This amplified sound reaches the cochlea causing stimulation of the auditory nerve.
  • bone conduction devices convert a received sound into mechanical vibrations. The vibrations are transferred through the skull or jawbone to the cochlea causing generation of nerve impulses, which result in the perception of the received sound.
  • Bone conduction devices may be a suitable alternative for individuals who cannot derive sufficient benefit from acoustic hearing aids, cochlear implants, etc.
  • an implantable component of a prosthesis comprising a bone fixture and one or more magnets or magnetic components disposed in a housing coupled to a bone fixture, such as an osseointegrating screw implant, is implanted in a recipient so that there is no structure penetrating the skin following post-implantation healing.
  • An external component comprising a sound processor and a vibrator is magnetically coupled to the implanted component by means of a pressure plate. Magnets or magnetic components are disposed in the external component or pressure plate are attracted to magnets or magnetic components in the implanted component. This magnetic attraction draws the pressure plate into contact with, and thereby applies force to, the recipient's skin.
  • the pressure plate may be held in contact with the recipient's skin by a headband encircling the recipient's head or any other appropriate means for maintaining the pressure plate in its proper location.
  • a pad, layer or other appropriate structure between the pressure plate and the recipient's skin that transfers force to the skin evenly while also appropriately transmitting vibrations avoids higher pressure contact points or regions to enhance recipient comfort and reduce the likelihood and incidence of pressure wounds or skin necrosis due to pressure.
  • Such a material generally needs the capacity to conform very accurately to the “topography” of the recipient's skin in contact with the pressure plate. It is generally acceptable for such conformation to occur over a relatively significant period of time or to require a one-time process for fitting the pressure plate to the recipient.
  • Materials suitable for use in implementing embodiments of this invention need to have some ability to transmit audio-frequency vibrations so that the hearing prosthesis can function successfully.
  • Materials suitable for such a pad between the recipient's skin and the external component also need to facilitate securing the external component in place during a normal range of recipient activities.
  • the materials used for the pad provide controllably variable balance of pressure equalization and vibration transmission capability.
  • the materials can be controlled to provide balance of pressure equalization and vibration transmission capability.
  • Such a pressure-equalizing layer or pad may be: (a) a layer or layers of non-Newtonian material like dilatant material, rheopectic or slow-recovery memory foam (b) a layer of plastic material (such as a thermoplastic like polyvinyl chloride or polylactic acid) for positioning between the vibrating unit and the recipient's scalp that is softened and, while still soft, conformed to the shape of the wearer's scalp overlying the implanted prosthesis and then solidified or permitted to solidify for use between the scalp and the vibrating unit, (c) other viscoelastic materials (d) or other materials having adjustable apparent viscosity.
  • plastic material such as a thermoplastic like polyvinyl chloride or polylactic acid
  • a method comprising the steps of: causing the viscosity of a material to decrease thereby enabling a pad containing the material to conform to the topographies of a recipient's head and causing the viscosity of the material to increase thereby enabling the pad to effectively transfer sound vibrations to the recipient's head.
  • FIG. 1 is a perspective view of an exemplary bone conduction device in which embodiments of the present disclosure may be implemented
  • FIG. 2 is an enlarged side view, partially in section, showing the exemplary bone conduction device of FIG. 1 ;
  • FIG. 4 is an enlarged side view of another embodiment of the bone conduction pad with adhesive and release films
  • FIG. 5 is an enlarged side view, in section, of an embodiment of the pad having a cover or container.
  • FIG. 6 is a flow diagram showing an embodiment of a method for transmitting sound vibrations between a transcutaneous bone conduction system transmitter and a bone conduction fixture implanted in a recipient.
  • the bone conduction device includes an implantable bone fixture adapted to be secured to the skull, and one or more magnets disposed in a housing coupled to the bone fixture.
  • the one or more magnets are capable of forming a magnetic coupling with the external vibrator sufficient to permit effective transfer of the mechanical vibrations to the implanted magnets, which are then transferred to the skull via the bone fixture.
  • FIG. 1 is a perspective view of a transcutaneous bone conduction device 100 in which embodiments of the present disclosure may be implemented.
  • the recipient has an outer ear 101 , a middle ear 102 and an inner ear 103 .
  • outer ear 101 comprises an auricle 105 and an ear canal 106 .
  • Sound waves 107 is collected by auricle 105 and channeled into ear canal 106 .
  • a tympanic membrane 104 Disposed across the distal end of ear canal 106 is a tympanic membrane 104 which vibrates in response to acoustic wave 107 .
  • This vibration is coupled to oval window or fenestra ovalis 110 through three bones of middle ear 102 , collectively referred to as the ossicles 111 and comprising the malleus 112 , the incus 113 and the stapes 114 .
  • Ossicles 111 serve to filter and amplify acoustic wave 107 , causing oval window 110 to vibrate.
  • Such vibration sets up waves of fluid motion within cochlea 115 which, in turn, activates hair cells lining the inside of the cochlea. Activation of the hair cells causes appropriate nerve impulses to be transferred through the spiral ganglion cells and auditory nerve 116 to the brain, where they are perceived as sound.
  • FIG. 1 also illustrates the positioning of bone conduction device 100 on the recipient.
  • bone conduction device 100 is secured to the skull behind outer ear 101 .
  • Bone conduction device 100 comprises an external component 140 that includes a sound input element (not shown) to receive sound signals.
  • the sound input element may comprise, for example, a microphone, telecoil, etc.
  • the sound input element may be located, for example, on or in external component 140 or on a cable or tube extending from external component 140 .
  • the sound input element may be subcutaneously implanted in the recipient, or positioned in the recipient's ear.
  • the sound input element may also be a component that receives an electronic signal indicative of sound, such as, for example, from an external audio device.
  • External component 140 also comprises a sound processor (not shown), an actuator (also not shown) and/or various other functional components, including a pressure plate 146 .
  • the sound input device converts received sound into electrical signals. These electrical signals are processed by the sound processor to generate control signals that cause pressure plate 146 to vibrate and deliver mechanical vibrations to internal or implantable component 150 .
  • a pad 154 further described below is positioned in contact with the recipient's skin 132 between the skin 132 and pressure plate 146 .
  • Internal or implantable component 150 comprises a bone fixture 162 such as a bone screw to secure an implantable magnetic component 152 to skull bone 136 .
  • bone fixture 162 is configured to osseointegrate into skull bone 136 .
  • Magnetic component 152 forms a magnetic coupling with magnets 156 in external component 140 sufficient to permit effective transcutaneous transfer of the mechanical vibrations to internal component 150 , which are then transferred to skull bone 136 .
  • the vibrations from external component 140 may be transcutaneously transferred to implantable component 150 via the magnetic coupling.
  • external component 150 includes a pressure plate 146 that may conform to the curvature of the recipient's skull. In such embodiments, vibrations produced by the vibrating actuator are transferred from plate 146 across the skin to implantable component 150 . It should be appreciated, however, that external component 140 may take on a variety of configurations some of which do not include a pressure plate as illustrated in FIG. 1 .
  • the housing of the vibrator actuator directly contacts the recipient in some embodiments, while in other embodiments external component 140 is disposed in a Behind-The-Ear (BTE) device that directly contacts the recipient's head.
  • BTE Behind-The-Ear
  • the portion of external component 140 that contacts the recipient for transcutaneous transfer of vibrations such as pressure plate 146 , a portion of an actuator housing or a portion of a BTE housing, is referred to herein as a pressure plate.
  • the exemplary transcutaneous bone conduction device illustrated in FIG. 1 has all active components, such as the actuator, located in external component 140 . As such, the device illustrated in FIG. 1 is commonly referred to as a passive transcutaneous bone conduction device.
  • passive transcutaneous bone conduction device 100 requires accommodation of two somewhat contradictory objectives.
  • First external component 140 needs to be secured in place in contact with the recipient's scalp so that it does not slip out of position, and so that vibrations from external component 140 are effectively transmitted to internal or implantable component 150 .
  • Certain embodiments of pad 154 therefore, provide a balance of pressure-equalizing and vibration-transmission capacities.
  • FIGS. 2 and 3 depict an exemplary embodiment of transcutaneous bone conduction device 100 including embodiments of pad 154 .
  • pad 154 distributes the forces exerted by pressure plate 146 substantially evenly across the entire area of contact to enhance recipient comfort and reduce the likelihood of damage to or development of sores in the recipient's skin 132 .
  • Pad 154 also transmits mechanical vibrations of pressure plate 146 to skin 132 so that vibrations are induced in a vibratory portion of implantable component 150 .
  • Embodiments of pad 154 provide both (a) conformation and low pressure characteristics; and (b) efficient vibration transmission if the material(s) forming all or a portion of pad 154 are non-Newtonian material(s).
  • Non-Newtonian materials are advantageous because they provide a controllably variable balance of pressure equalization and sound transmission capacity.
  • Non-Newtonian materials include, for example, Dilatant material, Rheopectic materials, and Slow recovery memory foam materials. Each of these exemplary materials is described below.
  • Dilatant material Application of shear strain to these types of materials causes the viscosity to increase. In other words, these materials get harder when you apply force to them.
  • An example of a dilatant material is an organosilicon made from silicone oil and boric acid.
  • Rheopectic materials These materials are closely similar to dilatants. However, rheopectic materials develop higher viscosity (or get harder) when they are shaken. When shaking of these materials stops, hardness drops. Examples of rheopectic fluids include gypsum pastes and printers inks Polymeric rheopectic materials include some urethane materials.
  • Slow recovery memory foam materials including, for example, polyurethane memory foams. Viscoelastic properties make memory foams effective in distributing pressure. There are basically two types of slow recovery memory foams. Low density memory foams are pressure sensitive, while high density memory foams are heat sensitive. Viscoelastic memory foams with a variety of different density, tensile strength, elongation, porosity and other properties are available and can be used in practicing various embodiments of the disclosed technology.
  • a first step 182 involves securing pad 154 in contact with the recipient's skin
  • a second step 184 involves permitting pad 154 to conform to the recipient's anatomy
  • a third step 186 involves causing implantable component 150 to vibrate.
  • Dilatant or rheopectic materials usable in alternative embodiments may be sufficiently viscous to substantially conform to a recipient's scalp or head shape. In the presence of a shear force or shaking, the viscosity of the material changes sufficiently to result in the material behaving as solids. This increases the effectiveness of the materials to transfer vibrations. Such materials, therefore, may be contained in a cover, container, bladder, film, bubble, skin or other structure 157 as illustrated in FIG. 5 .
  • pad 154 may be made of one or more plastic materials such as a thermoplastic.
  • plastic materials such as a thermoplastic.
  • Exemplary thermoplastic materials include, for example, polyvinyl chloride and polylactic acid.
  • Polylactic acid or polylactide is a thermoplastic aliphatic polyester.
  • thermoplastic pad 154 may be softened by the application of heat.
  • pad 154 may be immersed in hot water, or the pad may be heated via convection or conduction.
  • Pad 154 might then be held in position against the recipient's scalp 132 and permitted to cool and at least partially solidify while maintaining a shape that conforms to the recipient's scalp.
  • some embodiments include a cover, container, bladder, film, bubble, skin or other structure 157 to contain the material when it is in a more viscous state, as is illustrated in FIG. 5 .
  • pad 154 includes other materials, for example, as filler for a pad structure that might include a bladder or other fluid-holding structure 157 ( FIG. 5 ).
  • Such materials include, for example, electro-rheological (ER) or magneto-rheological (MR) fluids.
  • Electro-rheological fluids generally are suspensions of extremely fine non-conducting particles (up to 50 micrometres diameter) in an electrically insulating fluid. The apparent viscosity of these fluids changes reversibly by an order of up to 100,000 in response to an electric field.
  • a magneto-rheological fluid typically consists of 20-40 percent by volume of relatively pure, 3-10 micron diameter iron particles, suspended in a carrier liquid such as mineral oil, synthetic oil, water or glycol. When subjected to a magnetic field, the fluid greatly increases its apparent viscosity, to the point of becoming a viscoelastic solid.
  • Such ER and MR fluids could be controlled to have a lower viscosity while conforming to the recipient's anatomy and then controlled to have a higher viscosity when sound transmission is desired.
  • Such higher apparent viscosity might be induced in the fluid only during detection of sound at a certain level so that pad 154 can re-conform to the recipient's anatomy during periods of relative silence.
  • ER and MR fluids may need to be contained in a cover, container, bladder, film, bubble, skin or other structure 157 as depicted in FIG. 5 .
  • Pad 154 may also be a multi-layer structure having layers of different materials or of similar materials having different physical properties.
  • pad 154 is a multi-layered structure comprising urethane foams.
  • Pad 154 may also be coated with one or more of a variety of coatings chosen to impart one or more physical or aesthetic properties such as color, durability, impermeability or other properties.
  • the contact between the recipient and pressure plate 146 may have implications for sound quality, feedback and the like and can also have implications for the appearance of device 100 .
  • a pad 154 may be interposed between pressure plate 146 and the recipient's skin 132 in order to equalize pressure exerted on the skin.
  • Pad 154 may include a material that generally conforms over time to the contour of the recipient's skin, thereby equalizing such pressure on the skin.
  • the material forming pad 154 may be soft enough to generally conform to topologies of at least a portion of the recipient's body or head at a recipient's body temperature.
  • Pad 154 is formed of one or more materials selected so that the pad exhibits properties of a rigid body in response to audio-frequency vibrations. As such, embodiments of pad 154 thereby efficiently transmit such vibrations from pressure plate 142 to components 150 implanted in the recipient notwithstanding the conformational capabilities of the pad.
  • pad 154 may be attached to pressure plate 146 with adhesive tape or film 158 positioned between pad 154 and pressure plate 146 .
  • pad 154 may be secured to pressure plate 146 by mechanical or any other means which appropriately facilitate (or at least does not unduly interfere with) transmission of vibrations between these two components.
  • Adhesive 166 may also be used if desired between pad 154 and recipient's skin or scalp 132 to augment the magnetic force holding external component 140 in place or to augment a secondary material such as a non-porous film that is easy to clean or, alternatively, an additional pad.
  • pad 154 can have an upper layer of adhesive 168 protected by a release film 170 that is removed before attaching pad 154 to pressure plate 146 .
  • a lower layer of adhesive 172 suitable for recipient contact may be protected by a release film 174 that is removed before positioning external component 140 on the recipient's scalp or skin 132 .
  • pad 154 The appropriate shape and thickness of pad 154 will depend on the system with which it is being used, the shape and size of pressure plate 146 , and numerous other considerations. Some such pads 154 may be approximately the same shape as pressure plate 146 with which the pad is used and may be approximately 0.5 to 5 millimeters thick, preferably about 1 to 2 millimeters thick, and more preferably about 1 millimeter thick.
  • transcutaneous bone conduction device 100 is, as noted, a passive device due to the vibrating actuator being located externally; that is, in external component 140 .
  • transcutaneous bone conduction device 100 is, as noted, a passive device due to the vibrating actuator being located externally; that is, in external component 140 .
  • aspects and embodiments disclosed herein may be implemented in an active transcutaneous bone conduction device which has the vibrating actuator located in an implantable or internal component such as internal component 150 . Accordingly, the scope of the claims is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications can be made without departing from the scope of the claims below and their equivalents.

Abstract

Pads for positioning between external hearing prosthesis components and a recipient's skin or scalp that conform to the recipient's anatomy but transmit vibrations from the external components to implanted components. Usable pad materials may include non-Newtonian materials including dilatant materials, rheological materials, memory foams, viscoelastic material, thermoplastics, electro-rheological fluids and or magneto-rheological fluids.

Description

    BACKGROUND
  • 1. Field of the Technology
  • This disclosure relates generally to bone conduction devices, and more particularly, to transcutaneous bone conduction devices.
  • 2. Related Art
  • Hearing loss, which may be due to many different causes, is generally of two types: conductive and sensorineural. Sensorineural hearing loss is due to the absence or destruction of the hair cells in the cochlea that transduce sound signals into nerve impulses. Various hearing prostheses are commercially available to provide individuals suffering from sensorineural hearing loss with the ability to perceive sound. For example, cochlear implants include an electrode array for implantation in the cochlea to deliver electrical stimuli to the auditory nerve, thereby causing a hearing percept.
  • Conductive hearing loss occurs when the normal mechanical pathways that provide sound to hair cells in the cochlea are impeded, for example, by damage to the ossicular chain or ear canal. Individuals suffering from conductive hearing loss may retain some form of residual hearing because the hair cells in the cochlea may remain undamaged.
  • Individuals suffering from conductive hearing loss typically receive an acoustic hearing aid. Hearing aids rely on principles of air conduction to transmit acoustic signals to the cochlea. In particular, a hearing aid typically uses a component positioned at the recipient's auricle or ear canal which amplifies received sound. This amplified sound reaches the cochlea causing stimulation of the auditory nerve.
  • In contrast to hearing aids, certain types of hearing prostheses commonly referred to as bone conduction devices convert a received sound into mechanical vibrations. The vibrations are transferred through the skull or jawbone to the cochlea causing generation of nerve impulses, which result in the perception of the received sound. Bone conduction devices may be a suitable alternative for individuals who cannot derive sufficient benefit from acoustic hearing aids, cochlear implants, etc.
  • Coupling bone conduction devices to the cranium or jawbone in ways that remain functional and comfortable for the recipient is challenging because of the nature and location of forces that must be utilized and successfully managed.
  • SUMMARY
  • The terms “invention,” “the invention,” “this invention,” “the present invention,” “disclosure,” “the disclosure,” “this disclosure” and “the present disclosure” used in this patent are intended to refer broadly to all of the subject matter of this patent and the patent claims below. Statements containing these terms should be understood not to limit the subject matter described herein or to limit the meaning or scope of the patent claims below. Aspects and embodiments of the invention(s) covered by this patent are defined by the claims below, not this summary. This summary is a high-level overview of various aspects and embodiments of the invention(s) and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to appropriate portions of the entire specification of this patent, any or all drawings and each claim.
  • In accordance with one aspect of this disclosure an implantable component of a prosthesis, comprising a bone fixture and one or more magnets or magnetic components disposed in a housing coupled to a bone fixture, such as an osseointegrating screw implant, is implanted in a recipient so that there is no structure penetrating the skin following post-implantation healing. An external component comprising a sound processor and a vibrator is magnetically coupled to the implanted component by means of a pressure plate. Magnets or magnetic components are disposed in the external component or pressure plate are attracted to magnets or magnetic components in the implanted component. This magnetic attraction draws the pressure plate into contact with, and thereby applies force to, the recipient's skin.
  • Alternatively the pressure plate may be held in contact with the recipient's skin by a headband encircling the recipient's head or any other appropriate means for maintaining the pressure plate in its proper location.
  • A pad, layer or other appropriate structure between the pressure plate and the recipient's skin that transfers force to the skin evenly while also appropriately transmitting vibrations avoids higher pressure contact points or regions to enhance recipient comfort and reduce the likelihood and incidence of pressure wounds or skin necrosis due to pressure. Such a material generally needs the capacity to conform very accurately to the “topography” of the recipient's skin in contact with the pressure plate. It is generally acceptable for such conformation to occur over a relatively significant period of time or to require a one-time process for fitting the pressure plate to the recipient. Materials suitable for use in implementing embodiments of this invention need to have some ability to transmit audio-frequency vibrations so that the hearing prosthesis can function successfully. Materials suitable for such a pad between the recipient's skin and the external component also need to facilitate securing the external component in place during a normal range of recipient activities. The materials used for the pad provide controllably variable balance of pressure equalization and vibration transmission capability. The materials can be controlled to provide balance of pressure equalization and vibration transmission capability.
  • Such a pressure-equalizing layer or pad may be: (a) a layer or layers of non-Newtonian material like dilatant material, rheopectic or slow-recovery memory foam (b) a layer of plastic material (such as a thermoplastic like polyvinyl chloride or polylactic acid) for positioning between the vibrating unit and the recipient's scalp that is softened and, while still soft, conformed to the shape of the wearer's scalp overlying the implanted prosthesis and then solidified or permitted to solidify for use between the scalp and the vibrating unit, (c) other viscoelastic materials (d) or other materials having adjustable apparent viscosity.
  • In accordance with another aspect of the present disclosure a method comprising the steps of: causing the viscosity of a material to decrease thereby enabling a pad containing the material to conform to the topographies of a recipient's head and causing the viscosity of the material to increase thereby enabling the pad to effectively transfer sound vibrations to the recipient's head.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the present disclosure are described below with reference to the attached drawings, in which:
  • FIG. 1 is a perspective view of an exemplary bone conduction device in which embodiments of the present disclosure may be implemented;
  • FIG. 2 is an enlarged side view, partially in section, showing the exemplary bone conduction device of FIG. 1;
  • FIG. 3 is a further enlarged side view of the external portion of bone conduction device of FIG. 1;
  • FIG. 4 is an enlarged side view of another embodiment of the bone conduction pad with adhesive and release films;
  • FIG. 5 is an enlarged side view, in section, of an embodiment of the pad having a cover or container; and
  • FIG. 6 is a flow diagram showing an embodiment of a method for transmitting sound vibrations between a transcutaneous bone conduction system transmitter and a bone conduction fixture implanted in a recipient.
  • DETAILED DESCRIPTION
  • The subject matter of embodiments of the present invention is described here with specificity to meet statutory requirements, but this description is not necessarily intended to limit the scope of the claims. The claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described.
  • Aspects of the present disclosure are generally directed to a transcutaneous bone conduction device configured to deliver mechanical vibrations generated by an external vibrator to a recipient's cochlea via the skull to cause a hearing percept. The bone conduction device includes an implantable bone fixture adapted to be secured to the skull, and one or more magnets disposed in a housing coupled to the bone fixture. When implanted, the one or more magnets are capable of forming a magnetic coupling with the external vibrator sufficient to permit effective transfer of the mechanical vibrations to the implanted magnets, which are then transferred to the skull via the bone fixture.
  • FIG. 1 is a perspective view of a transcutaneous bone conduction device 100 in which embodiments of the present disclosure may be implemented. As shown, the recipient has an outer ear 101, a middle ear 102 and an inner ear 103. In a fully functional human hearing anatomy, outer ear 101 comprises an auricle 105 and an ear canal 106. Sound waves 107 is collected by auricle 105 and channeled into ear canal 106. Disposed across the distal end of ear canal 106 is a tympanic membrane 104 which vibrates in response to acoustic wave 107. This vibration is coupled to oval window or fenestra ovalis 110 through three bones of middle ear 102, collectively referred to as the ossicles 111 and comprising the malleus 112, the incus 113 and the stapes 114. Ossicles 111 serve to filter and amplify acoustic wave 107, causing oval window 110 to vibrate. Such vibration sets up waves of fluid motion within cochlea 115 which, in turn, activates hair cells lining the inside of the cochlea. Activation of the hair cells causes appropriate nerve impulses to be transferred through the spiral ganglion cells and auditory nerve 116 to the brain, where they are perceived as sound.
  • FIG. 1 also illustrates the positioning of bone conduction device 100 on the recipient. As shown, bone conduction device 100 is secured to the skull behind outer ear 101. Bone conduction device 100 comprises an external component 140 that includes a sound input element (not shown) to receive sound signals. The sound input element may comprise, for example, a microphone, telecoil, etc. In an exemplary embodiment, the sound input element may be located, for example, on or in external component 140 or on a cable or tube extending from external component 140. Alternatively, the sound input element may be subcutaneously implanted in the recipient, or positioned in the recipient's ear. The sound input element may also be a component that receives an electronic signal indicative of sound, such as, for example, from an external audio device.
  • External component 140 also comprises a sound processor (not shown), an actuator (also not shown) and/or various other functional components, including a pressure plate 146. In operation, the sound input device converts received sound into electrical signals. These electrical signals are processed by the sound processor to generate control signals that cause pressure plate 146 to vibrate and deliver mechanical vibrations to internal or implantable component 150.
  • A pad 154 further described below is positioned in contact with the recipient's skin 132 between the skin 132 and pressure plate 146.
  • Internal or implantable component 150 comprises a bone fixture 162 such as a bone screw to secure an implantable magnetic component 152 to skull bone 136. Typically, bone fixture 162 is configured to osseointegrate into skull bone 136. Magnetic component 152 forms a magnetic coupling with magnets 156 in external component 140 sufficient to permit effective transcutaneous transfer of the mechanical vibrations to internal component 150, which are then transferred to skull bone 136. Alternatively, the vibrations from external component 140 may be transcutaneously transferred to implantable component 150 via the magnetic coupling.
  • In the embodiments described herein, external component 150 includes a pressure plate 146 that may conform to the curvature of the recipient's skull. In such embodiments, vibrations produced by the vibrating actuator are transferred from plate 146 across the skin to implantable component 150. It should be appreciated, however, that external component 140 may take on a variety of configurations some of which do not include a pressure plate as illustrated in FIG. 1. For example, the housing of the vibrator actuator directly contacts the recipient in some embodiments, while in other embodiments external component 140 is disposed in a Behind-The-Ear (BTE) device that directly contacts the recipient's head. In these and other bone conduction devices, the portion of external component 140 that contacts the recipient for transcutaneous transfer of vibrations such as pressure plate 146, a portion of an actuator housing or a portion of a BTE housing, is referred to herein as a pressure plate.
  • Because the anatomy and scalp shape vary from one recipient to another, no single plate has a contour or shape that will closely conform to every recipient. Moreover, in order to achieve sufficient retention of external component 140 to efficiently transfer sound vibrations, adequate magnetic attraction is needed between the implantable component 150 and the external component 140. Alternatively, other means such as a headband may be used to apply adequate force to hold external component 140 in its proper position. The attraction needed in a particular situation depends, among other things, on the weight of external component 140 and the motion of the recipient. The pressure that is exerted on the recipient's skin is a result of the skin contacting area of plate 146 and the force of attraction between the internal and external components. Excessive pressure (either localized or across the contacting surfaces) may cause soft tissue damage. Typically, for example a pressure of approximately 0.7 N/cm2 is enough to cause damage to the soft tissue. In extreme cases, the soft tissue necrotizes and needs to heal before device 100 can be used again.
  • The exemplary transcutaneous bone conduction device illustrated in FIG. 1 has all active components, such as the actuator, located in external component 140. As such, the device illustrated in FIG. 1 is commonly referred to as a passive transcutaneous bone conduction device.
  • As is apparent from the description above, operation of passive transcutaneous bone conduction device 100 requires accommodation of two somewhat contradictory objectives. First external component 140 needs to be secured in place in contact with the recipient's scalp so that it does not slip out of position, and so that vibrations from external component 140 are effectively transmitted to internal or implantable component 150. Certain embodiments of pad 154, therefore, provide a balance of pressure-equalizing and vibration-transmission capacities.
  • FIGS. 2 and 3 depict an exemplary embodiment of transcutaneous bone conduction device 100 including embodiments of pad 154. Preferably, pad 154 distributes the forces exerted by pressure plate 146 substantially evenly across the entire area of contact to enhance recipient comfort and reduce the likelihood of damage to or development of sores in the recipient's skin 132. Pad 154 also transmits mechanical vibrations of pressure plate 146 to skin 132 so that vibrations are induced in a vibratory portion of implantable component 150.
  • Conventional soft or easily deformed materials in a pad typically would facilitate even distribution of forces exerted by a pressure plate 146; however, more rigid conventional materials typically better transmit vibrations. Embodiments of pad 154 provide both (a) conformation and low pressure characteristics; and (b) efficient vibration transmission if the material(s) forming all or a portion of pad 154 are non-Newtonian material(s). Non-Newtonian materials are advantageous because they provide a controllably variable balance of pressure equalization and sound transmission capacity. Non-Newtonian materials include, for example, Dilatant material, Rheopectic materials, and Slow recovery memory foam materials. Each of these exemplary materials is described below.
  • Dilatant material. Application of shear strain to these types of materials causes the viscosity to increase. In other words, these materials get harder when you apply force to them. An example of a dilatant material is an organosilicon made from silicone oil and boric acid.
  • Rheopectic materials. These materials are closely similar to dilatants. However, rheopectic materials develop higher viscosity (or get harder) when they are shaken. When shaking of these materials stops, hardness drops. Examples of rheopectic fluids include gypsum pastes and printers inks Polymeric rheopectic materials include some urethane materials.
  • Slow recovery memory foam materials, including, for example, polyurethane memory foams. Viscoelastic properties make memory foams effective in distributing pressure. There are basically two types of slow recovery memory foams. Low density memory foams are pressure sensitive, while high density memory foams are heat sensitive. Viscoelastic memory foams with a variety of different density, tensile strength, elongation, porosity and other properties are available and can be used in practicing various embodiments of the disclosed technology.
  • All of these materials conform slowly to improve and equalize pressure distribution while exhibiting sufficient stiffness or apparent viscosity in use to achieve efficient sound or vibration transmission from external component 140 to internal component 150. These materials are sufficiently soft as to substantially conform to the topologies of at least a portion of the recipient's scalp or head, and to substantially equalize pressure distribution while also stiffening in response to certain external stimulus such as, for example, vibrations. In one example, the material used for the pad sufficiently stiffens in the presence of mechanical vibrations to achieve efficient vibration transmission from external component 140 to internal components 150. Embodiments of the materials used to form pad 154 exert a force between approximately 0.4N to approximately 2.5N, via pressure plate 146, to ensure adequate retention of external component 140 on the recipient as well as to provide adequate vibration transfer to internal component 150. The materials used to the form pad 154 do not exert a pressure greater than 0.9 N/cm2 on the recipient's skin to prevent damage of the soft tissue. More typically the pressure is no more than approximately 0.5 N/cm2. Embodiments of pad 154 facilitate a method 180 of positioning bone conduction prosthesis 100, as illustrated in FIG. 6, in which a first step 182 involves securing pad 154 in contact with the recipient's skin, a second step 184 involves permitting pad 154 to conform to the recipient's anatomy and a third step 186 involves causing implantable component 150 to vibrate.
  • Dilatant or rheopectic materials usable in alternative embodiments may be sufficiently viscous to substantially conform to a recipient's scalp or head shape. In the presence of a shear force or shaking, the viscosity of the material changes sufficiently to result in the material behaving as solids. This increases the effectiveness of the materials to transfer vibrations. Such materials, therefore, may be contained in a cover, container, bladder, film, bubble, skin or other structure 157 as illustrated in FIG. 5.
  • In other embodiments, pad 154 may be made of one or more plastic materials such as a thermoplastic. Exemplary thermoplastic materials include, for example, polyvinyl chloride and polylactic acid. Polylactic acid or polylactide is a thermoplastic aliphatic polyester.
  • Initially, or possibly before each use, the plastic material(s) of such a thermoplastic pad 154 may be softened by the application of heat. For instance, pad 154 may be immersed in hot water, or the pad may be heated via convection or conduction. Pad 154 might then be held in position against the recipient's scalp 132 and permitted to cool and at least partially solidify while maintaining a shape that conforms to the recipient's scalp. Depending on the viscosity of such a thermoplastic material, some embodiments include a cover, container, bladder, film, bubble, skin or other structure 157 to contain the material when it is in a more viscous state, as is illustrated in FIG. 5.
  • In alternative embodiments, pad 154 includes other materials, for example, as filler for a pad structure that might include a bladder or other fluid-holding structure 157 (FIG. 5). Such materials include, for example, electro-rheological (ER) or magneto-rheological (MR) fluids. Electro-rheological fluids generally are suspensions of extremely fine non-conducting particles (up to 50 micrometres diameter) in an electrically insulating fluid. The apparent viscosity of these fluids changes reversibly by an order of up to 100,000 in response to an electric field.
  • A magneto-rheological fluid typically consists of 20-40 percent by volume of relatively pure, 3-10 micron diameter iron particles, suspended in a carrier liquid such as mineral oil, synthetic oil, water or glycol. When subjected to a magnetic field, the fluid greatly increases its apparent viscosity, to the point of becoming a viscoelastic solid.
  • Such ER and MR fluids could be controlled to have a lower viscosity while conforming to the recipient's anatomy and then controlled to have a higher viscosity when sound transmission is desired. Such higher apparent viscosity might be induced in the fluid only during detection of sound at a certain level so that pad 154 can re-conform to the recipient's anatomy during periods of relative silence. As with other pad 154 materials that exhibit low viscosity at least some of the time, ER and MR fluids may need to be contained in a cover, container, bladder, film, bubble, skin or other structure 157 as depicted in FIG. 5.
  • Pad 154 may also be a multi-layer structure having layers of different materials or of similar materials having different physical properties. For example, in one embodiment, pad 154 is a multi-layered structure comprising urethane foams. Pad 154 may also be coated with one or more of a variety of coatings chosen to impart one or more physical or aesthetic properties such as color, durability, impermeability or other properties.
  • Furthermore, the contact between the recipient and pressure plate 146 may have implications for sound quality, feedback and the like and can also have implications for the appearance of device 100.
  • As illustrated in FIG. 2, a pad 154 may be interposed between pressure plate 146 and the recipient's skin 132 in order to equalize pressure exerted on the skin. Pad 154 may include a material that generally conforms over time to the contour of the recipient's skin, thereby equalizing such pressure on the skin. In one embodiment, the material forming pad 154 may be soft enough to generally conform to topologies of at least a portion of the recipient's body or head at a recipient's body temperature. Pad 154 is formed of one or more materials selected so that the pad exhibits properties of a rigid body in response to audio-frequency vibrations. As such, embodiments of pad 154 thereby efficiently transmit such vibrations from pressure plate 142 to components 150 implanted in the recipient notwithstanding the conformational capabilities of the pad.
  • Referring to FIG. 3, pad 154 may be attached to pressure plate 146 with adhesive tape or film 158 positioned between pad 154 and pressure plate 146. Alternatively, pad 154 may be secured to pressure plate 146 by mechanical or any other means which appropriately facilitate (or at least does not unduly interfere with) transmission of vibrations between these two components.
  • Adhesive 166 may also be used if desired between pad 154 and recipient's skin or scalp 132 to augment the magnetic force holding external component 140 in place or to augment a secondary material such as a non-porous film that is easy to clean or, alternatively, an additional pad.
  • As is illustrated in FIG. 4, pad 154 can have an upper layer of adhesive 168 protected by a release film 170 that is removed before attaching pad 154 to pressure plate 146. Moreover, a lower layer of adhesive 172 suitable for recipient contact may be protected by a release film 174 that is removed before positioning external component 140 on the recipient's scalp or skin 132.
  • The appropriate shape and thickness of pad 154 will depend on the system with which it is being used, the shape and size of pressure plate 146, and numerous other considerations. Some such pads 154 may be approximately the same shape as pressure plate 146 with which the pad is used and may be approximately 0.5 to 5 millimeters thick, preferably about 1 to 2 millimeters thick, and more preferably about 1 millimeter thick.
  • While various embodiments of the present disclosure have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the teachings of this disclosure. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
  • Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and sub-combinations are useful and may be employed without reference to other features and sub-combinations. Embodiments have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. For example, transcutaneous bone conduction device 100 is, as noted, a passive device due to the vibrating actuator being located externally; that is, in external component 140. It should be appreciated, however, that aspects and embodiments disclosed herein may be implemented in an active transcutaneous bone conduction device which has the vibrating actuator located in an implantable or internal component such as internal component 150. Accordingly, the scope of the claims is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications can be made without departing from the scope of the claims below and their equivalents.

Claims (25)

What is claimed is:
1. A pad for interposition between a recipient's head and a transcutaneous bone conduction device pressure plate, the pad comprising a material providing a controllably variable balance of pressure-equalization and vibration-transmission capability.
2. The pad of claim 1, wherein the material comprises non-Newtonian material having capacity to conform slowly to the contour of the recipient's head.
3. The pad of claim 1, wherein the material comprises non-Newtonian material having capacity to efficiently transmit audio frequency vibrations.
4. The pad of claim 1, wherein the material comprises dilatant material.
5. The pad of claim 4, wherein the dilatant material comprises an organosilicon.
6. The pad of claim 1, wherein the material comprises rheopectic material.
7. The pad of claim 6, wherein the rheopectic material comprises polymeric material.
8. The pad of claim 1, wherein the material comprises slow-recovery memory foam.
9. The pad of claim 8, wherein the material comprises low density, pressure sensitive foam.
10. The pad of claim 1, wherein the material comprises high density, heat sensitive foam.
11. The pad of claim 1, wherein the material comprises viscoelastic material.
12. The pad of claim 11, wherein the viscoelastic material exhibits a viscosity of between approximately 100 and 1×1010 centipoise.
13. The pad of claim 1, wherein the material comprises thermo-softening plastic.
14. The pad of claim 13, wherein the thermo-softening plastic material can be softened by heating it above human body temperature and formed to the recipient's anatomy by holding the material in place against the recipient's scalp proximate the subcutaneous components until it cools sufficiently to maintain its shape.
15. The pad of claim 1, wherein the pad is configured to be fixed to the pressure plate with an adhesive.
16. A transcutaneous bone conduction system comprising:
an external component; and
a conformable pad for positioning between a recipient's scalp and the external component, the pad comprising a non-Newtonian material.
17. The system of claim 16, wherein the non-Newtonian material comprises a dilatant material.
18. The system of claim 16, wherein the non-Newtonian material comprises a rheopectic material.
19. The system of claim 16, wherein the non-Newtonian material comprises a memory foam.
20. The system of claim 16, wherein the external component comprises a vibrator and a pressure plate.
21. A method, comprising:
causing the viscosity of a material to decrease thereby enabling a pad containing the material to conform to the topographies of a recipient's head; and
causing the viscosity of the material to increase thereby enabling the pad to effectively transfer sound vibrations to the recipient's head.
22. The method of claim 21, wherein causing the viscosity of the material to decrease comprises:
adjusting at least one of a group of external stimuli consisting of: temperature, an electric field, a magnetic field, mechanical stress, and shear stress.
23. The method of claim 21, wherein causing the viscosity of the material to increase comprises:
adjusting at least one of a group of external stimuli consisting of: temperature, an electric field, a magnetic field, mechanical stress, and shear stress.
24. The method of claim 23, wherein the material comprises non-Newtonian material.
25. The method of claim 24, wherein the material comprises at least one material selected from the group consisting of: dilatant material, rheopectic material, and viscoelastic material.
US13/768,206 2013-02-15 2013-02-15 Conformable pad bone conduction device Active 2039-01-16 US11095994B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/768,206 US11095994B2 (en) 2013-02-15 2013-02-15 Conformable pad bone conduction device
CN201480003216.1A CN104813681B (en) 2013-02-15 2014-02-11 Conformable pad bone conduction device
EP14751228.9A EP2888891B1 (en) 2013-02-15 2014-02-11 Conformable pad bone conduction device
JP2015557545A JP2016512978A (en) 2013-02-15 2014-02-11 Shape-compatible pad bone conduction device
KR1020157014447A KR20150117636A (en) 2013-02-15 2014-02-11 Conformable pad bone conduction device
PCT/IB2014/058927 WO2014125417A1 (en) 2013-02-15 2014-02-11 Conformable pad bone conduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/768,206 US11095994B2 (en) 2013-02-15 2013-02-15 Conformable pad bone conduction device

Publications (2)

Publication Number Publication Date
US20140233765A1 true US20140233765A1 (en) 2014-08-21
US11095994B2 US11095994B2 (en) 2021-08-17

Family

ID=51351174

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/768,206 Active 2039-01-16 US11095994B2 (en) 2013-02-15 2013-02-15 Conformable pad bone conduction device

Country Status (6)

Country Link
US (1) US11095994B2 (en)
EP (1) EP2888891B1 (en)
JP (1) JP2016512978A (en)
KR (1) KR20150117636A (en)
CN (1) CN104813681B (en)
WO (1) WO2014125417A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140275736A1 (en) * 2011-12-09 2014-09-18 Sophono, Inc. Sound Acquisition and Analysis Systems, Devices and Components for Magnetic Hearing Aids
WO2016073167A2 (en) 2014-11-06 2016-05-12 Otorix Usa Inc. Bone conduction hearing aid system
US20160234613A1 (en) * 2013-08-09 2016-08-11 Otorix Usa Inc. Bone Conduction Hearing Aid System
WO2017103858A1 (en) 2015-12-16 2017-06-22 Cochlear Limited Bone conduction skin interface
US9736601B2 (en) 2012-07-16 2017-08-15 Sophono, Inc. Adjustable magnetic systems, devices, components and methods for bone conduction hearing aids
WO2018024275A1 (en) * 2016-08-01 2018-02-08 Ralf Siegert Device for coupling to hearing aids in a manner that is comfortable for the patient
US20180084349A1 (en) * 2016-09-22 2018-03-22 Tobias Good Coupling apparatuses for transcutaneous bone conduction devices
US20180279061A1 (en) * 2017-03-24 2018-09-27 Joris Walraevens Shock and impact management of an implantable device during non use
US20180332412A1 (en) * 2017-05-15 2018-11-15 Oticon Medical A/S Hearing aid for placement at an ear of a user
US10659868B1 (en) * 2017-03-28 2020-05-19 Amazon Technologies, Inc. Field replaceable spacer for head-mounted wearable device
US10747026B1 (en) 2017-03-28 2020-08-18 Amazon Technologies, Inc. Ergonomic spacer for head-mounted wearable device
US11012797B2 (en) * 2015-12-16 2021-05-18 Cochlear Limited Bone conduction device having magnets integrated with housing
RU2760398C1 (en) * 2020-11-23 2021-11-24 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный медико-стоматологический университет имени А.И. Евдокимова" Министерства здравоохранения Российской Федерации (ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России) Bionic ear prosthesis
US11223912B2 (en) 2017-07-21 2022-01-11 Cochlear Limited Impact and resonance management

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108353237B (en) * 2015-10-30 2022-01-04 科利耳有限公司 Implantable stimulation assembly
CN106208808B (en) * 2016-07-18 2018-01-02 辽宁工程技术大学 A kind of noise power generator and method based on the conduction of people's otica chain type
CN108543165B (en) * 2018-02-27 2021-06-18 宁波胜杰康生物科技有限公司 Carrier-based muscle function auxiliary device
CN110538002B (en) * 2019-08-29 2022-02-01 中国医学科学院北京协和医院 Artificial tympanic cavity
WO2022069970A1 (en) * 2020-10-01 2022-04-07 Cochlear Limited Active implant with percutaneous abutment
CN112291686B (en) * 2020-10-29 2022-04-01 维沃移动通信有限公司 Wearable device
WO2023026123A1 (en) * 2021-08-23 2023-03-02 Cochlear Limited Coupler for bone conduction hearing prosthesis
WO2023166486A1 (en) * 2022-03-03 2023-09-07 Cochlear Limited Advanced passive integrity management of an implantable device
WO2023209457A1 (en) * 2022-04-25 2023-11-02 Cochlear Limited External portion of medical implant with compliant skin-contacting surface

Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2470933A (en) * 1944-06-05 1949-05-24 Zenith Radio Corp Flexible-surfaced bone conduction hearing aid unit
US2756016A (en) * 1952-12-01 1956-07-24 Lord Mfg Co Shock isolator
US2859033A (en) * 1956-06-27 1958-11-04 Hughes Aircraft Co Constant force applying mechanism
US3350344A (en) * 1963-09-18 1967-10-31 Gen Electric Organosilicon compositions
US3382511A (en) * 1967-01-13 1968-05-14 William T. Brooks Safety cushion
US3881570A (en) * 1973-08-06 1975-05-06 Marion Health And Safety Inc Self-fitting hearing protector
US4195151A (en) * 1976-11-22 1980-03-25 Union Carbide Corporation Phenol-aldehyde-amine resin/glycol curative compositions
US4298383A (en) * 1979-06-25 1981-11-03 National-Standard Company Low viscosity composition for forming shaped bodies
US5483027A (en) * 1994-08-24 1996-01-09 Krause; Ward B. Earplug with form-fitting fluid chambers
US5573088A (en) * 1994-05-10 1996-11-12 Daniels; John J. Controllable resistance device and force dampener, and vehicle utilizing the same
US20020094439A1 (en) * 2000-10-05 2002-07-18 Roland Edelmann Organosilicon nanocapsules
US6456721B1 (en) * 1998-05-11 2002-09-24 Temco Japan Co., Ltd. Headset with bone conduction speaker and microphone
US20020183014A1 (en) * 2001-05-31 2002-12-05 Temco Japan Co., Ltd. Transceiver
US6701529B1 (en) * 1999-02-05 2004-03-09 Extrude Hone Corporation Smart padding system utilizing an energy absorbent medium and articles made therefrom
US20040171321A1 (en) * 2001-09-13 2004-09-02 Plant Daniel James Flexible energy absorbing material and methods of manufacture thereof
US20050201574A1 (en) * 2004-01-20 2005-09-15 Sound Technique Systems Method and apparatus for improving hearing in patients suffering from hearing loss
US20060089721A1 (en) * 2001-01-17 2006-04-27 Muhanna Nabil L Intervertebral disc prosthesis and methods of implantation
JP2006197257A (en) * 2005-01-13 2006-07-27 Toshiba Corp Pillow with built-in bone conduction speaker
US7176419B2 (en) * 2000-06-14 2007-02-13 American Healthcare Products, Inc. Heating pad systems, such as for patient warming applications
US20070053536A1 (en) * 2005-08-24 2007-03-08 Patrik Westerkull Hearing aid system
US20070179864A1 (en) * 2005-11-21 2007-08-02 Nightgear Llc Seating accessory
US7386143B2 (en) * 2002-10-02 2008-06-10 Otologics Llc Retention apparatus for an external portion of a semi-implantable hearing aid
CN101315769A (en) * 2007-05-31 2008-12-03 新兴盛科技股份有限公司 Face bone conduction sound-conducting device with buffering mechanism
US20090017709A1 (en) * 2006-08-07 2009-01-15 Dynea Oy Stable aqueous novolac dispersion
US20090308401A1 (en) * 2008-06-13 2009-12-17 Neal Rosenblum Anti-snoring device
JP2010144021A (en) * 2008-12-18 2010-07-01 Takemoto Oil & Fat Co Ltd Dilatant composition
US20110016254A1 (en) * 2006-10-24 2011-01-20 Hewlett-Packard Development Company, L.P. Sharing of host bus adapter context
US20110106254A1 (en) * 2007-03-03 2011-05-05 Sentient Medical Limited Ossicular replacement prosthesis
US7966937B1 (en) * 2006-07-01 2011-06-28 Jason Stewart Jackson Non-newtonian projectile
US20110158920A1 (en) * 2006-12-29 2011-06-30 Ardana Bioscience Limited Method of producing a composition from an oleogel and an aqueous gel and the composition
KR101091847B1 (en) * 2009-05-22 2011-12-12 한경희 mask pack for vibrating massage
US8107648B2 (en) * 2008-06-05 2012-01-31 Cosmogear Co., Ltd. Bone conduction earphone
WO2012028845A1 (en) * 2010-09-01 2012-03-08 Qinetiq Limited Improvements in fibre optic cables for distributed sensing
US20120253105A1 (en) * 2009-10-21 2012-10-04 Woodwelding Ag Method of anchoring an acoustic element in a bone of the craniomaxillofacial region and acoustic element
US20120294466A1 (en) * 2011-05-18 2012-11-22 Stefan Kristo Temporary anchor for a hearing prosthesis
US20120302822A1 (en) * 2011-05-24 2012-11-29 Carl Van Himbeeck Vibration isolation in a bone conduction device
US8376967B2 (en) * 2010-04-13 2013-02-19 Audiodontics, Llc System and method for measuring and recording skull vibration in situ
US20130046346A1 (en) * 2011-08-16 2013-02-21 Goetz Thorwarth Thermoplastic Multilayer Article
US20130169513A1 (en) * 2012-01-04 2013-07-04 Google Inc. Wearable computing device
US20140121451A1 (en) * 2012-07-16 2014-05-01 Sophono, Inc. Magnetic Spacer Systems, Devices, Components and Methods for Bone Conduction Hearing Aids
US8795172B2 (en) * 2007-12-07 2014-08-05 Sonitus Medical, Inc. Systems and methods to provide two-way communications
US9031274B2 (en) * 2012-09-06 2015-05-12 Sophono, Inc. Adhesive bone conduction hearing device
US9526810B2 (en) * 2011-12-09 2016-12-27 Sophono, Inc. Systems, devices, components and methods for improved acoustic coupling between a bone conduction hearing device and a patient's head or skull
US9736601B2 (en) * 2012-07-16 2017-08-15 Sophono, Inc. Adjustable magnetic systems, devices, components and methods for bone conduction hearing aids

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19541882A1 (en) 1995-11-08 1997-05-15 Andreas Landwehr Device for transmitting sound signals as mechanical vibrations on to the cranial bones of the hard of hearing
JP2001029509A (en) 1999-07-16 2001-02-06 Manabu Matsumoto Goggle
EP1336320A1 (en) 2000-09-01 2003-08-20 Dowumi Corporation Bone conduction vibrator
JP2003322612A (en) 2002-04-30 2003-11-14 Communication Research Laboratory Brain-activity measuring apparatus and head mounting implement for brain-activity measurement
JP4190988B2 (en) 2003-09-12 2008-12-03 Necトーキン株式会社 Ear-mounted sound information transmitter
DE202004006117U1 (en) 2004-04-15 2004-07-08 Siegert, Ralf, Prof. Dr. Dr.med. Bone phone/vibrator device for patients with severe middle-ear afflictions, has a magnetic probe-to-specimen contact
JP2005328125A (en) 2004-05-12 2005-11-24 Nec Tokin Corp Earphone
WO2007011846A2 (en) 2005-07-18 2007-01-25 Soundquest, Inc. In-ear auditory device and methods of using same
KR20070035376A (en) 2005-09-27 2007-03-30 박의봉 Bone conductive speaker
JP4401396B2 (en) 2007-01-16 2010-01-20 株式会社エヌ・ティ・ティ・ドコモ Sound output device
DK2083582T3 (en) 2008-01-28 2013-11-11 Oticon Medical As Bone conductive hearing aid with connection
US8363871B2 (en) 2008-03-31 2013-01-29 Cochlear Limited Alternative mass arrangements for bone conduction devices
WO2010105601A2 (en) 2009-03-15 2010-09-23 Ralf Siegert Aid for shimming magnetic discs
JP2011087142A (en) 2009-10-15 2011-04-28 Prefectural Univ Of Hiroshima Stick type bone conduction hearing aid
JP5473640B2 (en) 2010-02-01 2014-04-16 株式会社オトデザイナーズ Speaker device
US9042996B2 (en) 2011-03-10 2015-05-26 Cochlear Limited Wireless communications in medical devices
US10419861B2 (en) 2011-05-24 2019-09-17 Cochlear Limited Convertibility of a bone conduction device
US8891795B2 (en) 2012-01-31 2014-11-18 Cochlear Limited Transcutaneous bone conduction device vibrator having movable magnetic mass
US20130281764A1 (en) 2012-04-19 2013-10-24 Göran Björn Transcutaneous bone conduction device
US9516434B2 (en) 2013-05-09 2016-12-06 Cochlear Limited Medical device coupling arrangement

Patent Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2470933A (en) * 1944-06-05 1949-05-24 Zenith Radio Corp Flexible-surfaced bone conduction hearing aid unit
US2756016A (en) * 1952-12-01 1956-07-24 Lord Mfg Co Shock isolator
US2859033A (en) * 1956-06-27 1958-11-04 Hughes Aircraft Co Constant force applying mechanism
US3350344A (en) * 1963-09-18 1967-10-31 Gen Electric Organosilicon compositions
US3382511A (en) * 1967-01-13 1968-05-14 William T. Brooks Safety cushion
US3881570A (en) * 1973-08-06 1975-05-06 Marion Health And Safety Inc Self-fitting hearing protector
US4195151A (en) * 1976-11-22 1980-03-25 Union Carbide Corporation Phenol-aldehyde-amine resin/glycol curative compositions
US4298383A (en) * 1979-06-25 1981-11-03 National-Standard Company Low viscosity composition for forming shaped bodies
US5573088A (en) * 1994-05-10 1996-11-12 Daniels; John J. Controllable resistance device and force dampener, and vehicle utilizing the same
US5483027A (en) * 1994-08-24 1996-01-09 Krause; Ward B. Earplug with form-fitting fluid chambers
US6456721B1 (en) * 1998-05-11 2002-09-24 Temco Japan Co., Ltd. Headset with bone conduction speaker and microphone
US6701529B1 (en) * 1999-02-05 2004-03-09 Extrude Hone Corporation Smart padding system utilizing an energy absorbent medium and articles made therefrom
US7176419B2 (en) * 2000-06-14 2007-02-13 American Healthcare Products, Inc. Heating pad systems, such as for patient warming applications
US20020094439A1 (en) * 2000-10-05 2002-07-18 Roland Edelmann Organosilicon nanocapsules
US20060089721A1 (en) * 2001-01-17 2006-04-27 Muhanna Nabil L Intervertebral disc prosthesis and methods of implantation
US20020183014A1 (en) * 2001-05-31 2002-12-05 Temco Japan Co., Ltd. Transceiver
US20040171321A1 (en) * 2001-09-13 2004-09-02 Plant Daniel James Flexible energy absorbing material and methods of manufacture thereof
US7386143B2 (en) * 2002-10-02 2008-06-10 Otologics Llc Retention apparatus for an external portion of a semi-implantable hearing aid
US20050201574A1 (en) * 2004-01-20 2005-09-15 Sound Technique Systems Method and apparatus for improving hearing in patients suffering from hearing loss
JP2006197257A (en) * 2005-01-13 2006-07-27 Toshiba Corp Pillow with built-in bone conduction speaker
US20070053536A1 (en) * 2005-08-24 2007-03-08 Patrik Westerkull Hearing aid system
US20070179864A1 (en) * 2005-11-21 2007-08-02 Nightgear Llc Seating accessory
US7966937B1 (en) * 2006-07-01 2011-06-28 Jason Stewart Jackson Non-newtonian projectile
US20090017709A1 (en) * 2006-08-07 2009-01-15 Dynea Oy Stable aqueous novolac dispersion
US20110016254A1 (en) * 2006-10-24 2011-01-20 Hewlett-Packard Development Company, L.P. Sharing of host bus adapter context
US20110158920A1 (en) * 2006-12-29 2011-06-30 Ardana Bioscience Limited Method of producing a composition from an oleogel and an aqueous gel and the composition
US20110106254A1 (en) * 2007-03-03 2011-05-05 Sentient Medical Limited Ossicular replacement prosthesis
CN101315769A (en) * 2007-05-31 2008-12-03 新兴盛科技股份有限公司 Face bone conduction sound-conducting device with buffering mechanism
US8795172B2 (en) * 2007-12-07 2014-08-05 Sonitus Medical, Inc. Systems and methods to provide two-way communications
US8107648B2 (en) * 2008-06-05 2012-01-31 Cosmogear Co., Ltd. Bone conduction earphone
US20090308401A1 (en) * 2008-06-13 2009-12-17 Neal Rosenblum Anti-snoring device
JP2010144021A (en) * 2008-12-18 2010-07-01 Takemoto Oil & Fat Co Ltd Dilatant composition
KR101091847B1 (en) * 2009-05-22 2011-12-12 한경희 mask pack for vibrating massage
US20120253105A1 (en) * 2009-10-21 2012-10-04 Woodwelding Ag Method of anchoring an acoustic element in a bone of the craniomaxillofacial region and acoustic element
US8376967B2 (en) * 2010-04-13 2013-02-19 Audiodontics, Llc System and method for measuring and recording skull vibration in situ
WO2012028845A1 (en) * 2010-09-01 2012-03-08 Qinetiq Limited Improvements in fibre optic cables for distributed sensing
US20120294466A1 (en) * 2011-05-18 2012-11-22 Stefan Kristo Temporary anchor for a hearing prosthesis
US20120302822A1 (en) * 2011-05-24 2012-11-29 Carl Van Himbeeck Vibration isolation in a bone conduction device
US20130046346A1 (en) * 2011-08-16 2013-02-21 Goetz Thorwarth Thermoplastic Multilayer Article
US9526810B2 (en) * 2011-12-09 2016-12-27 Sophono, Inc. Systems, devices, components and methods for improved acoustic coupling between a bone conduction hearing device and a patient's head or skull
US20130169513A1 (en) * 2012-01-04 2013-07-04 Google Inc. Wearable computing device
US20140121451A1 (en) * 2012-07-16 2014-05-01 Sophono, Inc. Magnetic Spacer Systems, Devices, Components and Methods for Bone Conduction Hearing Aids
US9022917B2 (en) * 2012-07-16 2015-05-05 Sophono, Inc. Magnetic spacer systems, devices, components and methods for bone conduction hearing aids
US9736601B2 (en) * 2012-07-16 2017-08-15 Sophono, Inc. Adjustable magnetic systems, devices, components and methods for bone conduction hearing aids
US9031274B2 (en) * 2012-09-06 2015-05-12 Sophono, Inc. Adhesive bone conduction hearing device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9258656B2 (en) * 2011-12-09 2016-02-09 Sophono, Inc. Sound acquisition and analysis systems, devices and components for magnetic hearing aids
US20140275736A1 (en) * 2011-12-09 2014-09-18 Sophono, Inc. Sound Acquisition and Analysis Systems, Devices and Components for Magnetic Hearing Aids
US9736601B2 (en) 2012-07-16 2017-08-15 Sophono, Inc. Adjustable magnetic systems, devices, components and methods for bone conduction hearing aids
US10063981B2 (en) * 2013-08-09 2018-08-28 Med-El Elektromedizinische Geraete Gmbh Bone conduction hearing aid system
US20160234613A1 (en) * 2013-08-09 2016-08-11 Otorix Usa Inc. Bone Conduction Hearing Aid System
US10299051B2 (en) * 2013-08-09 2019-05-21 Med-El Elektromedizinische Geraete Gmbh Bone conduction hearing aid system
WO2016073167A2 (en) 2014-11-06 2016-05-12 Otorix Usa Inc. Bone conduction hearing aid system
WO2016073167A3 (en) * 2014-11-06 2016-08-18 Otorix Usa Inc. Bone conduction hearing aid system
EP3216233A4 (en) * 2014-11-06 2017-11-22 Med-El Elektromedizinische Geraete GmbH Bone conduction hearing aid system
US20170180890A1 (en) * 2015-12-16 2017-06-22 Marcus ANDERSSON Bone conduction skin interface
US11012797B2 (en) * 2015-12-16 2021-05-18 Cochlear Limited Bone conduction device having magnets integrated with housing
US9967685B2 (en) * 2015-12-16 2018-05-08 Cochlear Limited Bone conduction skin interface
WO2017103858A1 (en) 2015-12-16 2017-06-22 Cochlear Limited Bone conduction skin interface
WO2018024275A1 (en) * 2016-08-01 2018-02-08 Ralf Siegert Device for coupling to hearing aids in a manner that is comfortable for the patient
US20180084349A1 (en) * 2016-09-22 2018-03-22 Tobias Good Coupling apparatuses for transcutaneous bone conduction devices
US11252514B2 (en) 2016-09-22 2022-02-15 Cochlear Limited Coupling apparatuses for transcutaneous bone conduction devices
US10542351B2 (en) * 2016-09-22 2020-01-21 Cochlear Limited Coupling apparatuses for transcutaneous bone conduction devices
US20180279061A1 (en) * 2017-03-24 2018-09-27 Joris Walraevens Shock and impact management of an implantable device during non use
US10897677B2 (en) * 2017-03-24 2021-01-19 Cochlear Limited Shock and impact management of an implantable device during non use
US10659868B1 (en) * 2017-03-28 2020-05-19 Amazon Technologies, Inc. Field replaceable spacer for head-mounted wearable device
US10747026B1 (en) 2017-03-28 2020-08-18 Amazon Technologies, Inc. Ergonomic spacer for head-mounted wearable device
US20180332412A1 (en) * 2017-05-15 2018-11-15 Oticon Medical A/S Hearing aid for placement at an ear of a user
US10848884B2 (en) 2017-05-15 2020-11-24 Oticon Medical A/S Hearing aid for placement at an ear of a user
US10516954B2 (en) * 2017-05-15 2019-12-24 Oticon Medical A/S Hearing aid for placement at an ear of a user
EP3404933A1 (en) * 2017-05-15 2018-11-21 Oticon Medical A/S A hearing aid for placement on head of a user
US11323831B2 (en) 2017-05-15 2022-05-03 Oticon Medical A/S Hearing aid for placement at an ear of a user
CN114501280A (en) * 2017-05-15 2022-05-13 奥迪康医疗有限公司 Hearing aid
US11937050B2 (en) 2017-05-15 2024-03-19 Oticon Medical A/S Hearing aid for placement at an ear of a user
US11223912B2 (en) 2017-07-21 2022-01-11 Cochlear Limited Impact and resonance management
RU2760398C1 (en) * 2020-11-23 2021-11-24 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный медико-стоматологический университет имени А.И. Евдокимова" Министерства здравоохранения Российской Федерации (ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России) Bionic ear prosthesis

Also Published As

Publication number Publication date
US11095994B2 (en) 2021-08-17
WO2014125417A1 (en) 2014-08-21
EP2888891A1 (en) 2015-07-01
EP2888891A4 (en) 2016-04-27
CN104813681A (en) 2015-07-29
JP2016512978A (en) 2016-05-12
CN104813681B (en) 2020-01-21
KR20150117636A (en) 2015-10-20
EP2888891B1 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
EP2888891B1 (en) Conformable pad bone conduction device
US6629923B2 (en) At least partially implantable hearing system with direct mechanical stimulation of a lymphatic space of the inner ear
US8831260B2 (en) Bone conduction hearing device having acoustic feedback reduction system
US20170203101A1 (en) Implantable sound sensor for hearing prostheses
US20170180892A1 (en) Devices for enhancing transmissions of stimuli in auditory prostheses
US20100048983A1 (en) Multipath Stimulation Hearing Systems
US20100222639A1 (en) Hearing device having a non-occluding in the canal vibrating component
US11412334B2 (en) Contralateral sound capture with respect to stimulation energy source
US8620015B2 (en) Vibrator for bone conducting hearing devices
US20120294466A1 (en) Temporary anchor for a hearing prosthesis
US10412510B2 (en) Bone conduction devices utilizing multiple actuators
US11617893B2 (en) External system for implanted medical devices
US11863940B2 (en) Microphone placement
US20090259090A1 (en) Bone conduction hearing device having acoustic feedback reduction system
US10284973B2 (en) Wearable band for facilitating hearing
US11252514B2 (en) Coupling apparatuses for transcutaneous bone conduction devices
US10812919B2 (en) Filtering well-defined feedback from a hard-coupled vibrating transducer
US10798502B2 (en) Implantable transducer system
US11496845B1 (en) Horizontal abutment extender
US20240137716A1 (en) Microphone placement
EP2974380B1 (en) Filtering well-defined feedback from a hard-coupled vibrating transducer
WO2023209457A1 (en) External portion of medical implant with compliant skin-contacting surface

Legal Events

Date Code Title Description
AS Assignment

Owner name: COCHLEAR LIMITED, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANDERSSON, MARCUS;BJORN, GORAN;MAGNANDER, STEFAN;AND OTHERS;SIGNING DATES FROM 20130220 TO 20130222;REEL/FRAME:033589/0107

STPP Information on status: patent application and granting procedure in general

Free format text: TC RETURN OF APPEAL

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE