US20130058816A1 - Reciprocating compressor - Google Patents

Reciprocating compressor Download PDF

Info

Publication number
US20130058816A1
US20130058816A1 US13/602,951 US201213602951A US2013058816A1 US 20130058816 A1 US20130058816 A1 US 20130058816A1 US 201213602951 A US201213602951 A US 201213602951A US 2013058816 A1 US2013058816 A1 US 2013058816A1
Authority
US
United States
Prior art keywords
gas
cylinder
piston
reciprocating
reciprocating compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/602,951
Inventor
Donghan KIM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, DONGHAN
Publication of US20130058816A1 publication Critical patent/US20130058816A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/122Cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/125Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/126Cylinder liners
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the present disclosure relates to a reciprocating compressor, and more particularly, to a reciprocating compressor with a gas bearing.
  • a reciprocating compressor serves to intake, compress, and discharge a refrigerant as a piston linearly reciprocates within a cylinder.
  • the reciprocating compressor may be classified into a connection type reciprocating compressor or a vibration type reciprocating compressor according to the method employed to drive the piston.
  • connection type reciprocating compressor the piston is connected to a rotating shaft associated with a rotation motor by a connection rod, which causes the piston to reciprocate within the cylinder, thereby compressing the refrigerant.
  • the piston is connected to a mover associated with a reciprocating motor, which vibrates the piston while the piston reciprocates within the cylinder, thereby compressing the refrigerant.
  • the present invention relates to the vibration type reciprocating compressor, and the term “reciprocating compressor” will hereinafter refer to the vibration type reciprocating compressor.
  • a portion between the cylinder and the piston, being hermetically sealed, has to be properly lubricated.
  • a reciprocating compressor which seals and lubricates a portion between the cylinder and the piston by supplying a lubricant such as oil between the cylinder and the piston and forming an oil film.
  • the supplying of the lubricant requires an oil supply apparatus, and an oil shortage may occur depending on operation conditions, thereby degrading compressor performance.
  • the compressor size needs to be increased because a space for receiving a certain amount of oil is required, and the installation direction of the compressor is limited because the entrance of the oil supply apparatus should always be kept immersed in oil.
  • FIG. 1 there has been conventionally known a technique of forming a gas bearing between the piston 1 and the cylinder 2 by bypassing a part of compressed gas between the piston 1 and the cylinder 2 .
  • a plurality of gas flow paths 2 a with a small diameter are formed in the cylinder 2 , or a sintered porous material member (not shown) is provided on an inner circumferential surface of the cylinder 2 .
  • This technique can simplify a lubrication structure of the compressor because it requires no oil supply apparatus, unlike the oil-lubricated type for supplying oil between the piston 1 and the cylinder 2 , and can maintain constant compressor performance by preventing an oil shortage depending on operating conditions.
  • this technique has the advantage that the compressor can be smaller in size and the installation direction of the compressor can be freely designed because no space for receiving oil is required in the casing of the compressor.
  • a plate spring 3 is used for a resonating motion of the piston, as shown FIG. 2 .
  • the piston (shown in FIG. 1 ) 1 constituting a compression portion 4 and the plate spring (shown in FIG. 2 ) 3 are connected by a flexible connecting bar (not shown) so that the piston 1 has forward movability within the cylinder (shown in FIG. 1 ) 2 , or the connecting bar is divided into a plurality of parts 5 a to 5 c and connected by at least one (preferably two or more) links 6 a and 6 b.
  • suction loss occurs as the outlets of the gas flow paths are exposed to the compression space during a suction stroke to thus cause a high-pressure refrigerant to enter the compression space.
  • inlets of the gas flow paths are formed in the piston, gas from the gas bearing flows backward to the compression space as the inlets of the gas flow paths are exposed to the compression space during a suction stroke.
  • an object of the present invention is to provide a reciprocating compressor which makes it easy to form a gas flow path for guiding compressed gas to a gas bearing.
  • Another object of the present invention is to provide a reciprocating compressor in which an outlet of a gas flow path is formed in a piston and an inlet of the gas flow path is formed in a cylinder to prevent the inlet or outlet of the gas flow path from communicating with a compression gas during a suction stroke of the piston and improve the performance of the compressor.
  • a reciprocating compressor comprising: a cylinder having a compression space; a piston inserted into the compression space and reciprocating relative to the cylinder; a discharge valve configured to be attachable to and detachable from a front end surface of the cylinder and selectively opening and closing the compression space of the cylinder; and a discharge cover having a discharge space to selectively communicate with the compression space, wherein the cylinder has a cylinder side gas flow path for guiding refrigerant discharged to the discharge space to an inner circumferential surface of the cylinder, and the piston has a piston side gas flow path communicating with the cylinder side gas flow path to distribute and supply the refrigerant guided through the cylinder side gas flow path between the cylinder and the piston.
  • a reciprocating compressor comprising: a cylinder having a compression space and gas flow paths for introducing gas in the compression space to an inner circumferential surface; a piston inserted into the compression space and reciprocating relative to the cylinder; a discharge valve configured to be attachable to and detachable from a front end surface of the cylinder and selectively opening and closing the compression space of the cylinder; and a discharge cover having a discharge space to selectively communicate with the compression space
  • the piston comprising: a piston body having a gas guide groove having a predetermined depth formed on an outer circumferential surface; and a gas guide member inserted and coupled to the outer circumferential surface of the piston body so as to open the gas guide groove, wherein a gas communication opening is formed in the gas guide member to allow the gas flow paths of the cylinder and the gas guide groove of the piston to communicate with each other, and a bearing hole is formed at one side of the gas communication opening to allow the gas guide groove and an bearing surface between the cylinder and the piston to communicate with each other.
  • FIG. 1 is a longitudinal cross-sectional view showing an example in which a conventional gas bearing is applied to a reciprocating compressor;
  • FIG. 2 is a perspective view showing an example in which conventional plate springs are applied to a reciprocating compressor
  • FIG. 3 is a longitudinal cross-sectional view showing a reciprocating compressor according to the present invention.
  • FIG. 4 is an exploded perspective view showing a reciprocating motor in the reciprocating compressor of FIG. 3 ;
  • FIG. 5 is a half cross-sectional view showing an example of a stator in a reciprocating motor of FIG. 3 ;
  • FIG. 6 is a half cross-sectional view showing another embodiment of the stator in the reciprocating motor of FIG. 3 ;
  • FIG. 7 is a cross-sectional view showing an embodiment of a gas bearing in the reciprocating compressor of FIG. 3 ;
  • FIG. 8 is an exploded perspective view showing a gas guide member in the piston of FIG. 7 ;
  • FIG. 9 is a cross-sectional view taken along line “I-I” of FIG. 7 ;
  • FIG. 10 is a cross-sectional view taken along line “II-II” of FIG. 7 ;
  • FIG. 11 is a cross-sectional view enlarged showing portion “A” of FIG. 5 ;
  • FIG. 12 is a cross-sectional view showing an example in which a gas diffusion groove is formed in the gas guide member of FIG. 7 ;
  • FIG. 13 is a partial cross-sectional view for explaining resonant springs in the reciprocating compressor of FIG. 3 ;
  • FIG. 14 is a top plan view for explaining the arrangement of the resonant springs of FIG. 13 .
  • a frame 20 is installed within a sealed casing 10 , a reciprocating motor 30 and a cylinder 41 are fixed to the frame 20 , a piston 42 coupled to a mover 32 of the reciprocating motor 30 is inserted into the cylinder 40 to reciprocate, and resonant springs 51 and 52 for inducing a resonating motion of the piston 42 are installed at both sides of the piston 42 in the motion direction of the piston 42 .
  • the mover 32 of the reciprocating motor 30 reciprocates. Then, the piston 42 coupled to the mover 32 sucks and compresses a refrigerant gas while linearly reciprocating within the cylinder 41 , and discharges it.
  • the piston 42 moves backwards, the refrigerant gas in the sealed casing 10 is sucked into the compression space S 1 through the suction path F of the piston 42 , and when the piston 42 moves forwards, the suction path F is closed and the refrigerant gas in the compression space S 1 is compressed. Also, when the piston 42 further moves forwards, the discharge valve 44 is opened to discharge the refrigerant gas compressed in the compression space S 1 and move it to the outside refrigeration cycle.
  • the reciprocating motor 30 comprises a stator 31 having a coil 35 and an air gap formed at only one side of the coil 35 and a mover 32 inserted into the air gap of the stator 31 and having a magnet 325 that linearly moves in the motion direction.
  • the stator 31 includes a plurality of stator blocks 311 and a plurality of pole blocks 315 respectively coupled to sides of the stator blocks 311 and forming an air gap portion 31 a along with the stator blocks 311 .
  • the stator blocks 311 and the pole blocks 315 include a plurality of thin stator cores laminated sheet by sheet in a circular arc shape when axially projected.
  • the stator blocks 311 are formed in the shape of recesses when axially projected, and the pole blocks 315 are formed in a rectangular shape when axially projected.
  • the stator block (or each of the stator core sheets constituting the stator blocks) 311 may include a first magnetic path 312 positioned inside the mover 32 to form the inner stator and a second magnetic path 313 extending integrally from an axial side of the first magnetic path 312 , i.e., the opposite end of the air portion 31 a , and positioned outside the mover 32 to form the outer stator.
  • the second magnetic path 313 is formed in a stepwise manner and extends from the first magnetic path 312 .
  • a coupling groove 311 b and a coupling protrusion 315 b may be formed on a coupling surface of the stator block 311 and a coupling surface of the pole block 315 , which connect the stator block 311 and the pole block 315 to form a magnetic path connecting portion (not shown), to firmly couple the stator block 311 and the pole block 315 and maintain a given curvature.
  • the stator block 311 and the pole block 315 may be coupled in a stepwise manner.
  • the coupling surface 311 a of the stator block 311 and the coupling surface 315 a of the pole block 315 are formed to be flat, thereby preventing an air gap between the stator block 311 and the pole block 315 . This prevents magnetic leakage between the stator block 311 and the pole block 315 , thereby leading to an increase in motor performance.
  • a first pole portion 311 c having an increasing cross-sectional area is formed at a distal end of the second magnetic path 313 of the stator block 311 , i.e., a distal end of the air gap portion 31 a
  • a second pole portion 315 c having an increasing cross-sectional area is formed at a distal end of the pole block 315 , corresponding to the first pole portion 311 c of the stator block 311 .
  • the mover 32 may include a magnet holder 321 having a cylindrical shape and a plurality of magnets 325 attached onto an outer circumferential surface of the magnet holder 321 in a circumferential direction to form a magnetic flux together with the coil 35 .
  • the magnetic holder 321 may be formed of a non-magnetic substance in order to prevent flux leakage; however, it is not limited thereto.
  • the outer circumferential surface of the magnetic holder 321 may be formed in a circular shape so that the magnets 325 are in line contact therewith and adhered thereto.
  • a magnet mounting groove (not shown) may be formed in a strip shape on the outer circumferential surface of the magnet holder 321 so as to insert the magnets 325 therein and support them in the motion direction.
  • the magnets 325 may be formed in a hexahedral shape and adhered one by one to the outer circumferential surface of the magnet holder 321 .
  • supporting members such as fixing rings or a tape made up of a composite material.
  • the magnets 325 may be serially adhered in a circumferential direction to the outer circumferential surface of the magnet holder 321 , it is preferable that the magnets 325 are adhered at predetermined intervals, i.e., between the stator blocks in a circumferential direction to the outer circumferential surface of the magnet holder 321 to minimize the use of the magnets, because the stator 31 comprises a plurality of stator blocks 311 and the plurality of stator blocks 311 are arranged at predetermined intervals in the circumferential direction.
  • the magnets 325 are preferably formed to have a length corresponding to the air gap length of the magnetic holder 321 , i.e., the circumferential length of the air gap.
  • the magnet 325 may be configured such that its length in a motion direction is not shorter than a length of the air gap portion 31 a in the motion direction, more particularly, longer than the length of the air gap portion 31 a in the motion direction.
  • the magnet 325 may be disposed such that at least one end thereof is located inside the air gap portion 31 a , in order to ensure a stable reciprocating motion.
  • magnets 325 may be disposed in the motion direction, a plurality of magnets 325 may be disposed in the motion direction in some cases.
  • the magnets may be disposed in the motion direction so that an N pole and an S pole correspond to each other.
  • the above-described reciprocating motor may be configured such that the stator has one air gap portion 314 as shown in FIG. 5 , it may be configured such that in some cases the stator has air gap portions 31 a and 31 c on both sides of the coil in the reciprocating direction as shown in FIG. 6 .
  • the mover 32 may be formed in the same manner as the foregoing embodiment.
  • the porous material member may be abraded upon initial startup before the formation of the gas bearing because of high manufacturing cost of the porous material member and low abrasion resistance thereof, and therefore the lifespan of the porous material member may be degraded. Also, it is difficult to properly regulate the distribution of pores because of the characteristics of the porous material member, which can make it difficult to design the gas bearing so as to properly seal and lubricate a portion between the cylinder and the piston.
  • the gas bearing according to this embodiment allows a high-pressure compressed gas to be uniformly distributed between the cylinder and the piston, by forming gas flow paths in the cylinder and coupling a gas guide member having gas through holes to the outer circumferential surface of the piston to uniformly distribute and supply a high-pressure compressed gas guided through the gas flow paths between the cylinder and the piston.
  • the gas flow paths 401 may comprise a cylinder side gas flow path 402 formed at the cylinder 41 and a piston side gas flow path 403 communicating with the cylinder side gas flow path 402 and formed at the piston 42 .
  • the cylinder side gas flow path 402 may comprises at least one gas inlet opening 411 c formed in a reciprocating direction of the piston 42 on a front end surface of the discharge side of the cylinder 41 and a gas pocket 411 d formed on the inner circumferential surface of the cylinder 41 , with its side wall surface communicating with the gas inlet opening 411 c .
  • the cross-sectional area of the gas pocket 411 d may be much greater than the cross-sectional area of the gas inlet opening 411 c.
  • the piston side gas flow path 403 may comprise a gas communication opening 423 a formed at a center portion of the gas guide member 423 and communicating with the gas pocket 411 d of the cylinder 41 , a gas guide groove 421 a formed on the outer circumferential surface of the piston body 421 and communicating with the gas communication opening 423 a , and a plurality of bearing holes 423 b formed on both end portions of the gas guide member 423 so as to supply gas guided through the gas guide groove 421 a between the cylinder 41 and the piston 42 .
  • the gas guide groove 421 a has an annular shape.
  • the gas guide groove 421 a has a width in the reciprocating direction much larger than the width of the gas communication opening 423 a in the reciprocating direction so that gas introduced into the gas guide groove 421 a is uniformly distributed over the entire bearing surface, that is, the length of the gas guide groove 421 a is as similar to the width of the gas guide member 423 in the reciprocating direction as possible to increase the baring surface area as much as possible.
  • the bearing holes 423 b have a significantly smaller size than the gas communication opening 423 a to prevent excessive exposure of compressed gas.
  • An annular filter 47 may be installed on the front end of the gas inlet opening, i.e., the front end surface 411 a of the cylinder body 411 so as to prevent impurities from entering the cylinder side gas flow path 402 .
  • At least one gas diffusion groove 423 c may be further formed on an outer circumferential surface of the gas guide member 423 because a high-pressure compressed gas may be uniformly distributed over a bearing area between the cylinder 41 and the piston 42 , as shown in FIG. 12 .
  • the gas diffusion groove 423 c may comprise a linear groove 423 d communicating with the gas communication opening 423 a and an annular groove 423 e communicating with the linear groove 423 d and formed in an annular shape.
  • the gas diffusion groove 423 c is formed to communicate with the gas communication opening 423 a or the bearing holes 423 b so that the compressed gas entering or introduced into the gas guide groove 421 a quickly enters the gas diffusion groove 423 c .
  • unexplained reference numeral 423 f denotes a middle guide groove.
  • the gas guide member 423 is formed in a cylindrical shape and inserted and coupled to the piston body, a part of compressed gas discharged to the discharge space S 2 of the discharge cover 46 enters the gas pocket 411 d through the gas inlet opening 411 c , and this compressed gas enters the gas guide groove 421 a through the gas communication opening 423 a of the gas guide member 423 and diffused in the gas guide groove 421 a , thereby supplying the compressed gas between the cylinder 41 and the piston 42 through the bearing holes 423 b of the gas guide member 423 .
  • the bearing holes 423 b which are the outlets of the gas flow paths, are formed in the piston 42 , the outlets of the gas flow paths are not exposed to the compression space S 1 during a suction stroke of the piston 42 , thereby preventing a degradation in the performance of the compressor caused by a suction loss.
  • the gas guide member 423 has a simple cylindrical shape, and hence the manufacturing costs can be reduced, compared to the porous material member.
  • the above-described reciprocating compressor with the gas bearing according to this embodiment is devised to reduce material costs and the number of assembly processes by using not plate springs but coil springs as the resonant springs, and avoiding the use of a connecting bar or link.
  • the above-described reciprocating compressor with the gas bearing according to this embodiment is devised to reduce material costs and the number of assembly processes by using not plate springs but coil springs as the resonant springs, and avoiding the use of a connecting bar or link.
  • the resonant springs may comprise a first resonant spring and a second resonant spring 52 which are respectively provided on both front and back sides of a spring supporter 53 coupled to the mover 32 and the piston 42 .
  • the first resonant spring 51 and the second resonant spring 52 each are provided in plural and arranged in a circumferential direction. However, either the first resonant spring 51 or the second resonant spring 52 may be provided in plural, and the other resonant spring may be provided in singular.
  • the resonant springs 51 and 52 are compressed coil springs as described above, a side force may be produced when the resonant springs 51 and 52 are expanded. Accordingly, the resonant springs 51 and 52 may be arranged so as to offset a side force or torsion moment of the resonant springs 51 and 52 .
  • first resonant spring 51 and the second resonant spring 52 are arranged alternately by twos in a circumferential direction
  • distal ends of the first and second resonant springs 51 and 52 are wound at the same position in opposite directions (counterclockwise) relative to the center of the piston 42
  • the resonant springs on the same side positioned in their respective diagonal directions are arranged to symmetrically engage each other so that a side force and a torsion moment are produced in opposite directions.
  • first resonant spring 51 and the second resonant spring 52 may be arranged to symmetrically engage the distal ends of the resonant springs with each other so that a side force and a torsion moment are produced in opposite directions along the circumferential direction.
  • first resonant springs 51 are arranged so that lines orthogonal to the front end surfaces of the springs meet at one point to thus offset a side force and a torsion moment.
  • spring fixing protrusions 531 and 532 are respectively formed on a frame or spring supporter 53 to which the ends of the first and second resonant springs 51 and 52 are fixed, in order for the resonant springs 51 and 52 to be forcibly fit and fixed to the spring fixing protrusions 53 , because the engaging resonant springs are prevented from turning.
  • the number of first resonant springs 51 may be equal to or different from the number of second resonant springs 52 as long as the first resonant spring 51 and the second resonant spring 52 have the same elasticity.
  • a side force and a torsion moment may be produced when expanded because of the characteristics of the compression coil springs, and therefore the forward movement of the piston 42 may be distorted.
  • the plurality of first resonant springs 51 and second resonant springs 52 are arranged to be wound in opposite directions, and therefore the side force and torsion moment produced from the resonant springs 51 and 52 are offset by the diagonally corresponding resonant springs. Accordingly, the forward movement of the piston 42 can be maintained, and abrasion of surfaces contacting the resonant springs 51 and 52 can be prevented.
  • the compressor can be installed in a standing type, as well as in a lateral type because compression coil springs, which have a small longitudinal placement, are used as the resonant springs 51 and 52 .
  • the manufacturing costs and the number of assembly processes can be reduced because no connecting bar or link is required.
  • the resonant springs may be used in the same manner as above even when the reciprocating motor is mechanically coupled to a compression unit comprising the cylinder with a predetermined interval therefrom. A detailed description of which will be omitted.
  • the piston is configured to reciprocate and the resonant springs are respectively provided on both sides of the piston in the motion direction.
  • the cylinder may be configured to reciprocate and the resonant springs may be provided on both sides of the cylinder.
  • the resonant springs may be formed as a plurality of compression coil springs, as in the foregoing embodiments, and the plurality of compression coil springs may be arranged in the same manner as the foregoing embodiments. A detailed description of which will be omitted.

Abstract

A reciprocating compressor comprises a cylinder having a cylinder side gas flow path for guiding refrigerant discharged to the discharge space to an inner circumferential surface of the cylinder and a piston having a piston side gas flow path communicating with the cylinder side gas flow path to distribute and supply the refrigerant guided through the cylinder side gas flow path between the cylinder and the piston. Also, an outlet of the gas flow path is formed in the piston and an inlet of the gas flow path is formed in the cylinder.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present disclosure relates to subject matter contained in priority Korean Application No. 10-2011-0090322, filed on Sep. 6, 2011, which is herein expressly incorporated by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present disclosure relates to a reciprocating compressor, and more particularly, to a reciprocating compressor with a gas bearing.
  • 2. Background of the Invention
  • Generally, a reciprocating compressor serves to intake, compress, and discharge a refrigerant as a piston linearly reciprocates within a cylinder. The reciprocating compressor may be classified into a connection type reciprocating compressor or a vibration type reciprocating compressor according to the method employed to drive the piston.
  • In the connection type reciprocating compressor, the piston is connected to a rotating shaft associated with a rotation motor by a connection rod, which causes the piston to reciprocate within the cylinder, thereby compressing the refrigerant. On the other hand, in the vibration type reciprocating compressor, the piston is connected to a mover associated with a reciprocating motor, which vibrates the piston while the piston reciprocates within the cylinder, thereby compressing the refrigerant. The present invention relates to the vibration type reciprocating compressor, and the term “reciprocating compressor” will hereinafter refer to the vibration type reciprocating compressor.
  • To enhance the performance of a reciprocating compressor, a portion between the cylinder and the piston, being hermetically sealed, has to be properly lubricated. To this end, there has been conventionally known a reciprocating compressor which seals and lubricates a portion between the cylinder and the piston by supplying a lubricant such as oil between the cylinder and the piston and forming an oil film. However, the supplying of the lubricant requires an oil supply apparatus, and an oil shortage may occur depending on operation conditions, thereby degrading compressor performance. Also, the compressor size needs to be increased because a space for receiving a certain amount of oil is required, and the installation direction of the compressor is limited because the entrance of the oil supply apparatus should always be kept immersed in oil.
  • Taking into consideration the disadvantages of the oil-lubricated type reciprocating compressor, as shown in FIG. 1, there has been conventionally known a technique of forming a gas bearing between the piston 1 and the cylinder 2 by bypassing a part of compressed gas between the piston 1 and the cylinder 2. In this technique, a plurality of gas flow paths 2 a with a small diameter are formed in the cylinder 2, or a sintered porous material member (not shown) is provided on an inner circumferential surface of the cylinder 2. This technique can simplify a lubrication structure of the compressor because it requires no oil supply apparatus, unlike the oil-lubricated type for supplying oil between the piston 1 and the cylinder 2, and can maintain constant compressor performance by preventing an oil shortage depending on operating conditions. Also, this technique has the advantage that the compressor can be smaller in size and the installation direction of the compressor can be freely designed because no space for receiving oil is required in the casing of the compressor.
  • In the case the gas bearing is applied to the reciprocating compressor, a plate spring 3 is used for a resonating motion of the piston, as shown FIG. 2.
  • In the case the plate spring 3 is used, the piston (shown in FIG. 1) 1 constituting a compression portion 4 and the plate spring (shown in FIG. 2) 3 are connected by a flexible connecting bar (not shown) so that the piston 1 has forward movability within the cylinder (shown in FIG. 1) 2, or the connecting bar is divided into a plurality of parts 5 a to 5 c and connected by at least one (preferably two or more) links 6 a and 6 b.
  • In the conventional reciprocating compressor, however, in the case of forming gas flow paths with a small diameter in the cylinder, it is difficult to form the gas flow paths as fine pores, and impurities such as iron powder produced during the operation of the compressor may block the fine gas flow paths. Then, some of the gas flow paths are blocked and a gas force cannot be uniformly applied in a circumferential direction of the piston, and hence a partial friction may occur between the cylinder and the piston. Due to this, the performance and the reliability of the compressor may be degraded, thus requiring very high cleanness.
  • Moreover, in the case that the exits of the gas flow paths are formed in the cylinder, suction loss occurs as the outlets of the gas flow paths are exposed to the compression space during a suction stroke to thus cause a high-pressure refrigerant to enter the compression space. On the other hand, in the case that the inlets of the gas flow paths are formed in the piston, gas from the gas bearing flows backward to the compression space as the inlets of the gas flow paths are exposed to the compression space during a suction stroke.
  • SUMMARY OF THE INVENTION
  • Therefore, an object of the present invention is to provide a reciprocating compressor which makes it easy to form a gas flow path for guiding compressed gas to a gas bearing.
  • Another object of the present invention is to provide a reciprocating compressor in which an outlet of a gas flow path is formed in a piston and an inlet of the gas flow path is formed in a cylinder to prevent the inlet or outlet of the gas flow path from communicating with a compression gas during a suction stroke of the piston and improve the performance of the compressor.
  • To achieve these and other advantages and in accordance with the purpose of this specification, as embodied and broadly described herein, there is provided a reciprocating compressor comprising: a cylinder having a compression space; a piston inserted into the compression space and reciprocating relative to the cylinder; a discharge valve configured to be attachable to and detachable from a front end surface of the cylinder and selectively opening and closing the compression space of the cylinder; and a discharge cover having a discharge space to selectively communicate with the compression space, wherein the cylinder has a cylinder side gas flow path for guiding refrigerant discharged to the discharge space to an inner circumferential surface of the cylinder, and the piston has a piston side gas flow path communicating with the cylinder side gas flow path to distribute and supply the refrigerant guided through the cylinder side gas flow path between the cylinder and the piston.
  • Furthermore, there is provided a reciprocating compressor comprising: a cylinder having a compression space and gas flow paths for introducing gas in the compression space to an inner circumferential surface; a piston inserted into the compression space and reciprocating relative to the cylinder; a discharge valve configured to be attachable to and detachable from a front end surface of the cylinder and selectively opening and closing the compression space of the cylinder; and a discharge cover having a discharge space to selectively communicate with the compression space, the piston comprising: a piston body having a gas guide groove having a predetermined depth formed on an outer circumferential surface; and a gas guide member inserted and coupled to the outer circumferential surface of the piston body so as to open the gas guide groove, wherein a gas communication opening is formed in the gas guide member to allow the gas flow paths of the cylinder and the gas guide groove of the piston to communicate with each other, and a bearing hole is formed at one side of the gas communication opening to allow the gas guide groove and an bearing surface between the cylinder and the piston to communicate with each other.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate exemplary embodiments and together with the description serve to explain the principles of the invention.
  • In the drawings:
  • FIG. 1 is a longitudinal cross-sectional view showing an example in which a conventional gas bearing is applied to a reciprocating compressor;
  • FIG. 2 is a perspective view showing an example in which conventional plate springs are applied to a reciprocating compressor;
  • FIG. 3 is a longitudinal cross-sectional view showing a reciprocating compressor according to the present invention;
  • FIG. 4 is an exploded perspective view showing a reciprocating motor in the reciprocating compressor of FIG. 3;
  • FIG. 5 is a half cross-sectional view showing an example of a stator in a reciprocating motor of FIG. 3;
  • FIG. 6 is a half cross-sectional view showing another embodiment of the stator in the reciprocating motor of FIG. 3;
  • FIG. 7 is a cross-sectional view showing an embodiment of a gas bearing in the reciprocating compressor of FIG. 3;
  • FIG. 8 is an exploded perspective view showing a gas guide member in the piston of FIG. 7;
  • FIG. 9 is a cross-sectional view taken along line “I-I” of FIG. 7;
  • FIG. 10 is a cross-sectional view taken along line “II-II” of FIG. 7;
  • FIG. 11 is a cross-sectional view enlarged showing portion “A” of FIG. 5;
  • FIG. 12 is a cross-sectional view showing an example in which a gas diffusion groove is formed in the gas guide member of FIG. 7;
  • FIG. 13 is a partial cross-sectional view for explaining resonant springs in the reciprocating compressor of FIG. 3; and
  • FIG. 14 is a top plan view for explaining the arrangement of the resonant springs of FIG. 13.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Hereinafter, a reciprocating compressor according to the present invention will be described in detail with reference to an embodiment illustrated in the accompanying drawings.
  • As shown in FIG. 3, in the reciprocating compressor according to this embodiment, a frame 20 is installed within a sealed casing 10, a reciprocating motor 30 and a cylinder 41 are fixed to the frame 20, a piston 42 coupled to a mover 32 of the reciprocating motor 30 is inserted into the cylinder 40 to reciprocate, and resonant springs 51 and 52 for inducing a resonating motion of the piston 42 are installed at both sides of the piston 42 in the motion direction of the piston 42.
  • In the aforementioned reciprocating compressor according this embodiment, when power is applied to a coil 35 of the reciprocating motor 30, the mover 32 of the reciprocating motor 30 reciprocates. Then, the piston 42 coupled to the mover 32 sucks and compresses a refrigerant gas while linearly reciprocating within the cylinder 41, and discharges it.
  • More specifically, when the piston 42 moves backwards, the refrigerant gas in the sealed casing 10 is sucked into the compression space S1 through the suction path F of the piston 42, and when the piston 42 moves forwards, the suction path F is closed and the refrigerant gas in the compression space S1 is compressed. Also, when the piston 42 further moves forwards, the discharge valve 44 is opened to discharge the refrigerant gas compressed in the compression space S1 and move it to the outside refrigeration cycle.
  • As shown in FIGS. 4 and 5, the reciprocating motor 30 comprises a stator 31 having a coil 35 and an air gap formed at only one side of the coil 35 and a mover 32 inserted into the air gap of the stator 31 and having a magnet 325 that linearly moves in the motion direction.
  • The stator 31 includes a plurality of stator blocks 311 and a plurality of pole blocks 315 respectively coupled to sides of the stator blocks 311 and forming an air gap portion 31 a along with the stator blocks 311.
  • The stator blocks 311 and the pole blocks 315 include a plurality of thin stator cores laminated sheet by sheet in a circular arc shape when axially projected.
  • The stator blocks 311 are formed in the shape of recesses when axially projected, and the pole blocks 315 are formed in a rectangular shape when axially projected.
  • The stator block (or each of the stator core sheets constituting the stator blocks) 311 may include a first magnetic path 312 positioned inside the mover 32 to form the inner stator and a second magnetic path 313 extending integrally from an axial side of the first magnetic path 312, i.e., the opposite end of the air portion 31 a, and positioned outside the mover 32 to form the outer stator.
  • While the first magnetic path 312 is formed in a rectangular shape, the second magnetic path 313 is formed in a stepwise manner and extends from the first magnetic path 312.
  • A coil receiving slot 31 b opened in an axial direction, i.e., the direction of the air gap portion, is formed on inner wall surfaces of the first and second magnetic paths 312 and 313, and the pole block 315 is coupled to an axial cross-section of the second magnetic path 313 which constitutes the coil receiving slot 31 b so as to open an axial open surface of the coil receiving slot 31 b.
  • Also, a coupling groove 311 b and a coupling protrusion 315 b may be formed on a coupling surface of the stator block 311 and a coupling surface of the pole block 315, which connect the stator block 311 and the pole block 315 to form a magnetic path connecting portion (not shown), to firmly couple the stator block 311 and the pole block 315 and maintain a given curvature. Although not shown, the stator block 311 and the pole block 315 may be coupled in a stepwise manner.
  • The coupling surface 311 a of the stator block 311 and the coupling surface 315 a of the pole block 315, except the coupling groove 311 b and the coupling protrusion 315 b, are formed to be flat, thereby preventing an air gap between the stator block 311 and the pole block 315. This prevents magnetic leakage between the stator block 311 and the pole block 315, thereby leading to an increase in motor performance.
  • A first pole portion 311 c having an increasing cross-sectional area is formed at a distal end of the second magnetic path 313 of the stator block 311, i.e., a distal end of the air gap portion 31 a, and a second pole portion 315 c having an increasing cross-sectional area is formed at a distal end of the pole block 315, corresponding to the first pole portion 311 c of the stator block 311.
  • The mover 32 may include a magnet holder 321 having a cylindrical shape and a plurality of magnets 325 attached onto an outer circumferential surface of the magnet holder 321 in a circumferential direction to form a magnetic flux together with the coil 35.
  • The magnetic holder 321 may be formed of a non-magnetic substance in order to prevent flux leakage; however, it is not limited thereto. The outer circumferential surface of the magnetic holder 321 may be formed in a circular shape so that the magnets 325 are in line contact therewith and adhered thereto. Also, a magnet mounting groove (not shown) may be formed in a strip shape on the outer circumferential surface of the magnet holder 321 so as to insert the magnets 325 therein and support them in the motion direction.
  • The magnets 325 may be formed in a hexahedral shape and adhered one by one to the outer circumferential surface of the magnet holder 321. In the case of attaching the magnets 325 one by one, supporting members (not shown), such as fixing rings or a tape made up of a composite material.
  • Although the magnets 325 may be serially adhered in a circumferential direction to the outer circumferential surface of the magnet holder 321, it is preferable that the magnets 325 are adhered at predetermined intervals, i.e., between the stator blocks in a circumferential direction to the outer circumferential surface of the magnet holder 321 to minimize the use of the magnets, because the stator 31 comprises a plurality of stator blocks 311 and the plurality of stator blocks 311 are arranged at predetermined intervals in the circumferential direction. In this case, the magnets 325 are preferably formed to have a length corresponding to the air gap length of the magnetic holder 321, i.e., the circumferential length of the air gap.
  • Preferably, the magnet 325 may be configured such that its length in a motion direction is not shorter than a length of the air gap portion 31 a in the motion direction, more particularly, longer than the length of the air gap portion 31 a in the motion direction. At its initial position or during its operation, the magnet 325 may be disposed such that at least one end thereof is located inside the air gap portion 31 a, in order to ensure a stable reciprocating motion.
  • Moreover, though only one magnet 325 may be disposed in the motion direction, a plurality of magnets 325 may be disposed in the motion direction in some cases. In addition, the magnets may be disposed in the motion direction so that an N pole and an S pole correspond to each other.
  • Although the above-described reciprocating motor may be configured such that the stator has one air gap portion 314 as shown in FIG. 5, it may be configured such that in some cases the stator has air gap portions 31 a and 31 c on both sides of the coil in the reciprocating direction as shown in FIG. 6. In this case, too, the mover 32 may be formed in the same manner as the foregoing embodiment.
  • In the above-stated reciprocating compressor, it is required to reduce a frictional loss between the cylinder and the piston to improve the performance of the compressor. To this end, there has been conventionally known a gas bearing which lubricates between the cylinder and the piston by gas force by bypassing a part of compressed gas between an inner circumferential surface of the cylinder and an outer circumferential surface of the piston. In this case, gas flow paths with a small diameter may be formed in the cylinder, or a sintered porous material member may be provided on the inner circumferential surface of the cylinder.
  • As described above, in the case of forming gas flow paths with a small diameter in the cylinder, however, it is difficult to form the gas flow paths as fine pores, and impurities such as iron powder produced during the operation of the compressor may block the fine gas flow paths. Then, some of the gas flow paths are blocked and a gas force cannot be uniformly applied in a circumferential direction of the piston.
  • Moreover, in the case that a sintered porous material member is inserted into the inner circumferential surface of the cylinder, the porous material member may be abraded upon initial startup before the formation of the gas bearing because of high manufacturing cost of the porous material member and low abrasion resistance thereof, and therefore the lifespan of the porous material member may be degraded. Also, it is difficult to properly regulate the distribution of pores because of the characteristics of the porous material member, which can make it difficult to design the gas bearing so as to properly seal and lubricate a portion between the cylinder and the piston.
  • Further, in the case that the exits of the gas flow paths are formed in the cylinder, suction loss occurs as the outlets of the gas flow paths are exposed to the compression space during a suction stroke to thus cause a high-pressure refrigerant to enter the compression space. On the other hand, in the case that the inlets of the gas flow paths are formed in the piston, gas from the gas bearing flows backward to the compression space as the inlets of the gas flow paths are exposed to the compression space during a suction stroke.
  • Taking this into consideration, the gas bearing according to this embodiment allows a high-pressure compressed gas to be uniformly distributed between the cylinder and the piston, by forming gas flow paths in the cylinder and coupling a gas guide member having gas through holes to the outer circumferential surface of the piston to uniformly distribute and supply a high-pressure compressed gas guided through the gas flow paths between the cylinder and the piston.
  • As shown in FIGS. 7 to 11, in the case that gas flow paths are formed in the piston 42, the gas flow paths are not exposed to the suction space even when the piston performs a suction stroke, thereby preventing a suction loss.
  • For example, the gas flow paths 401 may comprise a cylinder side gas flow path 402 formed at the cylinder 41 and a piston side gas flow path 403 communicating with the cylinder side gas flow path 402 and formed at the piston 42.
  • The cylinder side gas flow path 402 may comprises at least one gas inlet opening 411 c formed in a reciprocating direction of the piston 42 on a front end surface of the discharge side of the cylinder 41 and a gas pocket 411 d formed on the inner circumferential surface of the cylinder 41, with its side wall surface communicating with the gas inlet opening 411 c. The cross-sectional area of the gas pocket 411 d may be much greater than the cross-sectional area of the gas inlet opening 411 c.
  • The piston side gas flow path 403 may comprise a gas communication opening 423 a formed at a center portion of the gas guide member 423 and communicating with the gas pocket 411 d of the cylinder 41, a gas guide groove 421 a formed on the outer circumferential surface of the piston body 421 and communicating with the gas communication opening 423 a, and a plurality of bearing holes 423 b formed on both end portions of the gas guide member 423 so as to supply gas guided through the gas guide groove 421 a between the cylinder 41 and the piston 42.
  • The gas guide groove 421 a has an annular shape. Preferably, the gas guide groove 421 a has a width in the reciprocating direction much larger than the width of the gas communication opening 423 a in the reciprocating direction so that gas introduced into the gas guide groove 421 a is uniformly distributed over the entire bearing surface, that is, the length of the gas guide groove 421 a is as similar to the width of the gas guide member 423 in the reciprocating direction as possible to increase the baring surface area as much as possible.
  • Preferably, the bearing holes 423 b have a significantly smaller size than the gas communication opening 423 a to prevent excessive exposure of compressed gas.
  • An annular filter 47 may be installed on the front end of the gas inlet opening, i.e., the front end surface 411 a of the cylinder body 411 so as to prevent impurities from entering the cylinder side gas flow path 402.
  • Preferably, at least one gas diffusion groove 423 c may be further formed on an outer circumferential surface of the gas guide member 423 because a high-pressure compressed gas may be uniformly distributed over a bearing area between the cylinder 41 and the piston 42, as shown in FIG. 12.
  • The gas diffusion groove 423 c may comprise a linear groove 423 d communicating with the gas communication opening 423 a and an annular groove 423 e communicating with the linear groove 423 d and formed in an annular shape.
  • Preferably, the gas diffusion groove 423 c is formed to communicate with the gas communication opening 423 a or the bearing holes 423 b so that the compressed gas entering or introduced into the gas guide groove 421 a quickly enters the gas diffusion groove 423 c. In the drawings, unexplained reference numeral 423 f denotes a middle guide groove.
  • As described above, in the case that the gas guide member 423 is formed in a cylindrical shape and inserted and coupled to the piston body, a part of compressed gas discharged to the discharge space S2 of the discharge cover 46 enters the gas pocket 411 d through the gas inlet opening 411 c, and this compressed gas enters the gas guide groove 421 a through the gas communication opening 423 a of the gas guide member 423 and diffused in the gas guide groove 421 a, thereby supplying the compressed gas between the cylinder 41 and the piston 42 through the bearing holes 423 b of the gas guide member 423.
  • Because the bearing holes 423 b, which are the outlets of the gas flow paths, are formed in the piston 42, the outlets of the gas flow paths are not exposed to the compression space S1 during a suction stroke of the piston 42, thereby preventing a degradation in the performance of the compressor caused by a suction loss.
  • Also, in the case that a gas inlet opening is formed in the piston 42, the gas inlet opening has to communicate with the compression space. Thus, it is necessary to install a check valve to prevent a refrigerant sucked into the compression space from leaking into the gas inlet opening when the piston performs a suction stroke, and this may increase manufacturing costs. Nevertheless, this embodiment allows a reduction in manufacturing costs because the gas inlet opening is formed at the cylinder side and makes the process easier.
  • Moreover, the gas guide member 423 has a simple cylindrical shape, and hence the manufacturing costs can be reduced, compared to the porous material member.
  • The above-described reciprocating compressor with the gas bearing according to this embodiment is devised to reduce material costs and the number of assembly processes by using not plate springs but coil springs as the resonant springs, and avoiding the use of a connecting bar or link.
  • In this embodiment, the above-described reciprocating compressor with the gas bearing according to this embodiment is devised to reduce material costs and the number of assembly processes by using not plate springs but coil springs as the resonant springs, and avoiding the use of a connecting bar or link.
  • As shown in FIG. 13, the resonant springs may comprise a first resonant spring and a second resonant spring 52 which are respectively provided on both front and back sides of a spring supporter 53 coupled to the mover 32 and the piston 42.
  • The first resonant spring 51 and the second resonant spring 52 each are provided in plural and arranged in a circumferential direction. However, either the first resonant spring 51 or the second resonant spring 52 may be provided in plural, and the other resonant spring may be provided in singular.
  • If the first resonant spring 51 and the second resonant spring 52 are compressed coil springs as described above, a side force may be produced when the resonant springs 51 and 52 are expanded. Accordingly, the resonant springs 51 and 52 may be arranged so as to offset a side force or torsion moment of the resonant springs 51 and 52.
  • For example, as shown in FIG. 14, in the case that the first resonant spring 51 and the second resonant spring 52 are arranged alternately by twos in a circumferential direction, distal ends of the first and second resonant springs 51 and 52 are wound at the same position in opposite directions (counterclockwise) relative to the center of the piston 42, and the resonant springs on the same side positioned in their respective diagonal directions are arranged to symmetrically engage each other so that a side force and a torsion moment are produced in opposite directions.
  • Also, the first resonant spring 51 and the second resonant spring 52 may be arranged to symmetrically engage the distal ends of the resonant springs with each other so that a side force and a torsion moment are produced in opposite directions along the circumferential direction.
  • Although not shown, if the number of first resonant springs 51 is odd, they are arranged so that lines orthogonal to the front end surfaces of the springs meet at one point to thus offset a side force and a torsion moment.
  • Preferably, spring fixing protrusions 531 and 532 are respectively formed on a frame or spring supporter 53 to which the ends of the first and second resonant springs 51 and 52 are fixed, in order for the resonant springs 51 and 52 to be forcibly fit and fixed to the spring fixing protrusions 53, because the engaging resonant springs are prevented from turning.
  • The number of first resonant springs 51 may be equal to or different from the number of second resonant springs 52 as long as the first resonant spring 51 and the second resonant spring 52 have the same elasticity.
  • In the case of using compression coil springs as the resonant springs 51 and 52, as described above, a side force and a torsion moment may be produced when expanded because of the characteristics of the compression coil springs, and therefore the forward movement of the piston 42 may be distorted. In this embodiment, however, the plurality of first resonant springs 51 and second resonant springs 52 are arranged to be wound in opposite directions, and therefore the side force and torsion moment produced from the resonant springs 51 and 52 are offset by the diagonally corresponding resonant springs. Accordingly, the forward movement of the piston 42 can be maintained, and abrasion of surfaces contacting the resonant springs 51 and 52 can be prevented.
  • Moreover, the compressor can be installed in a standing type, as well as in a lateral type because compression coil springs, which have a small longitudinal placement, are used as the resonant springs 51 and 52. The manufacturing costs and the number of assembly processes can be reduced because no connecting bar or link is required.
  • Although the foregoing embodiments have been described with respect to the case where the cylinder is inserted into the stator of the reciprocating motor, the resonant springs may be used in the same manner as above even when the reciprocating motor is mechanically coupled to a compression unit comprising the cylinder with a predetermined interval therefrom. A detailed description of which will be omitted.
  • Further, in the foregoing embodiments, the piston is configured to reciprocate and the resonant springs are respectively provided on both sides of the piston in the motion direction. In some cases, however, the cylinder may be configured to reciprocate and the resonant springs may be provided on both sides of the cylinder. In this case, too, the resonant springs may be formed as a plurality of compression coil springs, as in the foregoing embodiments, and the plurality of compression coil springs may be arranged in the same manner as the foregoing embodiments. A detailed description of which will be omitted.

Claims (18)

1. A reciprocating compressor comprising:
a cylinder having a compression space;
a piston inserted into the compression space and reciprocating relative to the cylinder;
a discharge valve configured to be attachable to and detachable from a front end surface of the cylinder and selectively opening and closing the compression space of the cylinder; and
a discharge cover having a discharge space to selectively communicate with the compression space,
wherein the cylinder has a cylinder side gas flow path for guiding refrigerant discharged to the discharge space to an inner circumferential surface of the cylinder, and
the piston has a piston side gas flow path communicating with the cylinder side gas flow path to distribute and supply the refrigerant guided through the cylinder side gas flow path between the cylinder and the piston.
2. The reciprocating compressor of claim 1, wherein the cylinder side gas flow path comprises:
at least one gas inlet opening formed in a reciprocating direction of the piston on a front end surface of the cylinder; and
a gas pocket formed in an annular shape on the inner circumferential surface of the cylinder to communicate with the gas inlet opening.
3. The reciprocating compressor of claim 2, wherein an inlet of the gas inlet opening is formed at a greater distance than the radius of the discharge valve relative to the center of the discharge valve.
4. The reciprocating compressor of claim 1, wherein the piston side gas flow path comprises:
a gas communication opening formed on an outer circumferential surface of the piston to correspond to the cylinder side gas flow path;
a gas guide groove formed in an annular shape to communicate with the gas communication opening; and
a bearing hole communicating with the gas guide groove and penetrated from at least one side of the gas communication opening toward a bearing surface of the cylinder and the piston.
5. The reciprocating compressor of claim 4, wherein the width of the gas guide groove is greater than the width of the gas communication opening with respect to the reciprocating direction of the piston.
6. The reciprocating compressor of claim 4, wherein at least one gas communication opening and at least one bearing hole are respectively formed along a circumferential direction, and
the bearing hole has a smaller size than the gas communication opening.
7. The reciprocating compressor of claim 4, wherein the piston comprises:
a piston body; and
a gas guide member inserted and coupled to an outer circumferential surface of the piston body at a predetermined interval therefrom so as to form the gas guide groove,
wherein the gas communication opening and the bearing hole are formed in the gas guide member.
8. The reciprocating compressor of claim 7, wherein a gas diffusion groove having a larger surface area than the surface area of the bearing hole is further formed on an outer circumferential surface of the gas guide member.
9. The reciprocating compressor of claim 8, wherein the gas diffusion groove communicates with at least either one of the gas communication opening and the bearing hole.
10. The reciprocating compressor of claim 1, wherein either the cylinder or the piston is coupled a reciprocating mover of a reciprocating motor,
the mover is elastically supported by resonant springs, and
the resonant springs are formed as compression coil springs and respectively provided on both front and back sides of the mover in the reciprocating direction.
11. A reciprocating compressor comprising:
a cylinder having a compression space and gas flow paths for introducing gas in the compression space to an inner circumferential surface;
a piston inserted into the compression space and reciprocating relative to the cylinder;
a discharge valve configured to be attachable to and detachable from a front end surface of the cylinder and selectively opening and closing the compression space of the cylinder; and
a discharge cover having a discharge space to selectively communicate with the compression space,
the piston comprising:
a piston body having a gas guide groove having a predetermined depth formed on an outer circumferential surface; and
a gas guide member inserted and coupled to the outer circumferential surface of the piston body so as to open the gas guide groove,
wherein a gas communication opening is formed in the gas guide member to allow the gas flow paths of the cylinder and the gas guide groove of the piston to communicate with each other, and a bearing hole is formed at one side of the gas communication opening to allow the gas guide groove and an bearing surface between the cylinder and the piston to communicate with each other.
12. The reciprocating compressor of claim 11, wherein a gas diffusion groove having a larger surface area than the surface area of the bearing hole is further formed on an outer circumferential surface of the gas guide member.
13. The reciprocating compressor of claim 12, wherein the gas diffusion groove communicates with at least either one of the gas communication opening and the bearing hole.
14. The reciprocating compressor of claim 11, wherein the width of the gas guide groove is greater than the width of the gas communication opening with respect to the reciprocating direction of the piston.
15. The reciprocating compressor of claim 11, wherein at least one gas communication opening and at least one bearing hole are respectively formed along a circumferential direction, and
the bearing hole has a smaller size than the gas communication opening.
16. The reciprocating compressor of claim 11, wherein the cylinder side gas flow path comprises:
at least one gas inlet opening formed in a reciprocating direction of the piston on a front end surface of the cylinder; and
a gas pocket formed in an annular shape on the inner circumferential surface of the cylinder to communicate with the gas inlet opening.
17. The reciprocating compressor of claim 16, wherein an inlet of the gas inlet opening is formed at a greater distance than the radius of the discharge valve relative to the center of the discharge valve.
18. The reciprocating compressor of claim 1, wherein either the cylinder or the piston is coupled a reciprocating mover of a reciprocating motor,
the mover is elastically supported by resonant springs, and
the resonant springs are formed as compression coil springs and respectively provided on both front and back sides of the mover in the reciprocating direction.
US13/602,951 2011-09-06 2012-09-04 Reciprocating compressor Abandoned US20130058816A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110090322A KR101860340B1 (en) 2011-09-06 2011-09-06 Reciprocating compressor
KR10-2011-0090322 2011-09-06

Publications (1)

Publication Number Publication Date
US20130058816A1 true US20130058816A1 (en) 2013-03-07

Family

ID=46758684

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/602,951 Abandoned US20130058816A1 (en) 2011-09-06 2012-09-04 Reciprocating compressor

Country Status (5)

Country Link
US (1) US20130058816A1 (en)
EP (1) EP2568172B1 (en)
KR (1) KR101860340B1 (en)
CN (1) CN102979698B (en)
ES (1) ES2613072T3 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170070131A1 (en) * 2015-09-08 2017-03-09 Apple Inc. Linear Actuators for Use in Electronic Devices
US20170314542A1 (en) * 2016-04-28 2017-11-02 Lg Electronics Inc. Linear compressor
US9932975B2 (en) 2015-01-16 2018-04-03 Haier Us Appliance Solutions, Inc. Compressor
EP3346127A1 (en) * 2017-01-10 2018-07-11 LG Electronics Inc. Linear compressor
CN109595136A (en) * 2018-12-21 2019-04-09 中国电子科技集团公司第十六研究所 A kind of linear household air-conditioner compressor
US10268272B2 (en) 2016-03-31 2019-04-23 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
US10276001B2 (en) 2013-12-10 2019-04-30 Apple Inc. Band attachment mechanism with haptic response
US10353467B2 (en) 2015-03-06 2019-07-16 Apple Inc. Calibration of haptic devices
US20190309743A1 (en) * 2018-04-10 2019-10-10 Lg Electronics Inc. Linear compressor
US10459521B2 (en) 2013-10-22 2019-10-29 Apple Inc. Touch surface for simulating materials
US10475300B2 (en) 2009-09-30 2019-11-12 Apple Inc. Self adapting haptic device
US10481691B2 (en) 2015-04-17 2019-11-19 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US10490035B2 (en) 2014-09-02 2019-11-26 Apple Inc. Haptic notifications
US10545604B2 (en) 2014-04-21 2020-01-28 Apple Inc. Apportionment of forces for multi-touch input devices of electronic devices
US10576873B2 (en) 2014-03-03 2020-03-03 Koito Manufacturing Co., Ltd. Vehicle lamp and vehicle lamp control system
US10599223B1 (en) 2018-09-28 2020-03-24 Apple Inc. Button providing force sensing and/or haptic output
US10609677B2 (en) 2016-03-04 2020-03-31 Apple Inc. Situationally-aware alerts
US10622538B2 (en) 2017-07-18 2020-04-14 Apple Inc. Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body
US10651716B2 (en) 2013-09-30 2020-05-12 Apple Inc. Magnetic actuators for haptic response
US10691211B2 (en) 2018-09-28 2020-06-23 Apple Inc. Button providing force sensing and/or haptic output
US10890169B2 (en) * 2017-02-10 2021-01-12 Lg Electronics Inc. Linear compressor
US11380470B2 (en) 2019-09-24 2022-07-05 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
US11482896B2 (en) * 2019-01-29 2022-10-25 Lg Electronics Inc. Compressor provided with a motor
US11809631B2 (en) 2021-09-21 2023-11-07 Apple Inc. Reluctance haptic engine for an electronic device
US11977683B2 (en) 2021-03-12 2024-05-07 Apple Inc. Modular systems configured to provide localized haptic feedback using inertial actuators

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106535726B (en) 2014-03-19 2019-07-05 路易吉·拉瓦扎股份公司 For preparing the machine of liquid product especially by capsule
KR102612940B1 (en) 2017-02-03 2023-12-13 엘지전자 주식회사 Reciprocating compressor
KR102188240B1 (en) 2019-01-04 2020-12-08 (주)테크니컬코리아 Reciprocating compressor
CN110017258A (en) * 2019-05-20 2019-07-16 台州市星亚科技股份有限公司 A kind of straight line air compressor machine
KR102269942B1 (en) * 2020-01-15 2021-06-28 엘지전자 주식회사 Compressor
KR102357646B1 (en) * 2020-07-20 2022-02-07 엘지전자 주식회사 Linear compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455974A (en) * 1981-01-08 1984-06-26 Cummins Engine Company, Inc. Gas bearing piston assembly
US6293184B1 (en) * 1999-09-02 2001-09-25 Sunpower, Inc. Gas bearing and method of making a gas bearing for a free piston machine
US6966761B1 (en) * 1999-10-21 2005-11-22 Fisher & Paykel Appliances Limited Linear compressor with aerostatic gas bearing passage between cylinder and cylinder liner
US20100098356A1 (en) * 2006-11-07 2010-04-22 BSH Bosch und Siemens Hausgeräte GmbH Gas thrust bearing and associated production method
US20100316513A1 (en) * 2007-10-24 2010-12-16 Lg Electronics Inc. Linear compressor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545738A (en) * 1984-02-03 1985-10-08 Helix Technology Corporation Linear motor compressor with clearance seals and gas bearings
KR100310767B1 (en) * 1994-04-14 2002-02-19 구자홍 Device for keeping clearance of piston in linear compressor
KR100301509B1 (en) * 1998-12-31 2001-11-15 구자홍 Structure for discharging oil in linear compressor
JP2002122071A (en) * 2000-10-17 2002-04-26 Matsushita Refrig Co Ltd Linear compressor
BRPI0504326A (en) * 2005-10-11 2007-06-26 Brasil Compressores Sa aerostatic bearing fluid compressor, aerostatic bearing compressor control system and aerostatic bearing compressor control method
KR20070075909A (en) * 2006-01-16 2007-07-24 엘지전자 주식회사 A oil valve assembly used in a linear compressor
DE102006042021A1 (en) * 2006-09-07 2008-03-27 BSH Bosch und Siemens Hausgeräte GmbH Compressor with gas-bearing piston
DE102006052427A1 (en) * 2006-11-07 2008-05-08 BSH Bosch und Siemens Hausgeräte GmbH Gas bearing and bearing bush for it
DE102006052430A1 (en) * 2006-11-07 2008-05-08 BSH Bosch und Siemens Hausgeräte GmbH Compressor with gas-bearing piston
DE102006052447A1 (en) * 2006-11-07 2008-05-08 BSH Bosch und Siemens Hausgeräte GmbH Linear compressor and gas pressure bearing for it
WO2008108752A1 (en) * 2007-03-02 2008-09-12 Pv-Med, Inc. Method of fabricating a compressor having planar spring and gas bearing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455974A (en) * 1981-01-08 1984-06-26 Cummins Engine Company, Inc. Gas bearing piston assembly
US6293184B1 (en) * 1999-09-02 2001-09-25 Sunpower, Inc. Gas bearing and method of making a gas bearing for a free piston machine
US6966761B1 (en) * 1999-10-21 2005-11-22 Fisher & Paykel Appliances Limited Linear compressor with aerostatic gas bearing passage between cylinder and cylinder liner
US20100098356A1 (en) * 2006-11-07 2010-04-22 BSH Bosch und Siemens Hausgeräte GmbH Gas thrust bearing and associated production method
US20100316513A1 (en) * 2007-10-24 2010-12-16 Lg Electronics Inc. Linear compressor

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11605273B2 (en) 2009-09-30 2023-03-14 Apple Inc. Self-adapting electronic device
US11043088B2 (en) 2009-09-30 2021-06-22 Apple Inc. Self adapting haptic device
US10475300B2 (en) 2009-09-30 2019-11-12 Apple Inc. Self adapting haptic device
US10651716B2 (en) 2013-09-30 2020-05-12 Apple Inc. Magnetic actuators for haptic response
US10459521B2 (en) 2013-10-22 2019-10-29 Apple Inc. Touch surface for simulating materials
US10276001B2 (en) 2013-12-10 2019-04-30 Apple Inc. Band attachment mechanism with haptic response
US10576873B2 (en) 2014-03-03 2020-03-03 Koito Manufacturing Co., Ltd. Vehicle lamp and vehicle lamp control system
US10545604B2 (en) 2014-04-21 2020-01-28 Apple Inc. Apportionment of forces for multi-touch input devices of electronic devices
US10490035B2 (en) 2014-09-02 2019-11-26 Apple Inc. Haptic notifications
US9932975B2 (en) 2015-01-16 2018-04-03 Haier Us Appliance Solutions, Inc. Compressor
US10353467B2 (en) 2015-03-06 2019-07-16 Apple Inc. Calibration of haptic devices
US10481691B2 (en) 2015-04-17 2019-11-19 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US11402911B2 (en) 2015-04-17 2022-08-02 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US20170070131A1 (en) * 2015-09-08 2017-03-09 Apple Inc. Linear Actuators for Use in Electronic Devices
US10566888B2 (en) * 2015-09-08 2020-02-18 Apple Inc. Linear actuators for use in electronic devices
US10609677B2 (en) 2016-03-04 2020-03-31 Apple Inc. Situationally-aware alerts
US10268272B2 (en) 2016-03-31 2019-04-23 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
US10809805B2 (en) 2016-03-31 2020-10-20 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
US20170314542A1 (en) * 2016-04-28 2017-11-02 Lg Electronics Inc. Linear compressor
US10711773B2 (en) * 2016-04-28 2020-07-14 Lg Electronics Inc. Linear compressor
EP3346127A1 (en) * 2017-01-10 2018-07-11 LG Electronics Inc. Linear compressor
US10968907B2 (en) * 2017-01-10 2021-04-06 LG Electronics Inc. and Industry-Academic Cooperation Linear compressor
US20180195502A1 (en) * 2017-01-10 2018-07-12 Lg Electronics Inc. Linear compressor
CN108302005A (en) * 2017-01-10 2018-07-20 Lg电子株式会社 Linearkompressor
US11319941B2 (en) 2017-02-10 2022-05-03 Lg Electronics Inc. Linear compressor
US10890169B2 (en) * 2017-02-10 2021-01-12 Lg Electronics Inc. Linear compressor
US10622538B2 (en) 2017-07-18 2020-04-14 Apple Inc. Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body
EP3553313A1 (en) * 2018-04-10 2019-10-16 LG Electronics Inc. Linear compressor
US10935017B2 (en) * 2018-04-10 2021-03-02 Lg Electronics Inc. Linear compressor
US20190309743A1 (en) * 2018-04-10 2019-10-10 Lg Electronics Inc. Linear compressor
US10599223B1 (en) 2018-09-28 2020-03-24 Apple Inc. Button providing force sensing and/or haptic output
US10691211B2 (en) 2018-09-28 2020-06-23 Apple Inc. Button providing force sensing and/or haptic output
CN109595136A (en) * 2018-12-21 2019-04-09 中国电子科技集团公司第十六研究所 A kind of linear household air-conditioner compressor
US11482896B2 (en) * 2019-01-29 2022-10-25 Lg Electronics Inc. Compressor provided with a motor
US11380470B2 (en) 2019-09-24 2022-07-05 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
US11763971B2 (en) 2019-09-24 2023-09-19 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
US11977683B2 (en) 2021-03-12 2024-05-07 Apple Inc. Modular systems configured to provide localized haptic feedback using inertial actuators
US11809631B2 (en) 2021-09-21 2023-11-07 Apple Inc. Reluctance haptic engine for an electronic device

Also Published As

Publication number Publication date
CN102979698B (en) 2016-01-27
KR101860340B1 (en) 2018-05-23
EP2568172B1 (en) 2016-11-02
CN102979698A (en) 2013-03-20
EP2568172A3 (en) 2015-07-01
ES2613072T3 (en) 2017-05-22
EP2568172A2 (en) 2013-03-13
KR20130026881A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
US20130058816A1 (en) Reciprocating compressor
US9518573B2 (en) Reciprocating compressor with gas bearing
US9353737B2 (en) Reciprocating motor having inner and outer stators integrally formed and reciprocating compressor having a reciprocating motor
US9845797B2 (en) Reciprocating compressor and method for driving same
KR20150031723A (en) Reciprocating compressor
KR102234726B1 (en) A linear compressor
KR102306857B1 (en) A linear compressor
US20210095655A1 (en) Linear compressor
KR101265133B1 (en) Reciprocating compressor with gas bearing
KR102178065B1 (en) A linear compressor
KR102087140B1 (en) Reciprocating compressor
KR101265132B1 (en) Reciprocating Compressor
KR101860339B1 (en) Reciprocating compressor
KR101376614B1 (en) Reciprocating Compressor
KR102043153B1 (en) Linear compressor
KR101907469B1 (en) Reciprocating compressor
KR20090048174A (en) Reciprocating compressor
KR20180088613A (en) Reciprocating compressor
KR20130040618A (en) Reciprocating compressor

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIM, DONGHAN;REEL/FRAME:028894/0020

Effective date: 20120831

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION