US20110027613A1 - Metal-coated steel strip - Google Patents

Metal-coated steel strip Download PDF

Info

Publication number
US20110027613A1
US20110027613A1 US12/811,212 US81121209A US2011027613A1 US 20110027613 A1 US20110027613 A1 US 20110027613A1 US 81121209 A US81121209 A US 81121209A US 2011027613 A1 US2011027613 A1 US 2011027613A1
Authority
US
United States
Prior art keywords
coating
particles
steel strip
alloy
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/811,212
Other languages
English (en)
Inventor
Qiyang Liu
Wayne Renshaw
Joe Williams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BlueScope Steel Ltd
Original Assignee
BlueScope Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41064679&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20110027613(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from AU2008901224A external-priority patent/AU2008901224A0/en
Application filed by BlueScope Steel Ltd filed Critical BlueScope Steel Ltd
Assigned to BLUESCOPE STEEL LIMITED reassignment BLUESCOPE STEEL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIU, QIYANG, RENSHAW, WAYNE, WILLIAMS, JOE
Publication of US20110027613A1 publication Critical patent/US20110027613A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]

Definitions

  • the present invention relates to strip, typically steel strip, which has a corrosion-resistant metal alloy coating.
  • the present invention relates particularly to a corrosion-resistant metal alloy coating that contains aluminium-zinc-silicon-magnesium as the main elements in the alloy, and is hereinafter referred to as an “Al—Zn—Si—Mg alloy” on this basis.
  • the alloy coating may contain other elements that are present as deliberate alloying additions or as unavoidable impurities.
  • Al—Zn—Si—Mg alloy is understood to cover alloys that contain such other elements and the other elements may be deliberate alloying additions or unavoidable impurities.
  • the present invention relates particularly but not exclusively to steel strip that is coated with the above-described Al—Zn—Si—Mg alloy and can be cold formed (e.g. by roll forming) into an end-use product, such as roofing products.
  • the Al—Zn—Si—Mg alloy comprises the following ranges in % by weight of the elements aluminium, zinc, silicon, and magnesium:
  • the corrosion-resistant metal alloy coating is formed on steel strip by a hot dip coating method.
  • steel strip In the conventional hot-dip metal coating method, steel strip generally passes through one or more heat treatment furnaces and thereafter into and through a bath of molten metal alloy held in a coating pot.
  • the heat treatment furnace that is adjacent a coating pot has an outlet snout that extends downwardly to a location below the upper surface of the bath.
  • the metal alloy is usually maintained molten in the coating pot by the use of heating inductors.
  • the strip usually exits the heat treatment furnaces via an outlet end section in the form of an elongated furnace exit chute or snout that dips into the bath. Within the bath the strip passes around one or more sink rolls and is taken upwardly out of the bath and is coated with the metal alloy as it passes through the bath.
  • the metal alloy coated strip After leaving the coating bath the metal alloy coated strip passes through a coating thickness control station, such as a gas knife or gas wiping station, at which its coated surfaces are subjected to jets of wiping, gas to control the thickness of the coating.
  • a coating thickness control station such as a gas knife or gas wiping station, at which its coated surfaces are subjected to jets of wiping, gas to control the thickness of the coating.
  • the metal alloy coated strip then passes through a cooling section and is subjected to forced cooling.
  • the cooled metal alloy coated strip may thereafter be optionally conditioned by passing the coated strip successively through a skin pass rolling section (also known as a temper rolling section) and a tension levelling section.
  • the conditioned strip is coiled at a coiling station.
  • a 55% Al—Zn alloy coating is a well known metal alloy coating for steel strip. After solidification, a 55% Al—Zn alloy coating normally consists of ⁇ -Al dendrites and a ⁇ -Zn phase in the inter-dendritic regions of the coating.
  • silicon it is known to add silicon to the coating alloy composition to prevent excessive alloying between the steel substrate and the molten coating in the hot-dip coating method.
  • a portion of the silicon takes part in a quaternary alloy layer formation but the majority of the silicon precipitates as needle-like, pure silicon particles during solidification. These needle-like silicon particles are also present in the inter-dendritic regions of the coating.
  • Mg when Mg is included in a 55% Al—Zn—Si alloy coating composition, Mg brings about certain beneficial effects on product performance, such as improved cut-edge protection, by changing the nature of corrosion products formed.
  • Mg reacts with Si to form a Mg 2 Si phase and that the formation of the Mg 2 Si phase compromises the above-mentioned beneficial effects of Mg in a number of ways.
  • the Mg 2 Si phase forms as large particles in relation to typical coating thicknesses and can provide a path for rapid corrosion where particles extend from a coating surface to an alloy layer adjacent the steel strip.
  • the Mg 2 Si particles tend to be brittle and sharp particles and provide both an initiation and propagation path for cracks that form on bending of coated products formed from coated strip. Increased cracking compared to Mg-free coatings can result in more rapid corrosion of the coatings.
  • the present invention is an Al—Zn—Si—Mg alloy coated strip that has Mg 2 Si particles in the coating microstructure with the distribution of Mg 2 Si particles being such that a surface region of the coating has only a small proportion of Mg 2 Si particles or is at least substantially free of any Mg 2 Si particles.
  • surface region is understood herein to mean a region that extends inwardly from the exposed surface of a coating.
  • an Al—Zn—Si—Mg alloy coated steel strip that comprises a coating of an Al—Zn—Si—Mg alloy on a steel strip, with the microstructure of the coating comprising Mg 2 Si particles, and with the distribution of the Mg 2 Si particles being such that there is only a small proportion of Mg 2 Si particles or at least substantially no Mg 2 Si particles in a surface region of the coating.
  • the small proportion of Mg 2 Si particles in the surface region of the coating may be no more than 10 wt. % of the Mg 2 Si particles.
  • the Al—Zn—Si—Mg alloy comprises the following ranges in % by weight of the elements aluminium, zinc, silicon, and magnesium:
  • the Al—Zn—Si—Mg alloy may also contain other elements, such as, by way of example any one or more of iron, vanadium, chromium, and strontium.
  • the surface region has a thickness that is at least 5% of the total thickness of the coating.
  • the surface region has a thickness that is less than 30% of the total thickness of the coating.
  • the surface region has a thickness that is less than 20% of the total thickness of the coating.
  • the surface region has a thickness that is 5-30% of the total thickness of the coating.
  • At least a substantial proportion of the Mg 2 Si particles are in a central region of the coating.
  • the substantial proportion of the Mg 2 Si particles in the central region of the coating may be at least 80 wt. % of the Mg 2 Si particles.
  • the coating thickness is less than 30 ⁇ m.
  • the coating thickness is greater than 7 ⁇ m.
  • the coating microstructure may also include a region that is adjacent the steel strip that has only a small proportion of Mg 2 Si particles or is at least substantially free of any Mg 2 Si particles, whereby the Mg 2 Si particles in the coating microstructure are at least substantially confined to a central or core region of the coating.
  • the coating contains more than 250 ppm Sr, with the Sr addition promoting the formation of the above distribution of Mg 2 Si particles in the coating.
  • the coating contains more than 500 ppm Sr.
  • the coating contains more than 1000 ppm Sr.
  • the coating contains less than 3000 ppm Sr.
  • the Al—Zn—Si—Mg—Sr alloy coating may contain other elements as deliberate additions or as unavoidable impurities.
  • a hot-dip coating method for forming a coating of a corrosion-resistant Al—Zn—Si—Mg alloy on a steel strip that is characterised by passing the steel strip through a hot dip coating bath that contains Al, Zn, Si, Mg, and more than 250 ppm Sr and optionally other elements and forming an alloy coating on the strip that has Mg 2 Si particles in the coating microstructure with the distribution of the Mg 2 Si particles being such that there is only a small proportion of Mg 2 Si particles or substantially no Mg 2 Si particles in a surface region of the coating.
  • the coating contains more than 500 ppm Sr.
  • the coating contains more than 1000 ppm Sr.
  • the molten bath contains less than 3000 ppm Sr.
  • the Al—Zn—Si—Mg—Sr alloy coating may contain other elements as deliberate additions or as unavoidable impurities.
  • a hot-dip coating method for forming a coating of a corrosion-resistant Al—Zn—Si—Mg alloy on a steel strip that is characterised by passing the steel strip through a hot dip coating bath that contains Al, Zn, Si, and Mg and optionally other elements and forming an alloy coating on the strip, and cooling coated strip exiting the coating bath during solidification of the coating at a rate that is controlled so that the distribution of Mg 2 Si particles in the coating microstructure is such that there is only a small proportion of Mg 2 Si particles or substantially no Mg 2 Si particles in a surface region of the coating.
  • the small proportion of Mg 2 Si particles in the surface region of the coating may be no more than 10 wt. % of the Mg 2 Si particles.
  • the method comprises selecting the cooling rate for coated strip exiting the coating bath to be at less than a threshhold cooling rate.
  • the selection of the required cooling rate is related to the coating thickness (or coating mass).
  • the method comprises selecting the cooling rate for coated strip exiting the coating bath to be less than 80° C./sec for coating masses up to 75 grams per square metre of strip surface per side.
  • the method comprises selecting the cooling rate for coated strip exiting the coating bath to be less than 50° C./sec for coating masses 75-100 grams per square metre of strip surface per side.
  • the method comprises selecting the cooling rate for coated strip exiting the coating bath to at least 11° C./sec.
  • the coating bath and the coating on steel strip coated in the bath may contain Sr.
  • a hot-dip coating method for forming a coating of a corrosion-resistant Al—Zn—Si—Mg alloy on a steel strip that is characterised by passing the steel strip through a hot dip coating bath that contains Al, Zn, Si, and Mg and optionally other elements and forming an alloy coating on the strip with minimal variation in the thickness of the coating so that the distribution of Mg 2 Si particles in the coating microstructure is such that there is only a small proportion of Mg 2 Si particles or substantially no Mg 2 Si particles in a surface region of the coating.
  • the coating thickness variation should be no more than 40% in any given 5 mm diameter section of the coating.
  • the coating thickness variation should be no more than 30% in any given 5 mm diameter section of the coating.
  • the selection of an appropriate thickness variation is related to the coating thickness (or coating mass).
  • the maximum thickness in any given 5 mm diameter section of the coating should be 27 ⁇ m.
  • the method comprises selecting the cooling rate during solidification of coated strip exiting the coating bath to be less than a threshhold cooling rate.
  • the coating bath and the coating on steel strip coated in the bath may contain Sr.
  • the hot-dip coating method may be the conventional method described above or any other suitable method.
  • the advantages of the invention include the following advantages.
  • the applicant has carried out laboratory experiments on a series of 55% Al—Zn-1.5% Si-2.0% Mg alloy compositions having up to 3000 ppm Sr coated on steel substrates.
  • FIG. 1 summarises the results of one set of experiments carried out by the applicant that illustrate the present invention.
  • the left hand side of the FIGURE comprises a top plan view of a coated steel substrate and a cross-section through the coating with the coating comprising a 55% Al—Zn-1.5% Si-2.0% Mg alloy with no Sr.
  • the coating was not formed having regard to the selection of cooling rate during solidification discussed above.
  • the right hand side of the FIGURE comprises a top plan view of a coated steel substrate and a cross-section through the coating, with the coating comprising a 55% Al—Zn-1.5% Si-2.0% Mg alloy and 500 ppm Sr.
  • the cross-section illustrates upper and lower regions at the coating surface and at the interface with the steel substrate that are completely free of Mg 2 Si particles, with the Mg 2 Si particles being confined to a central band of the coating. This is advantageous for the reasons stated above.
  • the applicant has also carried out line trials on 55% Al—Zn-1.5% Si-2.0% Mg alloy composition (not containing Sr) coated on steel strip.
  • the experiments covered a range of coating masses from 60 to 100 grams per square metre surface per side of strip, with cooling rates up to 90° C./sec.
  • the first factor is the effect of the cooling rate of the strip exiting the coating bath before completing the coating solidification.
  • the applicant found that for a AZ150 class coating (or 75 grams of coating per square metre surface per side of strip—refer to Australia Standard AS1397-2001), if the cooling rate is greater than 80° C./sec, Mg 2 Si particles formed in the surface region of the coating.
  • the cooling rate be too low, particularly below 11° C./sec, as in this case the coating develops a defective “bamboo” structure, whereby the zinc-rich phases forms a vertically straight corrosion path from the coating surface to the steel interface, which compromises the corrosion performance of the coating.
  • the cooling rate should be controlled to be less than 80° C./sec and typically in a range of 11-80° C./sec.
  • the applicant also found that for a AZ200 class coating, if the cooling rate was greater than 50° C./sec, Mg 2 Si particles formed on the surface of the coating.
  • a cooling rate of less than 50° C./sec and typically in a range of 11-50° C./sec is desirable.
  • the ⁇ -Al phase is the first phase to nucleate.
  • the ⁇ -Al phase then grows into a dendritic form.
  • Mg and Si, along with other solute elements, are rejected into the molten liquid phase and thus the remaining molten liquid in the interdendritic regions is enriched in Mg and Si.
  • the Mg 2 Si phase starts to form, which also corresponds to a temperature around 465° C.
  • region A an interdendritic region near the outer surface of the coating
  • region B another interdendritic region near the quaternary intermetallic alloy layer at the steel strip surface
  • the level of enrichment in Mg and Si is the same in region A as in region B.
  • the Mg 2 Si phase has the same tendency to nucleate in region A as in region B.
  • the principles of physical metallurgy teach us that a new phase will preferably nucleate at a site whereupon the resultant system free energy is the minimum.
  • the Mg 2 Si phase would normally nucleate preferably on the quaternary intermetallic alloy layer in region B provided the coating bath does not contain Sr (the role of Sr with Sr-containing coatings is discussed below).
  • the Mg 2 Si phase Upon nucleation in region B, the Mg 2 Si phase grows upwardly, along the molten liquid channels in the interdendritic regions, towards region A.
  • the molten liquid phase becomes depleted in Mg and Si (depending on the partition coefficients of Mg and Si between the liquid phase and the Mg 2 Si phase), compared with that in region A.
  • a diffusion couple forms between region A and region C.
  • Mg and Si in the molten liquid phase will diffuse from region A to region C.
  • region A is always enriched in Mg and Si and the tendency for the Mg 2 Si phase to nucleate in region A always exists because the liquid phase is “undercooled” with regard to the Mg 2 Si phase.
  • Mg 2 Si phase is to nucleate in region A, or Mg and Si are to keep diffusing from region A to region C, will depend on the level of Mg and Si enrichment in region A, relevant to the local temperature, which in turn depends on the balance between the amount of Mg and Si being rejected into that region by the ⁇ -Al growth and the amount of Mg and Si being moved away from that region by the diffusion.
  • the time available for the diffusion is also limited, as the Mg 2 Si nucleation/growth process has to be completed at a temperature around 380° C., before the L ⁇ 22 Al—Zn eutectic reaction takes place, wherein L depicts the molten liquid phase.
  • controlling this balance can control the subsequent nucleation or growth of the Mg 2 Si phase or the final distribution of the Mg 2 Si phase in the coating thickness direction.
  • the cooling rate should be regulated to a particular range, and more particularly not to exceed a threshhold temperature, to avoid the risk for the Mg 2 Si phase to nucleate in region A.
  • a higher cooling rate will drive the ⁇ -Al phase to grow faster, resulting in more Mg and Si being rejected into the liquid phase in region A and a greater enrichment of Mg and Si, or a higher risk for the Mg 2 Si phase to nucleate, in region A (which is undesirable).
  • a thicker coating (or a thicker local coating region) will increase the diffusion distance between region A and region C, resulting in a smaller amount of Mg and Si being able to move from region A to region C by the diffusion within a set time and in turn a greater enrichment of Mg and Si, or a higher risk for the Mg 2 Si phase to nucleate, in region A (which is undesirable).
  • the cooling rate for coated strip exiting the coating bath has to be in a range of 11-80° C./sec for coating masses up to 75 grams per square metre of strip surface per side and in a range 11-50° C./sec for coating masses of 75-100 grams per square metre of strip surface per side.
  • the short range coating thickness variation also has to be controlled to be no greater than 40% above the nominal coating thickness within a distance of 5 mm across the strip surface to achieve the distribution of Mg 2 Si particles of the present invention.
  • the present invention focuses on (a) the addition of Sr to Al—Zn—Si—Mg coating alloys, (b) regulating cooling rates (for a given coating mass) and (c) minimising variations in coating thickness as means for achieving a desired distribution of Mg 2 Si particles in coatings, i.e. at least substantially no Mg 2 Si particles in the surface of a coating, the present invention is not so limited and extends to the use of any suitable means to achieve the desired distribution of Mg 2 Si particles in the coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
US12/811,212 2008-03-13 2009-03-13 Metal-coated steel strip Abandoned US20110027613A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AU2008901223 2008-03-13
AU2008901224A AU2008901224A0 (en) 2008-03-13 Metal -coated steel strip
AU2008901223A AU2008901223A0 (en) 2008-03-13 Metal-coated steel strip
AU2008901224 2008-03-13
PCT/AU2009/000306 WO2009111843A1 (en) 2008-03-13 2009-03-13 Metal-coated steel strip

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2009/000306 A-371-Of-International WO2009111843A1 (en) 2008-03-13 2009-03-13 Metal-coated steel strip

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/880,714 Continuation US20190003028A1 (en) 2008-03-13 2018-01-26 Metal-coated steel strip

Publications (1)

Publication Number Publication Date
US20110027613A1 true US20110027613A1 (en) 2011-02-03

Family

ID=41064679

Family Applications (8)

Application Number Title Priority Date Filing Date
US12/811,212 Abandoned US20110027613A1 (en) 2008-03-13 2009-03-13 Metal-coated steel strip
US12/811,213 Abandoned US20110052936A1 (en) 2008-03-13 2009-03-13 Metal-coated steel strip
US15/848,546 Abandoned US20180340250A1 (en) 2008-03-13 2017-12-20 Metal-coated steel strip
US15/880,714 Abandoned US20190003028A1 (en) 2008-03-13 2018-01-26 Metal-coated steel strip
US17/173,507 Abandoned US20210230730A1 (en) 2008-03-13 2021-02-11 Metal-coated steel strip
US17/829,764 Active US11840763B2 (en) 2008-03-13 2022-06-01 Metal-coated steel strip
US18/342,524 Pending US20240026512A1 (en) 2008-03-13 2023-06-27 Metal-coated steel strip
US18/488,673 Pending US20240117480A1 (en) 2008-03-13 2023-10-17 Metal-coated steel strip

Family Applications After (7)

Application Number Title Priority Date Filing Date
US12/811,213 Abandoned US20110052936A1 (en) 2008-03-13 2009-03-13 Metal-coated steel strip
US15/848,546 Abandoned US20180340250A1 (en) 2008-03-13 2017-12-20 Metal-coated steel strip
US15/880,714 Abandoned US20190003028A1 (en) 2008-03-13 2018-01-26 Metal-coated steel strip
US17/173,507 Abandoned US20210230730A1 (en) 2008-03-13 2021-02-11 Metal-coated steel strip
US17/829,764 Active US11840763B2 (en) 2008-03-13 2022-06-01 Metal-coated steel strip
US18/342,524 Pending US20240026512A1 (en) 2008-03-13 2023-06-27 Metal-coated steel strip
US18/488,673 Pending US20240117480A1 (en) 2008-03-13 2023-10-17 Metal-coated steel strip

Country Status (11)

Country Link
US (8) US20110027613A1 (ko)
EP (4) EP3778977A1 (ko)
JP (10) JP5850619B2 (ko)
KR (6) KR20100131417A (ko)
CN (2) CN101910444B (ko)
AU (8) AU2009225258B9 (ko)
BR (2) BRPI0907449A2 (ko)
ES (2) ES2834614T3 (ko)
MY (2) MY153085A (ko)
NZ (2) NZ586488A (ko)
WO (2) WO2009111843A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130004794A1 (en) * 2005-04-05 2013-01-03 Bluescope Steel Limited Metal-coated steel strip
KR20160052138A (ko) 2014-11-04 2016-05-12 현대자동차주식회사 림폼 주행중 셧다운 방지 장치 및 방법
US10662516B2 (en) 2015-03-02 2020-05-26 Jfe Steel Corporation Hot-dip Al—Zn—Mg—Si coated steel sheet and method of producing same

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778977A1 (en) 2008-03-13 2021-02-17 Bluescope Steel Limited Metal-coated steel strip
EP3757245A1 (en) 2009-03-13 2020-12-30 Bluescope Steel Limited Corrosion protection with al / zn-based coatings
WO2011082450A1 (en) * 2010-01-06 2011-07-14 Bluescope Steel Limited Metal coated steel strip
KR20210019582A (ko) * 2010-01-25 2021-02-22 블루스코프 스틸 리미티드 금속-코팅된 강철 스트립
US9080231B2 (en) * 2010-02-18 2015-07-14 Nippon Steel & Sumikin Coated Sheet Corporation Hot-dipped steel and method of producing same
WO2012165838A2 (ko) * 2011-05-27 2012-12-06 동부제철 주식회사 도금 조성물, 이를 이용한 도금 강재의 제조방법 및 도금 조성물이 코팅된 도금 강재
JP5527293B2 (ja) * 2011-08-24 2014-06-18 新日鐵住金株式会社 表面処理溶融めっき鋼材
KR20140037072A (ko) 2012-08-01 2014-03-26 블루스코프 스틸 리미티드 금속 코팅된 강철 스트립
WO2014059475A1 (en) 2012-10-17 2014-04-24 Bluescope Steel Limited Method of producing metal-coated steel strip
KR20150070230A (ko) 2012-10-18 2015-06-24 블루스코프 스틸 리미티드 금속 코팅된 강철 스트립의 제조방법
CN105452518A (zh) 2013-03-06 2016-03-30 蓝野钢铁有限公司 金属镀覆钢带
EP2848709B1 (de) * 2013-09-13 2020-03-04 ThyssenKrupp Steel Europe AG Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil
KR101692118B1 (ko) * 2014-12-12 2017-01-17 동부제철 주식회사 도금 조성물, 이를 이용한 도금 강재의 제조방법 및 도금 조성물이 코팅된 도금 강재
KR101839253B1 (ko) * 2016-12-23 2018-03-15 주식회사 포스코 가공부 내식성이 우수한 알루미늄계 합금 도금강판
SG11202109473SA (en) * 2019-03-01 2021-09-29 Jfe Galvanizing & Coating Co Ltd HOT-DIP Al-Zn-Mg-Si-Sr COATED STEEL SHEET AND METHOD OF PRODUCING SAME
JP6715399B1 (ja) * 2019-03-01 2020-07-01 Jfe鋼板株式会社 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法
JP7475162B2 (ja) * 2019-03-01 2024-04-26 Jfe鋼板株式会社 塗装鋼板及び塗装鋼板の製造方法
KR20230147754A (ko) * 2019-03-01 2023-10-23 제이에프이 코우반 가부시키가이샤 용융 Al-Zn-Mg-Si-Sr 도금 강판 및 그 제조 방법
KR20210123340A (ko) * 2019-03-01 2021-10-13 제이에프이 코우반 가부시키가이샤 용융 Al-Zn-Mg-Si-Sr 도금 강판 및 그 제조 방법
JP2020164986A (ja) * 2019-03-26 2020-10-08 Jfe鋼板株式会社 溶融Al−Zn−Mg−Si系めっき鋼板及びその製造方法、並びに、塗装鋼板及びその製造方法
WO2021199373A1 (ja) * 2020-04-01 2021-10-07 Jfe鋼板株式会社 溶融Al-Zn-Mg-Si系めっき鋼板の製造方法及び塗装鋼板の製造方法
WO2021215421A1 (ja) * 2020-04-21 2021-10-28 日本製鉄株式会社 溶融めっき鋼板、及びその製造方法
CN111705286A (zh) * 2020-06-12 2020-09-25 靖江新舟合金材料有限公司 一种含镁锶钛的铝锌硅钢板及其生产方法
JP6880299B2 (ja) * 2020-09-30 2021-06-02 日鉄鋼板株式会社 被覆めっき鋼板及び被覆めっき鋼板の製造方法
AU2021370406A1 (en) 2020-10-30 2023-06-15 Jfe Galvanizing & Coating Co., Ltd. HOT-DIP Al-Zn-Si-Mg COATED STEEL SHEET, SURFACE-TREATED STEEL SHEET, AND PRE-PAINTED STEEL SHEET
JP7097493B2 (ja) * 2020-10-30 2022-07-07 Jfeスチール株式会社 塗装鋼板
JP7097492B2 (ja) * 2020-10-30 2022-07-07 Jfeスチール株式会社 塗装鋼板
JP7097489B2 (ja) * 2020-10-30 2022-07-07 Jfeスチール株式会社 溶融Al-Zn-Si-Mg-Sr系めっき鋼板
JP7091535B2 (ja) * 2020-10-30 2022-06-27 Jfeスチール株式会社 塗装鋼板
JP7091534B2 (ja) * 2020-10-30 2022-06-27 Jfeスチール株式会社 表面処理鋼板
JP7097491B2 (ja) * 2020-10-30 2022-07-07 Jfeスチール株式会社 表面処理鋼板
JP7097488B2 (ja) * 2020-10-30 2022-07-07 Jfeスチール株式会社 溶融Al-Zn-Si-Mg系めっき鋼板
JP7097490B2 (ja) * 2020-10-30 2022-07-07 Jfeスチール株式会社 表面処理鋼板
JP7091533B2 (ja) * 2020-10-30 2022-06-27 Jfeスチール株式会社 溶融Al-Zn-Si-Mg系めっき鋼板
AU2021368356B2 (en) * 2020-10-30 2024-06-13 Jfe Galvanizing & Coating Co., Ltd. HOT-DIP Al-Zn-Si-Mg-Sr COATED STEEL SHEET, SURFACE-TREATED STEEL SHEET, AND PRE-PAINTED STEEL SHEET
KR20230082043A (ko) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 용융 Al-Zn-Si-Mg계 도금 강판, 표면 처리 강판 및 도장 강판
JP2022140249A (ja) * 2021-03-11 2022-09-26 Jfeスチール株式会社 塗装鋼板及びその製造方法
JP2022140247A (ja) * 2021-03-11 2022-09-26 Jfeスチール株式会社 溶融Al-Zn-Si-Mg系めっき鋼板及びその製造方法
JP2022140248A (ja) * 2021-03-11 2022-09-26 Jfeスチール株式会社 表面処理鋼板及びその製造方法
WO2022191213A1 (ja) * 2021-03-11 2022-09-15 Jfeスチール株式会社 溶融Al-Zn-Si-Mg系めっき鋼板及びその製造方法、表面処理鋼板及びその製造方法、並びに、塗装鋼板及びその製造方法
KR102589282B1 (ko) * 2021-12-14 2023-10-13 현대제철 주식회사 열간 프레스용 강판 및 이를 이용하여 제조된 핫 스탬핑 부품
WO2023132327A1 (ja) * 2022-01-06 2023-07-13 Jfeスチール株式会社 溶融Al-Zn-Si-Mg系めっき鋼板及びその製造方法、表面処理鋼板及びその製造方法、並びに、塗装鋼板及びその製造方法
CN115558877A (zh) * 2022-09-15 2023-01-03 首钢集团有限公司 一种锌铝镁镀层、锌铝镁镀层钢板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401727A (en) * 1982-06-23 1983-08-30 Bethlehem Steel Corporation Ferrous product having an alloy coating thereon of Al-Zn-Mg-Si Alloy, and method
US6635359B1 (en) * 1999-08-09 2003-10-21 Nippon Steel Corporation Zn-Al-Mg-Si-alloy plated steel product having excellent corrosion resistance and method for preparing the same

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3343930A (en) 1964-07-14 1967-09-26 Bethlehem Steel Corp Ferrous metal article coated with an aluminum zinc alloy
US3782909A (en) 1972-02-11 1974-01-01 Bethlehem Steel Corp Corrosion resistant aluminum-zinc coating and method of making
US4287008A (en) 1979-11-08 1981-09-01 Bethlehem Steel Corporation Method of improving the ductility of the coating of an aluminum-zinc alloy coated ferrous product
US4412870A (en) * 1980-12-23 1983-11-01 Aluminum Company Of America Wrought aluminum base alloy products having refined intermetallic phases and method
JPH01263255A (ja) 1988-04-14 1989-10-19 Nippon Aen Kogyo Kk 高付着溶融アルミニウム−亜鉛合金めっき方法
JPH01279767A (ja) * 1988-04-28 1989-11-10 Nkk Corp 金属板の連続めつき方法
SE9101053L (sv) 1990-04-13 1991-10-14 Centre Rech Metallurgique Foerfarande foer belaeggning av ett kontinuerligt staalband
JP2777571B2 (ja) 1991-11-29 1998-07-16 大同鋼板株式会社 アルミニウム−亜鉛−シリコン合金めっき被覆物及びその製造方法
JP2679510B2 (ja) * 1992-02-12 1997-11-19 株式会社日立製作所 連続溶融金属メッキ装置
DE69310804T2 (de) 1992-04-06 1997-11-06 Bhp Steel Jla Pty Ltd Abstreifen von flüssigen Beschichtungen
JPH06279889A (ja) * 1993-03-30 1994-10-04 Ube Ind Ltd Si含有マグネシウム合金の金属組織改良方法
JPH08260122A (ja) * 1995-03-17 1996-10-08 Nippon Steel Corp 溶融めっき鋼板のめっき付着量制御方法
JPH0953167A (ja) * 1995-08-18 1997-02-25 Sumitomo Metal Ind Ltd ガスワイピングノズル装置
JP3334521B2 (ja) 1996-11-25 2002-10-15 日本鋼管株式会社 スパングルの均一性に優れたAl含有溶融亜鉛めっき鋼板およびその製造方法
JPH11343599A (ja) 1998-06-02 1999-12-14 Showa Alum Corp 表面処理及びそのための装置
JP2000104153A (ja) 1998-09-28 2000-04-11 Daido Steel Sheet Corp 亜鉛−アルミニウム合金めっき鋼板
JP3983932B2 (ja) * 1999-05-19 2007-09-26 日新製鋼株式会社 表面外観の良好な高耐食性Mg含有溶融Zn−Al系合金めっき鋼板
US6465114B1 (en) * 1999-05-24 2002-10-15 Nippon Steel Corporation -Zn coated steel material, ZN coated steel sheet and painted steel sheet excellent in corrosion resistance, and method of producing the same
JP2001089838A (ja) 1999-09-20 2001-04-03 Nippon Steel Corp 表面外観に優れたアルミニウム−亜鉛めっき鋼板
KR100495443B1 (ko) 1999-10-07 2005-06-14 아이에스쥐 테크놀로지 인코포레이티드 강 제품 코팅 조성물, 코팅된 강 제품 및 강 제품 코팅방법
US6689489B2 (en) 1999-10-07 2004-02-10 Isg Technologies, Inc. Composition for controlling spangle size, a coated steel product, and a coating method
JP4537599B2 (ja) * 2000-03-10 2010-09-01 新日本製鐵株式会社 外観に優れた高耐食性Al系めっき鋼板
JP2001355055A (ja) * 2000-04-11 2001-12-25 Nippon Steel Corp 未塗装加工部ならびに塗装端面部の耐食性に優れた溶融Zn−Al−Mg−Siめっき鋼材
JP2002012959A (ja) * 2000-04-26 2002-01-15 Nippon Steel Corp 加工部及び端面耐食性に優れたAl系めっき鋼板
JP2001316791A (ja) * 2000-04-28 2001-11-16 Nippon Steel Corp 耐食性、外観に優れた溶融亜鉛−アルミ系めっき鋼板
JP2002129300A (ja) * 2000-10-24 2002-05-09 Nippon Steel Corp 耐食性と加工性に優れた表面処理鋼板とその製造法
AUPR133100A0 (en) 2000-11-08 2000-11-30 Bhp Innovation Pty Ltd Cold-formable metal-coated strip
WO2002061164A1 (fr) 2001-01-31 2002-08-08 Nkk Corporation Tole d'acier pretraite et son procede de production
JP3566261B2 (ja) 2001-03-19 2004-09-15 Jfeスチール株式会社 加工性及び耐食性に優れた塗装溶融Al−Zn合金めっき鋼板およびその製造方法
JP3563063B2 (ja) 2001-03-19 2004-09-08 Jfeスチール株式会社 加工性及び耐食性に優れた潤滑被覆溶融Al−Zn合金めっき鋼板およびその製造方法
JP3566262B2 (ja) 2001-03-19 2004-09-15 Jfeスチール株式会社 加工性に優れた溶融Al−Zn合金めっき鋼板及びその製造方法
JP2002285310A (ja) * 2001-03-22 2002-10-03 Daido Steel Co Ltd 溶融亜鉛メッキ処理用ロール
JP2002322527A (ja) * 2001-04-25 2002-11-08 Nippon Steel Corp Al−Zn−Mg系合金めっき鉄鋼製品
JP4683764B2 (ja) 2001-05-14 2011-05-18 日新製鋼株式会社 耐食性に優れた溶融Zn−Al−Mg系合金めっき鋼材
JP2002371345A (ja) * 2001-06-13 2002-12-26 Sumitomo Metal Ind Ltd 溶融Zn−Al−Mg合金めっき鋼板の製造方法
EP1489195A4 (en) * 2002-03-08 2011-11-02 Nippon Steel Corp HIGHLY CORROSION-RESISTANT METAL-COATED STEEL PLATE WITH OUTSTANDING SURFACE SLATS
JP3599716B2 (ja) 2002-03-19 2004-12-08 Jfeスチール株式会社 表面外観および曲げ加工性に優れた溶融Al−Zn系合金めっき鋼板およびその製造方法
JP2003328506A (ja) * 2002-05-09 2003-11-19 Mitsubishi Chem Mkv Co シート固定具及び該固定具を用いた防水施工法
ES2581595T3 (es) * 2002-10-28 2016-09-06 Nippon Steel & Sumitomo Metal Corporation Producto de acero galvanizado por inmersión en caliente altamente resistente a la corrosión excelente en lisura de superficie y capacidad de conformado, y procedimiento para la producción del producto de acero galvanizado por inmersión caliente
JP3876829B2 (ja) * 2002-11-28 2007-02-07 Jfeスチール株式会社 連続溶融めっき方法
KR100928804B1 (ko) 2002-12-27 2009-11-25 주식회사 포스코 내식성 및 가공성이 우수한 Zn-Al-Mg계 합금 도금강판
JP2004238682A (ja) 2003-02-06 2004-08-26 Nippon Steel Corp 耐食性に優れた自動車排気系材用溶融Al系めっき鋼板
JP4729850B2 (ja) * 2003-02-10 2011-07-20 Jfeスチール株式会社 めっき密着性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法
AU2003901424A0 (en) 2003-03-20 2003-04-10 Bhp Steel Limited A method of controlling surface defects in metal-coated strip
JP2005015907A (ja) 2003-06-05 2005-01-20 Nippon Steel Corp 高温強度、耐酸化性に優れた溶融Al系めっき鋼板
JP3735360B2 (ja) * 2003-07-01 2006-01-18 新日本製鐵株式会社 外観に優れた溶融Zn−Mg−Al系めっき鋼板の製造方法
JP4356423B2 (ja) 2003-10-30 2009-11-04 Jfeスチール株式会社 溶融Al−Zn−Mg系めっき鋼板およびその製造方法
CA2592530C (en) 2004-12-28 2010-05-11 Posco Galvanized steel-sheet without spangle, manufacturing method thereof and device used therefor
JP5020228B2 (ja) 2005-04-05 2012-09-05 ブルースコープ・スティール・リミテッド 金属被覆スチールストリップ
JP4584179B2 (ja) * 2006-04-13 2010-11-17 Jfe鋼板株式会社 耐食性および加工性に優れた溶融Zn−Al合金めっき鋼板の製造方法
US8193641B2 (en) 2006-05-09 2012-06-05 Intel Corporation Recessed workfunction metal in CMOS transistor gates
JP2010501731A (ja) * 2006-08-29 2010-01-21 ブルースコープ・スティール・リミテッド 金属被覆鉄ストリップ
WO2008141398A1 (en) * 2007-05-24 2008-11-27 Bluescope Steel Limited Metal-coated steel strip
EP3778977A1 (en) * 2008-03-13 2021-02-17 Bluescope Steel Limited Metal-coated steel strip
EP3757245A1 (en) 2009-03-13 2020-12-30 Bluescope Steel Limited Corrosion protection with al / zn-based coatings
JP6020228B2 (ja) 2013-02-12 2016-11-02 株式会社デンソー 冷凍コンテナシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401727A (en) * 1982-06-23 1983-08-30 Bethlehem Steel Corporation Ferrous product having an alloy coating thereon of Al-Zn-Mg-Si Alloy, and method
US6635359B1 (en) * 1999-08-09 2003-10-21 Nippon Steel Corporation Zn-Al-Mg-Si-alloy plated steel product having excellent corrosion resistance and method for preparing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130004794A1 (en) * 2005-04-05 2013-01-03 Bluescope Steel Limited Metal-coated steel strip
KR20160052138A (ko) 2014-11-04 2016-05-12 현대자동차주식회사 림폼 주행중 셧다운 방지 장치 및 방법
US10662516B2 (en) 2015-03-02 2020-05-26 Jfe Steel Corporation Hot-dip Al—Zn—Mg—Si coated steel sheet and method of producing same

Also Published As

Publication number Publication date
US20240117480A1 (en) 2024-04-11
AU2009225258B9 (en) 2020-05-07
EP2250296A4 (en) 2011-03-09
EP2250297B1 (en) 2021-01-13
JP5850619B2 (ja) 2016-02-03
AU2024201691A1 (en) 2024-04-04
AU2016256784A1 (en) 2016-12-01
EP2250297A4 (en) 2011-03-09
JP2011514935A (ja) 2011-05-12
KR20150080001A (ko) 2015-07-08
JP6980831B2 (ja) 2021-12-15
US11840763B2 (en) 2023-12-12
JP2021091972A (ja) 2021-06-17
NZ586491A (en) 2013-05-31
AU2021221876A1 (en) 2021-09-23
AU2009225257B2 (en) 2014-09-25
MY153085A (en) 2014-12-31
JP7162091B2 (ja) 2022-10-27
JP2023002655A (ja) 2023-01-10
AU2023282196A1 (en) 2024-01-04
US20110052936A1 (en) 2011-03-03
EP2250296A1 (en) 2010-11-17
JP2011514934A (ja) 2011-05-12
KR20100131417A (ko) 2010-12-15
AU2014253542A1 (en) 2014-11-13
CN101910444B (zh) 2013-11-27
AU2009225258A1 (en) 2009-09-17
BRPI0907447A2 (pt) 2018-01-30
MY153086A (en) 2014-12-31
EP3778977A1 (en) 2021-02-17
AU2009225257A1 (en) 2009-09-17
EP3778978A1 (en) 2021-02-17
CN101910446B (zh) 2013-09-04
KR20180118242A (ko) 2018-10-30
US20180340250A1 (en) 2018-11-29
JP2015187313A (ja) 2015-10-29
JP2018100444A (ja) 2018-06-28
US20190003028A1 (en) 2019-01-03
JP2020117810A (ja) 2020-08-06
EP2250297A1 (en) 2010-11-17
AU2019222812A1 (en) 2019-09-19
NZ586488A (en) 2013-04-26
US20210230730A1 (en) 2021-07-29
BRPI0907449A2 (pt) 2016-10-18
BRPI0907447B1 (pt) 2023-10-10
KR102099636B1 (ko) 2020-04-13
AU2021221876B2 (en) 2023-12-21
KR20170139703A (ko) 2017-12-19
ES2859525T3 (es) 2021-10-04
EP2250296B1 (en) 2020-10-14
CN101910444A (zh) 2010-12-08
AU2009225257B9 (en) 2020-05-07
JP2016026266A (ja) 2016-02-12
WO2009111842A1 (en) 2009-09-17
CN101910446A (zh) 2010-12-08
JP6518543B2 (ja) 2019-05-22
KR20200039019A (ko) 2020-04-14
JP2022027769A (ja) 2022-02-14
US20240026512A1 (en) 2024-01-25
JP2018059206A (ja) 2018-04-12
ES2834614T3 (es) 2021-06-18
WO2009111843A1 (en) 2009-09-17
KR20100118101A (ko) 2010-11-04
AU2009225258B2 (en) 2014-09-25
US20220364215A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
US20240026512A1 (en) Metal-coated steel strip
AU2021221884A1 (en) Metal-coated steel strip
AU2014253547A1 (en) Metal-coated steel strip

Legal Events

Date Code Title Description
AS Assignment

Owner name: BLUESCOPE STEEL LIMITED, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, QIYANG;RENSHAW, WAYNE;WILLIAMS, JOE;REEL/FRAME:025130/0372

Effective date: 20100707

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION