US20090314472A1 - Evaporator For Loop Heat Pipe System - Google Patents

Evaporator For Loop Heat Pipe System Download PDF

Info

Publication number
US20090314472A1
US20090314472A1 US12/546,331 US54633109A US2009314472A1 US 20090314472 A1 US20090314472 A1 US 20090314472A1 US 54633109 A US54633109 A US 54633109A US 2009314472 A1 US2009314472 A1 US 2009314472A1
Authority
US
United States
Prior art keywords
evaporator
heating plate
grooves
sintered wick
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/546,331
Inventor
Chul Ju Kim
Min-Whan Seo
Byung-Ho Sung
Jung-hyun Yoo
Jee-Hoon Choi
Jae-Hyung Ki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zalman Tech Co Ltd
Sungkyunkwan University Foundation for Corporate Collaboration
Original Assignee
Zalman Tech Co Ltd
Sungkyunkwan University Foundation for Corporate Collaboration
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080057458A external-priority patent/KR20090131533A/en
Application filed by Zalman Tech Co Ltd, Sungkyunkwan University Foundation for Corporate Collaboration filed Critical Zalman Tech Co Ltd
Assigned to ZALMAN TECH CO., LTD., SUNGKYUNKWAN UNIVERSITY FOUNDATION FOR CORPORATE COLLABORATION reassignment ZALMAN TECH CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KI, JAE-HYUNG, KIM, CHUL-JU, CHOI, JEE-HOON, SEO, MIN-WHAN, SUNG, BYUNG-HO, YOO, JUNG-HYUN
Publication of US20090314472A1 publication Critical patent/US20090314472A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Definitions

  • the present invention relates to an evaporator for a loop heat pipe system including a condenser, a vapor transport line, and a liquid transport line, and more particularly, to an evaporator having an increased contact area between a sintered wick and a heating plate.
  • Electronic parts such as CPUs or semiconductor chips used for various electronic devices such as computers generate a large amount of heat during operation.
  • Such electronic devices are usually designed to operate at room temperature. Accordingly, when heat generated during the operation of an electronic device is not effectively cooled down, the performance of the electronic device is severely deteriorated and, in some cases, the electronic device itself may be damaged.
  • a heat conduction method using a heat sink In order to cool down heat generated by various electronic parts, many approaches have been developed, such as a heat conduction method using a heat sink, a method of using natural convection or radiation of air, a force convection method using a fan, a method using circulation of liquid, or a submerged cooling method.
  • phase change heat transport system which can cool down an electronic part having a high heat load density per unit has been introduced.
  • a thermosyphon system and a cylindrical heat pipe system are examples of the phase change heat transport system.
  • thermosyphon system cooling is achieved using a natural circulation method via a liquid-vapor phase change and a specific gravity difference of working fluid.
  • cooling is obtained by circulating the working fluid using a capillary pumping force generated by a sintered wick installed in an inner surface of a pipe.
  • the working fluid included in the sintered wick 102 is evaporated and moved in a direction indicated by a plurality of arrows 103 as a flow of vapor.
  • the operating fluid is changed back to a liquid state and moved along the sintered wick 102 in a direction indicated by a plurality of arrows 105 , thereby circulating in the heat pipe 100 .
  • thermosyphon system requires a condensing portion located higher than an evaporating portion and, although this problem is less severe in the case of the heat pipe 100 , a heat transport ability of the heat pipe 100 is quite deteriorated when a condensing portion is located lower than the evaporating portion. Accordingly, this limitation prevents electronic devices employing the above cooling systems from being made slim.
  • the vapor and the liquid may be mixed in the middle of the pipe. Another problem is that the mixture may make the amount of heat actually transported less than that that can be ideally transported.
  • LHP loop heat pipe
  • CLP capillary pumped loop heat pipe
  • FIG. 2 illustrates a loop heat pipe system 110 according to this conventional technology.
  • the conventional loop heat pipe system 110 includes a condenser 112 , an evaporator 114 , and a vapor line 116 and a liquid line 118 , which form a loop.
  • the vapor line 116 and the liquid line 118 are connected between the condenser 112 and the evaporator 114 .
  • a sintered wick 120 is installed only in the evaporator 114 unlike the conventional linear heat pipe of FIG. 1 .
  • loop heat pipe is referred to as a loop heat pipe system and both terms have the same meaning.
  • evaporator and the condenser respectively, have the same meanings as the evaporator section and the condenser section.
  • the loop heat pipe system 110 operates in the following manner. Heat is applied to a heating plate 122 which is the bottom portion of the evaporator 114 which is inserted with the sintered wick 120 . At that point the sintered wick 120 is saturated with the liquid phase of working fluid due because the heat transported to the sintered wick 120 contacting the heat plate 122 . And the applied heat vaporizes the working fluid so that the phase of the working fluid is changed to a vapor state. The vapor is moved toward the condenser 112 along the vapor line 116 connected to a side of the evaporator 114 . As the vapor passes through the condenser 112 , heat is dissipated externally so that the vapor is liquefied. The liquefied working fluid is moved toward the evaporator 114 along the liquid line 118 at a side of the condenser 112 . The above-described process is repeated so that the heat source can be cooled down.
  • a surface 126 of the sintered wick 120 facing the heating plate 122 includes a contact surface 126 b contacting the heating plate 122 and a plurality of micro-channels 126 a working as a passage of the generated vapor. Accordingly, the sintered wick 120 receives heat via the contact surface 126 b contacting the heating plate 120 so that the received heat makes the operating fluid permeated in the sintered wick 120 evaporate. The generated vapor is moved toward the condenser 112 along the vapor line 116 connected to a side of the evaporator section 114 through the micro-channels 126 a formed in the surface 126 facing the sintered wick 120 .
  • the performance of an evaporator taking heat from a heat source like an electronic part is determined according to how well the heat transported from the heat source to a heating plate is transported to a sintered wick.
  • contact conductance is a factor directly affecting the heat transport between the heat source and the heating plate.
  • the contact conductance is related to the thermal resistance generated when a metal has a surface contact with another metal and heat transport occurs between the metals.
  • the contact conductance is proportional to the contact area between the two metals. That is, as the contact area increases, the contact conductance increases, and as the contact conductance increases, heat transport is generated further.
  • the contact conductance is relatively small. That is, referring to FIG. 5 showing the sintered wick 120 having the micro-channels 126 a coupled to the heating plate 122 in a direction rotated by 90° from the direction of the cross-section of FIG. 3 , the contact surface 126 b of the sintered wick 120 contacting the heating plate 122 is decreased due to the micro-channels 126 a so that the amount of heat to be transported is reduced accordingly.
  • the present invention provides an evaporator for a loop heat pipe system, the evaporator having increased contact conductance by increasing a contact area between a metal sintered wick and a heating plate.
  • an evaporator for a loop heat pipe system includes an evaporator section having a sintered wick formed by sintering a metal powder, in which a working fluid permeating through a plurality of pores in the sintered wick is heated so that the phase of the working fluid is changed to a vapor state, a condenser section in which the phase of the working fluid transported from the evaporator section is changed from a vapor state to a liquid state, a vapor transport line connecting between the evaporator section and the condenser section to transport the working fluid, whose phase is changed to a vapor state by the evaporator section, to the condenser section, and a liquid transport line connecting between the condenser section and the evaporator section to transport the working fluid, whose phase is changed to a liquid state by the condenser section, to the evaporator section, wherein the evaporator
  • the part of the sintered wick inserted in each of the grooves may be an insertion portion, both side surfaces of the insertion portion contact the two side surfaces of each of the grooves, and a lower surface of the insertion portion is any one of a downwardly bulging shape, an inwardly depressed shape, and a flat shape.
  • the heating plate may include a lower plate portion having a circular disc shape and a wall portion extending from a circumferential portion of the lower plate portion, the sintered wick may be coupled to an inner surface having an upper surface of the lower plate portion and an inner surface of the wall portion of the heating plate, and a cover member is provided in an upper portion of the wall portion of the heating plate and the liquid transportation line is coupled to the cover member.
  • FIG. 1 illustrates the operation of a conventional cylindrical heat pipe
  • FIG. 2 illustrates the concept of a conventional loop heat pipe
  • FIG. 3 is a cross-sectional view of a conventional evaporator of FIG. 2 ;
  • FIG. 4 is a perspective view of the sintered wick of FIG. 3 rotated by 180°;
  • FIG. 5 is a cross-sectional view of a portion of the sintered wick and the heating plate of the conventional evaporator of FIG. 2 ;
  • FIG. 6 is a perspective view of a loop heat pipe system including an evaporator according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the evaporator of FIG. 6 ;
  • FIGS. 8 , 9 , and 10 are cross-sectional views of the sintered wicks of FIG. 7 according to embodiments of the present invention.
  • FIG. 11 is a cross-sectional view illustrating a state in which the sintered wick and the heating plate are coupled to each other.
  • FIG. 12 is a perspective view of the heating plate where a groove is formed.
  • the present invention is related to an evaporator for a loop heat pipe system including a condenser, a vapor transportation line, and a liquid transportation line.
  • FIG. 6 illustrates the structure of a loop heat pipe system according to an embodiment of the present invention.
  • the loop heat pipe system includes an evaporator 1 , a condenser 210 , a vapor transport line 220 , and a liquid transport line 230 .
  • the condenser 210 changes the phase of a working fluid in a vapor state received from the evaporator 1 to a liquid state.
  • the condenser 210 takes heat from the working fluid and exhausts the heat to the outside air.
  • the vapor transport line 220 is a pipe member connecting the evaporator 1 and the condenser 210 to supply the vapor whose phase is changed by the evaporator 1 back to the condenser 210 .
  • the liquid transport line 230 is a pipe member connecting the condenser 210 and the evaporator 1 to supply the liquid whose phase is changed by the condenser 210 back to the evaporator 1 .
  • the general operations of the condenser 210 , the vapor transport line 220 , and the liquid transport line 230 are the same as those described in the background section.
  • the evaporator 1 which is the subject matter of the present invention, is one of the constituent elements of the loop heat pipe system, together with the condenser 210 , the liquid transport line 220 , and the vapor transport line 230 .
  • FIG. 7 is a cross-sectional view of the evaporator 1 of FIG. 6 .
  • the evaporator 1 includes a sintered wick 20 that is formed by sintering metal powders. When the working fluid permeating through pores formed inside the sintered wick 20 is heated, the phase of the working fluid is changed to a vapor state.
  • the evaporator 1 includes a heating plate 10 , the sintered wick 20 , and a plurality of grooves 30 .
  • the heating plate 10 is formed of metal and receives heat from a heat source such as electronic parts that generate heat during operation.
  • the heating plate 10 includes a lower plate portion 12 and a side wall portion 14 .
  • the lower plate portion 12 has a disc shape.
  • the side wall portion 14 extends upwardly from the circumferential portion of the lower plate portion 12 .
  • the lower plate portion 12 and the side wall portion 14 may be integrally formed or coupled together after being manufactured separately.
  • the lower surface of the lower plate portion 12 contacts the heat source and receives heat from the heat source.
  • the heat transported to the lower plate portion 12 is transported to the side wall portion 14 connected to the lower plate portion 12 by conduction.
  • a cover member 16 is provided at an upper end portion of the side wall portion 14 of the heating plate 10 .
  • the liquid transport line 230 is connected to the cover member 16 so that the working fluid in a liquid state transported from the condenser 210 flows into an inner space of the evaporator 1 .
  • An inlet 17 to which the liquid transport line 230 is connected is formed in the cover member 16 of the evaporator 1 so that the working fluid can flow into the evaporator 1 .
  • An outlet 18 to which the vapor transport line 220 is connected is formed in the heating plate 10 so that a vapor can be exhausted.
  • the lower plate portion 12 of the heating plate 10 has a disc shape and the side wall portion 14 has a shape encompassing the lower plate portion 12 .
  • the cover member 16 has a disc shape and is provided on top of the heating plate 10 .
  • the evaporator 1 has a hollow cylindrical shape.
  • the present invention is not limited to the above descriptions and, for example, the lower plate portion may have a polygonal plate shape such as a rectangle.
  • the sintered wick 20 is coupled to the upper surface of the lower plate portion 12 to receive heat therefrom.
  • the working fluid in a liquid state included in the pores of the sintered wick 20 is evaporated into a vapor state by the received heat.
  • the sintered wick 20 is formed by sintering a metal powder. A large number of spaces or pores are formed in the sintered wick 20 so that the working fluid in the liquid state can permeate in the sintered wick 20 .
  • the groves 30 are formed in a surface where the heating plate 10 and the sintered wick 20 contact each other and work as a passage for a vapor in the sintered wick 20 whose phase is changed to exhaust vapor through the vapor transport line 220 via the outlet 18 . Thus, since the groves 30 are connected to the outlet 18 , the vapor can be exhausted from the evaporator 1 through the vapor transport line 220 .
  • the grooves 30 linearly formed in the upper surface of the lower plate portion 12 are separated from one another and parallel to one another. Each space (not shown) is circumferentially formed at both end portions of each of the grooves 30 . Also, the grooves 30 are circumferentially formed in the side wall portion 14 . Each space penetrating the grooves 30 and connected to the outlet 18 is formed in the side wall portion 14 . Accordingly, the vapor generated in the grooves 30 formed in the lower plate portion 12 of the heating plate 10 flows toward the space formed in the circumferential portion of the lower plate portion 12 and then is exhausted via the outlet 18 toward the vapor transport line 220 . Also, the vapor generated in the grooves 30 formed in the side wall portion 14 of the heating plate 10 flows toward the space penetrating the grooves 30 and the resultant vapor then travels via the outlet 18 toward the vapor transport line 220 .
  • Each of the grooves 30 has a bottom surface 32 and side surfaces 34 and is formed on a side surface of the heating plate 10 .
  • the term “a surface” of the heating plate 10 has the same meaning as an “inner side surface” and indicates the upper surface of the lower plate portion 12 and an inner surface of the side wall portion 14 . Accordingly, the grooves 30 are formed in the inner side surface, or the side surface, that is, in the upper surface of the lower plate portion 12 and the inner surface of the side wall portion 14 of the heating plate 10 .
  • the sintered wick 20 is coupled to the inner side surface of the heating plate 10 to receive heat.
  • the sintered wick 20 is partially inserted into each of the grooves 30 so as to contact at least part of both side surfaces 24 of each of the grooves 30 .
  • the part of the sintered wick 20 inserted in each of the grooves 30 is referred to as an insertion portion 22 .
  • Both side surfaces 24 of the insertion portion 22 contact the upper portions of the side surfaces 34 of the grooves 30 .
  • the insertion portion 22 is inserted in each of the grooves 30 to a depth of about 1 ⁇ 3 of the height of each of the grooves 30 .
  • a lower surface 26 of the insertion portion 22 has a flat shape.
  • An insertion length t of a portion of the insertion portion 22 inserted into each of the grooves 30 is defined as a length of both side surfaces of the insertion portion 22 coupled to both side surfaces of each of the grooves 30 assuming that both side surfaces of the insertion portion 22 are symmetrical.
  • the insertion length t of the insertion portion 22 and the shape of the lower surface 26 may be interdependently changed considering factors such as a contact area between the heating plate 10 and the sintered wick 20 , a need for the space in the grooves 30 as the passage of the vapor, the size of a surface area where the working fluid can be evaporated. That is, the length t of the insertion portion 22 may be determined as a predetermined value considering the above factors.
  • a lower surface 26 a of an insertion portion 22 a downwardly bulges in interrelation with a change in the insertion length t.
  • a lower surface 26 b of an insertion portion 22 b is inwardly depressed.
  • the insertion length t of an insertion portion 22 c of the sintered wick 20 with respect to the side surfaces 34 of the grooves 30 is almost equal to the height of each of the grooves 30 and a lower surface 26 c of the insertion portion 22 c is inwardly depressed.
  • the shape of the lower surface 26 c of the insertion portion 22 c can maximize the contact area between both side surfaces 24 of the sintered wick 20 and both side surfaces 34 of the grooves 30 of the heating plate 10 and simultaneously enables the grooves 30 to work as a vapor passage, and also facilitates securing a sufficient area of the lower surface 26 c.
  • the contact area increases. The increase in the contact area is described with reference to FIGS. 11 and 12 .
  • FIG. 11 is a cross-sectional view illustrating a state in which a sintered wick 20 d and the heating plate 10 are coupled to each other.
  • FIG. 12 is a perspective view of the heating plate 10 where a plurality of grooves 30 d are formed.
  • the sintered wick 20 d and the heating plate 10 are not circular but rectangular for the convenience of calculation, an n-number of grooves, where n is an integer, each having the same length, are formed in the heating plate 10 , and the lower surface of an insertion portion is flat. Accordingly, since the shapes of the sintered wick 20 d and the grooves 30 d are different from those shown in FIG. 7 , a suffix “d” is added to reference numbers for the sintered wick 20 d and the grooves 30 d.
  • W′ heating width
  • W width of groove H: height of groove L: length of groove
  • n number of grooves r tw : permeation ratio of insertion portion
  • A′ contact area r w : insertion length ratio
  • A vapor evaporation
  • a tw permeation area
  • a t total area area
  • the size and number of the grooves 30 d are determined according to the specification of a system. Since the increase in the contact area decreases the value of heat flux (W/m 2 ), it is preferable that the contact area is increased.
  • the contact length ratio r w is 0.5
  • the contact area ratio is increased to 0.7-0.83.
  • a method of coupling the sinters wick 20 to a side surface of the heating plate 10 may be a sintering method of sintering metal powder to form the sintered wick 20 and simultaneously coupling the sintered wick 20 to the heating plate 10 and a coupling method of forming the sintered wick 20 and then coupling the sintered wick 20 to the heating plate 10 where the grooves 30 are formed.
  • the coupling method includes a simple pressing coupling method and a metal coupling method.
  • a plurality of grooves are formed in a metal heating plate and the grooves are filled with a sublimate solid material considering the insertion length of an insertion portion and the shape of a lower surface of a sintered wick. That is, in FIG. 7-9 , a portion of each of the grooves, corresponding to an empty space, is filled with the sublimate solid material considering the insertion portion inserted in each of the groves. Then, a jig above the sintered plate is arranged to be separated from one another by the thickness of the sintered wick. The heating plate and the jig are packed with metal powder and heated at a predetermined temperature for a period of time according to the type of the metal powder to be sintered.
  • the metal powder As the metal powder is sintered, the metal powder is coupled to the heating plate. Also, simultaneously with the sintering of the metal powder, the sublimate solid material filling the grooves is sublimated and exhausted from the sublimate solid material. Accordingly, with an empty space having a desired shape, the insertion portion of the sintered wick inserted in each of the grooves is formed into a desired shape.
  • a previously manufactured metal sintered wick is prepared to contact the heating plate and then a predetermined load is applied to the sintered wick to be coupled to the heating plate.
  • a previously manufactured metal sintered wick is prepared to contact the heating plate and heated to be sintered again (or secondly sintering) so that the sintered wick is coupled to the heating plate. Any one of the above-described methods may be appropriately selected as a method of coupling the sintered wick 20 to the side surface of the heating plate 10 .
  • the contact area between the heating plate and the sintered wick is increased compared to the conventional technology, a contact conductance increases. That is, in the conventional technology, the heating plate and the sintered wick contact each other except for a surface corresponding to the width of each of the grooves functioning as a passage for vapor. In the evaporator of the present invention, since a portion of the sintered wick is inserted in each of the grooves and contacts both side surfaces of each groove, the contact area between the heating plate and the sintered wick increases.
  • the shape of the lower surface of the insertion portion of the sintered wick inserted in each of the grooves can be variously formed, in a state in which the contact area between the heating plate and the sintered wick is increased, a sectional area of the vapor passage and a evaporation surface area can be additionally adjusted so that optimal efficiency suitable for the environment can be obtained.
  • the simultaneous sintering method since a manufacturing process is simple, a cost for manufacturing an evaporator is low.
  • a contact state is improved so that contact conductance is increased.
  • the insertion portion of the sintered wick can be formed in any shape.
  • the coupling state between the sintered wick and the metal heating plate is slightly deteriorated.
  • the side surface of the insertion portion is coupled to the side surface of each of the grooves, compared to the conventional technology, the contact area between the sintered wick and the heating plate can be increased. Also, the insertion portion of the sintered wick can be mechanically processed into a desired shape.
  • the contact conductance is increased.

Abstract

Provided is an evaporator for a loop heat pipe system including a condenser, a vapor transport line, and a liquid transport line, and more particularly, to an evaporator having an increased contact area between a sintered wick and a heating plate.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of pending International patent application PCT/KR2008/004493 filed on Aug. 1, 2008 which designates the United States and claims priority from Korean patent application 10-2008-0057458 filed on Jun. 18, 2008, the content of which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to an evaporator for a loop heat pipe system including a condenser, a vapor transport line, and a liquid transport line, and more particularly, to an evaporator having an increased contact area between a sintered wick and a heating plate.
  • BACKGROUND OF THE INVENTION
  • Electronic parts such as CPUs or semiconductor chips used for various electronic devices such as computers generate a large amount of heat during operation. Such electronic devices are usually designed to operate at room temperature. Accordingly, when heat generated during the operation of an electronic device is not effectively cooled down, the performance of the electronic device is severely deteriorated and, in some cases, the electronic device itself may be damaged.
  • In order to cool down heat generated by various electronic parts, many approaches have been developed, such as a heat conduction method using a heat sink, a method of using natural convection or radiation of air, a force convection method using a fan, a method using circulation of liquid, or a submerged cooling method.
  • However, as nowadays many electronic products are made slim, an installation distance between electronic parts generating heat during operation is continuously decreased so that heat is not appropriately cooled down. Also, since the heat load of electronic parts has continuously increased due to the high integration and high performance of the electronic parts, the above-described cooling methods are not able to effectively cool down the electronic parts.
  • As a new technology to solve the above problem, a phase change heat transport system which can cool down an electronic part having a high heat load density per unit has been introduced. A thermosyphon system and a cylindrical heat pipe system are examples of the phase change heat transport system.
  • According to the thermosyphon system, cooling is achieved using a natural circulation method via a liquid-vapor phase change and a specific gravity difference of working fluid. In a conventional cylindrical heat pipe 100, as shown in FIG. 1, cooling is obtained by circulating the working fluid using a capillary pumping force generated by a sintered wick installed in an inner surface of a pipe. When heat is transported from a heat source 101, the working fluid included in the sintered wick 102 is evaporated and moved in a direction indicated by a plurality of arrows 103 as a flow of vapor. As the heat is dissipated by a heat sink 104, the operating fluid is changed back to a liquid state and moved along the sintered wick 102 in a direction indicated by a plurality of arrows 105, thereby circulating in the heat pipe 100.
  • However, there is a limitation in the positions of the constituent elements of the two systems, that is, the thermosyphon system requires a condensing portion located higher than an evaporating portion and, although this problem is less severe in the case of the heat pipe 100, a heat transport ability of the heat pipe 100 is quite deteriorated when a condensing portion is located lower than the evaporating portion. Accordingly, this limitation prevents electronic devices employing the above cooling systems from being made slim.
  • Also, since vapor and liquid flow in opposite directions in a linear pipe of the thermosyphon or the cylindrical heat pipe 100, the vapor and the liquid may be mixed in the middle of the pipe. Another problem is that the mixture may make the amount of heat actually transported less than that that can be ideally transported.
  • A loop heat pipe (LHP) system has been suggested as an ideal heat transport system which can solve these problems, that is, the positional limitation and the mixture between the vapor and liquid. The LHP system is a sort of a capillary pumped loop heat pipe (CLP) technology developed by the NASA, U.S.A., to cool down a large amount of heat generated from communications equipment or electronic equipment for an artificial satellite.
  • Korean Patent No. 671041 entitled “Loop Heat Pipe” discloses a technology about a compact loop heat pipe system. FIG. 2 illustrates a loop heat pipe system 110 according to this conventional technology. The conventional loop heat pipe system 110 includes a condenser 112, an evaporator 114, and a vapor line 116 and a liquid line 118, which form a loop. The vapor line 116 and the liquid line 118 are connected between the condenser 112 and the evaporator 114. In the loop heat pipe system 110, a sintered wick 120 is installed only in the evaporator 114 unlike the conventional linear heat pipe of FIG. 1.
  • In the present specification, the loop heat pipe is referred to as a loop heat pipe system and both terms have the same meaning. Also, the evaporator and the condenser, respectively, have the same meanings as the evaporator section and the condenser section.
  • The loop heat pipe system 110 operates in the following manner. Heat is applied to a heating plate 122 which is the bottom portion of the evaporator 114 which is inserted with the sintered wick 120. At that point the sintered wick 120 is saturated with the liquid phase of working fluid due because the heat transported to the sintered wick 120 contacting the heat plate 122. And the applied heat vaporizes the working fluid so that the phase of the working fluid is changed to a vapor state. The vapor is moved toward the condenser 112 along the vapor line 116 connected to a side of the evaporator 114. As the vapor passes through the condenser 112, heat is dissipated externally so that the vapor is liquefied. The liquefied working fluid is moved toward the evaporator 114 along the liquid line 118 at a side of the condenser 112. The above-described process is repeated so that the heat source can be cooled down.
  • In the evaporation of the working fluid permeated in the sintered wick 120, referring to FIG. 4 showing the sintered wick 120 of FIG. 3 rotated by 180° for the convenience of explanation, a surface 126 of the sintered wick 120 facing the heating plate 122 includes a contact surface 126 b contacting the heating plate 122 and a plurality of micro-channels 126 a working as a passage of the generated vapor. Accordingly, the sintered wick 120 receives heat via the contact surface 126 b contacting the heating plate 120 so that the received heat makes the operating fluid permeated in the sintered wick 120 evaporate. The generated vapor is moved toward the condenser 112 along the vapor line 116 connected to a side of the evaporator section 114 through the micro-channels 126 a formed in the surface 126 facing the sintered wick 120.
  • On the other hand, the performance of an evaporator taking heat from a heat source like an electronic part is determined according to how well the heat transported from the heat source to a heating plate is transported to a sintered wick. In this connection, contact conductance is a factor directly affecting the heat transport between the heat source and the heating plate.
  • The contact conductance is related to the thermal resistance generated when a metal has a surface contact with another metal and heat transport occurs between the metals. The contact conductance is proportional to the contact area between the two metals. That is, as the contact area increases, the contact conductance increases, and as the contact conductance increases, heat transport is generated further.
  • However, in the evaporator for the conventional loop heat pipe system, since the contact area between the sintered wick and the heating plate is decreased due to the existence of a vapor passage, that is, the micro-channels, the contact conductance is relatively small. That is, referring to FIG. 5 showing the sintered wick 120 having the micro-channels 126 a coupled to the heating plate 122 in a direction rotated by 90° from the direction of the cross-section of FIG. 3, the contact surface 126 b of the sintered wick 120 contacting the heating plate 122 is decreased due to the micro-channels 126 a so that the amount of heat to be transported is reduced accordingly.
  • SUMMARY OF THE INVENTION
  • The present invention provides an evaporator for a loop heat pipe system, the evaporator having increased contact conductance by increasing a contact area between a metal sintered wick and a heating plate.
  • According to an aspect of the present invention, there is provided a According to an aspect of the present invention, there is provided an evaporator for a loop heat pipe system includes an evaporator section having a sintered wick formed by sintering a metal powder, in which a working fluid permeating through a plurality of pores in the sintered wick is heated so that the phase of the working fluid is changed to a vapor state, a condenser section in which the phase of the working fluid transported from the evaporator section is changed from a vapor state to a liquid state, a vapor transport line connecting between the evaporator section and the condenser section to transport the working fluid, whose phase is changed to a vapor state by the evaporator section, to the condenser section, and a liquid transport line connecting between the condenser section and the evaporator section to transport the working fluid, whose phase is changed to a liquid state by the condenser section, to the evaporator section, wherein the evaporator section includes a heating plate formed of metal and receiving heat from a heat source, a sintered wick coupled to a surface of the heating plate and receiving heat, a plurality of grooves formed in a surface of the heating plate contacting the sintered wick and functioning as a passage though which the working fluid whose phase is changed to a vapor state by the sintered wick is exhausted through the vapor transport line, wherein the grooves are formed in a side surface of the heating plate, each of the grooves having a bottom surface and two side surfaces, and the sintered wick is partially inserted in each of the grooves so as to contact at least a part of the two side surfaces of each of the grooves.
  • The part of the sintered wick inserted in each of the grooves may be an insertion portion, both side surfaces of the insertion portion contact the two side surfaces of each of the grooves, and a lower surface of the insertion portion is any one of a downwardly bulging shape, an inwardly depressed shape, and a flat shape.
  • The heating plate may include a lower plate portion having a circular disc shape and a wall portion extending from a circumferential portion of the lower plate portion, the sintered wick may be coupled to an inner surface having an upper surface of the lower plate portion and an inner surface of the wall portion of the heating plate, and a cover member is provided in an upper portion of the wall portion of the heating plate and the liquid transportation line is coupled to the cover member.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates the operation of a conventional cylindrical heat pipe;
  • FIG. 2 illustrates the concept of a conventional loop heat pipe;
  • FIG. 3 is a cross-sectional view of a conventional evaporator of FIG. 2;
  • FIG. 4 is a perspective view of the sintered wick of FIG. 3 rotated by 180°;
  • FIG. 5 is a cross-sectional view of a portion of the sintered wick and the heating plate of the conventional evaporator of FIG. 2;
  • FIG. 6 is a perspective view of a loop heat pipe system including an evaporator according to an embodiment of the present invention;
  • FIG. 7 is a cross-sectional view of the evaporator of FIG. 6;
  • FIGS. 8, 9, and 10 are cross-sectional views of the sintered wicks of FIG. 7 according to embodiments of the present invention;
  • FIG. 11 is a cross-sectional view illustrating a state in which the sintered wick and the heating plate are coupled to each other; and
  • FIG. 12 is a perspective view of the heating plate where a groove is formed.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The attached drawings for illustrating exemplary embodiments of the present invention are referred to in order to gain a sufficient understanding of the present invention, the merits thereof, and the objectives accomplished by the implementation of the present invention. Hereinafter, the present invention will be described in detail by explaining exemplary embodiments of the invention with reference to the attached drawings. Like reference numerals in the drawings denote like elements.
  • The present invention is related to an evaporator for a loop heat pipe system including a condenser, a vapor transportation line, and a liquid transportation line. FIG. 6 illustrates the structure of a loop heat pipe system according to an embodiment of the present invention. Referring to FIG. 6, the loop heat pipe system includes an evaporator 1, a condenser 210, a vapor transport line 220, and a liquid transport line 230.
  • The condenser 210 changes the phase of a working fluid in a vapor state received from the evaporator 1 to a liquid state. The condenser 210 takes heat from the working fluid and exhausts the heat to the outside air.
  • The vapor transport line 220 is a pipe member connecting the evaporator 1 and the condenser 210 to supply the vapor whose phase is changed by the evaporator 1 back to the condenser 210. The liquid transport line 230 is a pipe member connecting the condenser 210 and the evaporator 1 to supply the liquid whose phase is changed by the condenser 210 back to the evaporator 1.
  • The general operations of the condenser 210, the vapor transport line 220, and the liquid transport line 230 are the same as those described in the background section. The evaporator 1, which is the subject matter of the present invention, is one of the constituent elements of the loop heat pipe system, together with the condenser 210, the liquid transport line 220, and the vapor transport line 230.
  • FIG. 7 is a cross-sectional view of the evaporator 1 of FIG. 6. Referring to FIG. 7, the evaporator 1 includes a sintered wick 20 that is formed by sintering metal powders. When the working fluid permeating through pores formed inside the sintered wick 20 is heated, the phase of the working fluid is changed to a vapor state. The evaporator 1 includes a heating plate 10, the sintered wick 20, and a plurality of grooves 30. The heating plate 10 is formed of metal and receives heat from a heat source such as electronic parts that generate heat during operation.
  • In the present embodiment, the heating plate 10 includes a lower plate portion 12 and a side wall portion 14. The lower plate portion 12 has a disc shape. The side wall portion 14 extends upwardly from the circumferential portion of the lower plate portion 12. The lower plate portion 12 and the side wall portion 14 may be integrally formed or coupled together after being manufactured separately. The lower surface of the lower plate portion 12 contacts the heat source and receives heat from the heat source. The heat transported to the lower plate portion 12 is transported to the side wall portion 14 connected to the lower plate portion 12 by conduction.
  • In the present embodiment, a cover member 16 is provided at an upper end portion of the side wall portion 14 of the heating plate 10. The liquid transport line 230 is connected to the cover member 16 so that the working fluid in a liquid state transported from the condenser 210 flows into an inner space of the evaporator 1. An inlet 17 to which the liquid transport line 230 is connected is formed in the cover member 16 of the evaporator 1 so that the working fluid can flow into the evaporator 1. An outlet 18 to which the vapor transport line 220 is connected is formed in the heating plate 10 so that a vapor can be exhausted.
  • In the present embodiment, the lower plate portion 12 of the heating plate 10 has a disc shape and the side wall portion 14 has a shape encompassing the lower plate portion 12. The cover member 16 has a disc shape and is provided on top of the heating plate 10. The evaporator 1 has a hollow cylindrical shape. However, the present invention is not limited to the above descriptions and, for example, the lower plate portion may have a polygonal plate shape such as a rectangle.
  • The sintered wick 20 is coupled to the upper surface of the lower plate portion 12 to receive heat therefrom. The working fluid in a liquid state included in the pores of the sintered wick 20 is evaporated into a vapor state by the received heat. The sintered wick 20 is formed by sintering a metal powder. A large number of spaces or pores are formed in the sintered wick 20 so that the working fluid in the liquid state can permeate in the sintered wick 20. The groves 30 are formed in a surface where the heating plate 10 and the sintered wick 20 contact each other and work as a passage for a vapor in the sintered wick 20 whose phase is changed to exhaust vapor through the vapor transport line 220 via the outlet 18. Thus, since the groves 30 are connected to the outlet 18, the vapor can be exhausted from the evaporator 1 through the vapor transport line 220.
  • In the present embodiment, the grooves 30 linearly formed in the upper surface of the lower plate portion 12 are separated from one another and parallel to one another. Each space (not shown) is circumferentially formed at both end portions of each of the grooves 30. Also, the grooves 30 are circumferentially formed in the side wall portion 14. Each space penetrating the grooves 30 and connected to the outlet 18 is formed in the side wall portion 14. Accordingly, the vapor generated in the grooves 30 formed in the lower plate portion 12 of the heating plate 10 flows toward the space formed in the circumferential portion of the lower plate portion 12 and then is exhausted via the outlet 18 toward the vapor transport line 220. Also, the vapor generated in the grooves 30 formed in the side wall portion 14 of the heating plate 10 flows toward the space penetrating the grooves 30 and the resultant vapor then travels via the outlet 18 toward the vapor transport line 220.
  • Each of the grooves 30 has a bottom surface 32 and side surfaces 34 and is formed on a side surface of the heating plate 10. In the present embodiment, the term “a surface” of the heating plate 10 has the same meaning as an “inner side surface” and indicates the upper surface of the lower plate portion 12 and an inner surface of the side wall portion 14. Accordingly, the grooves 30 are formed in the inner side surface, or the side surface, that is, in the upper surface of the lower plate portion 12 and the inner surface of the side wall portion 14 of the heating plate 10.
  • The sintered wick 20 is coupled to the inner side surface of the heating plate 10 to receive heat. In particular, the sintered wick 20 is partially inserted into each of the grooves 30 so as to contact at least part of both side surfaces 24 of each of the grooves 30. In the present embodiment, the part of the sintered wick 20 inserted in each of the grooves 30 is referred to as an insertion portion 22.
  • Both side surfaces 24 of the insertion portion 22 contact the upper portions of the side surfaces 34 of the grooves 30. The insertion portion 22 is inserted in each of the grooves 30 to a depth of about ⅓ of the height of each of the grooves 30. A lower surface 26 of the insertion portion 22 has a flat shape. An insertion length t of a portion of the insertion portion 22 inserted into each of the grooves 30 is defined as a length of both side surfaces of the insertion portion 22 coupled to both side surfaces of each of the grooves 30 assuming that both side surfaces of the insertion portion 22 are symmetrical.
  • However, the insertion length t of the insertion portion 22 and the shape of the lower surface 26 may be interdependently changed considering factors such as a contact area between the heating plate 10 and the sintered wick 20, a need for the space in the grooves 30 as the passage of the vapor, the size of a surface area where the working fluid can be evaporated. That is, the length t of the insertion portion 22 may be determined as a predetermined value considering the above factors.
  • For example, referring to FIG. 8, a lower surface 26 a of an insertion portion 22 a downwardly bulges in interrelation with a change in the insertion length t. Referring to FIG. 8, a lower surface 26 b of an insertion portion 22 b is inwardly depressed. Also, referring to FIG. 10, the insertion length t of an insertion portion 22 c of the sintered wick 20 with respect to the side surfaces 34 of the grooves 30 is almost equal to the height of each of the grooves 30 and a lower surface 26 c of the insertion portion 22 c is inwardly depressed. The shape of the lower surface 26 c of the insertion portion 22 c can maximize the contact area between both side surfaces 24 of the sintered wick 20 and both side surfaces 34 of the grooves 30 of the heating plate 10 and simultaneously enables the grooves 30 to work as a vapor passage, and also facilitates securing a sufficient area of the lower surface 26 c.
  • In the evaporator for a heat pipe system of the present embodiment, since the insertion portion 22 of the sintered wick 20 is inserted in each of the grooves 30 formed in the heating plate 10 and contacts both side surfaces of each of the grooves 30, the contact area increases. The increase in the contact area is described with reference to FIGS. 11 and 12.
  • FIG. 11 is a cross-sectional view illustrating a state in which a sintered wick 20 d and the heating plate 10 are coupled to each other. FIG. 12 is a perspective view of the heating plate 10 where a plurality of grooves 30 d are formed. In FIGS. 11 and 12, it is assumed that the sintered wick 20 d and the heating plate 10 are not circular but rectangular for the convenience of calculation, an n-number of grooves, where n is an integer, each having the same length, are formed in the heating plate 10, and the lower surface of an insertion portion is flat. Accordingly, since the shapes of the sintered wick 20 d and the grooves 30 d are different from those shown in FIG. 7, a suffix “d” is added to reference numbers for the sintered wick 20 d and the grooves 30 d.
  • In FIGS. 11 and 12, the meanings of reference characters are as shown below.
  • W′: heating width W: width of groove H: height of groove
    L: length of groove n: number of grooves
    rtw: permeation ratio of insertion portion
    A′: contact area rw: insertion length ratio
    A: vapor evaporation Atw: permeation area At: total area
    area
  • W′×L=A′, W×L=A, At=n(A′+A)
  • When the ratio of the heating area to the total area is that rw=W/W′, nA′/At=nW′L/n(W′L+WL)=W′/(W′/W)=1/(1+rw). If the sintered wick 20 d is inserted into each of the grooves 30 d by a depth of t and both side surfaces of an insertion portion are symmetrical, the amount of an increase in the contact area is as follows.
  • When rtw=2t/W, Atw=2tL=rtwWL. Accordingly, the contact area is that A′=n(W′L)+n(rtwWL)=nL(W′+rtwW). Thus, the ratio of a heating area increased as the sintered wick 20 d intrudes into each of the grooves 30 d is that nA′/At=nL(W′+rtwW)/nL(W′+W)=(W′+rtwW)/(W′+W)=(1+rtwrw)/(1+rw).
  • Generally, the size and number of the grooves 30 d are determined according to the specification of a system. Since the increase in the contact area decreases the value of heat flux (W/m2), it is preferable that the contact area is increased. When the contact length ratio rw is 0.5, as the permeation ratio rtw increases to 0.1-0.5, the contact area ratio is increased to 0.7-0.83. Compared to a case when the permeation ratio is 0, the contact area ratio is increased to 0.7-0.83 from 0.67 by 0.03-0.17. Accordingly, when the permeation ratio rw is 1, that is, t=W/2, or more, the contact area may correspond to an area of insertion may be larger.
  • A method of coupling the sinters wick 20 to a side surface of the heating plate 10 may be a sintering method of sintering metal powder to form the sintered wick 20 and simultaneously coupling the sintered wick 20 to the heating plate 10 and a coupling method of forming the sintered wick 20 and then coupling the sintered wick 20 to the heating plate 10 where the grooves 30 are formed. The coupling method includes a simple pressing coupling method and a metal coupling method.
  • According to the simultaneous sintering method, a plurality of grooves are formed in a metal heating plate and the grooves are filled with a sublimate solid material considering the insertion length of an insertion portion and the shape of a lower surface of a sintered wick. That is, in FIG. 7-9, a portion of each of the grooves, corresponding to an empty space, is filled with the sublimate solid material considering the insertion portion inserted in each of the groves. Then, a jig above the sintered plate is arranged to be separated from one another by the thickness of the sintered wick. The heating plate and the jig are packed with metal powder and heated at a predetermined temperature for a period of time according to the type of the metal powder to be sintered. As the metal powder is sintered, the metal powder is coupled to the heating plate. Also, simultaneously with the sintering of the metal powder, the sublimate solid material filling the grooves is sublimated and exhausted from the sublimate solid material. Accordingly, with an empty space having a desired shape, the insertion portion of the sintered wick inserted in each of the grooves is formed into a desired shape.
  • In the simple pressing coupling method, a previously manufactured metal sintered wick is prepared to contact the heating plate and then a predetermined load is applied to the sintered wick to be coupled to the heating plate. In the metal coupling method, a previously manufactured metal sintered wick is prepared to contact the heating plate and heated to be sintered again (or secondly sintering) so that the sintered wick is coupled to the heating plate. Any one of the above-described methods may be appropriately selected as a method of coupling the sintered wick 20 to the side surface of the heating plate 10.
  • As described above, according to the evaporator for a loop heat pipe system according to the present invention, since the contact area between the heating plate and the sintered wick is increased compared to the conventional technology, a contact conductance increases. That is, in the conventional technology, the heating plate and the sintered wick contact each other except for a surface corresponding to the width of each of the grooves functioning as a passage for vapor. In the evaporator of the present invention, since a portion of the sintered wick is inserted in each of the grooves and contacts both side surfaces of each groove, the contact area between the heating plate and the sintered wick increases.
  • Also, according to the evaporator for a loop heat pipe system of the present invention, since the shape of the lower surface of the insertion portion of the sintered wick inserted in each of the grooves can be variously formed, in a state in which the contact area between the heating plate and the sintered wick is increased, a sectional area of the vapor passage and a evaporation surface area can be additionally adjusted so that optimal efficiency suitable for the environment can be obtained.
  • Furthermore, according to the simultaneous sintering method, since a manufacturing process is simple, a cost for manufacturing an evaporator is low. In particular, since the coupling between the sintered wick and the heating plate is performed simultaneously with sintering, a contact state is improved so that contact conductance is increased. Also, by controlling a state of a sublimate material filling the grooves, the insertion portion of the sintered wick can be formed in any shape.
  • In addition, when the sintered wick is coupled to the heating plate in the coupling method, compared to the above-described simultaneous sintering method, the coupling state between the sintered wick and the metal heating plate is slightly deteriorated. However, since the side surface of the insertion portion is coupled to the side surface of each of the grooves, compared to the conventional technology, the contact area between the sintered wick and the heating plate can be increased. Also, the insertion portion of the sintered wick can be mechanically processed into a desired shape.
  • As described above, according to the evaporator for a loop heat pipe system according to the present embodiment, since the contact area between the sintered wick and the heating plate is increased compared to the conventional technology, the contact conductance is increased.
  • While this invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (3)

1. An evaporator for a loop heat pipe system comprising:
an evaporator section having a sintered wick formed by sintering a metal powder, in which a working fluid permeating through a plurality of pores in the sintered wick is heated so that the phase of the working fluid is changed to a vapor state;
a condenser section in which the phase of the working fluid transported from the evaporator section is changed from a vapor state to a liquid state;
a vapor transport line connecting between the evaporator section and the condenser section to transport the working fluid, whose phase is changed to a vapor state by the evaporator section, to the condenser section; and
a liquid transport line connecting between the condenser section and the evaporator section to transport the working fluid, whose phase is changed to a liquid state by the condenser section, to the evaporator section,
wherein the evaporator section comprises:
a heating plate formed of metal and receiving heat from a heat source;
a sintered wick coupled to a surface of the heating plate and receiving heat;
a plurality of grooves formed in a surface of the heating plate contacting the sintered wick and functioning as a passage though which the working fluid whose phase is changed to a vapor state by the sintered wick is exhausted through the vapor transport line,
wherein the grooves are formed in a side surface of the heating plate, each of the grooves having a bottom surface and two side surfaces, and the sintered wick is partially inserted in each of the grooves so as to contact at least a part of the two side surfaces of each of the grooves.
2. The evaporator of claim 1 wherein the part of the sintered wick inserted in each of the grooves is an insertion portion, both side surfaces of the insertion portion contact the two side surfaces of each of the grooves, and a lower surface of the insertion portion is any one of a downwardly bulging shape, an inwardly depressed shape, and a flat shape.
3. The evaporator of claim 2, wherein the heating plate comprises a lower plate portion having a circular disc shape and a wall portion extending from a circumferential portion of the lower plate portion, the sintered wick is coupled to an inner surface having an upper surface of the lower plate portion and an inner surface of the wall portion of the heating plate, and a cover member is provided in an upper portion of the wall portion of the heating plate and the liquid transportation line is coupled to the cover member.
US12/546,331 2008-06-18 2009-08-24 Evaporator For Loop Heat Pipe System Abandoned US20090314472A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2008-0057458 2008-06-18
KR1020080057458A KR20090131533A (en) 2008-06-18 2008-06-18 Evaporator for loop heat pipe system
PCT/KR2008/004493 WO2009154323A1 (en) 2008-06-18 2008-08-01 Evaporator for loop heat pipe system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2008/004493 Continuation WO2009154323A1 (en) 2008-06-18 2008-08-01 Evaporator for loop heat pipe system

Publications (1)

Publication Number Publication Date
US20090314472A1 true US20090314472A1 (en) 2009-12-24

Family

ID=41430055

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/546,331 Abandoned US20090314472A1 (en) 2008-06-18 2009-08-24 Evaporator For Loop Heat Pipe System

Country Status (1)

Country Link
US (1) US20090314472A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100071880A1 (en) * 2008-09-22 2010-03-25 Chul-Ju Kim Evaporator for looped heat pipe system
US20110088875A1 (en) * 2009-10-16 2011-04-21 Foxconn Technology Co., Ltd. Loop heat pipe
US20110192574A1 (en) * 2008-10-29 2011-08-11 Minoru Yoshikawa Cooling structure, electronic device using same, and cooling method
JP2012067981A (en) * 2010-09-24 2012-04-05 Fujitsu Ltd Cooling system
CN102723316A (en) * 2011-03-29 2012-10-10 北京奇宏科技研发中心有限公司 Loop heat pipe structure
US20130206369A1 (en) * 2012-02-13 2013-08-15 Wei-I Lin Heat dissipating device
US20130306278A1 (en) * 2012-05-16 2013-11-21 Triem T. Hoang Temperature Actuated Capillary Valve for Loop Heat Pipe System
CN103424020A (en) * 2012-05-14 2013-12-04 富士通株式会社 Cooling device using loop type heat pipe
US8893513B2 (en) 2012-05-07 2014-11-25 Phononic Device, Inc. Thermoelectric heat exchanger component including protective heat spreading lid and optimal thermal interface resistance
US8991194B2 (en) 2012-05-07 2015-03-31 Phononic Devices, Inc. Parallel thermoelectric heat exchange systems
US20160116226A1 (en) * 2013-05-29 2016-04-28 Euro Heat Pipes Two-phase heat transfer device
US9581358B2 (en) 2013-08-30 2017-02-28 Exxonmobil Upstream Research Company Multi-phase passive thermal transfer for subsea apparatus
US9593871B2 (en) 2014-07-21 2017-03-14 Phononic Devices, Inc. Systems and methods for operating a thermoelectric module to increase efficiency
US9618275B1 (en) * 2012-05-03 2017-04-11 Advanced Cooling Technologies, Inc. Hybrid heat pipe
US20180209745A1 (en) * 2017-01-26 2018-07-26 Asia Vital Components Co., Ltd. Loop heat pipe structure
US20180209746A1 (en) * 2017-01-26 2018-07-26 Asia Vital Components Co., Ltd. Wick structure and loop heat pipe using same
FR3065279A1 (en) * 2017-04-18 2018-10-19 Euro Heat Pipes EVAPORATOR WITH OPTIMIZED VAPORIZATION INTERFACE
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
WO2019221351A1 (en) 2018-05-15 2019-11-21 Korea Atomic Energy Research Institute Heat transferring device with pumping structure
US10746478B2 (en) * 2015-12-11 2020-08-18 California Institute Of Technology Silicon biporous wick for high heat flux heat spreaders
EP3690373A4 (en) * 2017-09-27 2021-07-07 Beijing Institute of Spacecraft System Engineering Great-power flat evaporator resisting against positive pressure, processing method therefor, and flat-plate loop heat pipe based on evaporator
US11382238B2 (en) * 2019-03-14 2022-07-05 Seiko Epson Corporation Cooling device and projector

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302704A (en) * 1965-05-14 1967-02-07 Olin Mathieson Compound metal structure
US3595310A (en) * 1969-11-12 1971-07-27 Olin Corp Modular units and use thereof in heat exchangers
US4351388A (en) * 1980-06-13 1982-09-28 Mcdonnell Douglas Corporation Inverted meniscus heat pipe
US4446851A (en) * 1980-07-10 1984-05-08 Internorth, Inc. Plastic radiant exchanger
US4515209A (en) * 1984-04-03 1985-05-07 Otdel Fiziko-Tekhnicheskikh Problem Energetiki Uralskogo Nauchnogo Tsentra Akademi Nauk Ssr Heat transfer apparatus
US4616699A (en) * 1984-01-05 1986-10-14 Mcdonnell Douglas Corporation Wick-fin heat pipe
US4890668A (en) * 1987-06-03 1990-01-02 Lockheed Missiles & Space Company, Inc. Wick assembly for self-regulated fluid management in a pumped two-phase heat transfer system
US4903761A (en) * 1987-06-03 1990-02-27 Lockheed Missiles & Space Company, Inc. Wick assembly for self-regulated fluid management in a pumped two-phase heat transfer system
US5123982A (en) * 1990-06-29 1992-06-23 The United States Of American As Represented By The United States Department Of Energy Process of making cryogenically cooled high thermal performance crystal optics
US5205353A (en) * 1989-11-30 1993-04-27 Akzo N.V. Heat exchanging member
US5666269A (en) * 1994-01-03 1997-09-09 Motorola, Inc. Metal matrix composite power dissipation apparatus
US5727622A (en) * 1994-03-04 1998-03-17 Elisra Gan Ltd. Heat radiating element
US5816313A (en) * 1994-02-25 1998-10-06 Lockheed Martin Corporation Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves
US6424529B2 (en) * 2000-03-14 2002-07-23 Delphi Technologies, Inc. High performance heat exchange assembly
US20020108743A1 (en) * 2000-12-11 2002-08-15 Wirtz Richard A. Porous media heat sink apparatus
US6550530B1 (en) * 2002-04-19 2003-04-22 Thermal Corp. Two phase vacuum pumped loop
US6761211B2 (en) * 2000-03-14 2004-07-13 Delphi Technologies, Inc. High-performance heat sink for electronics cooling
US6810946B2 (en) * 2001-12-21 2004-11-02 Tth Research, Inc. Loop heat pipe method and apparatus
US6840307B2 (en) * 2000-03-14 2005-01-11 Delphi Technologies, Inc. High performance heat exchange assembly
US6840304B1 (en) * 1999-02-19 2005-01-11 Mitsubishi Denki Kabushiki Kaisha Evaporator, a heat absorber, a thermal transport system and a thermal transport method
US6863117B2 (en) * 2002-02-26 2005-03-08 Mikros Manufacturing, Inc. Capillary evaporator
US20050077030A1 (en) * 2003-10-08 2005-04-14 Shwin-Chung Wong Transport line with grooved microchannels for two-phase heat dissipation on devices
US6896039B2 (en) * 1999-05-12 2005-05-24 Thermal Corp. Integrated circuit heat pipe heat spreader with through mounting holes
US6958912B2 (en) * 2003-11-18 2005-10-25 Intel Corporation Enhanced heat exchanger
US6990816B1 (en) * 2004-12-22 2006-01-31 Advanced Cooling Technologies, Inc. Hybrid capillary cooling apparatus
US7013956B2 (en) * 2003-09-02 2006-03-21 Thermal Corp. Heat pipe evaporator with porous valve
US7450386B2 (en) * 2005-07-30 2008-11-11 Articchoke Enterprises Llc Phase-separated evaporator, blade-thru condenser and heat dissipation system thereof
US20080283223A1 (en) * 2007-05-16 2008-11-20 Industrial Technology Research Institute Heat Dissipation System With A Plate Evaporator
US7775261B2 (en) * 2002-02-26 2010-08-17 Mikros Manufacturing, Inc. Capillary condenser/evaporator
US8033017B2 (en) * 2008-06-23 2011-10-11 Zalman Tech Co., Ltd. Method for manufacturing evaporator for loop heat pipe system

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302704A (en) * 1965-05-14 1967-02-07 Olin Mathieson Compound metal structure
US3595310A (en) * 1969-11-12 1971-07-27 Olin Corp Modular units and use thereof in heat exchangers
US4351388A (en) * 1980-06-13 1982-09-28 Mcdonnell Douglas Corporation Inverted meniscus heat pipe
US4446851A (en) * 1980-07-10 1984-05-08 Internorth, Inc. Plastic radiant exchanger
US4616699A (en) * 1984-01-05 1986-10-14 Mcdonnell Douglas Corporation Wick-fin heat pipe
US4515209A (en) * 1984-04-03 1985-05-07 Otdel Fiziko-Tekhnicheskikh Problem Energetiki Uralskogo Nauchnogo Tsentra Akademi Nauk Ssr Heat transfer apparatus
US4890668A (en) * 1987-06-03 1990-01-02 Lockheed Missiles & Space Company, Inc. Wick assembly for self-regulated fluid management in a pumped two-phase heat transfer system
US4903761A (en) * 1987-06-03 1990-02-27 Lockheed Missiles & Space Company, Inc. Wick assembly for self-regulated fluid management in a pumped two-phase heat transfer system
US5205353A (en) * 1989-11-30 1993-04-27 Akzo N.V. Heat exchanging member
US5123982A (en) * 1990-06-29 1992-06-23 The United States Of American As Represented By The United States Department Of Energy Process of making cryogenically cooled high thermal performance crystal optics
US5666269A (en) * 1994-01-03 1997-09-09 Motorola, Inc. Metal matrix composite power dissipation apparatus
US5816313A (en) * 1994-02-25 1998-10-06 Lockheed Martin Corporation Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves
US5727622A (en) * 1994-03-04 1998-03-17 Elisra Gan Ltd. Heat radiating element
US6840304B1 (en) * 1999-02-19 2005-01-11 Mitsubishi Denki Kabushiki Kaisha Evaporator, a heat absorber, a thermal transport system and a thermal transport method
US6896039B2 (en) * 1999-05-12 2005-05-24 Thermal Corp. Integrated circuit heat pipe heat spreader with through mounting holes
US6424529B2 (en) * 2000-03-14 2002-07-23 Delphi Technologies, Inc. High performance heat exchange assembly
US6840307B2 (en) * 2000-03-14 2005-01-11 Delphi Technologies, Inc. High performance heat exchange assembly
US6761211B2 (en) * 2000-03-14 2004-07-13 Delphi Technologies, Inc. High-performance heat sink for electronics cooling
US20020108743A1 (en) * 2000-12-11 2002-08-15 Wirtz Richard A. Porous media heat sink apparatus
US6810946B2 (en) * 2001-12-21 2004-11-02 Tth Research, Inc. Loop heat pipe method and apparatus
US6863117B2 (en) * 2002-02-26 2005-03-08 Mikros Manufacturing, Inc. Capillary evaporator
US7775261B2 (en) * 2002-02-26 2010-08-17 Mikros Manufacturing, Inc. Capillary condenser/evaporator
US6550530B1 (en) * 2002-04-19 2003-04-22 Thermal Corp. Two phase vacuum pumped loop
US7013956B2 (en) * 2003-09-02 2006-03-21 Thermal Corp. Heat pipe evaporator with porous valve
US20050077030A1 (en) * 2003-10-08 2005-04-14 Shwin-Chung Wong Transport line with grooved microchannels for two-phase heat dissipation on devices
US6958912B2 (en) * 2003-11-18 2005-10-25 Intel Corporation Enhanced heat exchanger
US6990816B1 (en) * 2004-12-22 2006-01-31 Advanced Cooling Technologies, Inc. Hybrid capillary cooling apparatus
US7450386B2 (en) * 2005-07-30 2008-11-11 Articchoke Enterprises Llc Phase-separated evaporator, blade-thru condenser and heat dissipation system thereof
US20080283223A1 (en) * 2007-05-16 2008-11-20 Industrial Technology Research Institute Heat Dissipation System With A Plate Evaporator
US8033017B2 (en) * 2008-06-23 2011-10-11 Zalman Tech Co., Ltd. Method for manufacturing evaporator for loop heat pipe system

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100071880A1 (en) * 2008-09-22 2010-03-25 Chul-Ju Kim Evaporator for looped heat pipe system
US9557117B2 (en) * 2008-10-29 2017-01-31 Nec Corporation Cooling structure, electronic device using same, and cooling method
US20110192574A1 (en) * 2008-10-29 2011-08-11 Minoru Yoshikawa Cooling structure, electronic device using same, and cooling method
US8550150B2 (en) * 2009-10-16 2013-10-08 Foxconn Technology Co., Ltd. Loop heat pipe
US20110088875A1 (en) * 2009-10-16 2011-04-21 Foxconn Technology Co., Ltd. Loop heat pipe
JP2012067981A (en) * 2010-09-24 2012-04-05 Fujitsu Ltd Cooling system
CN102723316A (en) * 2011-03-29 2012-10-10 北京奇宏科技研发中心有限公司 Loop heat pipe structure
US9504185B2 (en) 2011-03-29 2016-11-22 Asia Vital Components (Shen Zhen) Co., Ltd. Dual chamber loop heat pipe structure with multiple wick layers
US20130206369A1 (en) * 2012-02-13 2013-08-15 Wei-I Lin Heat dissipating device
US9618275B1 (en) * 2012-05-03 2017-04-11 Advanced Cooling Technologies, Inc. Hybrid heat pipe
US9310111B2 (en) 2012-05-07 2016-04-12 Phononic Devices, Inc. Systems and methods to mitigate heat leak back in a thermoelectric refrigeration system
US8893513B2 (en) 2012-05-07 2014-11-25 Phononic Device, Inc. Thermoelectric heat exchanger component including protective heat spreading lid and optimal thermal interface resistance
US10012417B2 (en) 2012-05-07 2018-07-03 Phononic, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
US9234682B2 (en) 2012-05-07 2016-01-12 Phononic Devices, Inc. Two-phase heat exchanger mounting
US8991194B2 (en) 2012-05-07 2015-03-31 Phononic Devices, Inc. Parallel thermoelectric heat exchange systems
US9103572B2 (en) 2012-05-07 2015-08-11 Phononic Devices, Inc. Physically separated hot side and cold side heat sinks in a thermoelectric refrigeration system
US9341394B2 (en) 2012-05-07 2016-05-17 Phononic Devices, Inc. Thermoelectric heat exchange system comprising cascaded cold side heat sinks
CN103424020A (en) * 2012-05-14 2013-12-04 富士通株式会社 Cooling device using loop type heat pipe
US20130306278A1 (en) * 2012-05-16 2013-11-21 Triem T. Hoang Temperature Actuated Capillary Valve for Loop Heat Pipe System
US9146059B2 (en) * 2012-05-16 2015-09-29 The United States Of America, As Represented By The Secretary Of The Navy Temperature actuated capillary valve for loop heat pipe system
US10030914B2 (en) 2012-05-16 2018-07-24 The United States Of America, As Represented By The Secretary Of The Navy Temperature actuated capillary valve for loop heat pipe system
US10704839B2 (en) * 2012-05-16 2020-07-07 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Temperature actuated capillary valve for loop heat pipe system
US20160116226A1 (en) * 2013-05-29 2016-04-28 Euro Heat Pipes Two-phase heat transfer device
US10209008B2 (en) * 2013-05-29 2019-02-19 Euro Heat Pipes Two-phase heat transfer device
US9581358B2 (en) 2013-08-30 2017-02-28 Exxonmobil Upstream Research Company Multi-phase passive thermal transfer for subsea apparatus
US9593871B2 (en) 2014-07-21 2017-03-14 Phononic Devices, Inc. Systems and methods for operating a thermoelectric module to increase efficiency
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
US10746478B2 (en) * 2015-12-11 2020-08-18 California Institute Of Technology Silicon biporous wick for high heat flux heat spreaders
US20180209745A1 (en) * 2017-01-26 2018-07-26 Asia Vital Components Co., Ltd. Loop heat pipe structure
US20190195569A1 (en) * 2017-01-26 2019-06-27 Asia Vital Components Co., Ltd. Wick structure and loop heat pipe using same
US20180209746A1 (en) * 2017-01-26 2018-07-26 Asia Vital Components Co., Ltd. Wick structure and loop heat pipe using same
WO2018192839A1 (en) * 2017-04-18 2018-10-25 Euro Heat Pipes Evaporator having an optimized vaporization interface
CN110741215A (en) * 2017-04-18 2020-01-31 欧热管公司 Evaporator with optimized vaporization interface
JP2020516845A (en) * 2017-04-18 2020-06-11 ユーロ ヒート パイプス Evaporator with optimized vaporization interface
FR3065279A1 (en) * 2017-04-18 2018-10-19 Euro Heat Pipes EVAPORATOR WITH OPTIMIZED VAPORIZATION INTERFACE
US11300361B2 (en) * 2017-04-18 2022-04-12 Euro Heat Pipes Evaporator having an optimized vaporization interface
JP7100665B2 (en) 2017-04-18 2022-07-13 ユーロ ヒート パイプス Evaporator with optimized vaporization interface
EP3690373A4 (en) * 2017-09-27 2021-07-07 Beijing Institute of Spacecraft System Engineering Great-power flat evaporator resisting against positive pressure, processing method therefor, and flat-plate loop heat pipe based on evaporator
US11656034B2 (en) * 2017-09-27 2023-05-23 Beijing Institute Of Spacecraft System Engineering Positive-pressure-withstanding high-power flat evaporator, processing methods thereof and flat loop heat pipe based on evaporator
WO2019221351A1 (en) 2018-05-15 2019-11-21 Korea Atomic Energy Research Institute Heat transferring device with pumping structure
EP3794614A4 (en) * 2018-05-15 2022-01-19 Korea Atomic Energy Research Institute Heat transferring device with pumping structure
US11382238B2 (en) * 2019-03-14 2022-07-05 Seiko Epson Corporation Cooling device and projector

Similar Documents

Publication Publication Date Title
US20090314472A1 (en) Evaporator For Loop Heat Pipe System
US9459050B2 (en) Heat pipe system
US8033017B2 (en) Method for manufacturing evaporator for loop heat pipe system
US8353334B2 (en) Nano tube lattice wick system
US7431071B2 (en) Fluid circuit heat transfer device for plural heat sources
EP3232752B1 (en) Cooling electronic devices in a data center
KR101054092B1 (en) Evaporator for Loop Heat Pipe System
US6167948B1 (en) Thin, planar heat spreader
US6619384B2 (en) Heat pipe having woven-wire wick and straight-wire wick
KR101225704B1 (en) Evaporator for the looped heat pipe system and method for manufacturing thereof
US20050173098A1 (en) Three dimensional vapor chamber
CN101652055A (en) Heat spreader, electronic apparatus, and heat spreader manufacturing method
KR20180048972A (en) Vapor Chamber
WO2009154323A1 (en) Evaporator for loop heat pipe system
JP2012132661A (en) Cooling device and electronic device
JP5370074B2 (en) Loop type heat pipe and electronic device equipped with the same
JP2007263427A (en) Loop type heat pipe
JP4648106B2 (en) Cooling system
WO2009157611A1 (en) Method for manufacturing evaporator for loop heat pipe system
US11369042B2 (en) Heat exchanger with integrated two-phase heat spreader
US20020074108A1 (en) Horizontal two-phase loop thermosyphon with capillary structures
JP2021188890A (en) Heat transfer member and cooling device having heat transfer member
JP6863058B2 (en) Heat pipes and electronic devices
JP2016133287A (en) Loop type heat pipe
WO2017082127A1 (en) Electronic equipment cooling device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ZALMAN TECH CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, CHUL-JU;SEO, MIN-WHAN;SUNG, BYUNG-HO;AND OTHERS;REEL/FRAME:023150/0045;SIGNING DATES FROM 20090819 TO 20090820

Owner name: SUNGKYUNKWAN UNIVERSITY FOUNDATION FOR CORPORATE C

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, CHUL-JU;SEO, MIN-WHAN;SUNG, BYUNG-HO;AND OTHERS;REEL/FRAME:023150/0045;SIGNING DATES FROM 20090819 TO 20090820

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION