US20090269659A1 - Injection molded article and method for the manufacture thereof - Google Patents

Injection molded article and method for the manufacture thereof Download PDF

Info

Publication number
US20090269659A1
US20090269659A1 US12/267,060 US26706008A US2009269659A1 US 20090269659 A1 US20090269659 A1 US 20090269659A1 US 26706008 A US26706008 A US 26706008A US 2009269659 A1 US2009269659 A1 US 2009269659A1
Authority
US
United States
Prior art keywords
injection molding
molded article
injection molded
molding composition
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/267,060
Other versions
US8057873B2 (en
Inventor
Juha-Matti Levasalmi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Original Assignee
SABIC Innovative Plastics IP BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/267,060 priority Critical patent/US8057873B2/en
Application filed by SABIC Innovative Plastics IP BV filed Critical SABIC Innovative Plastics IP BV
Assigned to SABIC INNOVATIVE PLASTICS IP B.V. reassignment SABIC INNOVATIVE PLASTICS IP B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEVASALMI, JUHA-MATTI
Priority to JP2011506323A priority patent/JP5314128B2/en
Priority to DE9739356T priority patent/DE09739356T1/en
Priority to EP09739356.5A priority patent/EP2285545B1/en
Priority to PCT/US2009/038161 priority patent/WO2009134554A2/en
Priority to CN200980122617.8A priority patent/CN102066078B/en
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Publication of US20090269659A1 publication Critical patent/US20090269659A1/en
Publication of US8057873B2 publication Critical patent/US8057873B2/en
Application granted granted Critical
Assigned to SABIC INNOVATIVE PLASTICS IP B.V. reassignment SABIC INNOVATIVE PLASTICS IP B.V. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A.
Assigned to SABIC GLOBAL TECHNOLOGIES B.V. reassignment SABIC GLOBAL TECHNOLOGIES B.V. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Assigned to SABIC GLOBAL TECHNOLOGIES B.V. reassignment SABIC GLOBAL TECHNOLOGIES B.V. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/136Flexibility or foldability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • H01M50/143Fireproof; Explosion-proof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7146Battery-cases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1303Paper containing [e.g., paperboard, cardboard, fiberboard, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • Y10T428/1359Three or more layers [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article

Definitions

  • Poly(arylene ether)s are a class of plastics known for excellent water resistance, dimensional stability, and inherent flame retardancy, as well as high oxygen permeability and oxygen/nitrogen selectivity. Properties such as strength, stiffness, chemical resistance, and heat resistance can be tailored by blending poly(arylene ether)s with various other plastics in order to meet the requirements of a wide variety of consumer products, for example, plumbing fixtures, electrical boxes, automotive parts, and insulation for wire and cable.
  • Injection molding compositions including a poly(arylene ether), a rubber-modified polystyrene, and a flame retardant are commonly used to mold a variety of articles.
  • the melt rheology properties needed for injection molding these compositions are generally known.
  • the present inventor has observed that injection molding compositions exhibiting similar melt rheology properties can exhibit different molding characteristics when used to mold articles having large, thin sections. For example, some molding compositions exhibit much larger mold shrinkages and/or warping than others.
  • an injection molded article wherein a portion of the injection molded article comprises a first dimension of at least 10 centimeters, a second dimension of at least 10 centimeters, and a third dimension of less than 1 centimeter; wherein the injection molded article is a product of injection molding an injection molding composition comprising 30 to 60 weight percent of a poly(arylene ether) having an intrinsic viscosity of 0.3 to 0.55 deciliter/gram measured at 25° C.
  • the injection molding composition has a shear thinning index of 6 to 17 measured at shear rates of 100 and 10,000 second ⁇ 1 at a temperature of 260 to 300° C. according to ASTM D3835.
  • Another embodiment is a method of injection molding, comprising: injection molding an injection molding composition to form an injection molded article; wherein a portion of the injection molded article comprises a first dimension of at least 10 centimeters, a second dimension of at least 10 centimeters, and a third dimension of less than 1 centimeter; wherein the injection molded article is a product of injection molding an injection molding composition comprising 30 to 60 weight percent of a poly(arylene ether) having an intrinsic viscosity of 0.3 to 0.55 deciliter/gram measured at 25° C.
  • the injection molding composition has a shear thinning index of 6 to 17 measured at shear rates of 100 and 10,000 second ⁇ 1 at a temperature of 260 to 300° C. according to ASTM D3835.
  • the present inventor has discovered that the ratio of melt viscosity at a shear rate of 100 second ⁇ 1 to melt viscosity at a shear rate of 10,000 second ⁇ 1 is a previously unrecognized result-effective variable for predicting the ability to mold large, flat parts with poly(arylene ether) injection molding composition.
  • the ratio of melt viscosities at two different shear rates is known as a shear thinning ratio.
  • the importance of the melt viscosity at a shear rate of 100 second ⁇ 1 in the shear thinning ratio is surprising given conventional wisdom in the art that melt viscosities at shear rates below 1,000 second ⁇ 1 are not important for injection molding.
  • one monograph discloses shear rate ranges associated with various processes and specifically discloses a shear rate range of 1,000 to 100,000 second ⁇ 1 for injection molding.
  • the present inventor in the course of trying to solve a problem encountered by an injection molder, discovered that improved molding of large flat parts was obtained when the ratio of melt viscosity at a shear rate of 100 second ⁇ 1 to melt viscosity at a shear rate of 10,000 second ⁇ 1 is in the range 6 to 17 for the molding temperature range of 260 to 300° C.
  • one embodiment is an injection molded article, wherein a portion of the injection molded article comprises a first dimension of at least 10 centimeters, a second dimension of at least 10 centimeters, and a third dimension of less than 1 centimeter; wherein the injection molded article is a product of injection molding an injection molding composition comprising 30 to 60 weight percent of a poly(arylene ether) having an intrinsic viscosity of 0.3 to 0.55 deciliter/gram measured at 25° C.
  • the injection molding composition has a shear thinning index of 6 to 17 measured at shear rates of 100 and 10,000 second ⁇ 1 at a temperature of 260 to 300° C. according to ASTM D3835.
  • the specified shear thinning index of 6 to 17 is for a temperature range of 260 to 300° C., and the particular shear thinning index range will depend on the specific molding temperature employed. For a given melt temperature, this shear thinning index is calculated as the ratio of the melt viscosity at a shear rate of 100 second ⁇ 1 to the melt viscosity at a shear rate of 10,000 second ⁇ 1 . As an illustration using data from Table 3 below, at a melt temperature of 260° C.
  • melt viscosity at a shear rate of 100 second ⁇ 1 is 841 Pascal-seconds
  • melt viscosity at a shear rate of 10,000 second ⁇ 1 is 64.2 Pascal-seconds
  • the shear thinning index at shear rates of 100 and 10,000 second ⁇ 1 when measured as a temperature of 260° C., is 12 to 17, specifically 13 to 16, more specifically 13 to 15. In some embodiments, when measured at a temperature of 280° C., the shear thinning index at shear rates of 100 and 10,000 second ⁇ 1 is 10 to 14, specifically 11 to 13. In some embodiments, when measured at a temperature of 300° C., the shear thinning index at shear rates of 100 and 10,000 second ⁇ 1 is 6 to 12, specifically 7 to 11, more specifically 8 to 10.
  • the injection molding composition exhibits a viscosity less than 1000 Pascal-seconds measured at 260° C. and a shear rate of 100 second ⁇ 1 according to ASTM D3835 and/or a viscosity less than 600 Pascal-seconds measured at 280° C. and a shear rate of 100 second ⁇ 1 according to ASTM D3835, and/or a viscosity less than 400 Pascal-seconds measured at 300° C. and a shear rate of 100 second ⁇ 1 according to ASTM D3835.
  • the injection molding composition exhibits a melt viscosity of 200 to 1000 Pascal-seconds, specifically 400 to 1000 Pascal-seconds measured at a temperature of 260 to 300° C.
  • the melt viscosity at a shear rate of 100 second ⁇ 1 can be 600 to 900 Pascal seconds.
  • the melt viscosity at a shear rate of 100 second ⁇ 1 can be 400 to 600 Pascal seconds.
  • the melt viscosity at a shear rate of 100 second ⁇ 1 can be 200 to 400 Pascal seconds.
  • the above shear thinning index limitations are particularly critical when injection molding article having large, thin sections.
  • Such articles are characterized as comprising a portion having a first dimension of at least 10 centimeters, a second dimension of at least 10 centimeters, and a third dimension of less than 1 centimeter.
  • the first and second dimensions define the “large” characteristic of the section
  • the third dimension defines the “thin” characteristic of the section.
  • the first dimension is 10 to 100 centimeters
  • the second dimension is 10 to 100 centimeters
  • the third dimension is 0.02 to 1 centimeter.
  • the first dimension is 30 to 100 centimeters
  • the second dimension is 30 to 100 centimeters
  • the third dimension is 0.1 to 0.5 centimeter.
  • the first and second dimensions define a plane.
  • the molded article can be a battery case having an overall rectangular prism shape in which at least one wall is a (planar) rectangle.
  • the injection molding composition comprises a poly(arylene ether).
  • Suitable poly(arylene ether)s include those comprising repeating structural units having the formula
  • each occurrence of Z 1 is independently halogen, unsubstituted or substituted C 1 -C 12 hydrocarbyl provided that the hydrocarbyl group is not tertiary hydrocarbyl, C 1 -C 12 hydrocarbylthio, C 1 -C 12 hydrocarbyloxy, or C 2 -C 12 halohydrocarbyloxy wherein at least two carbon atoms separate the halogen and oxygen atoms; and each occurrence of Z 2 is independently hydrogen, halogen, unsubstituted or substituted C 1 -C 12 hydrocarbyl provided that the hydrocarbyl group is not tertiary hydrocarbyl, C 1 -C 12 hydrocarbylthio, C 1 -C 12 hydrocarbyloxy, or C 2 -C 12 halohydrocarbyloxy wherein at least two carbon atoms separate the halogen and oxygen atoms.
  • hydrocarbyl refers to a residue that contains only carbon and hydrogen.
  • the residue can be aliphatic or aromatic, straight-chain, cyclic, bicyclic, branched, saturated, or unsaturated. It can also contain combinations of aliphatic, aromatic, straight chain, cyclic, bicyclic, branched, saturated, and unsaturated hydrocarbon moieties.
  • the hydrocarbyl residue when described as substituted, it may, optionally, contain heteroatoms over and above the carbon and hydrogen members of the substituent residue.
  • the hydrocarbyl residue may also contain one or more carbonyl groups, amino groups, hydroxyl groups, or the like, or it may contain heteroatoms within the backbone of the hydrocarbyl residue.
  • Z 1 may be a di-n-butylaminomethyl group formed by reaction of a terminal 3,5-dimethyl-1,4-phenyl group with the di-n-butylamine component of an oxidative polymerization catalyst.
  • the poly(arylene ether) comprises 2,6-dimethyl-1,4-phenylene ether units, 2,3,6-trimethyl-1,4-phenylene ether units, or a combination thereof. In some embodiments, the poly(arylene ether) is a poly(2,6-dimethyl-1,4-phenylene ether).
  • the poly(arylene ether) can comprise molecules having aminoalkyl-containing end group(s), typically located in a position ortho to the hydroxy group. Also frequently present are tetramethyldiphenoquinone (TMDQ) end groups, typically obtained from 2,6-dimethylphenol-containing reaction mixtures in which tetramethyldiphenoquinone by-product is present.
  • TMDQ tetramethyldiphenoquinone
  • the poly(arylene ether) can be in the form of a homopolymer, a copolymer, a graft copolymer, an ionomer, or a block copolymer, as well as combinations comprising at least one of the foregoing.
  • the poly(arylene ether) has an intrinsic viscosity of 0.3 to 0.55 deciliter per gram measured at 25° C. in chloroform. Specifically, the poly(arylene ether) intrinsic viscosity may be 0.35 to 0.5 deciliter per gram, more specifically 0.35 to 0.45 deciliter per gram.
  • the injection molding composition comprises 30 to 60 weight percent of the poly(arylene ether), based on the total weight of the injection molding composition.
  • the poly(arylene ether) amount can be 40 to 60 weight percent, more specifically 45 to 60 weight percent, still more specifically 50 to 60 weight percent, yet more specifically 50 to 55 weight percent.
  • the injection molding composition comprises a rubber-modified polystyrene.
  • Rubber-modified polystyrenes are sometimes referred to as “high-impact polystyrenes” or “HIPS”.
  • the rubber-modified polystyrene comprises 80 to 96 weight percent polystyrene, specifically 88 to 94 weight percent polystyrene; and 4 to 20 weight percent polybutadiene, specifically 6 to 12 weight percent polybutadiene.
  • the rubber-modified polystyrene has an effective gel content of 10 to 35 percent. Suitable rubber-modified polystyrenes are commercially available as, for example, GEH 1897 from SABIC Innovative Plastics, and D7022.27 from Chevron.
  • the injection molding composition comprises 20 to 60 weight percent of the rubber-modified polystyrene, based on the total weight of the injection molding composition.
  • the rubber-modified polystyrene amount can be 20 to 50 weight percent, more specifically 20 to 40 weight percent, even more specifically 20 to 30 weight percent.
  • the injection molding composition comprises a triaryl phosphate that is a liquid at one atmosphere and at least one temperature in the range 25 to 50° C.
  • Triaryl phosphates that are liquids at one atmosphere and at least one temperature in the range 25 to 50° C.
  • the injection molding composition comprises the triaryl phosphate in an amount of 10 to 20 weight percent, specifically 15 to 20 weight percent, based on the total weight of the injection molding composition.
  • the injection molding composition can, optionally, further comprise an unhydrogenated block copolymer of an alkenyl aromatic compound and a conjugated diene.
  • the alkenyl aromatic compound can be, for example, styrene, methyl styrene, t-butyl styrene, or the like.
  • the conjugated diene can be, for example, butadiene, isoprene, or the like.
  • Suitable unhydrogenated block copolymers include, for example, poly(styrene-b-butadiene) diblock copolymers and poly(styrene-b-butadiene-b-styrene) triblock copolymers.
  • the unhydrogenated block copolymer is used in an amount of 0.5 to 5 weight percent, specifically 1 to 4 weight percent, more specifically 1 to 3 weight percent, based on the total weight of the injection molding composition.
  • the injection molding composition comprises 10 to 20 weight percent of the triaryl phosphate, based on the total weight of the injection molding composition.
  • the rubber-modified polystyrene amount can be 12 to 18 weight percent, more specifically 13 to 17 weight percent.
  • the injection molding composition may, optionally, further comprise various additives known in the thermoplastics art.
  • the injection molding composition may, optionally, further comprise an additive chosen from stabilizers, antioxidants, mold release agents, processing aids, drip retardants, nucleating agents, UV blockers, dyes, pigments, fragrances, anti-static agents, mineral oil, metal deactivators, antiblocking agents, nanoclays, and the like, and combinations thereof.
  • the injection molding composition excludes any component not described above as required or optional.
  • the injection molding composition excludes any polymer other than the poly(arylene ether), the rubber-modified polystyrene, and the optional unhydrogenated block copolymer, provided that the injection molding composition can comprise up to 2 weight percent of a polymeric mold release agent and/or up to 0.5 weight percent of a fluoropolymer-containing additive such as, for example, the polytetrafluoroethylene grafted and/or coated with poly(styrene-acrylonitrile), which is commonly referred to by the acronym TSAN.
  • the injection molding composition excludes fillers.
  • the injection molding composition excludes polyamides, polyesters, polyolefin homopolymers, poly(alkenyl aromatic) homopolymers, poly(phenylene sulfide)s, and hydrogenated block copolymers of an alkenyl aromatic and a conjugated diene.
  • the injection molding composition exhibits excellent melt properties.
  • the injection molding composition exhibits a melt volume flow rate of 40 to 70 cubic centimeters per 10 minutes, measured at 280° C. with a 5 kilogram load according to ISO 1133.
  • the melt flow volume rate can be 50 to 65 cubic centimeters per 10 minutes, more specifically 55 to 60 cubic centimeters per 10 minutes.
  • the injection molding composition imparts exhibits excellent physical properties to articles molded from it.
  • the injection molding composition exhibits a heat distortion temperature of 81 to 100° C., measured at 1.82 megapascals according to ISO 178. Within this range, the heat distortion temperature can be 85 to 100° C., more specifically 90 to 100° C.
  • the injection molding composition exhibits a flexural modulus of at least 2500 megapascals, measured at 23° C. according to ISO 178. Specifically, the flexural modulus can be 2500 to 3000 megapascals, more specifically 2600 to 2900 megapascals.
  • the injection molding composition exhibits a notched Izod impact strength of at least 50 joules/meter 2 measured at 23° C. according to ISO 180, specifically 50 to 200 joules/meter 2 , more specifically 80 to 180 joules/meter 2 .
  • the injection molded article exhibits a mold shrinkage of less than or equal to 0.7 percent, measured at 23° C. according to the procedure described below in the working examples.
  • the mold shrinkage can be 0.4 to 0.7 percent.
  • a variety of injection molded articles can be molded from the injection molding composition. These include battery cases, such as cases for lead acid batteries, doors, television frames, lap top covers, tool cases, automotive parts, and the like.
  • the injection molded articles are recyclable.
  • the injection molding composition can comprise at least 5 weight percent of recycled content based on the total weight of the injection molding composition.
  • the recycled content can be 5 to 50 weight percent, more specifically 10 to 40 weight percent, still more specifically 10 to 30 weight percent, even more specifically 10 to 20 weight percent.
  • the recycled content can include material that has been recycled 1 to 10 times.
  • An injection molded article prepared with recycled content will typically property values that are at least 85% of the corresponding values for an article molded from virgin resin.
  • a particularly advantageous example of recycling is the recycling of lead acid battery cases molded from the injection molding composition.
  • either the recycled content or the injection molding composition as a whole can include 0.1 to 2 weight percent of lead (as elemental lead). Within this range, the lead content can be 0.2 to 1.3 weight percent, more specifically 0.4 to 0.8 weight percent. Recycling lead acid battery cases reduces the quantity of waste lead entering the environment.
  • the injection molded article is a battery case comprising at least one essentially planar section having a first dimension of 30 to 100 centimeters, a second dimension of 30 to 100 centimeters, and a third dimension of 0.1 to 0.5 centimeter; wherein the injection molding composition comprises 45 to 55 weight percent of a poly(2,6-dimethyl-1,4-phenylene ether) having an intrinsic viscosity of 0.3 to 0.43 deciliter/gram measured at 25° C.
  • the injection molding composition exhibits a shear thinning index of 12 to 17 measured at shear rates of 100 and 10,000 second ⁇ 1 at a temperature of 260° C. according to ASTM D3835 a viscosity of 600 to 1000 Pascal-seconds measured at a temperature of 260° C. and a shear rate of 100 second ⁇ 1 according to ASTM D3835, a melt volume flow rate of 30 to 60 cubic centimeters per 10 minutes measured at 280° C.
  • the injection molding composition further exhibits a UL 94 Vertical Burning Test rating of V-0 or V-1, measured at a sample thickness (that is, at least one sample thickness) in the range of 1.5 to 3 millimeters.
  • Another embodiment is a method of injection molding, comprising: injection molding an injection molding composition to form an injection molded article; wherein a portion of the injection molded article comprises a first dimension of at least 10 centimeters, a second dimension of at least 10 centimeters, and a third dimension of less than 1 centimeter; wherein the injection molded article is a product of injection molding an injection molding composition comprising 30 to 60 weight percent of a poly(arylene ether) having an intrinsic viscosity of 0.3 to 0.55 deciliter/gram measured at 25° C.
  • Typical injection molding conditions include using a barrel temperature of 260 to 300° C. and a mold temperature of 50 to 90° C.
  • the injection molded article is a battery case comprising at least one essentially planar section having a first dimension of 30 to 100 centimeters, a second dimension of 30 to 100 centimeters, and a third dimension of 0.1 to 0.5 centimeter; wherein the injection molding composition comprises 45 to 55 weight percent of a poly(2,6-dimethyl-1,4-phenylene ether) having an intrinsic viscosity of 0.3 to 0.43 deciliter/gram measured at 25° C.
  • the injection molding composition exhibits a shear thinning index of 12 to 17 measured at shear rates of 100 and 10,000 second ⁇ 1 at a temperature of 260° C. according to ASTM D3835 a viscosity of 600 to 1000 Pascal-seconds measured at a temperature of 260° C. and a shear rate of 100 seconds ⁇ 1 according to ASTM D3835, a melt volume flow rate of 30 to 60 cubic centimeters per 10 minutes measured at 280° C.
  • said injection molding comprises using a barrel temperature of 260 to 300° C. and a mold temperature of 50 to 90° C.
  • the injection molding composition comprises at least 1 weight percent of recycled content. In some embodiments, the injection molding composition comprises 5 to 50 weight percent, specifically 10 to 40 weight percent, more specifically 10 to 30 weight percent, even more specifically 10 to 20 weight percent of recycled content. In some embodiments, the recycled content can comprise 0.1 to 2 weight percent lead based on the weight of the recycled content. Within this range, the lead content can be 0.2 to 1.3 weight percent, specifically 0.4 to 0.8 weight percent. In some embodiments, the injection molding composition as a whole can comprise 0.1 to 2 weight percent lead based on the total weight of the injection molding composition. Within this range, the lead content can be 0.2 to 1.3 weight percent, specifically 0.4 to 0.8 weight percent.
  • One embodiment is an injection molded article prepared by the above-described method.
  • the invention includes at least the following embodiments.
  • Embodiment 1 An injection molded article, wherein a portion of the injection molded article comprises a first dimension of at least 10 centimeters, a second dimension of at least 10 centimeters, and a third dimension of less than 1 centimeter; wherein the injection molded article is a product of injection molding an injection molding composition comprising 30 to 60 weight percent of a poly(arylene ether) having an intrinsic viscosity of 0.3 to 0.55 deciliter/gram measured at 25° C.
  • the injection molding composition has a shear thinning index of 6 to 17 measured at shear rates of 100 and 10,000 second ⁇ 1 at a temperature of 260 to 300° C. according to ASTM D3835.
  • Embodiment 2 The injection molded article of embodiment 1, wherein the shear thinning index at 260° C. is 12 to 17.
  • Embodiment 3 The injection molded article of embodiment 1 or 2, wherein the shear thinning index at 280° C. is 10 to 14.
  • Embodiment 4 The injection molded article of any of embodiments 1-3, wherein the shear thinning index at 300° C. is 6 to 12.
  • Embodiment 5 The injection molded article of any of embodiments 1-4, wherein the first dimension is 10 to 100 centimeters, the second dimension is 10 to 100 centimeters, and the third dimension is 0.02 to 1 centimeter.
  • Embodiment 6 The injection molded article of any of embodiments 1-5, wherein the first dimension is 30 to 100 centimeters, the second dimension is 30 to 100 centimeters, and the third dimension is 0.1 to 0.5 centimeter.
  • Embodiment 7 The injection molded article of any of embodiments 1-6, wherein the first and second dimensions define a plane.
  • Embodiment 8 The injection molded article of any of embodiments 1-7, wherein the injection molding composition exhibits a viscosity less than 1000 Pascal-seconds measured at 260° C. and a shear rate of 100 second ⁇ 1 according to ASTM D3835.
  • Embodiment 9 The injection molded article of any of embodiments 1-8, wherein the injection molding composition exhibits a viscosity less than 600 Pascal-seconds measured at 280° C. and a shear rate of 100 second ⁇ 1 according to ASTM D3835.
  • Embodiment 10 The injection molded article of any of embodiments 1-9, wherein the injection molding composition exhibits a viscosity less than 400 Pascal-seconds measured at 300° C. and a shear rate of 100 second ⁇ 1 according to ASTM D3835.
  • Embodiment 11 The injection molded article of any of embodiments 1-10, wherein the injection molding composition exhibits a viscosity of 200 to 1000 Pascal-seconds measured at a temperature of 260 to 300° C. and a shear rate of 100 second ⁇ 1 according to ASTM D3835.
  • Embodiment 12 The injection molded article of any of embodiments 1-11, wherein the injection molding composition exhibits a melt volume flow rate of 40 to 70 cubic centimeters per 10 minutes, measured at 280° C. with a 5 kilogram load according to ISO 1133.
  • Embodiment 13 The injection molded article of any of embodiments 1-12, wherein the injection molding composition exhibits a heat distortion temperature of 81 to 100° C., measured at 1.82 megapascals according to ASTM D648.
  • Embodiment 14 The injection molded article of any of embodiments 1-13, wherein the injection molding composition exhibits a flexural modulus of at least 2500 megapascals, measured at 23° C. according to ISO 178.
  • Embodiment 15 The injection molded article of any of embodiments 1-14, wherein the injection molding composition exhibits a flexural modulus of 2500 to 3000 megapascals, measured at 23° C. according to ISO 178.
  • Embodiment 16 The injection molded article of any of embodiments 1-15, wherein the injection molding composition exhibits a notched Izod impact strength of at least 50 joules/meter 2 measured at 23° C. according to ISO 180.
  • Embodiment 17 The injection molded article of any of embodiments 1-16, wherein the injection molding composition exhibits a notched Izod impact strength of 50 to 200 joules/meter 2 measured at 23° C. according to ISO 180.
  • Embodiment 18 The injection molded article of any of embodiments 1-17, wherein the injection molded article exhibits a mold shrinkage of less than or equal to 0.7 percent, measured at 23° C.
  • Embodiment 19 The injection molded article of any of embodiments 1-18, wherein the injection molded article exhibits a mold shrinkage of 0.4 to 0.7 percent, measured at 23° C.
  • Embodiment 20 The injection molded article of any of embodiments 1-19, wherein the rubber-modified polystyrene comprises 88 to 94 weight percent polystyrene and 6 to 12 weight percent polybutadiene.
  • Embodiment 21 The injection molded article of any of embodiments 1-20, wherein the triaryl phosphate is resorcinol bis(diphenyl phosphate), bisphenol A bis(diphenyl phosphate), or a mixture thereof.
  • Embodiment 22 The injection molded article of any of embodiments 1-21, wherein the injection molding composition further comprises 0.5 to 5 weight percent of a polystyrene-polybutadiene-polystyrene triblock copolymer.
  • Embodiment 23 The injection molded article of any of embodiments 1-22, wherein the injection molding composition further comprises an additive selected from the group consisting of stabilizers, antioxidants, mold release agents, processing aids, drip retardants, colorants, fragrances, and mixtures thereof.
  • an additive selected from the group consisting of stabilizers, antioxidants, mold release agents, processing aids, drip retardants, colorants, fragrances, and mixtures thereof.
  • Embodiment 24 The injection molded article of any of embodiments 1-23, wherein the injection molding composition excludes polyamides, polyesters, polyolefin homopolymers, poly(alkenyl aromatic) homopolymers, poly(phenylene sulfide)s, and hydrogenated block copolymers of an alkenyl aromatic and a conjugated diene.
  • Embodiment 25 The injection molded article of any of embodiments 1-24, wherein the injection molding composition excludes any polymer other than the poly(arylene ether), the rubber-modified polystyrene, and a polystyrene-polybutadiene-polystyrene triblock copolymer, provided that the injection molding composition can comprise up to 2 weight percent of a polymeric mold release agent and/or up to 0.5 weight percent of a fluoropolymer-containing additive.
  • Embodiment 26 The injection molded article of any of embodiments 1-25, wherein the injection molded article is a battery case.
  • Embodiment 27 The injection molded article of any of embodiments 1-26, wherein the injection molding composition comprises at least 5 weight percent of recycled content.
  • Embodiment 28 The injection molded article of any of embodiments 1-27, wherein the injection molding composition comprises 5 to 50 weight percent of recycled content.
  • Embodiment 29 The injection molded article of embodiment 28, wherein the recycled content comprises material that has been recycled 1 to 10 times.
  • Embodiment 30 The injection molded article of any of embodiments 1-29, wherein the injection molded article is a battery case; and wherein the recycled content comprises 0.1 to 2 weight percent lead based on the weight of the recycled content.
  • Embodiment 31 The injection molded article of any of embodiments 1-29, wherein the injection molded article is a battery case; and wherein the injection molding composition comprises 0.1 to 2 weight percent lead based on the total weight of the injection molding composition.
  • Embodiment 32 The injection molded article of embodiment 1, wherein the injection molded article is a battery case comprising at least one essentially planar section having a first dimension of 30 to 100 centimeters, a second dimension of 30 to 100 centimeters, and a third dimension of 0.1 to 0.5 centimeter; wherein the injection molding composition comprises 45 to 55 weight percent of the poly(arylene ether); wherein the poly(arylene ether) comprises a poly(2,6-dimethyl-1,4-phenylene ether) having an intrinsic viscosity of 0.3 to 0.43 deciliter/gram measured at 25° C.
  • the injection molding composition exhibits a shear thinning index of 12 to 17 measured at shear rates of 100 and 10,000 second ⁇ 1 at a temperature of 260° C. according to ASTM D3835 a viscosity of 600 to 1000 Pascal-seconds measured at a temperature of 260° C. and a shear rate of 100 second ⁇ 1 according to ASTM D3 835, a melt volume flow rate of 30 to 60 cubic centimeters per 10 minutes measured at 280° C. with a 5 kilogram load according to ISO 1133, a heat distortion temperature of 81 to 100° C., measured at 1.82 megapascals according to ASTM D648, and a mold shrinkage of 0.4 to 0.7 percent, measured at 23° C.
  • Embodiment 33 The injection molded article of embodiment 32, wherein the injection molding composition further exhibits a UL 94 Vertical Burning Test rating of V-0 or V-1, measured at a sample thickness in the range of 1.5 to 3 millimeters.
  • Embodiment 44 A method of injection molding, comprising: injection molding an injection molding composition to form an injection molded article; wherein a portion of the injection molded article comprises a first dimension of at least 10 centimeters, a second dimension of at least 10 centimeters, and a third dimension of less than 1 centimeter; wherein the injection molded article is a product of injection molding an injection molding composition comprising 30 to 60 weight percent of a poly(arylene ether) having an intrinsic viscosity of 0.3 to 0.55 deciliter/gram measured at 25° C.
  • the injection molding composition has a shear thinning index of 6 to 17 measured at shear rates of 100 and 10,000 second ⁇ 1 at a temperature of 260 to 300° C. according to ASTM D3835.
  • Embodiment 35 The method of injection molding of embodiment 34, wherein said injection molding comprises using a barrel temperature of 260 to 300° C. and a mold temperature of 50 to 90° C.
  • Embodiment 36 The method of injection molding of embodiment 34, wherein the injection molded article is a battery case comprising at least one essentially planar section having a first dimension of 30 to 100 centimeters, a second dimension of 30 to 100 centimeters, and a third dimension of 0.1 to 0.5 centimeter; wherein the injection molding composition comprises 45 to 55 weight percent of the poly(arylene ether); therein the poly(arylene ether) comprises a poly(2,6-dimethyl-1,4-phenylene ether) having an intrinsic viscosity of 0.3 to 0.43 deciliter/gram measured at 25° C.
  • the injection molding composition exhibits a shear thinning index of 12 to 17 measured at shear rates of 100 and 10,000 second ⁇ 1 at a temperature of 260° C. according to ASTM D3835 a viscosity of 600 to 1000 Pascal-seconds measured at a temperature of 260° C. and a shear rate of 100 second ⁇ 1 according to ASTM D3835, a melt volume flow rate of 30 to 60 cubic centimeters per 10 minutes measured at 280° C.
  • said injection molding comprises using a barrel temperature of 260 to 300° C. and a mold temperature of 50 to 90° C.
  • Embodiment 37 The method of injection molding of any of embodiments 34-36, wherein the injection molding composition comprises at least 1 weight percent of recycled content.
  • Embodiment 38 The method of injection molding of any of embodiments 34-36, wherein the injection molding composition comprises 5 to 50 weight percent of recycled content.
  • Embodiment 39 The method of injection molding of embodiment 38, wherein the recycled content comprises 0.1 to 2 weight percent lead based on the weight of the recycled content.
  • Embodiment 40 The method of injection molding of any of embodiments 36-38, wherein the injection molding composition comprises 0.1 to 2 weight percent lead based on the total weight of the injection molding composition.
  • Embodiment 41 An injection molded article prepared by the method of any of embodiments 34-40.
  • the injection molding compositions were prepared from the materials listed in Table 1.
  • compositions of all examples were extrusion compounded using the component amounts shown in Table 2, where all component amounts are expressed in parts by weight.
  • the extrusion compounding was conducted in a 53-millimeter internal diameter, ten zone, twin-screw extruder operating at a screw rotation rate of 280 rotations per minute and using zone temperatures of 200-245-260-260-260-260-260-260-260° C. from feed throat to die.
  • the extrudate was cooled and chopped into pellets.
  • Melt volume flow rate (MVR) values expressed in units of centimeter 3 /10 minutes (cm 3 /10 min), were determined at 280° C. using a 5 kilogram load in accordance with ASTM D1238-04.
  • Melt viscosity values were determined using a Kayeness Capillary viscometer at 260, 280, and 300° C. and shear rates of 100 to 10,000 second ⁇ 1 in accordance with ASTM D3835-02 using a capillary length:diameter ratio of 20:1, a capillary diameter of 1.0 millimeter, a capillary entrance angle of 180 degrees, and a dwell time of 4 minutes.
  • Shear thinning index (“STI”) was calculated as the ratio of the melt viscosity at a shear rate at 100 second ⁇ 1 to the melt viscosity at a shear rate of 10,000 second ⁇ 1 .
  • Test samples for physical property testing were injection molded using a barrel temperature of 260° C., a mold temperature of 55° C., a pressure of 4.83 megapascals (700 pounds per square inch), and an injection speed of 5.08 centimeters/second (2 inches/second).
  • Flexural modulus values expressed in units of megapascals (MPa), were determined in accordance with ISO 178 (2001). The test bars had dimensions 80 millimeters ⁇ 10 millimeters ⁇ 4 millimeters. The flexural modulus values presented in Table 2 were calculated as the average of test results for five test bars.
  • Flexural Stress values expressed in units of megapascals (MPa), were determined at 5% strain in accordance with ISO 178 (2001).
  • Heat deformation temperature (HDT) values expressed in units of degrees centigrade (° C.), were determined on 3.2 millimeter bars per ASTM D648-07 at a load of 1.82 MPa.
  • Notched Izod Impact strength (NII) values expressed in units of joules/meter 2 (J/m 2 ), were determined at 23° C. on 3.2 mm bars in accordance with ISO 180 (2000).
  • Mold shrinkage values expressed in units of percent, were determined by molding a standard “Dynatup” disk (see ASTM D3763-06) and measuring the actual part diameter in the flow and cross-flow directions. In the molding procedure, molten resin enters one edge of the disk-shaped mold and flows to the opposite edge, filling the mold as it goes.
  • the reported mold shrinkage values are the average of mold shrinkage in the flow and cross-flow directions, where
  • mold_diameter is the disk diameter of the mold
  • flow_diameter is the diameter of the molded disk in the direction of resin flow
  • cross_flow diameter is the diameter of the molded disk perpendicular to the direction of resin flow.
  • the injection molding compositions of Examples 1 to 4 provided articles with surprisingly low mold shrinkage values of 0.48 to 0.66 percent. These observed mold shrinkage values were unexpectedly lower than the mold shrinkage value of 0.74 percent for Comparative Example 1.
  • the Example 1-4 compositions were also superior in their heat distortion temperatures, exhibiting values of 81 to 98° C., compared to a value of 80° C. for Comparative Example 1.
  • the Example 1-4 compositions also exhibited reduced shear thinning index values relative to Comparative Example 1. Specifically Examples 1-4 exhibited shear thinning index values ranging from 12.5 to 14.8, whereas Comparative Example 1 exhibited a shear thinning index value of 17.9.
  • the present inventor believes that the shear thinning index values calculated from viscosity values of 100 to 10,000 seconds ⁇ 1 are predictive of the ability to mold large, thin objects such as battery cases. This is surprising, given that the melt viscosities at shear rates of 1,000 to 10,000 seconds ⁇ 1 were thought to be important for injection molding. Thus, the shear thinning index calculated based on viscosity values of 100 to 10,000 seconds ⁇ 1 appears to be a previously unrecognized result-effective variable for the molding of large, thin objects from poly(arylene ether) compositions.
  • the injection molding compositions were prepared by extrusion compounding using a 203-millimeter internal diameter Baker-Perkins twin-screw extruder with a length to internal diameter (L/D) ratio of 15.5:1.
  • a typical screw rotation rate was 275 rotations per minute.
  • Six-zone temperature control was applied with a common temperature profile of 204-260-260-260-260-288° C. (400-500-500-500-500-550° F.) from feed throat to die.
  • the screw design for extrusion compounding was such that metering and melting zones were followed concurrently by mixing and pumping zones. Representative production rates ranged from 1400 to 2300 kilograms per hour (3000 to 5000 pounds per hour). The resulting extrudate was cooled and chopped into pellets.
  • compositions and flammability properties are summarized in Table 4. Note that the composition of Example 5 is identical to that of Example 3 above, and the composition of Comparative Example 2 is identical to that of Comparative Example 1 above.
  • UL94 ratings were determined according to UL 94, “Test for Flammability of Plastic Materials for Parts in Devices and Appliances”, Fifth Edition (1996), Vertical Burning Test, using a sample thickness of 3 millimeters.

Abstract

Injection molded articles having large, thin sections are prepared by injection molding of a composition that includes specific amounts of poly(arylene ether) and a rubber-modified polystyrene. The specific component amounts provide the composition with a shear thinning index of 6 to 17 measured at a temperature of 260 to 300° C. and shear rates of 100 and 10,000 second−1.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/048,301 filed Apr. 28, 2008, which is fully incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • Poly(arylene ether)s are a class of plastics known for excellent water resistance, dimensional stability, and inherent flame retardancy, as well as high oxygen permeability and oxygen/nitrogen selectivity. Properties such as strength, stiffness, chemical resistance, and heat resistance can be tailored by blending poly(arylene ether)s with various other plastics in order to meet the requirements of a wide variety of consumer products, for example, plumbing fixtures, electrical boxes, automotive parts, and insulation for wire and cable.
  • Injection molding compositions including a poly(arylene ether), a rubber-modified polystyrene, and a flame retardant are commonly used to mold a variety of articles. The melt rheology properties needed for injection molding these compositions are generally known. However, the present inventor has observed that injection molding compositions exhibiting similar melt rheology properties can exhibit different molding characteristics when used to mold articles having large, thin sections. For example, some molding compositions exhibit much larger mold shrinkages and/or warping than others. There is therefore a need to identify previously unrecognized melt rheology property limitations that improve the molding of large, thin objects from poly(arylene ether) compositions. This is also a need to identify poly(arylene ether) compositions that satisfy the previously unrecognized melt rheology property limitations.
  • BRIEF DESCRIPTION OF THE INVENTION
  • The above-described and other drawbacks are alleviated by an injection molded article, wherein a portion of the injection molded article comprises a first dimension of at least 10 centimeters, a second dimension of at least 10 centimeters, and a third dimension of less than 1 centimeter; wherein the injection molded article is a product of injection molding an injection molding composition comprising 30 to 60 weight percent of a poly(arylene ether) having an intrinsic viscosity of 0.3 to 0.55 deciliter/gram measured at 25° C. in chloroform, 20 to 60 weight percent of a rubber-modified polystyrene, and 10 to 20 weight percent of a triaryl phosphate that is a liquid at one atmosphere and at least one temperature in the range 25 to 50° C.; wherein all weight percents are based on the total weight of the injection molding composition; and wherein the injection molding composition has a shear thinning index of 6 to 17 measured at shear rates of 100 and 10,000 second−1 at a temperature of 260 to 300° C. according to ASTM D3835.
  • Another embodiment is a method of injection molding, comprising: injection molding an injection molding composition to form an injection molded article; wherein a portion of the injection molded article comprises a first dimension of at least 10 centimeters, a second dimension of at least 10 centimeters, and a third dimension of less than 1 centimeter; wherein the injection molded article is a product of injection molding an injection molding composition comprising 30 to 60 weight percent of a poly(arylene ether) having an intrinsic viscosity of 0.3 to 0.55 deciliter/gram measured at 25° C. in chloroform, 20 to 60 weight percent of a rubber-modified polystyrene, and 10 to 20 weight percent of a triaryl phosphate that is a liquid at one atmosphere and at least one temperature in the range 25 to 50° C.; wherein all weight percents are based on the total weight of the injection molding composition; and wherein the injection molding composition has a shear thinning index of 6 to 17 measured at shear rates of 100 and 10,000 second−1 at a temperature of 260 to 300° C. according to ASTM D3835.
  • These and other embodiments are described in detail below.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present inventor has discovered that the ratio of melt viscosity at a shear rate of 100 second−1 to melt viscosity at a shear rate of 10,000 second−1 is a previously unrecognized result-effective variable for predicting the ability to mold large, flat parts with poly(arylene ether) injection molding composition. The ratio of melt viscosities at two different shear rates is known as a shear thinning ratio. The importance of the melt viscosity at a shear rate of 100 second−1 in the shear thinning ratio is surprising given conventional wisdom in the art that melt viscosities at shear rates below 1,000 second−1 are not important for injection molding. For example, one monograph discloses shear rate ranges associated with various processes and specifically discloses a shear rate range of 1,000 to 100,000 second−1 for injection molding. D. H. Morton-Jones in “Polymer Processing” (1994), page 35, Table 2.3. However, the present inventor, in the course of trying to solve a problem encountered by an injection molder, discovered that improved molding of large flat parts was obtained when the ratio of melt viscosity at a shear rate of 100 second−1 to melt viscosity at a shear rate of 10,000 second−1 is in the range 6 to 17 for the molding temperature range of 260 to 300° C.
  • Thus, one embodiment is an injection molded article, wherein a portion of the injection molded article comprises a first dimension of at least 10 centimeters, a second dimension of at least 10 centimeters, and a third dimension of less than 1 centimeter; wherein the injection molded article is a product of injection molding an injection molding composition comprising 30 to 60 weight percent of a poly(arylene ether) having an intrinsic viscosity of 0.3 to 0.55 deciliter/gram measured at 25° C. in chloroform, 20 to 60 weight percent of a rubber-modified polystyrene, and 10 to 20 weight percent of a triaryl phosphate flame retardant, wherein the triaryl phosphate flame retardant is a liquid at 25° C.; wherein all weight percents are based on the total weight of the injection molding composition; and wherein the injection molding composition has a shear thinning index of 6 to 17 measured at shear rates of 100 and 10,000 second−1 at a temperature of 260 to 300° C. according to ASTM D3835.
  • The specified shear thinning index of 6 to 17 is for a temperature range of 260 to 300° C., and the particular shear thinning index range will depend on the specific molding temperature employed. For a given melt temperature, this shear thinning index is calculated as the ratio of the melt viscosity at a shear rate of 100 second−1 to the melt viscosity at a shear rate of 10,000 second−1. As an illustration using data from Table 3 below, at a melt temperature of 260° C. the melt viscosity at a shear rate of 100 second−1 is 841 Pascal-seconds, the melt viscosity at a shear rate of 10,000 second−1 is 64.2 Pascal-seconds, and the shear thinning index is 841/64.2=13.1.
  • In some embodiments, when measured as a temperature of 260° C., the shear thinning index at shear rates of 100 and 10,000 second−1 is 12 to 17, specifically 13 to 16, more specifically 13 to 15. In some embodiments, when measured at a temperature of 280° C., the shear thinning index at shear rates of 100 and 10,000 second−1 is 10 to 14, specifically 11 to 13. In some embodiments, when measured at a temperature of 300° C., the shear thinning index at shear rates of 100 and 10,000 second−1 is 6 to 12, specifically 7 to 11, more specifically 8 to 10.
  • In some embodiments, the injection molding composition exhibits a viscosity less than 1000 Pascal-seconds measured at 260° C. and a shear rate of 100 second−1 according to ASTM D3835 and/or a viscosity less than 600 Pascal-seconds measured at 280° C. and a shear rate of 100 second−1 according to ASTM D3835, and/or a viscosity less than 400 Pascal-seconds measured at 300° C. and a shear rate of 100 second−1 according to ASTM D3835. In some embodiments, the injection molding composition exhibits a melt viscosity of 200 to 1000 Pascal-seconds, specifically 400 to 1000 Pascal-seconds measured at a temperature of 260 to 300° C. and a shear rate of 100 second−1 according to ASTM D3835. At 260° C., the melt viscosity at a shear rate of 100 second−1 can be 600 to 900 Pascal seconds. At 280° C., the melt viscosity at a shear rate of 100 second−1 can be 400 to 600 Pascal seconds. And at 300° C., the melt viscosity at a shear rate of 100 second−1 can be 200 to 400 Pascal seconds.
  • As mentioned above, the above shear thinning index limitations are particularly critical when injection molding article having large, thin sections. Such articles are characterized as comprising a portion having a first dimension of at least 10 centimeters, a second dimension of at least 10 centimeters, and a third dimension of less than 1 centimeter. Thus, the first and second dimensions define the “large” characteristic of the section, and the third dimension defines the “thin” characteristic of the section. In some embodiments, the first dimension is 10 to 100 centimeters, the second dimension is 10 to 100 centimeters, and the third dimension is 0.02 to 1 centimeter. In some embodiments, the first dimension is 30 to 100 centimeters, the second dimension is 30 to 100 centimeters, and the third dimension is 0.1 to 0.5 centimeter.
  • In some embodiments, the first and second dimensions define a plane. For example, the molded article can be a battery case having an overall rectangular prism shape in which at least one wall is a (planar) rectangle.
  • The injection molding composition comprises a poly(arylene ether). Suitable poly(arylene ether)s include those comprising repeating structural units having the formula
  • Figure US20090269659A1-20091029-C00001
  • wherein each occurrence of Z1 is independently halogen, unsubstituted or substituted C1-C12 hydrocarbyl provided that the hydrocarbyl group is not tertiary hydrocarbyl, C1-C12 hydrocarbylthio, C1-C12 hydrocarbyloxy, or C2-C12 halohydrocarbyloxy wherein at least two carbon atoms separate the halogen and oxygen atoms; and each occurrence of Z2 is independently hydrogen, halogen, unsubstituted or substituted C1-C12 hydrocarbyl provided that the hydrocarbyl group is not tertiary hydrocarbyl, C1-C12 hydrocarbylthio, C1-C12 hydrocarbyloxy, or C2-C12 halohydrocarbyloxy wherein at least two carbon atoms separate the halogen and oxygen atoms. As used herein, the term “hydrocarbyl”, whether used by itself, or as a prefix, suffix, or fragment of another term, refers to a residue that contains only carbon and hydrogen. The residue can be aliphatic or aromatic, straight-chain, cyclic, bicyclic, branched, saturated, or unsaturated. It can also contain combinations of aliphatic, aromatic, straight chain, cyclic, bicyclic, branched, saturated, and unsaturated hydrocarbon moieties. However, when the hydrocarbyl residue is described as substituted, it may, optionally, contain heteroatoms over and above the carbon and hydrogen members of the substituent residue. Thus, when specifically described as substituted, the hydrocarbyl residue may also contain one or more carbonyl groups, amino groups, hydroxyl groups, or the like, or it may contain heteroatoms within the backbone of the hydrocarbyl residue. As one example, Z1 may be a di-n-butylaminomethyl group formed by reaction of a terminal 3,5-dimethyl-1,4-phenyl group with the di-n-butylamine component of an oxidative polymerization catalyst.
  • In some embodiments, the poly(arylene ether) comprises 2,6-dimethyl-1,4-phenylene ether units, 2,3,6-trimethyl-1,4-phenylene ether units, or a combination thereof. In some embodiments, the poly(arylene ether) is a poly(2,6-dimethyl-1,4-phenylene ether).
  • The poly(arylene ether) can comprise molecules having aminoalkyl-containing end group(s), typically located in a position ortho to the hydroxy group. Also frequently present are tetramethyldiphenoquinone (TMDQ) end groups, typically obtained from 2,6-dimethylphenol-containing reaction mixtures in which tetramethyldiphenoquinone by-product is present. The poly(arylene ether) can be in the form of a homopolymer, a copolymer, a graft copolymer, an ionomer, or a block copolymer, as well as combinations comprising at least one of the foregoing.
  • The poly(arylene ether) has an intrinsic viscosity of 0.3 to 0.55 deciliter per gram measured at 25° C. in chloroform. Specifically, the poly(arylene ether) intrinsic viscosity may be 0.35 to 0.5 deciliter per gram, more specifically 0.35 to 0.45 deciliter per gram.
  • The injection molding composition comprises 30 to 60 weight percent of the poly(arylene ether), based on the total weight of the injection molding composition. Within this range, the poly(arylene ether) amount can be 40 to 60 weight percent, more specifically 45 to 60 weight percent, still more specifically 50 to 60 weight percent, yet more specifically 50 to 55 weight percent.
  • In addition to the poly(arylene ether), the injection molding composition comprises a rubber-modified polystyrene. Rubber-modified polystyrenes are sometimes referred to as “high-impact polystyrenes” or “HIPS”. In some embodiments, the rubber-modified polystyrene comprises 80 to 96 weight percent polystyrene, specifically 88 to 94 weight percent polystyrene; and 4 to 20 weight percent polybutadiene, specifically 6 to 12 weight percent polybutadiene. In some embodiments, the rubber-modified polystyrene has an effective gel content of 10 to 35 percent. Suitable rubber-modified polystyrenes are commercially available as, for example, GEH 1897 from SABIC Innovative Plastics, and D7022.27 from Chevron.
  • The injection molding composition comprises 20 to 60 weight percent of the rubber-modified polystyrene, based on the total weight of the injection molding composition. Within this range, the rubber-modified polystyrene amount can be 20 to 50 weight percent, more specifically 20 to 40 weight percent, even more specifically 20 to 30 weight percent.
  • In addition to the poly(arylene ether) and the rubber-modified polystyrene, the injection molding composition comprises a triaryl phosphate that is a liquid at one atmosphere and at least one temperature in the range 25 to 50° C. Triaryl phosphates that are liquids at one atmosphere and at least one temperature in the range 25 to 50° C. include, for example, resorcinol bis(diphenyl phosphate), resorcinol bis(di-2,6-dimethylphenyl phosphate), bisphenol A bis(diphenyl phosphate), resorcinol bis(di-2,6-dimethylphenyl phosphate), alkylated triphenyl phosphates (such as methylated triphenyl phosphates and butylated triphenyl phosphates), and the like, and mixtures thereof. The injection molding composition comprises the triaryl phosphate in an amount of 10 to 20 weight percent, specifically 15 to 20 weight percent, based on the total weight of the injection molding composition.
  • The injection molding composition can, optionally, further comprise an unhydrogenated block copolymer of an alkenyl aromatic compound and a conjugated diene. The alkenyl aromatic compound can be, for example, styrene, methyl styrene, t-butyl styrene, or the like. The conjugated diene can be, for example, butadiene, isoprene, or the like. Suitable unhydrogenated block copolymers include, for example, poly(styrene-b-butadiene) diblock copolymers and poly(styrene-b-butadiene-b-styrene) triblock copolymers. When present, the unhydrogenated block copolymer is used in an amount of 0.5 to 5 weight percent, specifically 1 to 4 weight percent, more specifically 1 to 3 weight percent, based on the total weight of the injection molding composition.
  • The injection molding composition comprises 10 to 20 weight percent of the triaryl phosphate, based on the total weight of the injection molding composition. Within this range, the rubber-modified polystyrene amount can be 12 to 18 weight percent, more specifically 13 to 17 weight percent.
  • The injection molding composition may, optionally, further comprise various additives known in the thermoplastics art. For example, the injection molding composition may, optionally, further comprise an additive chosen from stabilizers, antioxidants, mold release agents, processing aids, drip retardants, nucleating agents, UV blockers, dyes, pigments, fragrances, anti-static agents, mineral oil, metal deactivators, antiblocking agents, nanoclays, and the like, and combinations thereof.
  • In some embodiments, the injection molding composition excludes any component not described above as required or optional. For example, in some embodiments, the injection molding composition excludes any polymer other than the poly(arylene ether), the rubber-modified polystyrene, and the optional unhydrogenated block copolymer, provided that the injection molding composition can comprise up to 2 weight percent of a polymeric mold release agent and/or up to 0.5 weight percent of a fluoropolymer-containing additive such as, for example, the polytetrafluoroethylene grafted and/or coated with poly(styrene-acrylonitrile), which is commonly referred to by the acronym TSAN. In some embodiments, the injection molding composition excludes fillers. In some embodiments, the injection molding composition excludes polyamides, polyesters, polyolefin homopolymers, poly(alkenyl aromatic) homopolymers, poly(phenylene sulfide)s, and hydrogenated block copolymers of an alkenyl aromatic and a conjugated diene.
  • The injection molding composition exhibits excellent melt properties. For example, in some embodiments the injection molding composition exhibits a melt volume flow rate of 40 to 70 cubic centimeters per 10 minutes, measured at 280° C. with a 5 kilogram load according to ISO 1133. Within this range, the melt flow volume rate can be 50 to 65 cubic centimeters per 10 minutes, more specifically 55 to 60 cubic centimeters per 10 minutes.
  • The injection molding composition imparts exhibits excellent physical properties to articles molded from it. For example, in some embodiments, the injection molding composition exhibits a heat distortion temperature of 81 to 100° C., measured at 1.82 megapascals according to ISO 178. Within this range, the heat distortion temperature can be 85 to 100° C., more specifically 90 to 100° C. As another example, in some embodiments, the injection molding composition exhibits a flexural modulus of at least 2500 megapascals, measured at 23° C. according to ISO 178. Specifically, the flexural modulus can be 2500 to 3000 megapascals, more specifically 2600 to 2900 megapascals. As another example, in some embodiments, the injection molding composition exhibits a notched Izod impact strength of at least 50 joules/meter2 measured at 23° C. according to ISO 180, specifically 50 to 200 joules/meter2, more specifically 80 to 180 joules/meter2.
  • In some embodiments, the injection molded article exhibits a mold shrinkage of less than or equal to 0.7 percent, measured at 23° C. according to the procedure described below in the working examples. Specifically, the mold shrinkage can be 0.4 to 0.7 percent.
  • A variety of injection molded articles can be molded from the injection molding composition. These include battery cases, such as cases for lead acid batteries, doors, television frames, lap top covers, tool cases, automotive parts, and the like.
  • The injection molded articles are recyclable. Thus, the injection molding composition can comprise at least 5 weight percent of recycled content based on the total weight of the injection molding composition. Specifically, the recycled content can be 5 to 50 weight percent, more specifically 10 to 40 weight percent, still more specifically 10 to 30 weight percent, even more specifically 10 to 20 weight percent. The recycled content can include material that has been recycled 1 to 10 times. An injection molded article prepared with recycled content will typically property values that are at least 85% of the corresponding values for an article molded from virgin resin.
  • A particularly advantageous example of recycling is the recycling of lead acid battery cases molded from the injection molding composition. In this case, either the recycled content or the injection molding composition as a whole can include 0.1 to 2 weight percent of lead (as elemental lead). Within this range, the lead content can be 0.2 to 1.3 weight percent, more specifically 0.4 to 0.8 weight percent. Recycling lead acid battery cases reduces the quantity of waste lead entering the environment.
  • In a specific embodiment, the injection molded article is a battery case comprising at least one essentially planar section having a first dimension of 30 to 100 centimeters, a second dimension of 30 to 100 centimeters, and a third dimension of 0.1 to 0.5 centimeter; wherein the injection molding composition comprises 45 to 55 weight percent of a poly(2,6-dimethyl-1,4-phenylene ether) having an intrinsic viscosity of 0.3 to 0.43 deciliter/gram measured at 25° C. in chloroform, 25 to 31 weight percent of a rubber-modified polystyrene, and 12 to 20 weight percent of a triaryl phosphate flame retardant; and wherein the injection molding composition exhibits a shear thinning index of 12 to 17 measured at shear rates of 100 and 10,000 second−1 at a temperature of 260° C. according to ASTM D3835 a viscosity of 600 to 1000 Pascal-seconds measured at a temperature of 260° C. and a shear rate of 100 second−1 according to ASTM D3835, a melt volume flow rate of 30 to 60 cubic centimeters per 10 minutes measured at 280° C. with a 5 kilogram load according to ISO 1133, a heat distortion temperature of 81 to 100° C., measured at 1.82 megapascals according to ASTM D648, and a mold shrinkage of 0.4 to 0.7 percent, measured at 23° C. In some embodiments, the injection molding composition further exhibits a UL 94 Vertical Burning Test rating of V-0 or V-1, measured at a sample thickness (that is, at least one sample thickness) in the range of 1.5 to 3 millimeters.
  • Another embodiment is a method of injection molding, comprising: injection molding an injection molding composition to form an injection molded article; wherein a portion of the injection molded article comprises a first dimension of at least 10 centimeters, a second dimension of at least 10 centimeters, and a third dimension of less than 1 centimeter; wherein the injection molded article is a product of injection molding an injection molding composition comprising 30 to 60 weight percent of a poly(arylene ether) having an intrinsic viscosity of 0.3 to 0.55 deciliter/gram measured at 25° C. in chloroform, 20 to 60 weight percent of a rubber-modified polystyrene, and 10 to 20 weight percent of a triaryl phosphate flame retardant, wherein the triaryl phosphate flame retardant is a liquid at 25° C.; wherein all weight percents are based on the total weight of the injection molding composition; and wherein the injection molding composition has a shear thinning index of 6 to 17 measured at shear rates of 100 and 10,000 second−1 at a temperature of 260 to 300° C. according to ASTM D3835. Typical injection molding conditions include using a barrel temperature of 260 to 300° C. and a mold temperature of 50 to 90° C.
  • In a specific embodiment of the injection molding method, the injection molded article is a battery case comprising at least one essentially planar section having a first dimension of 30 to 100 centimeters, a second dimension of 30 to 100 centimeters, and a third dimension of 0.1 to 0.5 centimeter; wherein the injection molding composition comprises 45 to 55 weight percent of a poly(2,6-dimethyl-1,4-phenylene ether) having an intrinsic viscosity of 0.3 to 0.43 deciliter/gram measured at 25° C. in chloroform, 25 to 31 weight percent of a rubber-modified polystyrene, and 12 to 20 weight percent of a triaryl phosphate flame retardant; and wherein the injection molding composition exhibits a shear thinning index of 12 to 17 measured at shear rates of 100 and 10,000 second−1 at a temperature of 260° C. according to ASTM D3835 a viscosity of 600 to 1000 Pascal-seconds measured at a temperature of 260° C. and a shear rate of 100 seconds−1 according to ASTM D3835, a melt volume flow rate of 30 to 60 cubic centimeters per 10 minutes measured at 280° C. with a 5 kilogram load according to ISO 1133, a heat distortion temperature of 81 to 100° C., measured at 1.82 megapascals according to ASTM D648, and a mold shrinkage of 0.4 to 0.7 percent, measured at 23° C.; wherein said injection molding comprises using a barrel temperature of 260 to 300° C. and a mold temperature of 50 to 90° C.
  • In some embodiments, the injection molding composition comprises at least 1 weight percent of recycled content. In some embodiments, the injection molding composition comprises 5 to 50 weight percent, specifically 10 to 40 weight percent, more specifically 10 to 30 weight percent, even more specifically 10 to 20 weight percent of recycled content. In some embodiments, the recycled content can comprise 0.1 to 2 weight percent lead based on the weight of the recycled content. Within this range, the lead content can be 0.2 to 1.3 weight percent, specifically 0.4 to 0.8 weight percent. In some embodiments, the injection molding composition as a whole can comprise 0.1 to 2 weight percent lead based on the total weight of the injection molding composition. Within this range, the lead content can be 0.2 to 1.3 weight percent, specifically 0.4 to 0.8 weight percent.
  • One embodiment is an injection molded article prepared by the above-described method.
  • The invention includes at least the following embodiments.
  • Embodiment 1: An injection molded article, wherein a portion of the injection molded article comprises a first dimension of at least 10 centimeters, a second dimension of at least 10 centimeters, and a third dimension of less than 1 centimeter; wherein the injection molded article is a product of injection molding an injection molding composition comprising 30 to 60 weight percent of a poly(arylene ether) having an intrinsic viscosity of 0.3 to 0.55 deciliter/gram measured at 25° C. in chloroform, 20 to 60 weight percent of a rubber-modified polystyrene, and 10 to 20 weight percent of a triaryl phosphate that is a liquid at one atmosphere and at least one temperature in the range 25 to 50° C.; wherein all weight percents are based on the total weight of the injection molding composition; and wherein the injection molding composition has a shear thinning index of 6 to 17 measured at shear rates of 100 and 10,000 second−1 at a temperature of 260 to 300° C. according to ASTM D3835.
  • Embodiment 2: The injection molded article of embodiment 1, wherein the shear thinning index at 260° C. is 12 to 17.
  • Embodiment 3: The injection molded article of embodiment 1 or 2, wherein the shear thinning index at 280° C. is 10 to 14.
  • Embodiment 4: The injection molded article of any of embodiments 1-3, wherein the shear thinning index at 300° C. is 6 to 12.
  • Embodiment 5: The injection molded article of any of embodiments 1-4, wherein the first dimension is 10 to 100 centimeters, the second dimension is 10 to 100 centimeters, and the third dimension is 0.02 to 1 centimeter.
  • Embodiment 6: The injection molded article of any of embodiments 1-5, wherein the first dimension is 30 to 100 centimeters, the second dimension is 30 to 100 centimeters, and the third dimension is 0.1 to 0.5 centimeter.
  • Embodiment 7: The injection molded article of any of embodiments 1-6, wherein the first and second dimensions define a plane.
  • Embodiment 8: The injection molded article of any of embodiments 1-7, wherein the injection molding composition exhibits a viscosity less than 1000 Pascal-seconds measured at 260° C. and a shear rate of 100 second−1 according to ASTM D3835.
  • Embodiment 9: The injection molded article of any of embodiments 1-8, wherein the injection molding composition exhibits a viscosity less than 600 Pascal-seconds measured at 280° C. and a shear rate of 100 second−1 according to ASTM D3835.
  • Embodiment 10: The injection molded article of any of embodiments 1-9, wherein the injection molding composition exhibits a viscosity less than 400 Pascal-seconds measured at 300° C. and a shear rate of 100 second−1 according to ASTM D3835.
  • Embodiment 11: The injection molded article of any of embodiments 1-10, wherein the injection molding composition exhibits a viscosity of 200 to 1000 Pascal-seconds measured at a temperature of 260 to 300° C. and a shear rate of 100 second−1 according to ASTM D3835.
  • Embodiment 12: The injection molded article of any of embodiments 1-11, wherein the injection molding composition exhibits a melt volume flow rate of 40 to 70 cubic centimeters per 10 minutes, measured at 280° C. with a 5 kilogram load according to ISO 1133.
  • Embodiment 13: The injection molded article of any of embodiments 1-12, wherein the injection molding composition exhibits a heat distortion temperature of 81 to 100° C., measured at 1.82 megapascals according to ASTM D648.
  • Embodiment 14: The injection molded article of any of embodiments 1-13, wherein the injection molding composition exhibits a flexural modulus of at least 2500 megapascals, measured at 23° C. according to ISO 178.
  • Embodiment 15: The injection molded article of any of embodiments 1-14, wherein the injection molding composition exhibits a flexural modulus of 2500 to 3000 megapascals, measured at 23° C. according to ISO 178.
  • Embodiment 16: The injection molded article of any of embodiments 1-15, wherein the injection molding composition exhibits a notched Izod impact strength of at least 50 joules/meter2 measured at 23° C. according to ISO 180.
  • Embodiment 17: The injection molded article of any of embodiments 1-16, wherein the injection molding composition exhibits a notched Izod impact strength of 50 to 200 joules/meter2 measured at 23° C. according to ISO 180.
  • Embodiment 18: The injection molded article of any of embodiments 1-17, wherein the injection molded article exhibits a mold shrinkage of less than or equal to 0.7 percent, measured at 23° C.
  • Embodiment 19: The injection molded article of any of embodiments 1-18, wherein the injection molded article exhibits a mold shrinkage of 0.4 to 0.7 percent, measured at 23° C.
  • Embodiment 20: The injection molded article of any of embodiments 1-19, wherein the rubber-modified polystyrene comprises 88 to 94 weight percent polystyrene and 6 to 12 weight percent polybutadiene.
  • Embodiment 21: The injection molded article of any of embodiments 1-20, wherein the triaryl phosphate is resorcinol bis(diphenyl phosphate), bisphenol A bis(diphenyl phosphate), or a mixture thereof.
  • Embodiment 22: The injection molded article of any of embodiments 1-21, wherein the injection molding composition further comprises 0.5 to 5 weight percent of a polystyrene-polybutadiene-polystyrene triblock copolymer.
  • Embodiment 23: The injection molded article of any of embodiments 1-22, wherein the injection molding composition further comprises an additive selected from the group consisting of stabilizers, antioxidants, mold release agents, processing aids, drip retardants, colorants, fragrances, and mixtures thereof.
  • Embodiment 24: The injection molded article of any of embodiments 1-23, wherein the injection molding composition excludes polyamides, polyesters, polyolefin homopolymers, poly(alkenyl aromatic) homopolymers, poly(phenylene sulfide)s, and hydrogenated block copolymers of an alkenyl aromatic and a conjugated diene.
  • Embodiment 25: The injection molded article of any of embodiments 1-24, wherein the injection molding composition excludes any polymer other than the poly(arylene ether), the rubber-modified polystyrene, and a polystyrene-polybutadiene-polystyrene triblock copolymer, provided that the injection molding composition can comprise up to 2 weight percent of a polymeric mold release agent and/or up to 0.5 weight percent of a fluoropolymer-containing additive.
  • Embodiment 26: The injection molded article of any of embodiments 1-25, wherein the injection molded article is a battery case.
  • Embodiment 27: The injection molded article of any of embodiments 1-26, wherein the injection molding composition comprises at least 5 weight percent of recycled content.
  • Embodiment 28: The injection molded article of any of embodiments 1-27, wherein the injection molding composition comprises 5 to 50 weight percent of recycled content.
  • Embodiment 29: The injection molded article of embodiment 28, wherein the recycled content comprises material that has been recycled 1 to 10 times.
  • Embodiment 30: The injection molded article of any of embodiments 1-29, wherein the injection molded article is a battery case; and wherein the recycled content comprises 0.1 to 2 weight percent lead based on the weight of the recycled content.
  • Embodiment 31: The injection molded article of any of embodiments 1-29, wherein the injection molded article is a battery case; and wherein the injection molding composition comprises 0.1 to 2 weight percent lead based on the total weight of the injection molding composition.
  • Embodiment 32: The injection molded article of embodiment 1, wherein the injection molded article is a battery case comprising at least one essentially planar section having a first dimension of 30 to 100 centimeters, a second dimension of 30 to 100 centimeters, and a third dimension of 0.1 to 0.5 centimeter; wherein the injection molding composition comprises 45 to 55 weight percent of the poly(arylene ether); wherein the poly(arylene ether) comprises a poly(2,6-dimethyl-1,4-phenylene ether) having an intrinsic viscosity of 0.3 to 0.43 deciliter/gram measured at 25° C. in chloroform, 25 to 31 weight percent of the rubber-modified polystyrene, and 12 to 20 weight percent of the triaryl phosphate flame retardant; and wherein the injection molding composition exhibits a shear thinning index of 12 to 17 measured at shear rates of 100 and 10,000 second−1 at a temperature of 260° C. according to ASTM D3835 a viscosity of 600 to 1000 Pascal-seconds measured at a temperature of 260° C. and a shear rate of 100 second−1 according to ASTM D3 835, a melt volume flow rate of 30 to 60 cubic centimeters per 10 minutes measured at 280° C. with a 5 kilogram load according to ISO 1133, a heat distortion temperature of 81 to 100° C., measured at 1.82 megapascals according to ASTM D648, and a mold shrinkage of 0.4 to 0.7 percent, measured at 23° C.
  • Embodiment 33: The injection molded article of embodiment 32, wherein the injection molding composition further exhibits a UL 94 Vertical Burning Test rating of V-0 or V-1, measured at a sample thickness in the range of 1.5 to 3 millimeters.
  • Embodiment 44: A method of injection molding, comprising: injection molding an injection molding composition to form an injection molded article; wherein a portion of the injection molded article comprises a first dimension of at least 10 centimeters, a second dimension of at least 10 centimeters, and a third dimension of less than 1 centimeter; wherein the injection molded article is a product of injection molding an injection molding composition comprising 30 to 60 weight percent of a poly(arylene ether) having an intrinsic viscosity of 0.3 to 0.55 deciliter/gram measured at 25° C. in chloroform, 20 to 60 weight percent of a rubber-modified polystyrene, and 10 to 20 weight percent of a triaryl phosphate that is a liquid at one atmosphere and at least one temperature in the range 25 to 50° C.; wherein all weight percents are based on the total weight of the injection molding composition; and wherein the injection molding composition has a shear thinning index of 6 to 17 measured at shear rates of 100 and 10,000 second−1 at a temperature of 260 to 300° C. according to ASTM D3835.
  • Embodiment 35: The method of injection molding of embodiment 34, wherein said injection molding comprises using a barrel temperature of 260 to 300° C. and a mold temperature of 50 to 90° C.
  • Embodiment 36: The method of injection molding of embodiment 34, wherein the injection molded article is a battery case comprising at least one essentially planar section having a first dimension of 30 to 100 centimeters, a second dimension of 30 to 100 centimeters, and a third dimension of 0.1 to 0.5 centimeter; wherein the injection molding composition comprises 45 to 55 weight percent of the poly(arylene ether); therein the poly(arylene ether) comprises a poly(2,6-dimethyl-1,4-phenylene ether) having an intrinsic viscosity of 0.3 to 0.43 deciliter/gram measured at 25° C. in chloroform, 25 to 31 weight percent of the rubber-modified polystyrene, and 12 to 20 weight percent of the triaryl phosphate flame retardant; and wherein the injection molding composition exhibits a shear thinning index of 12 to 17 measured at shear rates of 100 and 10,000 second−1 at a temperature of 260° C. according to ASTM D3835 a viscosity of 600 to 1000 Pascal-seconds measured at a temperature of 260° C. and a shear rate of 100 second−1 according to ASTM D3835, a melt volume flow rate of 30 to 60 cubic centimeters per 10 minutes measured at 280° C. with a 5 kilogram load according to ISO 1133, a heat distortion temperature of 81 to 100° C., measured at 1.82 megapascals according to ASTM D648, and a mold shrinkage of 0.4 to 0.7 percent, measured at 23° C.; wherein said injection molding comprises using a barrel temperature of 260 to 300° C. and a mold temperature of 50 to 90° C.
  • Embodiment 37: The method of injection molding of any of embodiments 34-36, wherein the injection molding composition comprises at least 1 weight percent of recycled content.
  • Embodiment 38: The method of injection molding of any of embodiments 34-36, wherein the injection molding composition comprises 5 to 50 weight percent of recycled content.
  • Embodiment 39: The method of injection molding of embodiment 38, wherein the recycled content comprises 0.1 to 2 weight percent lead based on the weight of the recycled content.
  • Embodiment 40: The method of injection molding of any of embodiments 36-38, wherein the injection molding composition comprises 0.1 to 2 weight percent lead based on the total weight of the injection molding composition.
  • Embodiment 41: An injection molded article prepared by the method of any of embodiments 34-40.
  • The invention is further illustrated by the following non-limiting examples.
  • EXAMPLES 1-4, COMPARATIVE EXAMPLE 1
  • These examples illustrate the relationships between molding composition, rheological properties, and physical properties of resulting molded articles.
  • The injection molding compositions were prepared from the materials listed in Table 1.
  • TABLE 1
    PPE 0.4 IV Poly(2,6-dimethyl-1,4-phenylene ether) having an intrinsic
    viscosity of 0.4 deciliters per gram measured in chloroform at 25° C.,
    obtained as PPO 640 from SABIC Innovative Plastics
    PPE 0.3 IV Poly(2,6-dimethyl-1,4-phenylene ether) having an intrinsic
    viscosity of 0.3 deciliters per gram measured in chloroform at 25° C.,
    obtained as PPO 630 from SABIC Innovative Plastics
    PPE 0.46 IV Poly(2,6-dimethyl-1,4-phenylene ether) having an intrinsic
    viscosity of 0.46 deciliters per gram measured in chloroform at
    25° C., obtained as PPO 646 from SABIC Innovative Plastics
    ZnS Zinc sulfide, >96%, obtained as Sachtolith HD from Sachtleben
    ZnO Zinc oxide having a surface area of 4-6 meter2/g, obtained as Zinc
    Oxide CR-4 from GH Chemical, or as Zincweiss Harzsiegel CF
    from Norzinco
    SBS Polystyrene-polybutadiene-polystyrene triblock copolymer having a
    styrene content of 31 weight percent, a Shore A hardness of 69, and
    a solution viscosity of 4000 centipoise at 25% in toluene; obtained
    as Kraton D1101-12 from Kraton Polymers, or as Vector 2518 from
    Dexco Polymers
    TSAN Polytetrafluoroethylene encapsulated in poly(styrene-acrylonitrile),
    having a polyacrylonitrile content of 8-12 weight percent and a
    polytetrafluoroethylene content of 47-53 weight percent; obtained
    as 44449-1000 from SABIC Innovative Plastics
    LLDPE Linear low-density polyethylene having a density of 0.922-0.928
    grams per milliliter and a melt flow rate of 20 grams/10 minutes
    measured at 190° C. and 2.16 kilogram load; obtained as Escorene
    LL-5100.09 from ExxonMobil or Novapol GM-2024A from Nova
    Polymers
    TDP Tridecylphosphite, obtained as Weston TDP from Chemtura
    HIPS Rubber-modified polystyrene having 88-94 weight percent
    polystyrene and 6-12 weight percent polybutadiene, and having an
    effective gel content of 10-35%; obtained as GEH 1897 from
    SABIC Innovative Plastics or as D7022.27 from Chevron
    TiO2 Titanium dioxide, having tint values in the range of −0.40 to 0.35
    for CIE delta B, less than 0.60 for CIE delta E, and −0.35 to 0.50 for
    CIE delta L, obtained as Kronos 2450 from Kronos
    Carbon black Carbon black, having 200 parts per million by weight residue
    maximum on a 325 mesh screen, obtained as Monarch 800 from
    Cabot
    Solvent Green 3 Solvent Green 3 (CAS Reg. No. 128-80-3), obtained as Green 5B
    from Farbtex
    Red 101 Pigment Red 101 (CAS Reg. No. 1309-37-1), obtained as
    Bayferrox 180 MPL from Lanxess
    Yellow 53 Pigment Yellow 53 (CAS Reg. No. 8007-18-9), obtained as Sicotan
    Yellow 1010 from BASF
    Clay Kaolin clay, having a BET surface area of 21 meter2/gram and a
    median particle size of 0.4 micrometer, obtained as Polyfil HG-90
    from JM Huber
    RDP Resorcinol bis(diphenyl phosphate), obtained as Fyrolflex RDP
    from Supresta or as Reofos RDP from Chemtura
    BPADP Bisphenol A bis(diphenyl phosphate), obtained as BPA-DP from
    Chemtura
  • The compositions of all examples were extrusion compounded using the component amounts shown in Table 2, where all component amounts are expressed in parts by weight. The extrusion compounding was conducted in a 53-millimeter internal diameter, ten zone, twin-screw extruder operating at a screw rotation rate of 280 rotations per minute and using zone temperatures of 200-245-260-260-260-260-260-260-260-260° C. from feed throat to die. The extrudate was cooled and chopped into pellets.
  • Melt volume flow rate (MVR) values, expressed in units of centimeter3/10 minutes (cm3/10 min), were determined at 280° C. using a 5 kilogram load in accordance with ASTM D1238-04.
  • Melt viscosity values, expressed in units of pascal-seconds (Pa-sec), were determined using a Kayeness Capillary viscometer at 260, 280, and 300° C. and shear rates of 100 to 10,000 second−1 in accordance with ASTM D3835-02 using a capillary length:diameter ratio of 20:1, a capillary diameter of 1.0 millimeter, a capillary entrance angle of 180 degrees, and a dwell time of 4 minutes. Shear thinning index (“STI”) was calculated as the ratio of the melt viscosity at a shear rate at 100 second−1 to the melt viscosity at a shear rate of 10,000 second−1.
  • shear rate at 10,000 second−1. Melt viscosity values as a function of shear rate and temperature, and shear thinning index values as a function of temperature, are presented in Table 3.
  • Test samples for physical property testing were injection molded using a barrel temperature of 260° C., a mold temperature of 55° C., a pressure of 4.83 megapascals (700 pounds per square inch), and an injection speed of 5.08 centimeters/second (2 inches/second).
  • Flexural modulus values, expressed in units of megapascals (MPa), were determined in accordance with ISO 178 (2001). The test bars had dimensions 80 millimeters×10 millimeters×4 millimeters. The flexural modulus values presented in Table 2 were calculated as the average of test results for five test bars.
  • Flexural Stress values, expressed in units of megapascals (MPa), were determined at 5% strain in accordance with ISO 178 (2001).
  • Heat deformation temperature (HDT) values, expressed in units of degrees centigrade (° C.), were determined on 3.2 millimeter bars per ASTM D648-07 at a load of 1.82 MPa.
  • Notched Izod Impact strength (NII) values, expressed in units of joules/meter2 (J/m2), were determined at 23° C. on 3.2 mm bars in accordance with ISO 180 (2000).
  • Mold shrinkage values, expressed in units of percent, were determined by molding a standard “Dynatup” disk (see ASTM D3763-06) and measuring the actual part diameter in the flow and cross-flow directions. In the molding procedure, molten resin enters one edge of the disk-shaped mold and flows to the opposite edge, filling the mold as it goes. The reported mold shrinkage values are the average of mold shrinkage in the flow and cross-flow directions, where
  • mold shrinkage in flow direction = ( mold_diameter - flow_diameter ) mold_diameter 100 and mold shrinkage in cross - flow direction = ( mold_diameter - cross_flow _diameter ) mold_diameter 100
  • wherein mold_diameter is the disk diameter of the mold, flow_diameter is the diameter of the molded disk in the direction of resin flow, and cross_flow diameter is the diameter of the molded disk perpendicular to the direction of resin flow.
  • Referring to the property values in Tables 2 and 3, the injection molding compositions of Examples 1 to 4 provided articles with surprisingly low mold shrinkage values of 0.48 to 0.66 percent. These observed mold shrinkage values were unexpectedly lower than the mold shrinkage value of 0.74 percent for Comparative Example 1. The Example 1-4 compositions were also superior in their heat distortion temperatures, exhibiting values of 81 to 98° C., compared to a value of 80° C. for Comparative Example 1. The Example 1-4 compositions also exhibited reduced shear thinning index values relative to Comparative Example 1. Specifically Examples 1-4 exhibited shear thinning index values ranging from 12.5 to 14.8, whereas Comparative Example 1 exhibited a shear thinning index value of 17.9. While not wishing to be bound by any particular theory, the present inventor believes that the shear thinning index values calculated from viscosity values of 100 to 10,000 seconds−1 are predictive of the ability to mold large, thin objects such as battery cases. This is surprising, given that the melt viscosities at shear rates of 1,000 to 10,000 seconds−1 were thought to be important for injection molding. Thus, the shear thinning index calculated based on viscosity values of 100 to 10,000 seconds−1 appears to be a previously unrecognized result-effective variable for the molding of large, thin objects from poly(arylene ether) compositions.
  • TABLE 2
    Ex. 1 Ex. 2 Ex. 3 Ex. 4 C. Ex 1
    COMPOSITIONS
    PPE 0.4 IV 49.62 53.72
    PPE 0.3 IV 49.81 52.32
    PPE 0.46 IV 49.62
    ZnS 0.12 0.12 0.12 0.12
    ZnO 0.12 0.12 0.12 0.12
    SBS 2.41 2.41 1.58 1.54 2.41
    TSAN 0.11 0.25 0.24 0.34
    LLDPE 1.21 1.21 0.96 0.96
    TDP 0.40 0.40 0.39 0.38
    HIPS 28.04 27.63 24.56 23.45 28.04
    TiO2 1.16 1.14 1.16 1.16
    Carbon Black 0.06 0.06 0.06 0.06
    Solvent Green 3 0.02 0.02 0.02 0.02
    Red 101 0.02 0.02 0.02 0.02
    Yellow 53 0.32 0.32 0.32 0.32
    Clay 2.46
    RDP 16.41 16.41
    BPADP 16.49 16.73 16.73
    PROPERTIES
    MVR (cm3/10 min) 42 59 39 48 30
    Flexural Modulus (MPa) 2650 2860 2700 2780 2590
    Flex Stress (MPa) 95 106 103 102 93
    HDT (° C.) 81 86 98 92 80
    Notched Izod (J/m2) 180 99 109 83 260
    Mold shrinkage (%) 0.57 0.48 0.62 0.66 0.74
  • TABLE 3
    Ex. 1 Ex. 2 Ex. 3 Ex. 4 C. Ex 1
    260° 260° 260° 280° 260° 260°
    C. 280° C. 300° C. C. 280° C. 300° C. C. C. 300° C. C. 280° C. 300° C. C. 280° C. 300° C.
     100 sec−1 841 499 306 670 386 209 1033 531 296 851 462 268 1010 654 436
     500 sec−1 346 245 165 313 205 126 401 273 166 376 238 152 399 285 207
    1000 sec−1 235 171 119 217 146 95 269 191 121 254 168 113 261 191 143
    1500 sec−1 187 136 96 173 118 80 214 153 99 199 135 93 202 150 114
    3000 sec−1 127 89 65 115 80 57 145 101 69 129 91 66 128 97.5 75
    5000 sec−1 95 64 48 84 58 44 109 72 51 93 66 50 91 70 54
    10000 sec−1 64.2 39.6 30 53.8 36.7 29.5 74.1 44.4 33 57.6 41.4 33.1 56.3 43.6 33.9
    STI 13.1 12.6 10.2 12.5 10.5 7.1 13.9 12.0 9.0 14.8 11.2 8.1 17.9 15.0 12.9
  • EXAMPLE 5, COMPARATIVE EXAMPLES 2 AND 3
  • These examples illustrate that the injection molding composition is scalable.
  • In this set of example, the injection molding compositions were prepared by extrusion compounding using a 203-millimeter internal diameter Baker-Perkins twin-screw extruder with a length to internal diameter (L/D) ratio of 15.5:1. A typical screw rotation rate was 275 rotations per minute. Six-zone temperature control was applied with a common temperature profile of 204-260-260-260-260-288° C. (400-500-500-500-500-550° F.) from feed throat to die. The screw design for extrusion compounding was such that metering and melting zones were followed concurrently by mixing and pumping zones. Representative production rates ranged from 1400 to 2300 kilograms per hour (3000 to 5000 pounds per hour). The resulting extrudate was cooled and chopped into pellets.
  • The compositions and flammability properties are summarized in Table 4. Note that the composition of Example 5 is identical to that of Example 3 above, and the composition of Comparative Example 2 is identical to that of Comparative Example 1 above. UL94 ratings were determined according to UL 94, “Test for Flammability of Plastic Materials for Parts in Devices and Appliances”, Fifth Edition (1996), Vertical Burning Test, using a sample thickness of 3 millimeters.
  • Results of viscosity measurements are presented in Table 5. Each melt viscosity value represents the average of measurements of eight samples.
  • TABLE 4
    Ex. 5 C. Ex 2 C. Ex. 3
    COMPOSITIONS
    PPE 0.4 IV 53.72
    PPE 0.3 IV
    PPE 0.46 IV 49.62 55.02
    ZnS 0.12
    ZnO 0.12
    SBS 1.58  2.41  1.62
    TSAN 0.24
    LLDPE 0.96
    TDP 0.39
    HIPS 24.56 28.04 25.88
    TiO2 1.16
    Carbon Black 0.06
    Solvent Green 3 0.02
    Red 101 0.02
    Yellow 53 0.32
    Clay
    RDP 16.41 13.41
    BPADP 16.73
    PROPERTIES
    UL94 Vertical Burn Rating, V-0 V-0 V-0
    at 3 mm
  • TABLE 5
    Ex. 5 C. Ex 2 C. Ex. 3
    260° C. 280° C. 300° C. 260° C. 280° C. 300° C. 260° C. 280° C. 300° C.
     100 sec−1 949 585 321 926 642 422 1555 1001 659
     500 sec−1 428 274 178 403 282 205 585 412 299
    1000 sec−1 287 190 130 266 191 141 375 270 203
    1500 sec−1 224 151 106 205 150 111 287 208 159
    3000 sec−1 143 101 73 129 97 72 180 131 103
    5000 sec−1 100 74 54 89 70 51 127 91 73
    10000 sec−1 60 47 35 53 44 31 78 55 45
    STI 15.8 12.4 9.2 17.5 14.6 13.6 19.9 18.2 14.6
  • This written description uses examples to disclose the exemplary embodiments, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and can include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
  • All cited patents, patent applications, and other references are incorporated herein by reference in their entirety. However, if a term in the present application contradicts or conflicts with a term in the incorporated reference, the term from the present application takes precedence over the conflicting term from the incorporated reference.
  • All ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other.
  • The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Further, it should further be noted that the terms “first,” “second,” and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., it includes the degree of error associated with measurement of the particular quantity).

Claims (41)

1. An injection molded article,
wherein a portion of the injection molded article comprises
a first dimension of at least 10 centimeters,
a second dimension of at least 10 centimeters, and
a third dimension of less than 1 centimeter;
wherein the injection molded article is a product of injection molding an injection molding composition comprising
30 to 60 weight percent of a poly(arylene ether) having an intrinsic viscosity of 0.3 to 0.55 deciliter/gram measured at 25° C. in chloroform,
20 to 60 weight percent of a rubber-modified polystyrene, and
10 to 20 weight percent of a triaryl phosphate that is a liquid at one atmosphere and at least one temperature in the range 25 to 50° C.;
wherein all weight percents are based on the total weight of the injection molding composition; and
wherein the injection molding composition has a shear thinning index of 6 to 17 measured at shear rates of 100 and 10,000 second−1 at a temperature of 260 to 300° C. according to ASTM D3835.
2. The injection molded article of claim 1, wherein the shear thinning index at 260° C. is 12 to 17.
3. The injection molded article of claim 1, wherein the shear thinning index at 280° C. is 10 to 14.
4. The injection molded article of claim 1, wherein the shear thinning index at 300° C. is 6 to 12.
5. The injection molded article of claim 1, wherein the first dimension is 10 to 100 centimeters, the second dimension is 10 to 100 centimeters, and the third dimension is 0.02 to 1 centimeter.
6. The injection molded article of claim 1, wherein the first dimension is 30 to 100 centimeters, the second dimension is 30 to 100 centimeters, and the third dimension is 0.1 to 0.5 centimeter.
7. The injection molded article of claim 1, wherein the first and second dimensions define a plane.
8. The injection molded article of claim 1, wherein the injection molding composition exhibits a viscosity less than 1000 Pascal-seconds measured at 260° C. and a shear rate of 100 second−1 according to ASTM D3835.
9. The injection molded article of claim 1, wherein the injection molding composition exhibits a viscosity less than 600 Pascal-seconds measured at 280° C. and a shear rate of 100 second−1 according to ASTM D3835.
10. The injection molded article of claim 1, wherein the injection molding composition exhibits a viscosity less than 400 Pascal-seconds measured at 300° C. and a shear rate of 100 second−1 according to ASTM D3835.
11. The injection molded article of claim 1, wherein the injection molding composition exhibits a viscosity of 200 to 1000 Pascal-seconds measured at a temperature of 260 to 300° C. and a shear rate of 100 second−1 according to ASTM D3835.
12. The injection molded article of claim 1, wherein the injection molding composition exhibits a melt volume flow rate of 40 to 70 cubic centimeters per 10 minutes, measured at 280° C. with a 5 kilogram load according to ISO 1133.
13. The injection molded article of claim 1, wherein the injection molding composition exhibits a heat distortion temperature of 81 to 100° C., measured at 1.82 megapascals according to ASTM D648.
14. The injection molded article of claim 1, wherein the injection molding composition exhibits a flexural modulus of at least 2500 megapascals, measured at 23° C. according to ISO 178.
15. The injection molded article of claim 1, wherein the injection molding composition exhibits a flexural modulus of 2500 to 3000 megapascals, measured at 23° C. according to ISO 178.
16. The injection molded article of claim 1, wherein the injection molding composition exhibits a notched Izod impact strength of at least 50 joules/meter2 measured at 23° C. according to ISO 180.
17. The injection molded article of claim 1, wherein the injection molding composition exhibits a notched Izod impact strength of 50 to 200 joules/meter2 measured at 23° C. according to ISO 180.
18. The injection molded article of claim 1, wherein the injection molded article exhibits a mold shrinkage of less than or equal to 0.7 percent, measured at 23° C.
19. The injection molded article of claim 1, wherein the injection molded article exhibits a mold shrinkage of 0.4 to 0.7 percent, measured at 23° C.
20. The injection molded article of claim 1, wherein the rubber-modified polystyrene comprises 88 to 94 weight percent polystyrene and 6 to 12 weight percent polybutadiene.
21. The injection molded article of claim 1, wherein the triaryl phosphate is resorcinol bis(diphenyl phosphate), bisphenol A bis(diphenyl phosphate), or a mixture thereof.
22. The injection molded article of claim 1, wherein the injection molding composition further comprises 0.5 to 5 weight percent of a polystyrene-polybutadiene-polystyrene triblock copolymer.
23. The injection molded article of claim 1, wherein the injection molding composition further comprises an additive selected from the group consisting of stabilizers, antioxidants, mold release agents, processing aids, drip retardants, colorants, fragrances, and mixtures thereof.
24. The injection molded article of claim 1, wherein the injection molding composition excludes polyamides, polyesters, polyolefin homopolymers, poly(alkenyl aromatic) homopolymers, poly(phenylene sulfide)s, and hydrogenated block copolymers of an alkenyl aromatic and a conjugated diene.
25. The injection molded article of claim 1, wherein the injection molding composition excludes any polymer other than the poly(arylene ether), the rubber-modified polystyrene, and a polystyrene-polybutadiene-polystyrene triblock copolymer, provided that the injection molding composition can comprise up to 2 weight percent of a polymeric mold release agent and/or up to 0.5 weight percent of a fluoropolymer-containing additive.
26. The injection molded article of claim 1, wherein the injection molded article is a battery case.
27. The injection molded article of claim 1, wherein the injection molding composition comprises at least 5 weight percent of recycled content.
28. The injection molded article of claim 1, wherein the injection molding composition comprises 5 to 50 weight percent of recycled content.
29. The injection molded article of claim 28, wherein the recycled content comprises material that has been recycled 1 to 10 times.
30. The injection molded article of claim 1, wherein the injection molded article is a battery case; and wherein the recycled content comprises 0.1 to 2 weight percent lead based on the weight of the recycled content.
31. The injection molded article of claim 1, wherein the injection molded article is a battery case; and wherein the injection molding composition comprises 0.1 to 2 weight percent lead based on the total weight of the injection molding composition.
32. The injection molded article of claim 1,
wherein the injection molded article is a battery case comprising at least one essentially planar section having
a first dimension of 30 to 100 centimeters,
a second dimension of 30 to 100 centimeters, and
a third dimension of 0.1 to 0.5 centimeter;
wherein the injection molding composition comprises
45 to 55 weight percent of the poly(arylene ether); wherein the poly(arylene ether) comprises a poly(2,6-dimethyl-1,4-phenylene ether) having an intrinsic viscosity of 0.3 to 0.43 deciliter/gram measured at 25° C. in chloroform,
25 to 31 weight percent of the rubber-modified polystyrene, and
12 to 20 weight percent of the triaryl phosphate flame retardant; and
wherein the injection molding composition exhibits
a shear thinning index of 12 to 17 measured at shear rates of 100 and 10,000 second−1 at a temperature of 260° C. according to ASTM D3835
a viscosity of 600 to 1000 Pascal-seconds measured at a temperature of 260° C. and a shear rate of 100 second−1 according to ASTM D3835,
a melt volume flow rate of 30 to 60 cubic centimeters per 10 minutes measured at 280° C. with a 5 kilogram load according to ISO 1133,
a heat distortion temperature of 81 to 100° C., measured at 1.82 megapascals according to ASTM D648, and
a mold shrinkage of 0.4 to 0.7 percent, measured at 23° C.
33. The injection molded article of claim 32, wherein the injection molding composition further exhibits a UL 94 Vertical Burning Test rating of V-0 or V-1, measured at a sample thickness in the range of 1.5 to 3 millimeters.
34. A method of injection molding, comprising:
injection molding an injection molding composition to form an injection molded article;
wherein a portion of the injection molded article comprises
a first dimension of at least 10 centimeters,
a second dimension of at least 10 centimeters, and
a third dimension of less than 1 centimeter;
wherein the injection molded article is a product of injection molding an injection molding composition comprising
30 to 60 weight percent of a poly(arylene ether) having an intrinsic viscosity of 0.3 to 0.55 deciliter/gram measured at 25° C. in chloroform,
20 to 60 weight percent of a rubber-modified polystyrene, and
10 to 20 weight percent of a triaryl phosphate that is a liquid at one atmosphere and at least one temperature in the range 25 to 50° C.;
wherein all weight percents are based on the total weight of the injection molding composition; and
wherein the injection molding composition has a shear thinning index of 6 to 17 measured at shear rates of 100 and 10,000 second−1 at a temperature of 260 to 300° C. according to ASTM D3835.
35. The method of injection molding of claim 34, wherein said injection molding comprises using a barrel temperature of 260 to 300° C. and a mold temperature of 50 to 90° C.
36. The method of injection molding of claim 34,
wherein the injection molded article is a battery case comprising at least one essentially planar section having
a first dimension of 30 to 100 centimeters,
a second dimension of 30 to 100 centimeters, and
a third dimension of 0.1 to 0.5 centimeter;
wherein the injection molding composition comprises
45 to 55 weight percent of the poly(arylene ether); therein the poly(arylene ether) comprises a poly(2,6-dimethyl-1,4-phenylene ether) having an intrinsic viscosity of 0.3 to 0.43 deciliter/gram measured at 25° C. in chloroform,
25 to 31 weight percent of the rubber-modified polystyrene, and
12 to 20 weight percent of the triaryl phosphate flame retardant; and
wherein the injection molding composition exhibits
a shear thinning index of 12 to 17 measured at shear rates of 100 and 10,000 second−1 at a temperature of 260° C. according to ASTM D3835
a viscosity of 600 to 1000 Pascal-seconds measured at a temperature of 260° C. and a shear rate of 100 second−1 according to ASTM D3835,
a melt volume flow rate of 30 to 60 cubic centimeters per 10 minutes measured at 280° C. with a 5 kilogram load according to ISO 1133,
a heat distortion temperature of 81 to 100° C., measured at 1.82 megapascals according to ASTM D648, and
a mold shrinkage of 0.4 to 0.7 percent, measured at 23° C.;
wherein said injection molding comprises using a barrel temperature of 260 to 300° C. and a mold temperature of 50 to 90° C.
37. The method of injection molding of claim 34, wherein the injection molding composition comprises at least 1 weight percent of recycled content.
38. The method of injection molding of claim 34, wherein the injection molding composition comprises 5 to 50 weight percent of recycled content.
39. The method of injection molding of claim 38, wherein the recycled content comprises 0.1 to 2 weight percent lead based on the weight of the recycled content.
40. The method of injection molding of claim 36, wherein the injection molding composition comprises 0.1 to 2 weight percent lead based on the total weight of the injection molding composition.
41. An injection molded article prepared by the method of claim 34.
US12/267,060 2008-04-28 2008-11-07 Injection molded article and method for the manufacture thereof Expired - Fee Related US8057873B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/267,060 US8057873B2 (en) 2008-04-28 2008-11-07 Injection molded article and method for the manufacture thereof
JP2011506323A JP5314128B2 (en) 2008-04-28 2009-03-25 Injection molded product and manufacturing method thereof
DE9739356T DE09739356T1 (en) 2008-04-28 2009-03-25 SPLASHED ARTICLE AND MANUFACTURING METHOD THEREFOR
EP09739356.5A EP2285545B1 (en) 2008-04-28 2009-03-25 Injection molded article and method for the manufacture thereof
PCT/US2009/038161 WO2009134554A2 (en) 2008-04-28 2009-03-25 Injection molded article and method for the manufacture thereof
CN200980122617.8A CN102066078B (en) 2008-04-28 2009-03-25 Injection molded article and method for manufacture thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4830108P 2008-04-28 2008-04-28
US12/267,060 US8057873B2 (en) 2008-04-28 2008-11-07 Injection molded article and method for the manufacture thereof

Publications (2)

Publication Number Publication Date
US20090269659A1 true US20090269659A1 (en) 2009-10-29
US8057873B2 US8057873B2 (en) 2011-11-15

Family

ID=41215326

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/267,060 Expired - Fee Related US8057873B2 (en) 2008-04-28 2008-11-07 Injection molded article and method for the manufacture thereof

Country Status (6)

Country Link
US (1) US8057873B2 (en)
EP (1) EP2285545B1 (en)
JP (1) JP5314128B2 (en)
CN (1) CN102066078B (en)
DE (1) DE09739356T1 (en)
WO (1) WO2009134554A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010061865A1 (en) * 2010-11-24 2012-05-24 Behr Gmbh & Co. Kg Frame for an electrochemical energy storage unit
WO2012082535A2 (en) 2010-12-14 2012-06-21 Sabic Innovative Plastics Ip B.V. Injection molded article with poly(arylene ether)-block copolymer composition
WO2012162017A2 (en) 2011-05-26 2012-11-29 Sabic Innovative Plastics Ip B.V. Injection molded article and method for the manufacture thereof
US20130046046A1 (en) * 2011-08-18 2013-02-21 Kirti Sharma Poly(arylene ether) composition, method, and article
WO2013048713A1 (en) * 2011-09-28 2013-04-04 Sabic Innovative Plastics Ip B.V. Injection molding composition and article
WO2014072955A3 (en) * 2012-11-09 2014-12-11 Sabic Innovative Plastics Ip B.V. Poly(phenylene ether) composition and article
CN113410430A (en) * 2020-03-17 2021-09-17 松下电器产业株式会社 Nonaqueous electrolyte secondary battery and secondary battery module
US11472099B2 (en) * 2017-02-14 2022-10-18 Covestro Deutschland Ag Method for producing an object by means of an additive manufacturing process using a polycarbonate building material with improved flowability

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5759240B2 (en) * 2011-04-14 2015-08-05 東洋スチレン株式会社 Flame retardant styrene resin composition and liquid crystal TV back cover using the same
US8653167B2 (en) 2011-05-26 2014-02-18 Sabic Innovative Plastics Ip Molding composition for photovoltaic junction boxes and connectors
US8530552B1 (en) 2012-04-18 2013-09-10 Sabic Innovative Plastics Ip B.V. Poly(phenylene ether) composition, article, and method
US10189990B2 (en) 2015-04-27 2019-01-29 Sabic Global Technologies B.V. Poly(phenylene ether) composition and article
WO2017203386A1 (en) * 2016-05-24 2017-11-30 Sabic Global Technologies B.V. Poly(phenylene ether) molding method and articles, and method of increasing poly(phenylene ether) crystallinity

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383435A (en) * 1965-01-06 1968-05-14 Gen Eiectric Company Blend of a polyphenylene ether and a styrene resin
US3952072A (en) * 1973-11-14 1976-04-20 Mitsubishi Gas Chemical Company, Inc. Stabilized polyphenylene ether type resin composition
US4681906A (en) * 1985-11-01 1987-07-21 General Electric Company Polyphenylene compositions containing sulfonate having improved melt behavior
US4900786A (en) * 1988-06-23 1990-02-13 General Electric Company Polyphenylene ether/rubber modified polystyrene composition suitable for blow molding large parts
US5294655A (en) * 1992-05-15 1994-03-15 General Electric Company Polyphenylene ether electrical insulation compositions
US5397822A (en) * 1993-08-18 1995-03-14 General Electric Company Thermoplastic compositions containing polyphenylene ether resin and characterized by improved elongation and flexibility employing a blend of multiblock copolymers
US5576387A (en) * 1991-12-31 1996-11-19 General Electric Company PPE/polyamide compositions of improved melt strength
US6197869B1 (en) * 1996-05-30 2001-03-06 Basf Aktiengesellschaft Non-flammable, thermoplastic moulded materials with improved anti-drip properties
US6201067B1 (en) * 1998-01-14 2001-03-13 The Dow Chemical Company Polymeric blend compositions of α-olefin/vinylidene aromatic monomer interpolymers and aromatic polyethers
US6258879B1 (en) * 1999-04-02 2001-07-10 General Electric Company Polyphenylene ether resin concentrates containing organic phosphates
US6350514B1 (en) * 2000-02-02 2002-02-26 General Electric Co. Thermoplastic blends with improved adhesion and thermal stability
US6462167B1 (en) * 1998-11-27 2002-10-08 Idemitsu Petrochemical Co., Ltd. Polycarbonate resin composition for gas assist injection molding, process for producing blow-molded article, and blow-molded article
US20030125430A1 (en) * 2000-03-30 2003-07-03 Adeyinka Adedeji Transparent, flame retardant poly(arylene ether) blends
US20040209968A1 (en) * 2001-05-07 2004-10-21 Jos Bastiaens Flame retardant expandable poly(arylene ether)/polystyrene compositions and preparation thereof
US20050127579A1 (en) * 2002-01-23 2005-06-16 Yasuhiro Suzuki Process for producing molded article of reclaimed thermoplastic resin
US20050154100A1 (en) * 2004-01-07 2005-07-14 Kazunari Kosaka Flexible poly(arylene ether)composition and articles thereof
US20050171266A1 (en) * 2003-06-10 2005-08-04 Matthijssen Johannes G. Filled compositions and a method of making
US20060058432A1 (en) * 2004-05-04 2006-03-16 General Electric Company Halogen-free flame retardant polyamide composition with improved electrical and flammability properties
US20070060677A1 (en) * 2003-09-30 2007-03-15 Kazuo Yoshida Process for producing polyphenylene ether resin composition
US20070100070A1 (en) * 2005-11-02 2007-05-03 Todt Michael L Poly(arylene ether) blend and method of making same
US20070138702A9 (en) * 1999-11-12 2007-06-21 General Electric Company Molded, filled polymer compositions with reduced splay and a method of making
US20070249766A1 (en) * 2006-04-19 2007-10-25 Asahi Kasei Chemicals Corporation Production process of polyphenylene ether composition
US7358293B2 (en) * 2005-05-02 2008-04-15 General Electric Company Thermoplastic polycarbonate compositions with improved optical surface quality, articles made therefrom and method of manufacture
US7519927B1 (en) * 2008-07-02 2009-04-14 International Business Machines Corporation Wiring methods to reduce metal variation effects on launch-capture clock pairs in order to minimize cycle-time overlap violations

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983003834A1 (en) * 1981-02-26 1983-11-10 General Electric Company Polyphenylene ether compositions and process
JPH07278318A (en) * 1994-04-08 1995-10-24 Asahi Chem Ind Co Ltd Flame-retardant part belonging to cd-rom
SG45409A1 (en) 1995-06-07 1998-01-16 Gen Electric Compositions of poly(phenylene ether) and polyamide resins which exhibit improved melt strength
SG68668A1 (en) 1997-06-16 1999-11-16 Gen Electric Polycarbonate composition for vented moldings
US6906123B2 (en) 1998-09-02 2005-06-14 Cheil Industries Inc. Flameproof styrene-containing graft resin compositions having a particular nitrile content distribution
JP2004517998A (en) * 2000-12-28 2004-06-17 ゼネラル・エレクトリック・カンパニイ Reinforced thermoplastic composition and articles obtained therefrom
US6583205B2 (en) * 2001-05-07 2003-06-24 General Electric Company Flame retardant expandable poly(arylene ether)/polystyrene compositions and preparation thereof
JP3923764B2 (en) * 2001-09-14 2007-06-06 旭化成ケミカルズ株式会社 Polyphenylene ether resin composition
JP4303015B2 (en) * 2002-03-27 2009-07-29 帝人化成株式会社 Flame retardant aromatic polycarbonate resin composition
JP4080851B2 (en) * 2002-11-21 2008-04-23 帝人化成株式会社 Flame retardant resin composition
US7244813B2 (en) * 2003-08-26 2007-07-17 General Electric Company Methods of purifying polymeric material
US7439284B2 (en) 2004-03-31 2008-10-21 Sabic Innovative Plastics Ip B.V. Method of making poly(arylene ether) compositions
US7576150B2 (en) * 2007-02-28 2009-08-18 Sabic Innovative Plastics Ip B.V. Poly(arylene ether) composition, method, and article

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383435A (en) * 1965-01-06 1968-05-14 Gen Eiectric Company Blend of a polyphenylene ether and a styrene resin
US3952072A (en) * 1973-11-14 1976-04-20 Mitsubishi Gas Chemical Company, Inc. Stabilized polyphenylene ether type resin composition
US4681906A (en) * 1985-11-01 1987-07-21 General Electric Company Polyphenylene compositions containing sulfonate having improved melt behavior
US4900786A (en) * 1988-06-23 1990-02-13 General Electric Company Polyphenylene ether/rubber modified polystyrene composition suitable for blow molding large parts
US5576387A (en) * 1991-12-31 1996-11-19 General Electric Company PPE/polyamide compositions of improved melt strength
US5294655A (en) * 1992-05-15 1994-03-15 General Electric Company Polyphenylene ether electrical insulation compositions
US5397822A (en) * 1993-08-18 1995-03-14 General Electric Company Thermoplastic compositions containing polyphenylene ether resin and characterized by improved elongation and flexibility employing a blend of multiblock copolymers
US6197869B1 (en) * 1996-05-30 2001-03-06 Basf Aktiengesellschaft Non-flammable, thermoplastic moulded materials with improved anti-drip properties
US6201067B1 (en) * 1998-01-14 2001-03-13 The Dow Chemical Company Polymeric blend compositions of α-olefin/vinylidene aromatic monomer interpolymers and aromatic polyethers
US6462167B1 (en) * 1998-11-27 2002-10-08 Idemitsu Petrochemical Co., Ltd. Polycarbonate resin composition for gas assist injection molding, process for producing blow-molded article, and blow-molded article
US6258879B1 (en) * 1999-04-02 2001-07-10 General Electric Company Polyphenylene ether resin concentrates containing organic phosphates
US20070138702A9 (en) * 1999-11-12 2007-06-21 General Electric Company Molded, filled polymer compositions with reduced splay and a method of making
US6350514B1 (en) * 2000-02-02 2002-02-26 General Electric Co. Thermoplastic blends with improved adhesion and thermal stability
US20030125430A1 (en) * 2000-03-30 2003-07-03 Adeyinka Adedeji Transparent, flame retardant poly(arylene ether) blends
US20040209968A1 (en) * 2001-05-07 2004-10-21 Jos Bastiaens Flame retardant expandable poly(arylene ether)/polystyrene compositions and preparation thereof
US20050127579A1 (en) * 2002-01-23 2005-06-16 Yasuhiro Suzuki Process for producing molded article of reclaimed thermoplastic resin
US20050171266A1 (en) * 2003-06-10 2005-08-04 Matthijssen Johannes G. Filled compositions and a method of making
US20070060677A1 (en) * 2003-09-30 2007-03-15 Kazuo Yoshida Process for producing polyphenylene ether resin composition
US20050154100A1 (en) * 2004-01-07 2005-07-14 Kazunari Kosaka Flexible poly(arylene ether)composition and articles thereof
US20060058432A1 (en) * 2004-05-04 2006-03-16 General Electric Company Halogen-free flame retardant polyamide composition with improved electrical and flammability properties
US7358293B2 (en) * 2005-05-02 2008-04-15 General Electric Company Thermoplastic polycarbonate compositions with improved optical surface quality, articles made therefrom and method of manufacture
US20070100070A1 (en) * 2005-11-02 2007-05-03 Todt Michael L Poly(arylene ether) blend and method of making same
US20070249766A1 (en) * 2006-04-19 2007-10-25 Asahi Kasei Chemicals Corporation Production process of polyphenylene ether composition
US7519927B1 (en) * 2008-07-02 2009-04-14 International Business Machines Corporation Wiring methods to reduce metal variation effects on launch-capture clock pairs in order to minimize cycle-time overlap violations

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130313754A1 (en) * 2010-11-24 2013-11-28 Behr Gmbh & Co. Kg Frame for an electrochemical energy-storage unit
WO2012069561A1 (en) * 2010-11-24 2012-05-31 Behr Gmbh & Co. Kg Frame for an electrochemical energy-storage unit
US9833959B2 (en) * 2010-11-24 2017-12-05 Mahle International Gmbh Frame for an electrochemical energy-storage unit
DE102010061865A1 (en) * 2010-11-24 2012-05-24 Behr Gmbh & Co. Kg Frame for an electrochemical energy storage unit
EP2652036A4 (en) * 2010-12-14 2016-09-07 Sabic Global Technologies Bv Injection molded article with poly(arylene ether)-block copolymer composition
WO2012082535A2 (en) 2010-12-14 2012-06-21 Sabic Innovative Plastics Ip B.V. Injection molded article with poly(arylene ether)-block copolymer composition
WO2012162017A3 (en) * 2011-05-26 2013-03-21 Sabic Innovative Plastics Ip B.V. Injection molded article and method for the manufacture thereof
US8524137B2 (en) 2011-05-26 2013-09-03 Sabic Innovative Plastics Ip B.V. Injection molded article and method for the manufacture thereof
EP2714802A4 (en) * 2011-05-26 2015-09-09 Sabic Innovative Plastics Ip Injection molded article and method for the manufacture thereof
WO2012162017A2 (en) 2011-05-26 2012-11-29 Sabic Innovative Plastics Ip B.V. Injection molded article and method for the manufacture thereof
US20130046046A1 (en) * 2011-08-18 2013-02-21 Kirti Sharma Poly(arylene ether) composition, method, and article
US8722789B2 (en) * 2011-08-18 2014-05-13 Sabic Innovative Plastics Ip B.V. Poly(arylene ether) composition, method, and article
WO2013048713A1 (en) * 2011-09-28 2013-04-04 Sabic Innovative Plastics Ip B.V. Injection molding composition and article
WO2014072955A3 (en) * 2012-11-09 2014-12-11 Sabic Innovative Plastics Ip B.V. Poly(phenylene ether) composition and article
US11472099B2 (en) * 2017-02-14 2022-10-18 Covestro Deutschland Ag Method for producing an object by means of an additive manufacturing process using a polycarbonate building material with improved flowability
CN113410430A (en) * 2020-03-17 2021-09-17 松下电器产业株式会社 Nonaqueous electrolyte secondary battery and secondary battery module

Also Published As

Publication number Publication date
US8057873B2 (en) 2011-11-15
JP5314128B2 (en) 2013-10-16
EP2285545A4 (en) 2015-11-18
JP2011522904A (en) 2011-08-04
EP2285545B1 (en) 2017-07-12
WO2009134554A3 (en) 2010-01-07
CN102066078A (en) 2011-05-18
WO2009134554A2 (en) 2009-11-05
DE09739356T1 (en) 2012-03-08
CN102066078B (en) 2014-02-12
EP2285545A2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
US8057873B2 (en) Injection molded article and method for the manufacture thereof
EP2217647B1 (en) Flame-retardant poly(arylene ether) composition and its use as a covering for coated wire
US8541505B2 (en) Poly(arylene ether) composition with improved melt flow and method for the preparation thereof
EP2652036B1 (en) Injection molded article with poly(arylene ether)-block copolymer composition
KR101768507B1 (en) Molding composition for photovoltaic junction boxes and connectors
EP2714802B1 (en) Injection molded article and method for the manufacture thereof
US7833470B2 (en) Injection molded article and method for the manufacture thereof
EP2387594B1 (en) Poly(arylene ether) articles and compositions
EP3294809B1 (en) Reinforced poly(phenylene ether) compositions, and articles prepared therefrom
US20070100070A1 (en) Poly(arylene ether) blend and method of making same
EP2917280B1 (en) Poly(phenylene ether) composition and article
EP2197940B1 (en) High cti poly(arylene ether) composition
US20090275684A1 (en) High cti poly(arylene ether) composition
US20090082497A1 (en) High cti poly(arylene ether) composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: SABIC INNOVATIVE PLASTICS IP B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEVASALMI, JUHA-MATTI;REEL/FRAME:022076/0159

Effective date: 20090107

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:022843/0918

Effective date: 20090616

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:022843/0918

Effective date: 20090616

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: SABIC INNOVATIVE PLASTICS IP B.V., NETHERLANDS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:032459/0798

Effective date: 20140312

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:038883/0816

Effective date: 20140402

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:038883/0830

Effective date: 20140402

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20191115