US20090095129A1 - Process for enhancing dry compressive strengsth in iron ore pelletizing - Google Patents

Process for enhancing dry compressive strengsth in iron ore pelletizing Download PDF

Info

Publication number
US20090095129A1
US20090095129A1 US11/907,305 US90730507A US2009095129A1 US 20090095129 A1 US20090095129 A1 US 20090095129A1 US 90730507 A US90730507 A US 90730507A US 2009095129 A1 US2009095129 A1 US 2009095129A1
Authority
US
United States
Prior art keywords
pellets
green
binder
iron
iron ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/907,305
Inventor
Ali Basdag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LOUVELE-TREMBLAY CONSULTANTS Inc
Original Assignee
LOUVELE-TREMBLAY CONSULTANTS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LOUVELE-TREMBLAY CONSULTANTS Inc filed Critical LOUVELE-TREMBLAY CONSULTANTS Inc
Priority to US11/907,305 priority Critical patent/US20090095129A1/en
Assigned to LOUVELE-TREMBLAY CONSULTANTS INC. reassignment LOUVELE-TREMBLAY CONSULTANTS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BASDAG, ALI
Publication of US20090095129A1 publication Critical patent/US20090095129A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/008Use of special additives or fluxing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic

Definitions

  • the present invention relates to the production of green iron ore pellets with enhanced Dry Compressive Strength (DCS).
  • DCS Dry Compressive Strength
  • the present invention has reference to an improved process for increasing DCS of green pellets in a pelletizing system.
  • DCS is defined as the mechanical loading measured in kilograms required to fracture a dry ball.
  • Green pellets are usually produced in spherical form from agglomerates, nominally 8-18 mm diameter, and are generally so formed by rolling finely ground iron ore, additives such as limestone, dolomite, anthracite etc together with a binder such as bentonite, hydrated lime or organic binders in a damp state.
  • pellets must possess sufficient DCS to withstand pressure exerted in a pellet bed during the drying phase of the pelletization process in which the pellets travel as a bed on a traveling grate, in order to maintain bed permeability. This requirement assumes especial importance in the ‘Straight-Grate’ pelletizing process in which the bed depth is 2.5 times that of the ‘Grated-Kiln’ process.
  • DCS Dry Compressive Strength
  • An advantage of the present invention is that the process for the production of green iron ore pellets increases the DCS of such green pellets whilst on a traveling grate machine after removing the free moisture content.
  • Another advantage of the present invention is that the process for the production of green iron ore pellets enhances DCS levels with an admixture of constituents including bentonite at lower dosage levels than hitherto.
  • a further advantage of the present invention is that the process for the production of green iron ore pellets allows the reduction of acid gangue content in the pellets by virtue of being able to employ lower dosages of bentonite or organic binders in lieu of bentonite.
  • a still further advantage of the present invention is that the process for the production of green iron ore pellets enhances DCS levels by admixture of Direct Reduced Iron or other material containing same with binders before blending and mixing with iron ores and additives.
  • a process for increasing the Dry Compressive Strength of green iron ore pellets including the steps of introducing Direct Reduced Iron fines into a pellet mix of inter alia iron ore and binder, forming spherical green pellets from the resultant pellet feed, and introducing said green pellets into a drying stage to remove moisture before the heat-hardening or indurating process to produce product pellets as feedstock for Direct Reduction (DR) or Blast Furnace (BF) processes.
  • DR Direct Reduction
  • BF Blast Furnace
  • a process for increasing the Dry Compressive Strength of green iron ore pellets including the steps of introducing Direct Reduced Iron (DRI) fines or other form of metallic iron-containing material in a solid-state into a pellet mix of inter alia iron ore and binder, forming spherical green pellets from the resultant pellet feed, and introducing said green pellets into a drying stage to remove moisture from the pellets to generate dry pellets before the indurating process.
  • DRI Direct Reduced Iron
  • a process for increasing the Dry Compressive strength of green iron ore pellets including the steps of mixing Direct Reduced Iron in pulverized form with a binder, blending the resultant mixture with a mixture of inter alia iron ores to produce a pellet feed, forming spherical green pellets from the feed, and introducing said green pellets into a drying stage to remove moisture from the pellets to generate dry pellets before the indurating process.
  • the process includes a step of mixing all the ingredients of pellets such as iron ore, additives and the binder adjusting the moisture content of the mix at a level suitable for pelletizing.
  • the binder may be bentonite included in the mixture in dosages of lower levels than conventionally employed.
  • the binder may be an organic binder.
  • the organic binder may be of the type sold under the Trade Mark Peridur® which is a sodium carboxymethyl cellulose-containing binder produced by Akzo Chemicals of the Netherlands.
  • additives may include, for example and not by way of limitation, any one or more of the following, namely limestone, dolomite, serpentine, anthracite, petroleum coke, boron compounds commonly employed in the pelletizing industry.
  • additives may be included in the pellet feed.
  • the Direct Reduced Iron (DRI) fines inclusion may lie in the range of 2% to 5% by weight.
  • the metallic iron-containing material inclusion may lie in the range of 2% to 5% by weight.
  • the step of introducing DRI or other metallic iron-containing material fines may be by admixture with the other constituents, such as iron ore, binder and additives, to be ground together prior to pelletization.
  • the DRI fines or other metallic iron-containing material fines together with the binder may be pre-mixed prior to admixture with the other constituents, which with lower dosages of for example bentonite ensures good mixing prior to pelletization.
  • the drying stage may be carried out in conventional machines used for such a purpose.
  • Spherical green pellets were prepared in a 60 cm diameter laboratory balling disc using 0.5% bentonite for a magnetite ore and two types of hematite ores. DRI or metallic iron-containing material was added in the amounts of 2% and 5% for each test with a reference mixture containing no DRI. The binder used was bentonite. The procedures for pelletizing the feed are well known in the art and are thus not described herein.
  • the green spheres so produced were then dried at 105° C. for one hour.
  • DCS was subsequently determined using the procedure set out in ISO 4700:1996.
  • test results and the analyses of the mixtures are shown in Tables 1A, 1B and 1C for Test 1A, Test 1B and Test 1C, respectively.
  • Example 2 The same procedure as set forth in Example 1 with the same ores was adopted except that instead of bentonite, 0.4 wt % organic binder called Peridur® and 0.02 wt % caustic soda were used.
  • test results and the analyses are shown infra in Tables 2A, 2B and 2C for Test 2A, Test 2B and Test 2C, respectively.
  • Mill scale includes wustite and magnetite and these constituents do not have an enhancing effect upon DCS.
  • the present invention is of particular import for example when using Direct Reduction and Electric Arc Furnace production routes as the pellets so produced have a high iron content with low acid gangue content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A process for producing green iron ore pellets comprises the inclusion of Direct Reduced Iron or a metallic iron-containing material into the pellet mixture to enhance Direct Compressive Strength properties of the green pellets.

Description

    FIELD OF THE INVENTION
  • The present invention relates to the production of green iron ore pellets with enhanced Dry Compressive Strength (DCS).
  • In particular, the present invention has reference to an improved process for increasing DCS of green pellets in a pelletizing system. DCS is defined as the mechanical loading measured in kilograms required to fracture a dry ball.
  • BACKGROUND OF THE INVENTION
  • Green pellets are usually produced in spherical form from agglomerates, nominally 8-18 mm diameter, and are generally so formed by rolling finely ground iron ore, additives such as limestone, dolomite, anthracite etc together with a binder such as bentonite, hydrated lime or organic binders in a damp state.
  • It is well known that pellets must possess sufficient DCS to withstand pressure exerted in a pellet bed during the drying phase of the pelletization process in which the pellets travel as a bed on a traveling grate, in order to maintain bed permeability. This requirement assumes especial importance in the ‘Straight-Grate’ pelletizing process in which the bed depth is 2.5 times that of the ‘Grated-Kiln’ process.
  • Currently, there is a tendency in pelletizing to lower the use of bentonite by using caustic soda (NaOH) concomitantly or to use carboxymethyl cellulose (CMC) based organic binders in lieu of bentonite in order to reduce the acid gangue (SiO2+Al2O3) content especially in Direct Reduction (DR) grade pellets. It has been observed in both cases that DCS is reduced substantially.
  • Hitherto, no solutions have been found to prevent the decrease in DCS upon using lower dosages of bentonite or using organic binders in lieu of bentonite in pelletizing.
  • Accordingly, there is a need for an improved process for the production of green iron ore pellets having enhanced Dry Compressive Strength.
  • SUMMARY OF THE INVENTION
  • It is therefore a general object of the present invention to provide an improved process for the production of green iron ore pellets having enhanced Dry Compressive Strength (DCS).
  • An advantage of the present invention is that the process for the production of green iron ore pellets increases the DCS of such green pellets whilst on a traveling grate machine after removing the free moisture content.
  • Another advantage of the present invention is that the process for the production of green iron ore pellets enhances DCS levels with an admixture of constituents including bentonite at lower dosage levels than hitherto.
  • A further advantage of the present invention is that the process for the production of green iron ore pellets allows the reduction of acid gangue content in the pellets by virtue of being able to employ lower dosages of bentonite or organic binders in lieu of bentonite.
  • A still further advantage of the present invention is that the process for the production of green iron ore pellets enhances DCS levels by admixture of Direct Reduced Iron or other material containing same with binders before blending and mixing with iron ores and additives.
  • In accordance with a first aspect of the present invention, there is provided a process for increasing the Dry Compressive Strength of green iron ore pellets including the steps of introducing Direct Reduced Iron fines into a pellet mix of inter alia iron ore and binder, forming spherical green pellets from the resultant pellet feed, and introducing said green pellets into a drying stage to remove moisture before the heat-hardening or indurating process to produce product pellets as feedstock for Direct Reduction (DR) or Blast Furnace (BF) processes.
  • In an alternative embodiment of the present invention there is provided a process for increasing the Dry Compressive Strength of green iron ore pellets including the steps of introducing Direct Reduced Iron (DRI) fines or other form of metallic iron-containing material in a solid-state into a pellet mix of inter alia iron ore and binder, forming spherical green pellets from the resultant pellet feed, and introducing said green pellets into a drying stage to remove moisture from the pellets to generate dry pellets before the indurating process.
  • In a further embodiment of the present invention there is provided a process for increasing the Dry Compressive strength of green iron ore pellets including the steps of mixing Direct Reduced Iron in pulverized form with a binder, blending the resultant mixture with a mixture of inter alia iron ores to produce a pellet feed, forming spherical green pellets from the feed, and introducing said green pellets into a drying stage to remove moisture from the pellets to generate dry pellets before the indurating process.
  • The process includes a step of mixing all the ingredients of pellets such as iron ore, additives and the binder adjusting the moisture content of the mix at a level suitable for pelletizing.
  • The binder may be bentonite included in the mixture in dosages of lower levels than conventionally employed.
  • The binder may be an organic binder.
  • The organic binder may be of the type sold under the Trade Mark Peridur® which is a sodium carboxymethyl cellulose-containing binder produced by Akzo Chemicals of the Netherlands.
  • Caustic soda may be added into the pellet mixture.
  • Other additives may include, for example and not by way of limitation, any one or more of the following, namely limestone, dolomite, serpentine, anthracite, petroleum coke, boron compounds commonly employed in the pelletizing industry.
  • Other additives may be included in the pellet feed.
  • The Direct Reduced Iron (DRI) fines inclusion may lie in the range of 2% to 5% by weight.
  • The metallic iron-containing material inclusion may lie in the range of 2% to 5% by weight.
  • The step of introducing DRI or other metallic iron-containing material fines may be by admixture with the other constituents, such as iron ore, binder and additives, to be ground together prior to pelletization. In the alternative, the DRI fines or other metallic iron-containing material fines together with the binder may be pre-mixed prior to admixture with the other constituents, which with lower dosages of for example bentonite ensures good mixing prior to pelletization.
  • The drying stage may be carried out in conventional machines used for such a purpose.
  • Other objects and advantages of the present invention will become apparent from a careful reading of the detailed description provided herein, with appropriate reference to the accompanying examples.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS EXAMPLE 1
  • Spherical green pellets were prepared in a 60 cm diameter laboratory balling disc using 0.5% bentonite for a magnetite ore and two types of hematite ores. DRI or metallic iron-containing material was added in the amounts of 2% and 5% for each test with a reference mixture containing no DRI. The binder used was bentonite. The procedures for pelletizing the feed are well known in the art and are thus not described herein.
  • The green spheres so produced were then dried at 105° C. for one hour. DCS was subsequently determined using the procedure set out in ISO 4700:1996.
  • The test results and the analyses of the mixtures are shown in Tables 1A, 1B and 1C for Test 1A, Test 1B and Test 1C, respectively.
  • TABLE 1A
    Test 1A (Ore 1) with bentonite
    TEST 1 TEST 2 TEST 3
    Blend ratio (%) Blend ratio (%) Blend ratio (%)
    Ore 1 99.5 97.5 94.5
    Bentonite 0.5 0.5 0.5
    DCL-DRF 2.0 5.0
    Moisture (%) 7.31 7.22 7.8
    BLAINE1 (cm2/g) Ore 1: 1959, DCL: 1905, Bentonite: 4686
    GREEN BALL SIZE: 9 to 11 mm
    Average of 12 observations
    DROP NOS
    Avg 3.2 3.2 3.1
    Max 4 4 4
    Min 2 2 2
    GCS2 (Kg/p)
    Avg 1.79 1.42 2
    Max 2.1 1.75 2.5
    Min 1.5 1.08 1.3
    DCS3 (Kg/p)
    Avg 3.96 4.79 6.77
    Max 4.88 5.6 7.78
    Min 2.83 3.67 5.5
    Chemical
    Analysis
    T.Fe4 66.7 67.06 67.16
    M.Fe5 0.0 0.37 1.62
    FeO 22.5 23.14 25.89
    C 0.145 0.32 0.195
    1Specific surface area of iron ore powder before pelletization, measured
    by air permeability methods with a special apparatus called the
    “Blaine” apparatus, in square centimeters per gram;
    2Green Compressive Strength (of green pellets), in kilogram per pellet;
    3Dry Compressive Strength, measured in kilogram per pellet;
    4Total iron (Fe) content in wt %, including in ferric, ferrous and
    metallic states;
    5Metallic Fe content, in wt %.
  • TABLE 1B
    Test 1B (Ore 2) with bentonite
    TEST 1 TEST 2 TEST 3
    Blend ratio (%) Blend ratio (%) Blend ratio (%)
    Ore 2 99.5 97.5 94.5
    Bentonite 0.5 0.5 0.5
    DCL-DRF 2.0 5.0
    Moisture (%) 6.99 6.9 6.92
    BLAINE (cm2/g) Ore 2: 1930, DCL: 1905, Bentonite: 4686
    GREEN BALL SIZE: 9 to 11 mm
    Average of 12 observations
    DROP NOS
    Avg 2.8 3.7 2.8
    Max 3 5 3
    Min 2 3 2
    GCS (Kg/p)
    Avg 1.29 1.28 1.17
    Max 1.54 1.59 1.39
    Min 1.14 0.89 0.94
    DCS (Kg/p)
    Avg 5.34 5.8 6.94
    Max 8.94 6.72 7.94
    Min 3.58 4.48 5.58
    Chemical
    Analysis
    T.Fe 66.86 68.12 68.64
    M.Fe 0.0 1.01 1.97
    FeO 0.14 3.28 6.98
    C 0.05 0.09 0.109
  • TABLE 1C
    Test 1C (Ore 3) with bentonite
    TEST 1 TEST 2 TEST 3
    Blend ratio (%) Blend ratio (%) Blend ratio (%)
    Ore 3 99.5 97.5 94.5
    Bentonite 0.5 0.5 0.5
    DCL-DRF 2.0 5.0
    Moisture (%) 7.1 7.24 7.22
    BLAINE (cm2/g) Ore 3: 2129, DCL: 1905, Bentonite: 4686
    GREEN BALL SIZE: 9 to 11 mm
    Average of 12 observations
    DROP NOS
    Avg 3.3 3.2 3.3
    Max 4 4 4.1
    Min 2 3 3
    GCS (Kg/p)
    Avg 1.22 1.19 1.12
    Max 1.38 1.45 1.35
    Min 0.88 0.83 0.9
    DCS (Kg/p)
    Avg 3.39 4.16 4.53
    Max 4.26 4.53 5.99
    Min 2.73 3.32 2.92
    Chemical
    Analysis
    T.Fe 65.97 67.72 67.83
    M.Fe 0.0 1.45 2.38
    FeO 0.82 4.56 3
    C 0.035 0.069 0.085
  • It will readily be seen that the DCS of the green pellets with DRI or equivalent additive is enhanced in comparison to that of green pellets with no additive of this type.
  • EXAMPLE 2
  • The same procedure as set forth in Example 1 with the same ores was adopted except that instead of bentonite, 0.4 wt % organic binder called Peridur® and 0.02 wt % caustic soda were used.
  • The test results and the analyses are shown infra in Tables 2A, 2B and 2C for Test 2A, Test 2B and Test 2C, respectively.
  • TABLE 2A
    Test 2A (Ore 1) with organic binder
    TEST 1 TEST 2 TEST 3
    Blend ratio (%) Blend ratio (%) Blend ratio (%)
    Ore 1 99.94 97.94 94.94
    Peridur ® 0.04 0.04 0.04
    Caustic soda 0.02 0.02 0.02
    DCL-DRF 2.0 5.0
    Bentonite
    Moisture (%) 6.35 6.49 6.75
    BLAINE (cm2/g) Ore 1: 1934, DCL: 1907
    GREEN BALL SIZE: 9 to 11 mm
    Average of 12 observations
    DROP NOS
    Avg 3 4.6 3.7
    Max 3 5 4
    Min 3 4 3
    GCS (Kg/p)
    Avg 1.19 1.55 1.23
    Max 1.69 2.28 1.49
    Min 0.51 1.26 0.97
    DCS (Kg/p)
    Avg 1.9 4.53 4.89
    Max 2.45 6.22 6.14
    Min 1.41 3.57 3.56
    Chemical
    Analysis
    T.Fe 67.21 67.98 68.75
    M.Fe 0.24 1.16 2.17
    FeO 18.79 20.83 25.87
    C 0.151 0.169 0.179
  • TABLE 2B
    Test 2B (Ore 2) with organic binder
    TEST 1 TEST 2 TEST 3
    Blend ratio (%) Blend ratio (%) Blend ratio (%)
    Ore 2 99.94 97.94 94.94
    Peridur ® 0.04 0.04 0.04
    Caustic soda 0.02 0.02 0.02
    DCL-DRF 2.0 5.0
    Bentonite
    Moisture (%) 6.41 7 6.95
    BLAINE (cm2/g) Ore 2: 1908, DCL: 1907
    GREEN BALL SIZE: 9 to 11 mm
    Average of 12 observations
    DROP NOS
    Avg 3 3.3 2.7
    Max 3 4 3
    Min 3 3 2
    GCS (Kg/p)
    Avg 1.09 1.72 1.46
    Max 1.49 1.92 1.74
    Min 0.97 1.41 1.21
    DCS (Kg/p)
    Avg 3.17 5.89 5.45
    Max 4.22 7.26 6.22
    Min 2.66 4.14 4.57
    Chemical
    Analysis
    T.Fe 68.25 68.94 68.59
    M.Fe 0.16 1.37 1.99
    FeO 0.34 5.65 2.43
    C 0.036 0.047 0.649
  • TABLE 2C
    Test 2C (Ore 3) with organic binder
    TEST 1 TEST 2 TEST 3
    Blend ratio (%) Blend ratio (%) Blend ratio (%)
    Ore 3 99.94 97.94 94.94
    Peridur ® 0.04 0.04 0.04
    Caustic soda 0.02 0.02 0.02
    DCL-DRF 2.0 5.0
    Bentonite
    Moisture (%) 6.7 6.98 6.84
    BLAINE (cm2/g) Ore 3: 1946, DCL: 1907
    GREEN BALL SIZE: 9 to 11 mm
    Average of 12 observations
    DROP NOS
    Avg 3.3 3.2 3.2
    Max 4 4 4
    Min 3 3 3
    GCS (Kg/p)
    Avg 1.73 1.66 1.44
    Max 2.1 2.26 1.72
    Min 1.31 1.23 1.13
    DCS (Kg/p)
    Avg 2.43 3.04 3.00
    Max 3 3.55 3.62
    Min 2.09 2.75 2.31
    Chemical
    Analysis
    T.Fe 66.29 66.43 66.42
    M.Fe 0.17 1.75 2.27
    FeO 0.56 0.92 2.9
    C 0.063 0.049 0.078
  • As can again be seen DCS is enhanced.
  • EXAMPLE 3
  • Similar tests were conducted as those described with reference to Examples 1 and 2 except that mill scale was substituted for DRI fines and organic binder was used.
  • The results are shown in Tables 3A, 3B and 3C for Test 3A, Test 3B and Test 3C, respectively.
  • TABLE 3A
    Test 3A (Ore 1) with mill scale and organic binder
    TEST 1 TEST 2 TEST 3
    Blend ratio (%) Blend ratio (%) Blend ratio (%)
    Ore 1 99.94 97.94 94.94
    Peridur ® 0.04 0.04 0.04
    Caustic soda 0.02 0.02 0.02
    Mill Scale 2 5
    Bentonite
    Moisture (%) 6.35 6.65 6.66
    BLAINE (cm2/g) Ore 1: 1934, Mill Scale: 1941
    GREEN BALL SIZE: 9 to 11 mm
    Average of 12 observations
    DROP NOS
    Avg 3 3.3 3.2
    Max 3 4 4
    Min 3 3 3
    GCS (Kg/p)
    Avg 1.19 0.97 1.2
    Max 1.69 1.06 1.32
    Min 0.51 0.84 0.94
    DCS (Kg/p)
    Avg 1.9 1.59 1.75
    Max 2.45 1.82 2.08
    Min 1.41 1.44 1.07
    Chemical
    Analysis
    T.Fe 67.21 67.99 67.95
    M.Fe 0.24 0.46 0.29
    FeO 18.79 25.55 25.14
    C 0.151 0.141 0.173
  • TABLE 3B
    Test 3B (Ore 2) with mill scale and organic binder
    TEST 1 TEST 2 TEST 3
    Blend ratio (%) Blend ratio (%) Blend ratio (%)
    Ore 2 99.94 97.94 94.94
    Peridur ® 0.04 0.04 0.04
    Caustic soda 0.02 0.02 0.02
    Mill Scale 2 5
    Bentonite
    Moisture (%) 6.41 6.53 6.74
    BLAINE (cm2/g) Ore 2: 1908, Mill Scale: 1941
    GREEN BALL SIZE: 9 to 11 mm
    Average of 12 observations
    DROP NOS
    Avg 3 3.1 3
    Max 3 4 3
    Min 3 3 3
    GCS (Kg/p)
    Avg 1.09 1.01 0.95
    Max 1.49 1.22 1.16
    Min 0.97 0.89 0.71
    DCS (Kg/p)
    Avg 3.17 2.88 2.18
    Max 4.22 3.6 2.45
    Min 2.66 2.2 1.02
    Chemical
    Analysis
    T.Fe 68.25 68.44 68.25
    M.Fe 0.16 0.15 0.69
    FeO 0.34 7.19 5.86
    C 0.036 0.061 0.096
  • TABLE 3C
    Test 3CA (Ore 3) with mill scale and organic binder
    TEST 1 TEST 2 TEST 3
    Blend ratio (%) Blend ratio (%) Blend ratio (%)
    Ore 3 99.94 97.94 94.94
    Peridur ® 0.04 0.04 0.04
    Caustic soda 0.02 0.02 0.02
    Mill Scale 2 5
    Bentonite
    Moisture (%) 6.7 6.75 6.76
    BLAINE (cm2/g) Ore 3: 1946, Mill Scale: 1941
    GREEN BALL SIZE: 9 to 11 mm
    Average of 12 observations
    DROP NOS
    Avg 3.3 3 3
    Max 4 3 3
    Min 3 3 3
    GCS (Kg/p)
    Avg 1.73 0.98 0.87
    Max 2.1 1.14 1.01
    Min 1.31 0.84 0.66
    DCS (Kg/p)
    Avg 2.43 1.82 1.5
    Max 3 2.63 1.83
    Min 2.09 1.02 1.13
    Chemical
    Analysis
    T.Fe 66.29 66.22 66.3
    M.Fe 0.17 0.19 0.24
    FeO 0.56 2.47 4.08
    C 0.063 0.041 0.0492
  • Mill scale includes wustite and magnetite and these constituents do not have an enhancing effect upon DCS.
  • Table 4 below sets out the chemical analysis of the materials used in the Examples.
  • TABLE 4
    Chemical analyses of materials used
    Chemical Analyses of Materials used
    % Ore 1 Ore 2 Ore 3 Mill Scale DRI Fines Bentonite
    FeT 1 67.15 68.44 66.17 71.76 84.60 10.95
    FeO 24.60 0.22 0.71 56.05 15.50 nd
    FeM 2 0.00 0.00 0.00 0.12 56.50 0.00
    SiO2 2.15 1.03 4.75 0.46 1.65 48.63
    Al2O3 0.38 0.28 0.25 2.17 0.96 16.57
    CaO 0.60 0.06 0.03 0.43 0.03 0.83
    MgO 2.10 0.04 0.05 0.22 0.25 2.46
    MnO 0.03 0.11 0.02 0.73 0.14 0.14
    C nd nd nd 0.24 0.9 nd
    P 0.040 0.020 0.010 0.010 0.050 0.120
    S 0.390 0.004 0.003 0.010 0.100 0.100
    LOI3 −1.19 0.45 0.13 −7.28 −21.5 −7.28
    1Total Fe-content;
    2Metallic Fe-content;
    3Loss-on-ignition; loss of weight of iron ore sample upon heating at 1000° C. for 30 minutes,
  • The present invention is of particular import for example when using Direct Reduction and Electric Arc Furnace production routes as the pellets so produced have a high iron content with low acid gangue content.
  • Although the present invention has been described with a certain degree of particularity, it is to be understood that the disclosure has been made by way of example only and that the present invention is not limited to the features of the embodiments described and illustrated herein, but includes all variations and modifications within the scope and spirit of the invention as hereinabove described.

Claims (11)

1. A process for increasing the Dry Compressive Strength of green iron ore pellets including the steps of introducing Direct Reduced Iron fines into a pellet mix of inter alia iron ore and binder, forming spherical green pellets from the resultant pellet feed, and introducing said green pellets into a drying stage to remove moisture from the pellets to generate dry pellets before the indurating process step of pelletizing.
2. A process according to claim 1 wherein the Direct Reduced Iron inclusion lies in the range 2% to 5%.
3. A process for increasing the Dry Compressive Strength of green iron ore pellets including the steps of introducing metallic iron-containing material in a solid-state into a pellet mix of inter alia iron ore and binder, forming spherical green pellets from the resultant pellet feed, and introducing said green pellets into a drying stage to remove moisture from the pellets to generate dry pellets before the indurating process.
4. A process according to claim 3 wherein the metallic iron-containing material inclusion lies in the range 2% to 5%.
5. A process for increasing the Dry Compressive strength of green iron ore pellets including the steps of mixing Direct Reduced Iron in pulverized form with a binder, blending the resultant mixture with a mixture of inter alia iron ores to produce a pellet feed, forming spherical green pellets from the feed, and introducing said green pellets into a drying stage to remove moisture from the pellets to generate dry pellets before the indurating process.
6. A process according to claim 1 further including the step of adjusting the moisture content of the mix at a level suitable for pelletizing by mixing pellets ingredients selected from the group comprising iron ore, additives and the binder.
7. A process according to claim 1 wherein the binder is bentonite.
8. A process according to claim 1 wherein the binder is an organic binder.
9. A process according to claim 8 wherein the organic binder is a sodium carboxymethyl cellulose-containing binder.
10. A process according to claim 8 wherein caustic soda is added to the pellet mixture.
11. A process according to claim 1 wherein additives selected from the group comprising limestone, dolomite, serpentine, anthracite, petroleum coke, and boron compounds are included in the pellet mixture.
US11/907,305 2007-10-11 2007-10-11 Process for enhancing dry compressive strengsth in iron ore pelletizing Abandoned US20090095129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/907,305 US20090095129A1 (en) 2007-10-11 2007-10-11 Process for enhancing dry compressive strengsth in iron ore pelletizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/907,305 US20090095129A1 (en) 2007-10-11 2007-10-11 Process for enhancing dry compressive strengsth in iron ore pelletizing

Publications (1)

Publication Number Publication Date
US20090095129A1 true US20090095129A1 (en) 2009-04-16

Family

ID=40532886

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/907,305 Abandoned US20090095129A1 (en) 2007-10-11 2007-10-11 Process for enhancing dry compressive strengsth in iron ore pelletizing

Country Status (1)

Country Link
US (1) US20090095129A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080135A (en) * 2011-01-29 2011-06-01 沈阳博联特熔融还原科技有限公司 Method for reducing and separating gravel iron from refractory ores, complex ores or iron-containing chemical industry tailings
CN102094095A (en) * 2011-01-29 2011-06-15 沈阳博联特熔融还原科技有限公司 Method for quickly separating and directly reducing iron slag
WO2012034015A1 (en) * 2010-09-10 2012-03-15 Nu-Iron Technology, Llc Processed dri material
CN105018722A (en) * 2015-08-12 2015-11-04 唐竹胜 Method for separating and reducing iron powder from refractory mineral, complex ore and iron-containing waste materials
CN109266840A (en) * 2018-12-06 2019-01-25 福建龙净脱硫脱硝工程有限公司 A kind of pellet and its production method
GB2532689B (en) * 2013-08-19 2020-04-15 Antonio M Gomez Rodolfo A process for producing and reducing an iron ore briquette
CN114959259A (en) * 2022-05-20 2022-08-30 中化地质矿山总局地质研究院 Application of sodium salt as dispersant in preparation method of iron ore pellets by humic acid binder
EP4186985A4 (en) * 2020-09-03 2023-08-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Pig iron production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3682620A (en) * 1969-02-22 1972-08-08 Metallgesellschaft Ag Process for the manufacture of pellets of high compressive strength and abrasion resistance
US4597790A (en) * 1984-05-30 1986-07-01 Nippon Kokan Kabushiki Kaisha Method of producing unbaked agglomerates
US20050223937A1 (en) * 2002-09-18 2005-10-13 Schmitt James J Binder composition and process for agglomerating particulate material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3682620A (en) * 1969-02-22 1972-08-08 Metallgesellschaft Ag Process for the manufacture of pellets of high compressive strength and abrasion resistance
US4597790A (en) * 1984-05-30 1986-07-01 Nippon Kokan Kabushiki Kaisha Method of producing unbaked agglomerates
US20050223937A1 (en) * 2002-09-18 2005-10-13 Schmitt James J Binder composition and process for agglomerating particulate material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012034015A1 (en) * 2010-09-10 2012-03-15 Nu-Iron Technology, Llc Processed dri material
US20130230720A1 (en) * 2010-09-10 2013-09-05 Nu-Iron Technology, Llc Processed dri material
US9238253B2 (en) * 2010-09-10 2016-01-19 Nu-Iron Technology Llc Processed DRI material
CN102080135A (en) * 2011-01-29 2011-06-01 沈阳博联特熔融还原科技有限公司 Method for reducing and separating gravel iron from refractory ores, complex ores or iron-containing chemical industry tailings
CN102094095A (en) * 2011-01-29 2011-06-15 沈阳博联特熔融还原科技有限公司 Method for quickly separating and directly reducing iron slag
GB2532689B (en) * 2013-08-19 2020-04-15 Antonio M Gomez Rodolfo A process for producing and reducing an iron ore briquette
CN105018722A (en) * 2015-08-12 2015-11-04 唐竹胜 Method for separating and reducing iron powder from refractory mineral, complex ore and iron-containing waste materials
CN109266840A (en) * 2018-12-06 2019-01-25 福建龙净脱硫脱硝工程有限公司 A kind of pellet and its production method
EP4186985A4 (en) * 2020-09-03 2023-08-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Pig iron production method
CN114959259A (en) * 2022-05-20 2022-08-30 中化地质矿山总局地质研究院 Application of sodium salt as dispersant in preparation method of iron ore pellets by humic acid binder
CN114959259B (en) * 2022-05-20 2024-04-30 中化地质矿山总局地质研究院 Application of sodium salt as dispersing agent in method for preparing iron ore pellets by humic acid binder

Similar Documents

Publication Publication Date Title
US20090095129A1 (en) Process for enhancing dry compressive strengsth in iron ore pelletizing
JP5464317B2 (en) Manufacturing method of forming raw material for sinter production
US8999032B2 (en) Application of carbon nanotubes on agglomerates of ore fines to increase the mechanical strength thereof
CN108238731B (en) Superfine slag powder manufactured from blast furnace ferronickel slag and preparation system and method thereof
KR20150071388A (en) Method for manufacturing sintered iron ore
CN105861818A (en) High performance composite bentonite for pelletizing
CN101921911A (en) Pellet binder and preparation method thereof
CN114350939A (en) Pellet for producing alkaline fine iron ore by magnetizing roasting and preparation method thereof
KR101502336B1 (en) Sintering Binder and Production Method of Sintered One Pellet Using the Binder and Fine Powdered Magnetite Iron One
CN103343219B (en) Method for producing sintered ore by using quick lime
JP2016108580A (en) Manufacturing method of carbon material interior ore
JP6228149B2 (en) Manufacturing method of carbon material interior ore
EP3348627A1 (en) Coal briquette, method for producing same, and method for producing molten iron
CN106399678A (en) Binder for pelletizing of pellet ores and preparation method of binder
US20190055616A1 (en) Method for producing metal from metal oxide by carbothermic reduction and holed cake used therefor
KR101242697B1 (en) Cold bonded pellet and method for manufacturing cold bonded pellet
CN108285281B (en) Submerged arc furnace slag cement mixed material and preparation system, method and application thereof
CN104975171A (en) Boric sludge pellet binder/iron smelting auxiliary and preparation method of boric sludge pellet binder/iron smelting auxiliary
CN110592372A (en) Method for preparing sintering fuel by using coking environment dedusting ash and using method
EP4028562B1 (en) Method of introducing a metalliferous feed in an ironmaking process
CN110042227A (en) Sinter and preparation method thereof
CN103614552A (en) Method of preparing acidic oxidized pellet binder by weathered ores
JP7207153B2 (en) agglomerates
CN103343218B (en) Method for improving strength and size composition of sinter
KR20140069604A (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
AS Assignment

Owner name: LOUVELE-TREMBLAY CONSULTANTS INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BASDAG, ALI;REEL/FRAME:020187/0734

Effective date: 20070919

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION