JP5464317B2 - Manufacturing method of forming raw material for sinter production - Google Patents

Manufacturing method of forming raw material for sinter production Download PDF

Info

Publication number
JP5464317B2
JP5464317B2 JP2008295938A JP2008295938A JP5464317B2 JP 5464317 B2 JP5464317 B2 JP 5464317B2 JP 2008295938 A JP2008295938 A JP 2008295938A JP 2008295938 A JP2008295938 A JP 2008295938A JP 5464317 B2 JP5464317 B2 JP 5464317B2
Authority
JP
Japan
Prior art keywords
raw material
ore
iron ore
mass
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008295938A
Other languages
Japanese (ja)
Other versions
JP2009144240A (en
Inventor
秀明 佐藤
晃一 主代
隆英 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40667613&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5464317(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008295938A priority Critical patent/JP5464317B2/en
Publication of JP2009144240A publication Critical patent/JP2009144240A/en
Application granted granted Critical
Publication of JP5464317B2 publication Critical patent/JP5464317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • C22B1/205Sintering; Agglomerating in sintering machines with movable grates regulation of the sintering process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、高炉の主原料となる焼結鉱を製造する際に用いられる原料、とくに成形(造粒)された焼結鉱製造用成形原料の製造方法に関する。   The present invention relates to a method for producing a raw material used when producing a sintered ore which is a main raw material of a blast furnace, in particular, a shaped raw material for forming sintered (or granulated) sintered ore.

近年、鉄鉱石の需要は、中国における鉄鋼生産量の増大の影響を受けて、大幅に伸びている。ところで、我が国鉄鋼各社では、鉄鉱石の約60mass%を主にオーストラリアから輸入している。しかし、そのオーストラリアでは、焼結鉱の製造に好適な高品位へマタイト鉱石が次第に枯渇しており、そのため最近では、多量のゲーサイトを含有するマラマンバ鉱石、ピソライト鉱石あるいはリンを多量に含有するへマタイト鉱石などが、輸入の主力になりつつあるのが現状である。   In recent years, the demand for iron ore has increased significantly due to the effects of increased steel production in China. By the way, steel companies in Japan import about 60 mass% of iron ore mainly from Australia. However, in Australia, matite ore is gradually depleted to a high grade suitable for the production of sintered ore, so recently it has become rich in maramamba ore, pisolite ore containing a large amount of goethite. At present, matite ore is becoming the main import.

鉄鉱石のサプライヤーとしては、オーストラリアの他にブラジル、インド等の山元が上げられるが、インドについては、原則としてFe含有量が60mass%以上の鉄鉱石は、国内で使用することを優先し、実質的に輸出が制限されている。そのため、世界全体として見ると、Feが60mass%以上の高品位鉄鉱石は著しく不足する傾向にあるのが実情である。この意味において、現在では、これまでは利用されてこなかった低品位鉄鉱石を有効活用する技術の開発が強く望まれている。   As iron ore suppliers, there are Yamamoto, such as Brazil and India, in addition to Australia, but in principle, iron ore with an Fe content of 60 mass% or more is given priority for domestic use. Exports are restricted. Therefore, when it sees as the whole world, the actual condition is that the high-grade iron ore having Fe of 60 mass% or more tends to be insufficient. In this sense, at present, development of a technique for effectively utilizing low-grade iron ore that has not been used so far is strongly desired.

従来、こうした低品位鉄鉱石を製鉄用原料、とくに焼結鉱の製造用原料として用いる幾つかの技術がある。例えば、特許文献1では、粉鉄鉱石を含む製鉄用原料に副原料の石灰石とは別に、平均粒径が1μm以上15μm未満、比表面積が3000cm/g以上9500cm/g以下の炭酸カルシウム(CaCO)からなるバインダーを、製鉄用原料に対して0.05amss%以上5mass%以下添加して造粒したものを用いることを提案している。 Conventionally, there are several techniques for using such low-grade iron ore as a raw material for iron making, particularly as a raw material for producing sintered ore. For example, Patent Document 1, separately from the steel raw material for the auxiliary materials limestone containing fine iron ore, the average particle size is less than 15μm more than 1 [mu] m, a specific surface area of 3000 cm 2 / g or more 9500cm 2 / g or less of calcium carbonate ( It has been proposed to use a granulated binder made of CaCO 3 ) by adding 0.05 mass% to 5 mass% of the ironmaking raw material.

また、特許文献2は、5μm以下の粒子を50mass%以上含有する炭酸カルシウムや珪石等の無機質材料よりなる微粉鉄鉱石用塊成化剤について開示する中で、この塊成化剤と水硬性物質との混合物によるコールドボンド法による鉄鉱石ペレットの製造法を提案している。   Patent Document 2 discloses an agglomerating agent for finely divided iron ore made of an inorganic material such as calcium carbonate or silica containing particles of 5 μm or less in an amount of 50 mass% or more. We propose a method for producing iron ore pellets by a cold bond method using a mixture of

また、特許文献3は、製鉄用原料をダストと共に造粒処理する工程を含む製鉄用原料の造粒方法を提案している。この造粒方法の特徴は、ダストに対し、重量平均分子量が1000〜5000000の高分子化合物を必須成分とするダスト処理剤を添加して混合した後に、その混合物を製鉄用原料に添加した上で、造粒処理する点の構成にある。   Patent Document 3 proposes a method for granulating a raw material for iron making including a step of granulating the raw material for iron making together with dust. The characteristic of this granulation method is that after adding and mixing a dust treating agent containing a polymer compound having a weight average molecular weight of 1000 to 5000000 as an essential component to dust, the mixture is added to a raw material for iron making. In the configuration of the granulation point.

また、特許文献4は、鉄鉱石等に生石灰を配合し、水を加えて1次造粒を行った後、さらに粘度が5〜100mPa・sの液状バインダーを加えて造粒する方法を開示している。こうして得られた造粒粒子は、焼結機内における加熱乾燥、焼成の過程での崩壊や微粉の放出による通気性低下の問題がなく、焼結鉱の生産性を高める技術である。   Patent Document 4 discloses a method of granulating by adding quick lime to iron ore, etc., adding water and performing primary granulation, and then adding a liquid binder having a viscosity of 5 to 100 mPa · s. ing. The granulated particles obtained in this way are techniques for improving the productivity of sintered ore without the problem of deterioration in air permeability due to disintegration in the course of heat drying and firing in the sintering machine and discharge of fine powder.

そして、特許文献5には、鉄鉱石ならびにカルシウムイオン発生源を含む焼結原料の造粒用バインダー、即ち、ベントナイトと重炭酸塩及び/又は炭酸塩とを含む焼結原料の造粒用バインダーについての開示がある。このバインダーによれば、ベントナイトに重炭酸塩および/または炭酸塩を併用することで、カルシウムイオンによるベントナイトのゲル化を防止すると共に、バインダー中の重炭酸塩及び/又は炭酸塩を調整することにより、このカルシウムイオンとベントナイトとの反応に伴うゲル化による粘性増加発現時間を制御して、良好な造粒効果で擬似粒子化性に優れた造粒粒子を得るという技術である。
特開2005−89825号公報 特開平3−183729号公報 特開2004−76130号公報 特開2007−113086号公報 特開2007−113088号公報
And in patent document 5, about the granulation binder of the sintering raw material containing an iron ore and a calcium ion generation source, ie, the granulation binder of the sintering raw material containing bentonite, bicarbonate, and / or carbonate. There is a disclosure. According to this binder, by using bicarbonate and / or carbonate in combination with bentonite, gelation of bentonite by calcium ions is prevented, and by adjusting bicarbonate and / or carbonate in the binder. This is a technique of controlling the viscosity increase expression time due to gelation associated with the reaction between calcium ions and bentonite, and obtaining granulated particles having excellent pseudo-particle property with a good granulation effect.
Japanese Patent Laid-Open No. 2005-89825 JP-A-3-183729 JP 2004-76130 A Japanese Patent Laid-Open No. 2007-113086 Japanese Patent Laid-Open No. 2007-113088

上述したように、従来、粒径の細かい低品位の鉄鉱石粉を焼結鉱製造用成形原料として用いるための技術はあるものの、これらの技術については、なお次のような解決すべき課題が残されていた。   As described above, there are conventional techniques for using low-grade iron ore powder with a small particle size as a forming raw material for the production of sintered ore. However, these techniques still have the following problems to be solved. It had been.

即ち、特許文献1に記載の方法は、1μm以上15μm未満の炭酸カルシウムを大量に使用するために、炭酸カルシウムを微粉砕する必要があり、コスト高になると共に、粉砕した場所から焼結工場までの輸送および貯鉱が難しく、実用化に困難が伴うという問題がある。   That is, in the method described in Patent Document 1, in order to use a large amount of calcium carbonate of 1 μm or more and less than 15 μm, it is necessary to finely pulverize the calcium carbonate, which increases the cost and from the pulverized place to the sintering factory. There is a problem that it is difficult to transport and store, and it is difficult to put it into practical use.

特許文献2に記載の方法では、無機質材料粉の粒度調整とハンドリングの問題が生じる他、セメント系物質を使用した場合に、焼結鉱の製造にとっては不要なSiOやAl等のスラグ成分が多くなり、焼結鉱のFe分を下げることになると共に、焼結鉱のスラグ含有量が増加するという問題がある。また、セメント系バインダーは、硬化に時間がかかり、養生設備とともに長時間の養生処理が必要となるという問題もある。 In the method described in Patent Document 2, in addition to the problem of particle size adjustment and handling of the inorganic material powder, when a cement-based substance is used, SiO 2 and Al 2 O 3 which are unnecessary for the production of sintered ore are used. There is a problem that the slag component is increased, the Fe content of the sintered ore is lowered, and the slag content of the sintered ore is increased. In addition, the cement-based binder has a problem that it takes time to cure and requires a long-term curing treatment together with a curing facility.

また、特許文献3、4の技術は、高価な有機バインダーを用いる方法であるから、製造コストがかかると共に、有機物の輸送費、貯留、添加の設備も必要となり、製品コストを上げるという問題がある。   Moreover, since the technique of patent document 3 and 4 is a method using an expensive organic binder, while it requires manufacturing cost, the transport cost of an organic substance, storage, and the addition equipment are also needed, and there exists a problem of raising a product cost. .

そして、特許文献5に記載の方法については、SiO、Alを含有するベントナイトを用いるため、スラグ発生量の増加を招くと共に、炭酸塩としてNaやKを用いる場合、焼結鉱の成分に問題が残る。 And, for the method described in Patent Document 5, since the use of bentonite containing SiO 2, Al 2 O 3, with leads to an increase of the slag generation rate, when using Na and K as carbonate, sinter Problems with the ingredients remain.

本発明は、粒径の細かい低品位鉄鉱石の有効利用を主目的とし、併せて微粉鉄鉱石使用時のハンドリングの問題を解決すると同時に、スラグの生成量が少なく、高品位でコストの安い焼結鉱製造用成形原料を有利に製造するための方法を提案する。   The main purpose of the present invention is to effectively use low-grade iron ore with a small particle size, and at the same time solve the handling problems when using fine iron ore, while at the same time reducing the amount of slag produced, high-quality and low-cost sinter. A method for advantageously producing a forming raw material for producing ore is proposed.

本発明は、上記目的の実現に有効な手段として、下記の要旨構成からなる製造方法を提案する。即ち、本発明は、焼結原料粒子に対し、平均粒径が10μm以下の鉄鉱石超微粉を2〜15mass%の範囲内で添加混合して、超微粉被覆焼結原料粒子とし、この原料粒子を成形することを特徴とする焼結鉱製造用成形原料の製造方法である。   The present invention proposes a manufacturing method having the following gist as an effective means for realizing the above object. That is, in the present invention, an iron ore ultrafine powder having an average particle size of 10 μm or less is added to and mixed with the sintered raw material particles within a range of 2 to 15 mass% to obtain ultrafine powder-coated sintered raw material particles. Is a method for producing a forming raw material for producing sintered ore.

また、本発明において、
(a)前記焼結原料粒子は、平均粒径が1.5〜4.5mmの粗粒鉄鉱石と、前記粗粒鉄鉱石よりも小さい平均粒径の範囲内にある細粒鉄鉱石と、5mm以下の返鉱とからなること、
(b)前記焼結原料粒子は、Feを55mass%以上含有し、SiOおよびAlをそれぞれ5.0mass%以下含有するものであること、
(c)前記鉄鉱石超微粉は、Feを60mass%以上含有し、SiOおよびAlをそれぞれ0.5〜5.0mass%の範囲内で含有し、成形時に超微粉の作用による成形助剤として働くものであること、
(d)前記鉄鉱石超微粉は、選鉱残渣として得られる尾鉱を用いること、
(e)前記鉄鉱石超微粉は、南米産ヘマタイト鉱石またはアフリカ産ヘマタイト鉱石であること、
(f)前記南米産ヘマタイト鉱石は、カラジャス鉄鉱石であること、
(g)前記アフリカ産ヘマタイト鉱石は、クンバ鉄鉱石であること、
(h)粗粒鉄鉱石への鉄鉱石超微粉の添加を山元で行うこと、
(i)超微粉被覆焼結原料粒子の成形に当たり、副原料、バインダー、水および分散剤のいずれか1種以上を加えること、
(j)上記副原料は、焼結鉱のスラグ成分調整に用いるものであって、石灰石、ドロマイト、生石灰、珪石、蛇紋岩、Niスラグ、マグネサイトおよび砂鉄の中から選ばれるいずれか1種以上であること、
(k)前記水は、鉄鉱石超微粉の添加量に応じて増量し、成形後粒子の乾燥前水分量で5mass%以上を添加すること、
(l)前記分散剤は、カルボン酸基、スルホン酸基を含む官能基を有する有機化合物からなる界面活性剤を、超微粉被覆焼結原料粒子に対し、0.002〜0.005mass%添加すること、
が時として、より有効な解決手段となる。
In the present invention,
(A) The sintered raw material particles are coarse iron ore having an average particle size of 1.5 to 4.5 mm, fine iron ore in an average particle size smaller than the coarse iron ore, Consisting of a return ore of 5 mm or less,
(B) the sintered material particles is contained Fe least 55 mass%, those containing SiO 2 and Al 2 O 3 less, respectively 5.0 mass%,
(C) The iron ore ultrafine powder contains Fe in an amount of 60 mass% or more, contains SiO 2 and Al 2 O 3 in the range of 0.5 to 5.0 mass%, and is molded by the action of the ultrafine powder during molding. Work as an assistant,
(D) The iron ore ultrafine powder uses tailings obtained as a beneficiation residue,
(E) The iron ore ultrafine powder is South American hematite ore or African hematite ore,
(F) the South American hematite ore is Carajas iron ore,
(G) the African hematite ore is cumba iron ore;
(H) adding iron ore ultrafine powder to coarse iron ore at the base,
(I) In forming the ultrafine powder-coated sintered raw material particles, adding one or more of a secondary raw material, a binder, water and a dispersant;
(J) The auxiliary material is used for adjusting the slag component of the sintered ore, and is one or more selected from limestone, dolomite, quicklime, silica, serpentine, Ni slag, magnesite, and iron sand. Being
(K) The water is increased in accordance with the amount of iron ore ultrafine powder added, and 5% by mass or more is added as the moisture content before drying of the molded particles.
(L) The dispersant is added with 0.002 to 0.005 mass% of a surfactant made of an organic compound having a functional group including a carboxylic acid group and a sulfonic acid group with respect to the ultrafine powder-coated sintered raw material particles. about,
Is sometimes a more effective solution.

上記のように構成される本発明に係る焼結鉱製造用成形原料の製造方法によれば、従来は山元などで廃棄されていた尾鉱などの鉄鉱石超微粉を、鉄資源の1つとして有効に用いると同時に成形助剤、すなわちバインダー利用することができ、このことが安価な焼結鉱の製造に寄与できる。   According to the manufacturing method of the forming raw material for sinter ore production according to the present invention configured as described above, iron ore ultrafine powder such as tailings that have been discarded in the mountains and the like as one of the iron resources. At the same time it is used effectively, a molding aid, that is, a binder can be used, which can contribute to the production of an inexpensive sintered ore.

また、本発明によれば、スラグ成分の増加を招くバインダーの使用量を抑えることができる一方で、成形(造粒処理)も容易に行うことができる。   Moreover, according to this invention, while the usage-amount of the binder which causes the increase in a slag component can be suppressed, shaping | molding (granulation process) can also be performed easily.

また、本発明によれば、従来は処理が困難だった尾鉱のハンドリングが容易になると共に、山元で発生する尾鉱を製鉄所までで容易に運搬することができる。   In addition, according to the present invention, it is possible to easily handle tailings that have been difficult to process in the past, and it is possible to easily transport tailings generated at the base to the ironworks.

さらに、本発明によれば、高品位鉄鉱石の枯渇という製鉄所が抱えている不可避の課題に対して、有効な解決手段を提供できると共に、製品のコスト低下、焼結鉱生産量の増大に寄与する技術を提供することができる。   Furthermore, according to the present invention, it is possible to provide an effective solution to the inevitable problem of the steelworks of high-grade iron ore depletion, as well as to reduce the cost of products and increase the production of sintered ore. Technology that contributes can be provided.

鉄鉱石の山元では、通常、鉱山で採鉱した脈石含有鉄鉱石を破砕し、サイジング処理によってまず塊鉱石を選鉱分離して回収し、次いで、そのアンダーサイズの鉱石粉をさらに湿式のサイジング処理によって焼結用粉鉱石として分離し回収している。一方、この湿式のサイジング処理後のアンダーサイズである微粉についてはシックナーに流し込み、沈殿した微粉については回収して焼結用粉鉄鉱石として利用する。一方、このシックナーから抜き出した残渣、すなわち、シックナーでの沈殿処理によっても捕集できなかった超微粉である鉱石を尾鉱(テーリング:有用な鉱石である精鉱に対するものとしてこれを尾鉱と呼称している)として取り出し、一般的には、いずれシックナー排水中に混在することになるため、鉱山近くの池や沼地などを堆積場として貯鉱するようにしている。この尾鉱は、精鉱に比べて鉄分が若干少なく一方でスラグ成分となるSiO、Alを0.5〜5.0mass%と精鉱に比べて相対的に多く含有している。そして、この尾鉱は、平均粒径(算術平均径を指す、以下同じ)が10μm以下と小さいため、焼結鉱製造用成形原料としては、これまで、不適当な鉱石とされていたものである。従って、貯鉱とは言っても、現実的には未利用のまま放置されている状況に等しいものである。その貯鉱量は鉱山によっては数億トンに及ぶケースもある。 In the iron ore mountain, the gangue-containing iron ore mined in the mine is usually crushed, and the ore is first separated and recovered by sizing treatment, and then the undersized ore powder is further collected by wet sizing treatment. It is separated and recovered as powdered ore for sintering. On the other hand, the fine powder having an undersize after the wet sizing treatment is poured into a thickener, and the precipitated fine powder is recovered and used as a sintered iron ore. On the other hand, the residue extracted from the thickener, that is, the ore that is ultrafine powder that could not be collected by the precipitation process in the thickener, is called tailing (tailing: for the concentrate that is a useful ore). In general, they will eventually be mixed in the thickener drainage, so ponds and swamps near the mine are stored as deposits. The tailings, the SiO 2, Al 2 O 3 as a slag component iron content while slightly less than the concentrate compared to 0.5~5.0Mass% and concentrate contains relatively large . And since this tailing has a small average particle diameter (referred to the arithmetic average diameter, the same applies hereinafter) of 10 μm or less, it has been regarded as an unsuitable ore as a forming raw material for producing sintered ore. is there. Therefore, even though it is a storage, it is practically equivalent to a situation where it is left unused. Depending on the mine, the amount of reserves can amount to several hundred million tons.

このような尾鉱は、例えばブラジル鉱山の場合、選鉱残渣とは言え、Feを多量に含有する点において有用な鉄資源となり得るものであり、これを未利用のままに放置しておくことは資源の有効活用の上からも好ましいことではなく、有効な活用方法を見出すことは価値がある。   For example, in the case of a Brazilian mine, such a tailing can be a useful iron resource in that it contains a large amount of Fe, although it is a beneficiation residue. It is not preferable from the viewpoint of effective utilization of resources, but it is worth finding an effective utilization method.

そこで、発明者らは、鉄鉱石超微粉である上述した選鉱残渣、即ち、尾鉱の有効活用について種々検討した結果、これを鉄資源として利用するだけでなく、超微粉であることに由来する特性、即ち、焼結原料粒子を成形(以下、「造粒」ともいう)するときの、バインダー(成形助剤)としても利用できることを見出し、本発明を開発するに到った。即ち、上記尾鉱を成形工程で用いる成形助剤として活用しようという着想は、以下に述べる技術的背景によるものである。   Therefore, the inventors have made various studies on the above-described beneficiation residue that is iron ore ultrafine powder, that is, effective utilization of tailings, and as a result, not only use this as an iron resource but also because it is ultrafine powder. It has been found that the present invention can be used as a binder (molding aid) when the properties, that is, the sintered raw material particles are molded (hereinafter also referred to as “granulation”). That is, the idea of utilizing the tailings as a molding aid used in the molding process is based on the technical background described below.

一般に、焼結鉱は、粉鉄鉱石および返鉱の他、副原料、バインダー、その他の原料および粉コークスを混合し、水を加えてドラム式造粒機やディスクペレタイザ一などにより成形(造粒)して焼結鉱製造用成形原料とした後、この成形原料を焼結機上に500mm〜700mmの層厚になるよう装入し、焼結機上の原料層表面に着火すると同時に、該原料層の下方から吸引することにより、原料層中の粉コークスを燃焼させ、その燃焼熱により、塊成化した焼結鉱を製造している。   In general, sintered ore is mixed with powdered iron ore and return minerals as well as auxiliary materials, binders, other raw materials and coke breeze, added with water, and molded (made by a drum granulator or disc pelletizer). And then forming the forming raw material for sintering ore production so that the forming raw material has a layer thickness of 500 mm to 700 mm on the sintering machine and igniting the surface of the raw material layer on the sintering machine, By sucking from the lower side of the raw material layer, the powder coke in the raw material layer is combusted, and the agglomerated sintered ore is produced by the combustion heat.

このような焼結鉱の製造工程において用いられる前記焼結鉱製造用成形原料は、これを造粒する場合、従来、焼結原料になる焼結原料粒子の粗粒粒子と細粒粒子とを造粒の際に結合させるためのバインダーとして生石灰(CaO)等を用いるのが普通であった。しかし、この生石灰は、水と反応するとCa(OH)の微細粒子を生成し、このCa(OH)の微細な粒子が、造粒時に粉鉄鉱石の各粒子間間隙に侵入して付着することにより、鉄鉱石粒子どうしを結び付けて強固な成形原料を形成する作用がある。ただし、この生石灰は、吸湿しやすく水と反応する時に発熱するため取り扱いに注意が必要であり、その添加量が、2.0mass%を超えると効果が飽和すると言う問題もある。とりわけ、この生石灰というのは、Fe分を含むものではなく、単にスラグ成分を含有しているにすぎないものであるという点において、鉄資源とはなり得ないものである。 When the forming raw material for sinter ore production used in such a sinter ore production process is granulated, conventionally, coarse particles and fine particles of sintered raw material particles to be sintered raw materials are used. It has been common to use quicklime (CaO) or the like as a binder for bonding during granulation. However, when this quicklime reacts with water, fine particles of Ca (OH) 2 are generated, and these fine particles of Ca (OH) 2 penetrate into the inter-particle gaps of the fine iron ore during the granulation and adhere. By doing so, the iron ore particles are connected to each other to form a strong forming raw material. However, since this quicklime easily absorbs moisture and generates heat when it reacts with water, it must be handled with care, and there is also a problem that the effect is saturated when the amount added exceeds 2.0 mass%. In particular, this quicklime does not contain an Fe component, but merely contains a slag component, and cannot be an iron resource.

これに対し、成形助剤としても用いられる上記尾鉱は、これを焼結鉱製造用原料を成形(造粒)する時のバインダーとして使用した場合であっても、一定量のFe源を提供できる点で、しかも、スラグを増大させることなく使用できる点で有利である。ただし、この尾鉱は、超微粉状であるためハンドリングの問題を解決することが必要になるが、この点に関し、本発明では、できれば山元において、粗粒鉄鉱石およびそれよりも細かい細粒鉄鉱石に予めブレンドすることで、超微粉である尾鉱の単独でのハンドリングを必要最小限に留めることが好ましい。このような処理を加えることで焼結原料の1つとして、長距離輸送にも耐えられるようになる。   In contrast, the tailings used as molding aids provide a certain amount of Fe source even when used as a binder when forming (granulating) raw materials for sinter ore production. This is advantageous in that it can be used without increasing the slag. However, since this tailing is in the form of ultrafine powder, it is necessary to solve the handling problem. In this regard, in the present invention, if possible, the coarse iron ore and finer finer than that are used in the mountains. By pre-blending with iron ore, it is preferable to minimize the handling of the tailings that are ultrafine powders alone. By adding such a treatment, it can withstand long-distance transportation as one of the sintering raw materials.

このような考え方の下で、本発明では、基本的には、焼結原料粒子に対し、平均粒径が10μm以下の鉄鉱石超微粉を2〜15mass%の範囲内で添加混合して、超微粉被覆焼結原料粒子とし、この原料粒子を成形(造粒)することにより、焼結鉱製造用成形原料とする方法である。
なお、焼結原料になる焼結原料粒子として焼結原料用鉄鉱石粉と返鉱を含むことは従来と同じである。すなわち、焼結原料用鉄鉱石粉のほか、焼結鉱として製造され高炉装入原料あるいは焼結機の床敷鉱としても利用できない5mm以下の細かな返鉱を、焼結原料になる焼結原料粒子に対し通常15〜30mass%を含有している。更に、焼結原料になる焼結原料粒子には、平均粒径5mm以下の製鉄所リサイクル原料粉3〜5mass%を含有する場合もある。
また、焼結原料用鉄鉱石粉としては、Feを55mass%以上含有し、SiOおよびAlの含有量がそれぞれ5.0mass%以下で、平均粒径が1.5〜4.5mmの粗粒鉄鉱石と、その粗粒鉄鉱石よりも小さい細粒鉄鉱石との組み合わせからなる。
前記焼結原料になる焼結原料粒子に対し、Feを60mass%以上含有し、SiOおよびAlの含有量がそれぞれ0.5〜5.0mass%の範囲内で含有し、平均粒径が10μm以下の鉄鉱石超微粉、即ち、選鉱過程で発生する前記尾鉱を成形助剤として2〜15mass%添加混合してなる超微粉被覆焼結原料粒子(ブレンド粉)を、成形(造粒)することにより、焼結鉱製造用成形原料とする。以下に、この成形用原料の製造方法について詳しく説明する。
Under such an idea, in the present invention, basically, iron ore ultrafine powder having an average particle size of 10 μm or less is added to and mixed within the range of 2 to 15 mass% with respect to the sintered raw material particles, In this method, fine powder-coated sintered raw material particles are formed, and the raw material particles are formed (granulated) to form a forming raw material for sinter ore production.
In addition, it is the same as before that iron ore powder for sintering raw materials and return ore are included as the sintering raw material particles that become the sintering raw materials. In other words, in addition to iron ore powder for sintering raw materials, fine return ores of 5 mm or less that are manufactured as sintered ores and cannot be used as blast furnace charging raw materials or flooring ore for sintering machines are used as sintering raw materials. It usually contains 15-30 mass% with respect to the particles. Furthermore, the sintered raw material particles used as the sintered raw material may contain 3 to 5 mass% of iron mill recycled raw material powder having an average particle size of 5 mm or less.
As the sintering raw material iron ore fines, and containing Fe least 55 mass%, the content of SiO 2 and Al 2 O 3 is not more than 5.0 mass%, respectively, the average particle size is 1.5~4.5mm It consists of a combination of coarse iron ore and fine iron ore smaller than the coarse iron ore.
With respect to the sintering raw material particles to be the sintering raw material, Fe is contained in an amount of 60 mass% or more, and the content of SiO 2 and Al 2 O 3 is within the range of 0.5 to 5.0 mass%, respectively, Iron ore ultrafine powder having a diameter of 10 μm or less, that is, ultrafine powder-coated sintered raw material particles (blend powder) formed by adding 2 to 15 mass% of the tailing generated during the beneficiation process as a molding aid, To obtain a forming raw material for the production of sintered ore. Below, the manufacturing method of this raw material for shaping | molding is demonstrated in detail.

上記尾鉱のうち、本発明において注目している尾鉱としては、例えば、南米産ヘマタイト鉱石やアフリカ産ヘマタイト鉱石などの尾鉱が好適に用いられる。例えば、南米産ヘマタイト鉱石を代表するブラジルカラジャス鉄鉱石の尾鉱は、このカラジャス鉄鉱石の精鉱に比べて品位(Fe分)は若干低いものの、Fe分は60mass%を超え、近年、急速に品位の劣化が進んでいるオーストラリア産鉄鉱石などと比べると、決して悪いとは言えないレベルにある。また、アフリカ産ヘマタイト鉄鉱石、例えば、クンバ鉄鉱石の尾鉱は、Fe分が54mass%であるが、浮遊選鉱、比重選鉱等の処理により、品位を比較的簡単に上げることは可能である。ただし、尾鉱は、平均粒径が10μm以下という超微細な鉄鉱石の微粉であることから、本質的に水分を吸着しやすく凝集化しやすい性質があり、付着性が高いために長距離のハンドリングが難しいことと、焼結鉱製造用成形原料としては粒度が細かすぎるため、これを未処理のままで使用したのでは、焼結鉱の生産性を著しく悪化させるという問題があった。   Among the above tailings, tailings such as South American hematite ores and African hematite ores are preferably used as the tailings of interest in the present invention. For example, the tailings of Brazilian Carajas iron ore, which represents South American hematite ore, have slightly lower grade (Fe content) than the concentrate of this Carajas iron ore, but the Fe content has exceeded 60 mass% and has been rapidly increasing in recent years. Compared to Australian iron ore, etc., whose quality has deteriorated, it is at a level that is not bad. Moreover, although the hematite iron ore from Africa, for example, the tail ore of cumba iron ore, has an Fe content of 54 mass%, it is possible to improve the quality relatively easily by processing such as flotation or specific gravity. However, tailings are ultrafine iron ore fine powders with an average particle size of 10 μm or less, so they inherently have the property of easily adsorbing moisture and easily agglomerating, and because of their high adhesion, they are handled over long distances. However, since the particle size is too fine as a forming raw material for sinter ore production, there is a problem in that the productivity of the sinter ore is remarkably deteriorated if it is used untreated.

そこで、発明者らは、この尾鉱について、本発明の製造方法に適用するための条件を探すために、それの基礎物性や造粒性について調査した。   Therefore, the inventors investigated the basic physical properties and granulation properties of the tailings in order to search for conditions for application to the production method of the present invention.

表1は、ブラジルI鉄鉱石、ブラジルカラジャス鉄鉱石(焼結原料、尾鉱)およびオーストラリア鉄鉱石(A〜C)の化学成分を、また、アフリカ産ヘマタイト鉱石としてアフリカクンバ鉄鉱石(精鉱、尾鉱)の化学成分を示すものである。参考のためにベントナイトの化学成分を併記した。また、図1(a)は、これらの鉄鉱石の粒度分布を比較して示すものである、同図(b)はブラジルのカラジャス鉄鉱石(尾鉱)の微粉部位の粒度分布を示すものである。表1から明らかなように、焼結原料として用いられるブラジル鉄鉱石は、オーストラリア鉄鉱石に比べると、高品位で緻密な鉱石であることがわかる。このことは、図2(a)〜(c)に示す電子顕微鏡写真(SEM)におけるオーストラリア鉄鉱石(c)との比較によっても明らかなように、ブラジル鉄鉱石(a)、(b)の場合は、粒子表面性状が平滑で、造粒時に水分を保持し難い性状であることがわかる。   Table 1 shows the chemical composition of Brazilian iron ore, Brazilian calajas iron ore (sintered raw material, tailings) and Australian iron ore (AC), and African hematite ore. It shows the chemical composition of tailings. For reference, the chemical components of bentonite are also shown. Fig. 1 (a) shows a comparison of the particle size distribution of these iron ores, and Fig. 1 (b) shows the particle size distribution of the fine powder portion of the Brazilian Carajas iron ore (tail ore). is there. As is clear from Table 1, it can be seen that the Brazilian iron ore used as the sintering raw material is a high-quality and dense ore compared to the Australian iron ore. This is the case with Brazilian iron ores (a) and (b), as is apparent from comparison with Australian iron ore (c) in the electron micrographs (SEM) shown in FIGS. It can be seen that the particle surface properties are smooth and it is difficult to retain moisture during granulation.

Figure 0005464317
Figure 0005464317

一方、本発明において成形助剤として機能するブラジルカラジャス鉄鉱石の尾鉱は、発明者らの調査では、図1の粒度分布および図3の電子顕微鏡写真からもわかるように、粒度が非常に小さく(大きく見えるものは凝集し凝集粒子となったもの)、表面に凹凸の多い超微粒子サイズの鉄鉱石超微粉であることがわかる。このような表面性状を有する超微粒子サイズの鉄鉱石は、焼結原料すなわち粗粒・細粒鉄鉱石を造粒して擬似粒子化する際に、水に分散された状態で超微粒子サイズの尾鉱3は、図4に示すように、粗粒鉄鉱石1と細粒鉄鉱石2の表面に付着し、微粒鉄鉱石1と細粒鉄鉱石2との間に侵入し、あるいはさらにこれらを被覆するように付着して全体の充填率を上げるように働き、かつ造粒時の水分がなくなった後でも充填率の高い擬似粒子となり、原料粒子間に一定の付着強度を付与するバインダー(成形助剤)としての役割を担うものと考えられる。また、使用される返鉱も造粒して擬似粒子化する場合、粗粒部分は粗粒鉄鉱石1に相当する核粒子となり、細粒部分は細粒鉄鉱石2に相当する微粒子となり、核粒子部分と細粒子部分との間に尾鉱3は侵入し、あるいはさらにこれらを被覆するように付着して全体の充填率を上げるように働く。
なお、尾鉱として用いる10μm以下の鉄鉱石超微粉の平均粒径は、図1(b)に示したように湿式レーザー法により測定したものである。
On the other hand, the tailings of Brazilian Calajas iron ore that function as a molding aid in the present invention have a very small particle size, as can be seen from the particle size distribution in FIG. 1 and the electron micrograph in FIG. It can be seen that the iron ore ultrafine powder of ultrafine particle size with many irregularities on the surface (the one that looks large is agglomerated into aggregated particles). The ultrafine particle size iron ore having such a surface property is a fine particle size tailored in a state of being dispersed in water when the raw material for sintering, that is, coarse or fine iron ore, is granulated into pseudo particles. As shown in FIG. 4, ore 3 adheres to the surfaces of coarse iron ore 1 and fine iron ore 2 and enters between fine iron ore 1 and fine iron ore 2 or further covers them. Binder that works to increase the overall filling rate and becomes a pseudo particle with a high filling rate even after the water content during granulation is lost, and gives a certain adhesion strength between the raw material particles (molding aid) Agent). In addition, when the returned ore used is granulated to be pseudo-particles, the coarse portion becomes the core particles corresponding to the coarse iron ore 1, the fine portion becomes the fine particles corresponding to the fine iron ore 2, and the core The tailings 3 penetrate between the particle portions and the fine particle portions, or further adhere to cover them so as to increase the overall filling rate.
In addition, the average particle diameter of the iron ore ultrafine powder of 10 μm or less used as tailings is measured by a wet laser method as shown in FIG.

ところで、従来、バインダーとして用いられてきた生石灰やベントナイト等は、スラグ形成成分を多く含むことから使用量に制約がある上、コストや供給の点でも課題がある。さらには輸送や貯鉱の面でも問題があった。これに対し、同じような作用をもつ前記尾鉱の場合、供給できる量に制限が少なく、最大の特徴はバインダー作用と同時に鉄源ともなり、とくにFeを60mass%以上含有している点で、従来は見捨てられていたことを考えると、資源の有効活用につながるだけでなく、高品位鉄鉱石の使用量の節約にもつながるというメリットがある。なお、前記尾鉱がFe分60mass%未満の時は、本発明においては、浮遊選鉱法、比重選鉱法等により、Feを60mass%以上にしたものを使用するようにする。その理由は、焼結用原料として用いられる焼結用原料粒子は55〜69maas%のFeを含有しており、焼結用原料粒子より低品位尾鉱を使用すると、焼結用原料鉄鉱石自体の品位低下につながるためである。そのために、焼結用原料鉄鉱石のFe分55maas%を超える含有量が必要であり、本発明においては、尾鉱のFeを60maas%以上とすることで、成形(造粒)された擬似粒子の強度向上を達成するようにする。なお、尾鉱も焼結用原料鉄鉱石から発生しているため、69maas%までのFeを含有している部分が存在する。   By the way, quick lime, bentonite, and the like that have been used as binders in the past include a large amount of slag-forming components, so that the amount of use is limited and there are also problems in terms of cost and supply. There were also problems with transportation and storage. On the other hand, in the case of the tailings having the same action, there are few restrictions on the amount that can be supplied, and the greatest feature is that it also serves as an iron source at the same time as the binder action, particularly in that it contains 60 mass% or more of Fe, Considering what has been abandoned in the past, it has the advantage of not only leading to effective use of resources, but also saving the use of high-grade iron ore. When the tailings have an Fe content of less than 60 mass%, in the present invention, Fe with 60 mass% or more is used by a flotation method, a specific gravity method, or the like. The reason is that the raw material particles for sintering used as the raw material for sintering contain 55 to 69 maas% Fe, and if the lower grade tailings are used than the raw material particles for sintering, the raw iron ore for sintering itself This leads to a decline in quality. Therefore, the content of the raw iron ore for sintering that exceeds the Fe content of 55 maas% is required. In the present invention, the tailed Fe is formed (granulated) by making the Fe of 60 maas% or more. To achieve improved strength. In addition, since tailings are also generated from the raw iron ore for sintering, there is a portion containing Fe up to 69 maas%.

上記尾鉱は、平均粒径が10μm以下という超微粉であることから、本発明においては、できれば山元において、焼結原料(粗粒・細粒鉄鉱石)と予め混合し、ブレンド粉にしたものを用いるようにする。このような形態にすることで、例えば、長距離の輸送も容易になり、我が国のような遠隔地においても経済的に使用することが可能になる。   Since the above tailings are super fine powders with an average particle size of 10 μm or less, in the present invention, if possible, at the base, premixed with sintered raw materials (coarse / fine grain iron ores) to make blended powders To use. By adopting such a configuration, for example, long-distance transportation is facilitated, and it can be used economically even in remote places such as Japan.

ただし、この尾鉱は、上述したように、選鉱時のシックナー残渣として回収された超微粉(≦10μm)の鉄鉱石であるから粒径が細かく、これを15mass%(全焼結原料の内数)を超えて使用した場合、その過剰分は、擬似粒子からなる焼結原料粒子表面のバインダー作用として働かず、自らが単独の微粒子(擬集粒子)を形造ってしまう。こうした尾鉱の擬集粒子の割合が多くなりすぎると、焼結機パレット上に装入し原料層(ベッド)を形成したときに、容易に割れて通気性を阻害する原因となる。従って、本発明において、この尾鉱の焼結原料粒子(擬似粒子)への添加量は、2mass%以上15mass%以下(内数)とすることがよく、この尾鉱の輸送のことまでを考えると、5〜10mass%程度の添加がより好ましいと言える。このような尾鉱は、嵩比重が生石灰の2〜3倍もあり、通常、焼結工程では造粒バインダーとして生石灰が1mass%以上使用されることから、嵩比重の大きな尾鉱では少なくとも2mass%以上の添加は必要である。   However, as described above, this tailing is a fine ore (≦ 10 μm) iron ore recovered as a thickener residue at the time of beneficiation, so the particle size is fine, and this is 15 mass% (the number of all sintered raw materials) When used in excess of, the excess does not act as a binder action on the surface of the sintered raw material particles made of pseudo particles, and forms itself fine particles (pseudo-aggregated particles). If the ratio of the tailing pseudo-collected particles is too large, when the raw material layer (bed) is formed on the sintering machine pallet to form a raw material layer (bed), it easily breaks and impairs air permeability. Therefore, in the present invention, the amount of the tailings added to the sintering raw material particles (pseudoparticles) is preferably 2 mass% or more and 15 mass% or less (inner number), and the transportation of the tailings is considered. It can be said that addition of about 5 to 10 mass% is more preferable. Such tailings have a bulk specific gravity of 2 to 3 times that of quick lime, and since usually 1% by weight or more of quick lime is used as a granulating binder in the sintering process, at least 2% by weight for tailings with a large bulk specific gravity. The above addition is necessary.

なお、尾鉱を含んで擬似粒子化した超微粉被覆焼結原料粒子は、これのハンドリングを繰り返すと、その過程で超微細な尾鉱自体が凝集して擬集粒子化し、バインダー作用を利用できなくなるおそれがある。そのため、本発明では、成形(造粒)時に、調湿用の水と共に、粒子の分散を促進する作用のあるカルボン酸基、スルホン酸基を含む官能基を有する有機化合物からなる界面活性剤、例えば、ナフタレンスルホン酸ナトイウムやステアリン酸ナトリウム、アルキル硫酸カリウムなどを超微粉被覆焼結原料粒子に対して0.002〜0.005mass%/鉱石比程度、添加して併用することで、凝集した擬似粒子を一旦分散させることで、成形助剤としての効果をより十分に引き出せるようにすることも有効である。   In addition, if the ultrafine powder coated sintered raw material particles containing tailings are pseudo-particles are handled repeatedly, the ultrafine tailings themselves agglomerate into pseudo-aggregated particles in the process, and the binder action can be used. There is a risk of disappearing. Therefore, in the present invention, at the time of molding (granulation), a surfactant composed of an organic compound having a functional group containing a carboxylic acid group and a sulfonic acid group, which has an action of promoting particle dispersion together with water for conditioning. For example, by adding and using together naphthalene sulfonate sodium, sodium stearate, potassium alkyl sulfate, etc., in an amount of 0.002 to 0.005 mass% / ore ratio with respect to the ultrafine powder-coated sintered raw material particles, It is also effective to extract the effect as a molding aid more fully by dispersing the particles once.

また、山元で処理されたブレンド粉中の尾鉱は、例示のブラジル鉱石の外、南アフリカ産クンバ鉱石の尾鉱や他の鉱石に添加した場合にも有効であり、バインダーとの併用もまた有効である。   In addition, the tailings in the blended powder treated at the foot of the mountain are effective when added to the South African cumba ore tailings and other ores in addition to the Brazilian ore shown as examples, and combined use with a binder is also effective. It is.

ところで、本発明において、上記尾鉱を添加する焼結原料粒子とは、図4に示すように、該粒子となる平均粒径が1.5以上、好ましくは1.5〜4.5mmの粗粒鉄鉱石1の表面に、前記粗粒鉄鉱石1よりも小さい範囲内の細粒鉄鉱石2が付着して被覆された状態にある、平均粒径が2〜10mm程度の擬似粒子である。   By the way, in the present invention, the sintering raw material particles to which the tailings are added as shown in FIG. 4 are coarse particles having an average particle diameter of 1.5 or more, preferably 1.5 to 4.5 mm. It is a pseudo particle having an average particle size of about 2 to 10 mm in a state where fine iron ore 2 within a range smaller than that of the coarse iron ore 1 is attached to and coated on the surface of the granular iron ore 1.

本発明に係る焼結鉱製造用成形原料とは、成形過程を経たときに、擬似粒子化した前記焼結原料粒子の表面、とくに粗粒鉄鉱石1と細粒鉄鉱石2とで構成される間隙中に、水に分散された状態で前記尾鉱3が入り込み、その間隙を埋めると同時に表面を覆うように付着した状態の擬似粒子になる。その尾鉱は、成形時において粗粒鉄鉱石1と細粒鉄鉱石2との粒子間の空隙をより小さく、より分散させながら、それ自身の大きな比表面積に基く毛細管力によるバインダー作用、即ち成形助剤としての機能を発揮する。本発明においては、前記尾鉱3が粗粒鉄鉱石1と細粒鉄鉱石2の間隙を埋めた状態の擬似粒子となる。この場合、該尾鉱は、採鉱後の選鉱残渣として除去されたものを使用することから、かかる擬似粒子は、破砕前の採鉱時の塊鉄鉱石により近づいたものとなる。   The forming raw material for producing sintered ore according to the present invention is composed of the surface of the sintered raw material particles that are pseudo-particles, especially coarse iron ore 1 and fine iron ore 2 after the forming process. The tailings 3 enter the gaps in a state of being dispersed in water, and become pseudo particles that are attached so as to fill the gaps and simultaneously cover the surface. The tailing has a binder action by capillary force based on its own large specific surface area, ie, molding, while the voids between the grains of coarse iron ore 1 and fine iron ore 2 are smaller and more dispersed during molding. It functions as an auxiliary agent. In the present invention, the tailings 3 become pseudo particles in a state in which the gap between the coarse iron ore 1 and the fine iron ore 2 is filled. In this case, since this tailing uses what was removed as a beneficiation residue after mining, such pseudo particles become closer to the block iron ore at the time of mining before crushing.

従って、尾鉱を使用することは、この尾鉱が鉄資源となると同様に、バインダー作用をも発揮するので、本発明の場合、成形に当たっても、一般的な生石灰や石灰石の如き結合剤の使用が不必要になる。もしろん、これらの一般的な結合剤との併用も有効である。   Therefore, the use of tailings also exhibits a binder action as this tailings become iron resources, so in the case of the present invention, the use of binders such as general quick lime and limestone is also used in molding. Is unnecessary. Of course, combinations with these common binders are also effective.

なお、前記尾鉱は、バインダー(結合剤)ないし成形助剤としての作用を担うが、そのためはまた、水分含有量があまりに少ないと、これらの作用効果が減殺される。従って、水分を好ましくは5mass%以上、より好ましくは6mass%以上含有するものが好適である。これは、尾鉱を十分に水中に分散させ、核となる粗粒子の周りに付着する細粒粒子間の間隙にうまく充填されながら移動させる必要があるためであり、成形時に必要な水分である。もし、これが不足する場合には、成形段階において、その配合量に応じて増加することが好ましい。   The tailings serve as binders (binders) or molding aids. For that reason, if the water content is too low, these effects are diminished. Accordingly, it is preferable to contain water in an amount of preferably 5 mass% or more, more preferably 6 mass% or more. This is because it is necessary to disperse the tailings in water sufficiently and move it while being well packed in the gaps between the fine particles adhering around the core coarse particles, which is the moisture required during molding . If this is insufficient, it is preferably increased in accordance with the blending amount in the molding stage.

実施例1
平均粒径(算術平均径、以下同じ)が2.43mmの焼結原料粒子(焼結用粗粒鉄鉱石)としてブラジルのカラジャス鉄鉱石(L)(以下、「C鉄鉱石(L)」と略記する)と、同じく平均粒径が1mm以下の細粒鉄鉱石(以下、C鉄鉱石(S)と略記する)に対し、そのC鉄鉱石の尾鉱を、内数で0mass%(試験No.1)、2mass%(試験No.2)、4mass%(試験No.3)、5mass%(試験No.4)、8mass%(試験No.5)、10mass%(試験No.6)、12mass%(試験No.7)、15mass%(試験No.8)、18mass%(試験No.9)添加含有させてなる超微粉被覆焼結原料粒子(ブレンド鉄鉱石粉)、およびさらに生石灰を2.0mass%添加したブレンド鉄鉱石(試験No.10)を、それぞれ2.5kg用いて造粒試験を実施した。この造粒試験は、径400mmのディスクペレタイザ−を用いて混合、造粒したものである。また、比較のために、上記C鉄鉱石に、従来、造粒用バインダーとして用いられてきた生石灰を2.0mass%添加して同様の造粒試験を実施した。造粒後の試料を1.0kg採取し、縮分により2分割し、その一方は、直ちに粒度分析を行って湿潤状態の粒度を測定した。もう一方は、110℃で12時間乾燥し、その後、大気中で冷却し、乾燥状態の粒度分布を測定した。
Example 1
Brazilian Carajas iron ore (L) (hereinafter referred to as “C iron ore (L)”) as sintered raw material particles (coarse iron ore for sintering) having an average particle diameter (arithmetic average diameter, the same shall apply hereinafter) is 2.43 mm. Abbreviation) and fine iron ore with an average particle diameter of 1 mm or less (hereinafter abbreviated as C iron ore (S)), the tail of the C iron ore is 0 mass% (test No.) .1), 2 mass% (Test No. 2), 4 mass% (Test No. 3), 5 mass% (Test No. 4), 8 mass% (Test No. 5), 10 mass% (Test No. 6), 12 mass % (Test No. 7), 15 mass% (Test No. 8), 18 mass% (Test No. 9) added and added to ultrafine powder-coated sintered raw material particles (blended iron ore powder), and further 2.0 mass of quicklime % Blended iron ore (trial A granulation test was conducted using 2.5 kg of Test No. 10). This granulation test is performed by mixing and granulating using a disk pelletizer having a diameter of 400 mm. For comparison, a similar granulation test was performed by adding 2.0 mass% of quick lime conventionally used as a granulating binder to the C iron ore. A sample of 1.0 kg after granulation was collected and divided into two parts by reduction, and one of them was immediately subjected to particle size analysis to measure the wet particle size. The other was dried at 110 ° C. for 12 hours, then cooled in the air, and the particle size distribution in the dry state was measured.

試験No.1〜No.10についての測定結果を、表2ならびに図5(a)、(b)に、湿潤状態、乾燥状態の平均粒径で示した。この図5より、尾鉱を造粒用の成形助剤として2〜15mass%(試験No.2〜No.8)使用することにより、湿潤状態擬似粒子の平均粒径(算術平均径)が大きくなることが分った。また、乾燥後の粒子径も、この成形助剤を添加しなかった場合に比べ、この成形助剤を添加した場合、とくに、尾鉱が5mass%〜10mass%の範囲では大きく、原料層内で乾燥されたときにも、崩壊しにくく通気性を良好に保てることがわかった。また、尾鉱の添加量が15mass%を超えると、湿潤状態では効果があっても、乾燥した場合に崩壊し、尾鉱の微粉が増えるため、平均粒径は、小さくなってしまうこともわかった。   Test No. 1-No. The measurement results for No. 10 are shown in Table 2 and FIGS. 5A and 5B in terms of average particle diameters in the wet state and the dry state. From FIG. 5, the average particle diameter (arithmetic average diameter) of the wet state pseudo particles is increased by using 2-15 mass% (test No. 2 to No. 8) of tailings as a forming aid for granulation. I found out that Also, the particle size after drying is larger in the range of 5 mass% to 10 mass% when the molding aid is added than when the molding aid is not added. It was found that even when dried, it is difficult to collapse and the air permeability can be kept good. It is also found that if the amount of tailing added exceeds 15 mass%, even if it is effective in a wet state, it will disintegrate when dried and the amount of tailing fines will increase, so the average particle size will become smaller. It was.

Figure 0005464317
Figure 0005464317

実施例2
造粒時の水分の影響を調べるため、C鉄鉱石およびC鉄鉱石+C鉄鉱石の尾鉱10.0mass%を試料として、造粒時の水分を5.0〜10.0mass%に変化させた造粒試験を、上記造粒試験と同様に実施し平均粒径−0.5mmの粒度を調べた。その結果を図6(湿潤粒子)、図7(乾燥粒子)に示した。
Example 2
In order to investigate the influence of moisture at the time of granulation, using C iron ore and C iron ore + C iron ore tailings of 10.0 mass%, the moisture at the time of granulation was changed to 5.0 to 10.0 mass%. The granulation test was carried out in the same manner as the above granulation test, and the average particle size of -0.5 mm was examined. The results are shown in FIG. 6 (wet particles) and FIG. 7 (dry particles).

これらの図に示す結果より、湿潤状態では、尾鉱を混合した超微粉を被覆したブレンド鉄鉱石の粒径は、C鉄鉱石単味と比較して大差ないが、乾燥後の粒径では、造粒水分6mass%以上の添加で顕著な効果を示した。即ち、平均粒径の増大が認められると共に、−0.5mm以下の微粒子の割合が大きく減少した。ただし、通常のブラジル鉱石の造粒水分である5〜5.5mass%では効果が少ないことがわかった。このことから、この原料の造粒水分としては、5mass%では少ないので、尾鉱を増やす場合、造粒水分の量も増やす必要があることがわかった。従って、この場合、造粒水分は5.5mass%超とし、尾鉱の増加に応じてさらに増加させることが好ましい。それは、鉄鉱石超微粉の充填は水を介在することにより円滑に果たされるもので、好ましい造粒水分は6mass%以上とする。   From the results shown in these figures, in the wet state, the particle size of the blended iron ore coated with the ultrafine powder mixed with the tailing is not much different from that of the C iron ore, but with the particle size after drying, A remarkable effect was obtained by adding granulated moisture of 6 mass% or more. That is, an increase in the average particle diameter was recognized, and the proportion of fine particles of −0.5 mm or less was greatly reduced. However, it has been found that the effect is small at 5 to 5.5 mass% which is the granulated moisture of normal Brazilian ore. From this, it was found that the granulation moisture of this raw material is small at 5 mass%, so that it is necessary to increase the amount of granulation moisture when increasing the tailings. Therefore, in this case, it is preferable that the granulated water is more than 5.5 mass% and is further increased according to the increase in tailings. That is, the filling of the iron ore ultrafine powder is smoothly accomplished by interposing water, and the preferable granulated moisture is 6 mass% or more.

実施例3
(試験A)C鉄鉱石(30mass%)と他の通常の焼結用粗粒鉄鉱石(30.3mass%)に、副原料である石灰石(8.2mass%)、ドロマイト(7.3mass%)、硅石(2.2mass%)、生石灰(2.0mass%)、焼結返鉱(20.0mass%)および粉コークス(4.35mass%外数)を加え、水分を造粒後粒子の水分量を通常ブラジル鉄鉱石の5.0mass%と、ブラジル鉄鉱石と豪州鉄鉱石を主体とし、インドやアフリカ産鉄鉱石をブレンドした焼結用鉄鉱石に通常使用する7.0mass%の中間値である6.0mass%になるように調整して、径1.0mのドラムミキサーで5分間造粒した後、径300mmの鍋試験装置に層厚が600mmになるよう装入して焼成試験を行った。
(試験B)上記と同じ量のC鉄鉱石およびそのC鉄鉱石の尾鉱10mass%を加えたブレンド鉱石(30mass%)と他の通常の焼結用粗粒鉄鉱石(30.5mass%)に、副原料である石灰石(8.2mass%)、ドロマイト(7.3mass%)、硅石(2.0mass%)、生石灰(2.0mass%)、焼結返鉱(20.0mass%)および粉コークス(4.35mass%外数)を加え、水分を造粒後粒子の水分量が7.5mass%になるように調整して、径1.0mのドラムミキサーで5分間造粒子した後、径300mmの鍋試験装置に層厚が600mmになるよう装入して焼成試験を行った。
(試験C)上記Bと同じ配合と水分量で、界面活性剤としてナフタレンスルホン酸ナトリウムを、造粒工程において外数で0.002mass%加え、造粒した粒子の焼成実験も行った。
(試験D)C鉄鉱石(25mass%)と他の通常の焼結用粗粒鉄鉱石(36.0mass%)に、副原料である石灰石(8.2mass%)、ドロマイト(7.3mass%)、硅石(1.5mass%)、生石灰(2.0mass%)、焼結返鉱(20.0mass%)および粉コークス(4.35mass%外数)を配合し、水分は、6.0mass%で造粒したのち、上記鍋試験装置により、焼成試験を行った。
(試験E)C鉄鉱石およびC鉄鉱石の尾鉱10mass%からなるブレンド鉱石(25mass%)と他の通常の焼結用粗粒鉄鉱石(36.3mass%)に、副原料である石灰石(8.2mass%)、ドロマイト(7.3mass%)、硅石(1.2mass%)、生石灰(2.0mass%)、焼結返鉱(20.0mass%)および粉コークス(4.35mass%外数)を配合し、水分を6.0mass%で調整することなく、造粒したのち、上記鍋試験装置により、焼成試験を実施した。
Example 3
(Test A) C iron ore (30 mass%) and other ordinary coarse iron ore for sintering (30.3 mass%), limestone (8.2 mass%) and dolomite (7.3 mass%) as auxiliary materials , Meteorite (2.2 mass%), quicklime (2.0 mass%), sintered ore (20.0 mass%) and fine coke (outside 4.35 mass%) are added, and the moisture content of the particles after granulation This is an intermediate value between 5.0 mass% of Brazilian iron ore and 7.0 mass%, which is usually used for sintered iron ore mainly composed of Brazilian iron ore and Australian iron ore and blended with Indian or African iron ore. After adjusting to 6.0 mass% and granulating with a drum mixer having a diameter of 1.0 m for 5 minutes, a baking test was performed by charging the layer thickness to 600 mm in a 300 mm diameter pot test apparatus. .
(Test B) To the same amount of C iron ore and blended ore (30 mass%) added with 10 mass% of the tailings of the C iron ore and other ordinary coarse iron ore for sintering (30.5 mass%) , Limestone (8.2 mass%), Dolomite (7.3 mass%), Meteorite (2.0 mass%), Quicklime (2.0 mass%), Sintered ore (20.0 mass%) and coke breeze (Outside 4.35 mass%) was added, the moisture was adjusted so that the moisture content of the particles after granulation was 7.5 mass%, granulated for 5 minutes with a drum mixer having a diameter of 1.0 m, and then the diameter was 300 mm. A baking test was conducted by charging the ladle test apparatus with a layer thickness of 600 mm.
(Test C) With the same composition and water content as B above, sodium naphthalene sulfonate as a surfactant was added in an amount of 0.002 mass% in the granulation step, and a firing experiment was performed on the granulated particles.
(Test D) C iron ore (25 mass%) and other ordinary coarse iron ore for sintering (36.0 mass%), limestone (8.2 mass%) and dolomite (7.3 mass%) as auxiliary materials , Meteorite (1.5mass%), quicklime (2.0mass%), sintered ore (20.0mass%) and fine coke (outside 4.35mass%), water content is 6.0mass% After granulation, a firing test was performed using the pan test apparatus.
(Test E) Blend iron ore (25 mass%) consisting of C iron ore and tail ore of C iron ore (25 mass%) and other ordinary coarse iron ore for sintering (36.3 mass%), and limestone as a secondary raw material ( 8.2 mass%), dolomite (7.3 mass%), meteorite (1.2 mass%), quicklime (2.0 mass%), sintered ore (20.0 mass%) and fine coke (4.35 mass%) ) And was granulated without adjusting the moisture at 6.0 mass%, and then the firing test was carried out using the pan test apparatus.

これら、一連の焼成試験(A〜E)の結果を図8に示す。この図8に示すように、C鉄鉱石を30mass%以上使用して焼結鉱を製造した場合、尾鉱を10mass%添加した超微粉被覆ブレンド鉄鉱石(B)は生産性が高く強度の高いものが得られることがわかった。さらに、界面活性剤を少量加えることで(C)、生産性改善効果がさらに高められることもわかった。しかしながら、同じような配合を行っても、水分調整を行わないと(D、E)、生産性ならびに焼結鉱強度(シャッターインデックスSI)ともに、本発明適合例(B、C)に比べ劣ることがわかった。   The results of these series of firing tests (A to E) are shown in FIG. As shown in FIG. 8, when a sintered ore is produced using 30 mass% or more of C iron ore, the ultrafine powder coated blended iron ore (B) added with 10 mass% of tailings has high productivity and high strength. It turns out that things can be obtained. Furthermore, it was also found that the productivity improvement effect can be further enhanced by adding a small amount of surfactant (C). However, even if the same blending is performed, if the water content is not adjusted (D, E), both productivity and sintered ore strength (shutter index SI) are inferior to those of the present invention conforming example (B, C). I understood.

本発明は、製鉄所での焼結機の操業に用いる原料の他、ペレット用原料などの他の高炉原料製造用原料としても使用することができる。   The present invention can be used as a raw material for producing other blast furnace raw materials such as a raw material for pellets as well as a raw material used for operation of a sintering machine at an ironworks.

ブラジル鉄鉱石の粒度分布を示す図である。It is a figure which shows the particle size distribution of a Brazilian iron ore. ブラジル鉄鉱石、オーストラリア鉄鉱石の電子顕微鏡写真(SEM)である。It is an electron micrograph (SEM) of Brazilian iron ore and Australian iron ore. ブラジル鉄鉱石尾鉱の電子顕微鏡写真(SEM)である。It is an electron micrograph (SEM) of Brazilian iron ore tailings. 擬似粒子化した焼結原料粒子の模式図である。It is a schematic diagram of the sintering raw material particle | grains made into the pseudo particle. 造粒試験結果(湿潤粒子(a)、乾燥粒子(b))を示すグラフである。It is a graph which shows a granulation test result (wet particle (a), dry particle (b)). 造粒への水分添加量の影響を(湿潤粒子)を示すグラフである。It is a graph which shows the influence of the moisture addition amount to granulation (wet particle). 造粒への水分添加量の影響を(乾燥粒子)を示すグラフである。It is a graph which shows the influence of the moisture addition amount to granulation (dry particle | grains). 実施例3における鍋試験結果を示すグラフである。It is a graph which shows the pot test result in Example 3.

符号の説明Explanation of symbols

1 粗粒鉄鉱石
2 細粒鉄鉱石
3 尾鉱
1 Coarse iron ore 2 Fine iron ore 3 Tailing

Claims (13)

焼結原料粒子に対し、平均粒径が10μm以下の鉄鉱石超微粉を2〜15mass%の範囲内で添加混合して、超微粉被覆焼結原料粒子とし、この原料粒子を成形することを特徴とする焼結鉱製造用成形原料の製造方法。 The iron ore ultrafine powder having an average particle size of 10 μm or less is added to and mixed with the sintered raw material particles within a range of 2 to 15 mass% to form ultrafine powder-coated sintered raw material particles, and the raw material particles are formed. The manufacturing method of the shaping | molding raw material for sinter ore production. 前記焼結原料粒子は、平均粒径が1.5〜4.5mmの粗粒鉄鉱石と、前記粗粒鉄鉱石よりも小さい平均粒径の範囲内にある細粒鉄鉱石と、5mm以下の返鉱とからなることを特徴とする請求項1に記載の焼結鉱製造用成形原料の製造方法。 The sintered raw material particles include a coarse iron ore having an average particle size of 1.5 to 4.5 mm, a fine iron ore within a range of an average particle size smaller than the coarse iron ore, and 5 mm or less. The method for producing a forming raw material for sinter ore production according to claim 1, characterized in that it comprises return ore. 前記焼結原料粒子は、Feを55mass%以上含有し、SiOおよびAlをそれぞれ5.0mass%以下含有するものであることを特徴とする請求項1または2に記載の焼結鉱製造用成形原料の製造方法。 The sintering raw material particles, the Fe and containing at least 55 mass%, sintered ore according to claim 1 or 2, characterized in that the SiO 2 and Al 2 O 3 respectively are those containing less 5.0 mass% A manufacturing method of a forming raw material for manufacturing. 前記鉄鉱石超微粉は、Feを60mass%以上含有し、SiOおよびAlをそれぞれ0.5〜5.0mass%の範囲内で含有し、成形時に超微粉の作用による成形助剤として働くものであることを特徴とする請求項1〜3のいずれか1に記載の焼結鉱製造用成形原料の製造方法。 The iron ore ultra fines containing Fe least 60 mass%, contain SiO 2 and Al 2 O 3 within the range of each 0.5~5.0Mass%, as a molding aid according to the action of ultrafine during molding The method for producing a forming raw material for producing sinter according to any one of claims 1 to 3, wherein the method is a working material. 前記鉄鉱石超微粉は、選鉱残渣として得られる尾鉱を用いることを特徴とする請求項1〜4のいずれか1に記載の焼結鉱製造用成形原料の製造方法。 The said iron ore ultrafine powder uses the tailing obtained as a beneficiation residue, The manufacturing method of the shaping | molding raw material for sinter ore manufacturing of any one of Claims 1-4 characterized by the above-mentioned. 前記鉄鉱石超微粉は、南米産ヘマタイト鉱石またはアフリカ産ヘマタイト鉱石であることを特徴とする請求項1〜5のいずれか1に記載の焼結鉱製造用成形原料の製造方法。 The said iron ore ultrafine powder is a South American hematite ore or an African hematite ore, The manufacturing method of the shaping | molding raw material for sintered ore production of any one of Claims 1-5 characterized by the above-mentioned. 前記南米産ヘマタイト鉱石は、カラジャス鉄鉱石であることを特徴とする請求項6に記載の焼結鉱製造用成形原料の製造方法。 The method for producing a forming raw material for producing sintered ore according to claim 6, wherein the South American hematite ore is Carajas iron ore. 前記アフリカ産ヘマタイト鉱石は、クンバ鉄鉱石であることを特徴とする請求項6に記載の焼結鉱製造用成形原料の製造方法。 The method for producing a forming raw material for producing sintered ore according to claim 6, wherein the African hematite ore is cumba iron ore. 粗粒鉄鉱石への鉄鉱石超微粉の添加を山元で行うことを特徴とする請求項1〜8のいずれか1に記載の焼結鉱製造用成形原料の製造方法。 The method for producing a forming raw material for sinter ore production according to any one of claims 1 to 8, wherein the iron ore ultrafine powder is added to the coarse-grained iron ore at the base. 超微粉被覆焼結原料粒子の成形に当たり、副原料、バインダー、水および分散剤のいずれか1種以上を加えることを特徴とする請求項1〜9のいずれか1に記載の焼結鉱製造用成形原料の製造方法。 10. The sintered ore production according to claim 1, wherein at least one of a secondary raw material, a binder, water, and a dispersant is added in forming the ultrafine powder-coated sintered raw material particles. Manufacturing method of molding raw material. 上記副原料は、焼結鉱のスラグ成分調整に用いるものであって、石灰石、ドロマイト、生石灰、珪石、蛇紋岩、Niスラグ、マグネサイトおよび砂鉄の中から選ばれるいずれか1種以上であることを特徴とする請求項10に記載の焼結鉱製造用成形原料の製造方法。 The auxiliary material is used for adjusting the slag component of the sintered ore, and is any one or more selected from limestone, dolomite, quicklime, silica, serpentine, Ni slag, magnesite, and iron sand. The manufacturing method of the shaping | molding raw material for sintered ore manufacture of Claim 10 characterized by these. 前記水は、鉄鉱石超微粉の添加量に応じて増量し、成形後粒子の乾燥前水分量で5mass%以上を添加することを特徴とする請求項10に記載の焼結鉱製造用成形原料の製造方法。 11. The forming raw material for producing sinter according to claim 10, wherein the water is increased according to the amount of iron ore ultrafine powder added, and 5 mass% or more is added as a moisture content before drying of the particles after forming. Manufacturing method. 前記分散剤は、カルボン酸基、スルホン酸基を含む官能基を有する有機化合物からなる界面活性剤を、超微粉被覆焼結原料粒子に対し、0.002〜0.005mass%添加することを特徴とする請求項10に記載の焼結鉱製造用成形原料の製造方法。 The dispersant is characterized by adding 0.002 to 0.005 mass% of a surfactant made of an organic compound having a functional group containing a carboxylic acid group and a sulfonic acid group to the ultrafine powder-coated sintered raw material particles. The manufacturing method of the shaping | molding raw material for sinter production of Claim 10.
JP2008295938A 2007-11-22 2008-11-19 Manufacturing method of forming raw material for sinter production Active JP5464317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008295938A JP5464317B2 (en) 2007-11-22 2008-11-19 Manufacturing method of forming raw material for sinter production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007302510 2007-11-22
JP2007302510 2007-11-22
JP2008295938A JP5464317B2 (en) 2007-11-22 2008-11-19 Manufacturing method of forming raw material for sinter production

Publications (2)

Publication Number Publication Date
JP2009144240A JP2009144240A (en) 2009-07-02
JP5464317B2 true JP5464317B2 (en) 2014-04-09

Family

ID=40667613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295938A Active JP5464317B2 (en) 2007-11-22 2008-11-19 Manufacturing method of forming raw material for sinter production

Country Status (8)

Country Link
JP (1) JP5464317B2 (en)
KR (1) KR101190938B1 (en)
CN (1) CN101903542B (en)
AU (1) AU2008327116B2 (en)
BR (1) BRPI0819293B1 (en)
TW (1) TWI411687B (en)
WO (1) WO2009066796A1 (en)
ZA (1) ZA201003349B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200007146A (en) 2018-07-12 2020-01-22 주식회사 포스코 Method of manufacturing sintered ore

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5459655B2 (en) * 2008-07-18 2014-04-02 Jfeスチール株式会社 How to treat tailings
CN102264924B (en) * 2008-12-26 2013-07-31 新日本制铁株式会社 Sintering material granulation method using x-ray ct
JP4840524B2 (en) * 2009-07-10 2011-12-21 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
JP5471852B2 (en) * 2010-06-03 2014-04-16 新日鐵住金株式会社 Preparation method of sintering raw material
JP5146573B1 (en) * 2010-07-30 2013-02-20 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
TWI558657B (en) * 2011-09-08 2016-11-21 淡水河谷公司 Application of carbon nanotubes on agglomerates of fine ore to increase the mechanical strength
KR101325204B1 (en) * 2011-09-21 2013-11-04 한국지질자원연구원 Method of obtaining matte and slag from tailings
US9045809B2 (en) * 2012-05-05 2015-06-02 Nu-Iron Technology, Llc Reclaiming and inhibiting activation of DRI fines
TWI468522B (en) * 2012-05-30 2015-01-11 Jfe Steel Corp Method for producing granulation material for sintering, producing apparatus thereof, and method for producing sinter ore for blast furnace
JP5827648B2 (en) * 2013-07-25 2015-12-02 株式会社神戸製鋼所 Method for producing agglomerates
JP5991290B2 (en) * 2013-09-13 2016-09-14 Jfeスチール株式会社 Method for producing sintered ore
JP6331639B2 (en) * 2014-04-18 2018-05-30 新日鐵住金株式会社 Sintering raw material blending method
CN104030328B (en) * 2014-06-27 2016-04-06 西南科技大学 The method of active porous shape earth silicon material is prepared with serpentine extraction magnesium oxide
CN104195328B (en) * 2014-07-31 2016-08-24 甘肃酒钢集团宏兴钢铁股份有限公司 A kind of method utilizing iron selection tailings to make ferric oxide ore reduction roasting green-ball
CN108349823B (en) * 2015-11-16 2021-06-01 日本碍子株式会社 Method for producing oriented sintered body
BR112018067367B1 (en) * 2016-03-04 2022-05-03 Jfe Steel Corporation Method for making sintered ore
JP2018172704A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Manufacturing method of granulated sintering raw material and manufacturing method of sintered ore
JP7419155B2 (en) * 2020-05-07 2024-01-22 株式会社神戸製鋼所 Method for manufacturing iron ore pellets
CN113136468A (en) * 2021-04-20 2021-07-20 山东鑫华特钢集团有限公司 Iron-making sintering rotary drum and particle size grading method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170224A (en) * 1983-03-18 1984-09-26 Kawasaki Steel Corp Method for adding ultrafine powder dust to raw material for sintering
JPS60248827A (en) * 1984-05-24 1985-12-09 Nippon Steel Corp Preliminary treatment of sintered raw material
JPS61163220A (en) * 1985-01-08 1986-07-23 Nippon Steel Corp Pretreatment of raw material to be sintered
JPS6254036A (en) * 1985-09-03 1987-03-09 Nippon Kokan Kk <Nkk> Manufacture of minipellet for sintering
JPH089739B2 (en) * 1989-08-23 1996-01-31 日本鋼管株式会社 Method for producing calcined agglomerated ore
JP3656632B2 (en) * 2000-05-29 2005-06-08 Jfeスチール株式会社 Pseudoparticle raw material for sintering and method for producing pseudoparticle raw material for sintering
JP2005171388A (en) * 2000-05-29 2005-06-30 Jfe Steel Kk Pseudo particle raw material for sintering, sintered ore for blast furnace, and method of producing pseudo particle raw material for sintering
WO2002066688A1 (en) * 2001-02-22 2002-08-29 Nippon Steel Corporation Method of granulation treatment of raw material for iron making and granulation treatment agent for iron making
JP3703769B2 (en) * 2001-09-07 2005-10-05 新日本製鐵株式会社 Method for granulating raw materials for iron making
JP4368245B2 (en) * 2004-05-17 2009-11-18 株式会社リケン Hard particle dispersion type iron-based sintered alloy
JP5119462B2 (en) * 2005-11-17 2013-01-16 新日鐵住金株式会社 Pretreatment method of sintered raw material and method of manufacturing sintered ore
JP5180438B2 (en) * 2006-01-18 2013-04-10 新日鐵住金株式会社 Method for producing charcoal-containing pellets
JP2007277684A (en) 2006-04-11 2007-10-25 Jfe Steel Kk Nonfired agglomerated ore for iron manufacture
JP5098248B2 (en) * 2006-08-03 2012-12-12 新日鐵住金株式会社 Granulation method of iron-containing dust collection dusts for iron making
JP5000366B2 (en) * 2007-04-12 2012-08-15 新日本製鐵株式会社 Method for producing sintered ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200007146A (en) 2018-07-12 2020-01-22 주식회사 포스코 Method of manufacturing sintered ore

Also Published As

Publication number Publication date
JP2009144240A (en) 2009-07-02
ZA201003349B (en) 2012-05-30
KR20100101562A (en) 2010-09-17
BRPI0819293B1 (en) 2019-04-09
BRPI0819293A2 (en) 2016-08-02
TWI411687B (en) 2013-10-11
WO2009066796A1 (en) 2009-05-28
CN101903542A (en) 2010-12-01
AU2008327116A1 (en) 2009-05-28
AU2008327116B2 (en) 2011-08-18
KR101190938B1 (en) 2012-10-12
TW200936774A (en) 2009-09-01
CN101903542B (en) 2013-01-02

Similar Documents

Publication Publication Date Title
JP5464317B2 (en) Manufacturing method of forming raw material for sinter production
JP5000366B2 (en) Method for producing sintered ore
Zhu et al. Iron ore pelletization
CN109295299A (en) A method of high bloodstone self fluxed pellet is prepared using rotary kiln technology addition lime stone
Jiang et al. Preparation of BF burden from titanomagnetite concentrate by composite agglomeration process (CAP)
CN103374635B (en) Blast furnace slag recycling method
CN104120207B (en) One joins the raw ferriferous method in ore deposit with tin tail iron ore concentrate and the poor assorted ore deposit of high harmful element
Tang et al. Optimized use of MgO flux in the agglomeration of high-chromium vanadium-titanium magnetite
Yu et al. Study on the strength of cold-bonded high-phosphorus oolitic hematite-coal composite briquettes
KR101444071B1 (en) Binder for manufacture of direct reduction iron briquet using Steelmaking by-products Manufacturing method thereof
Zhang et al. Improving the sintering performance of blends containing Canadian specularite concentrate by modifying the binding medium
CN110317948A (en) A kind of sintering method of plum mountain iron ore concentrate
JP5609578B2 (en) Blast furnace operation method using unfired carbon-containing agglomerated ore
JP2009030112A (en) Method for producing ore raw material for blast furnace
JP4725230B2 (en) Method for producing sintered ore
CN102899483A (en) Recycling process for low-frequency (LF) furnace refining slag
KR20180014571A (en) Manufacturing method of sintered ore and the sintered ore using it
Kim et al. Effects of K2CO3 addition on the physicochemical properties of goethite composite pellets with different basicities (CaO/SiO2)
Zhu et al. Grate-kiln pelletization of Indian hematite fines and its industrial practice
JP6331639B2 (en) Sintering raw material blending method
JP2009167466A (en) Method for producing sintered ore
JP4816119B2 (en) Method for producing sintered ore
CN105331806A (en) Pellets manufactured through magnesium smelting waste and manufacturing method of pellets
JPS58213837A (en) Method for sintering chrome ore
Zhu et al. 1Central South University, Changsha, Hunan, China 2CSIRO Mineral Resources Flagship, Pullenvale, QLD, Australia 3CSIRO Mineral Resources Flagship, Clayton South, VIC, Australia

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5464317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250