US20080149062A1 - Gas Shuttle Valve Provided With an Anti-Corrosive Layer - Google Patents

Gas Shuttle Valve Provided With an Anti-Corrosive Layer Download PDF

Info

Publication number
US20080149062A1
US20080149062A1 US11/886,649 US88664906A US2008149062A1 US 20080149062 A1 US20080149062 A1 US 20080149062A1 US 88664906 A US88664906 A US 88664906A US 2008149062 A1 US2008149062 A1 US 2008149062A1
Authority
US
United States
Prior art keywords
valve
gas exchange
corrosion protection
cone
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/886,649
Inventor
Anja Luepfert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Diesel SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Diesel SE filed Critical MAN Diesel SE
Assigned to MAN DIESEL SE reassignment MAN DIESEL SE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUPFERT, ANJA
Publication of US20080149062A1 publication Critical patent/US20080149062A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/32Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for rotating lift valves, e.g. to diminish wear
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • F01L3/04Coated valve members or valve-seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/06Valve members or valve-seats with means for guiding or deflecting the medium controlled thereby, e.g. producing a rotary motion of the drawn-in cylinder charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a gas exchange valve of an internal combustion engine having a valve cone essentially made of a valve shaft, which passes into a valve disk while forming a hollow cone.
  • Gas exchange valves i.e., inlet and outlet valves for opening and closing the gas channel of the internal combustion engine, are subjected to great mechanical and thermal strains and corrosion attacks by the combustion gases. Only high-alloy steels of great heat resistance and good scaling resistance may meet the strains, in particular of the outlet valves.
  • valve disk is armored on the sealing face using an especially resistant CrNi alloy.
  • the service life of the outlet valve may be increased multiple times in highly-strained engines by a rotating device in the form of a propeller, which is attached to the valve shaft. Because of the forced rotation due to the outflowing exhaust gas, which excites the propeller, the valve shaft ends and disks remain free of deposits and single-sided heating may not cause leaks of the disk.
  • the other parts of the gas exchange valve are also subject to varying requirements in regard to heat, fatigue, and corrosion resistance.
  • valve disk is produced from a material having high temperature and burn-off resistance
  • valve shaft including the propeller comprises a material having lower notch sensitivity and higher fatigue resistance, i.e., has sufficient toughness to counter the bending stresses occurring in this area.
  • a further aspect of the strain of a gas exchange valve comprises valve shaft and hollow cone being attacked by wet corrosion (condensation) because the combustion gases fall below the dew point during the engine shutdown.
  • plasma nitration/plasma nitro-carburization are understood as hardening of surface layers of steels, nitrogen and/or carbon atoms diffusing in and reacting in a thin surface layer with iron to form nitrides and/or carbon nitrides, the bonding layer (VS).
  • the nitrogen is first partially precipitated as a nitride upon cooling and then causes the hardness increase.
  • the hardness itself is a function of the types of nitrides.
  • Nitration times and layers differ depending on how the nitrogen is caused to react with the steel. In other words, there is diffusion saturation of the boundary layer of a material with nitrogen to increase hardness, wear resistance, fatigue strength, or corrosion resistance.
  • the boundary layer comprises an external nitride and/or carbon nitride layer (bonding layer) and an adjoining layer made of mixed crystals enriched with nitrogen and precipitated nitrides (diffusion layer) after the nitration/nitro-carburization.
  • the nitration times may be shortened by ionization of the nitrogen by glow discharge, so-called plasma nitration (plasma nitration at 450° C. to 550° C.).
  • nitro-carburization in which the treatment agent also contains components discharging carbon in addition to nitrogen, nitro-carburization may be performed in powder, salt bath, gas, or plasma (plasma nitro-carburization at 500° C. to 590° C., preferably at approximately 520° C.).
  • valve body of the gas exchange valve is implemented in one piece and the valve disk is armored on the sealing face and/or on the seat area as described at the beginning, the nitride and/or carbon nitride layer is preferably provided completely on the valve shaft and the hollow cone up to the armored sealing face.
  • the gas exchange valve in particular an outlet valve ( 1 ) for an internal combustion engine, has a rotating device in the form of a propeller ( 3 ) situated on its valve shaft ( 2 ).
  • the valve disk ( 4 ) is armored on its sealing face ( 5 ).
  • the wings ( 6 ) of the propeller ( 3 ) are milled out of the rotating shape of the propeller.
  • valve disk ( 4 ) is produced from a material having high temperature and burn-off resistance
  • valve shaft ( 2 ) including the propeller ( 3 ) comprises a material having lower notch sensitivity and higher fatigue strength, i.e., having sufficient toughness to counter the bending stresses occurring in this area.
  • the valve disk ( 4 ) is connected to the valve shaft ( 2 ) by a friction weld ( 7 ).
  • the valve cone is provided in at least partial areas with a corrosion protection layer in the form of a nitration layer ( 8 ), the corrosion protection layer being generated by reacting the nitride-forming base alloy by plasma nitration or plasma nitro-carburization in a nitrogen or nitrogen-carbon atmosphere.
  • the complete valve shaft ( 2 ) up to the friction weld ( 7 ), at which the hot working steel material is also delimited, is provided with the nitration layer ( 8 ), the area of the hollow cone ( 11 ) remains open.
  • the two front faces on the valve disk ( 4 ) and on the valve shaft ( 2 ) may remain left out in regard to the nitride and/or carbon nitride layer ( 8 ).
  • the complete valve cone ( 1 ) up to the armored valve seat area ( 5 ) of the valve disk ( 4 ) and also up to its disk floor and the valve shaft front side, may be provided with the nitration layer ( 8 ).
  • the surface is converted in such a way that a hard, wear-resistant boundary layer results.
  • the valve cone blank is processed, either in the form of the valve shaft or in its entirety with valve shaft ( 2 ) and valve plate ( 4 ), over all manufacturing steps in such a way that it is provided in its final surface roughness, and the plasma nitration and/or plasma nitro-carburization is subsequently performed.
  • Post-treatment of the nitrated gas exchange valve is possible but not necessary (however, the post-treatment is not to be performed in the areas of the gas exchange valve to be protected from corrosion so as not to remove the bonding layer generated).
  • the valve cone ( 1 ) may be ground after the nitration.
  • the nitration layer has a diffusion layer ( 9 ) having a thickness (nitration hardness depth) of 0.1 mm to 0.3 mm and a bonding layer ( 10 ) built up thereon of 3 ⁇ m to 15 ⁇ m and offers a surface hardness greater than 750 HV (Vickers).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Lift Valve (AREA)

Abstract

A gas exchange valve of an internal combustion engine having a valve cone essentially made of a valve shaft, which passes into a valve plate while forming a hollow cone, and the valve cone or at least the valve shaft up into the area of the hollow cone being manufactured from a typical valve steel made of a nitride-forming based alloy, such that its parts which comprise a typical valve steel also have good corrosion protection. The valve cone is provided at least in partial areas with a corrosion protection layer in the form of a nitride layer, and the corrosion protection layer is generated by reacting the nitride-forming based alloy by plasma nitration or plasma nitro-carburization in a nitrogen atmosphere.

Description

  • The present invention relates to a gas exchange valve of an internal combustion engine having a valve cone essentially made of a valve shaft, which passes into a valve disk while forming a hollow cone.
  • Gas exchange valves, i.e., inlet and outlet valves for opening and closing the gas channel of the internal combustion engine, are subjected to great mechanical and thermal strains and corrosion attacks by the combustion gases. Only high-alloy steels of great heat resistance and good scaling resistance may meet the strains, in particular of the outlet valves.
  • Multiple measures have already become known for increasing the service life of such gas exchange valves. Thus, for example, the valve disk is armored on the sealing face using an especially resistant CrNi alloy.
  • As suggested in DE 43 41 811 A1, for example, in addition to the armoring described above, the service life of the outlet valve may be increased multiple times in highly-strained engines by a rotating device in the form of a propeller, which is attached to the valve shaft. Because of the forced rotation due to the outflowing exhaust gas, which excites the propeller, the valve shaft ends and disks remain free of deposits and single-sided heating may not cause leaks of the disk.
  • However, the other parts of the gas exchange valve are also subject to varying requirements in regard to heat, fatigue, and corrosion resistance.
  • Different requirements in regard to the heat, fatigue, and corrosion resistance in the various temperature zones of the valve cone are known to be taken into consideration in that the valve disk is produced from a material having high temperature and burn-off resistance, while the valve shaft including the propeller comprises a material having lower notch sensitivity and higher fatigue resistance, i.e., has sufficient toughness to counter the bending stresses occurring in this area. A material made of a typical valve steel or made of a super alloy, such as NiCr2OTiAl, is preferably used for the valve disk and a material made of a typical valve steel, such as X45CrSi9-3, is preferably used for the valve shaft including propeller. This is because steels made of a nickel-based alloy used to avoid corrosion are known to be very expensive, so that the gas exchange valve is extensively manufactured from the typical valve steel, such as X45CrSi9-3, where this is acceptable.
  • Furthermore, it has also already been recognized that a further aspect of the strain of a gas exchange valve comprises valve shaft and hollow cone being attacked by wet corrosion (condensation) because the combustion gases fall below the dew point during the engine shutdown.
  • However, hardening methods in the form of plasma nitration or plasma nitro-carburization in nitride-forming steels are already known.
  • In general, plasma nitration/plasma nitro-carburization are understood as hardening of surface layers of steels, nitrogen and/or carbon atoms diffusing in and reacting in a thin surface layer with iron to form nitrides and/or carbon nitrides, the bonding layer (VS). In the adjoining diffusion layer (DS), the nitrogen is first partially precipitated as a nitride upon cooling and then causes the hardness increase. The hardness itself is a function of the types of nitrides. Nitration times and layers differ depending on how the nitrogen is caused to react with the steel. In other words, there is diffusion saturation of the boundary layer of a material with nitrogen to increase hardness, wear resistance, fatigue strength, or corrosion resistance. The boundary layer comprises an external nitride and/or carbon nitride layer (bonding layer) and an adjoining layer made of mixed crystals enriched with nitrogen and precipitated nitrides (diffusion layer) after the nitration/nitro-carburization.
  • The nitration times may be shortened by ionization of the nitrogen by glow discharge, so-called plasma nitration (plasma nitration at 450° C. to 550° C.).
  • In nitro-carburization, in which the treatment agent also contains components discharging carbon in addition to nitrogen, nitro-carburization may be performed in powder, salt bath, gas, or plasma (plasma nitro-carburization at 500° C. to 590° C., preferably at approximately 520° C.).
  • Proceeding from this, it is the object of the present invention to refine a gas exchange valve forming the species in such a way that its parts which comprise the typical valve steels described at the beginning also have good corrosion protection.
  • This object is achieved by the characterizing features of claim 1 for a gas exchange valve of the type according to the species.
  • If the valve body of the gas exchange valve is implemented in one piece and the valve disk is armored on the sealing face and/or on the seat area as described at the beginning, the nitride and/or carbon nitride layer is preferably provided completely on the valve shaft and the hollow cone up to the armored sealing face.
  • The present invention is explained on the basis of the single FIGURE:
  • The gas exchange valve, in particular an outlet valve (1) for an internal combustion engine, has a rotating device in the form of a propeller (3) situated on its valve shaft (2). The valve disk (4) is armored on its sealing face (5). The wings (6) of the propeller (3) are milled out of the rotating shape of the propeller.
  • Furthermore, different requirements in regard to heat, fatigue, and corrosion resistance in the various temperature zones of the valve cone (1) are taken into consideration in that the valve disk (4) is produced from a material having high temperature and burn-off resistance, while the valve shaft (2) including the propeller (3) comprises a material having lower notch sensitivity and higher fatigue strength, i.e., having sufficient toughness to counter the bending stresses occurring in this area. A material made of a typical valve steel or a super alloy, such as NiCr2OTiAl, is preferably used for the valve disk (4) and a material made of a hot forming steel, such as X45CrSi9-3, is preferably used for the valve shaft (2) having propeller (3). The valve disk (4) is connected to the valve shaft (2) by a friction weld (7).
  • In the exemplary outlet valve (1) shown here, the valve cone is provided in at least partial areas with a corrosion protection layer in the form of a nitration layer (8), the corrosion protection layer being generated by reacting the nitride-forming base alloy by plasma nitration or plasma nitro-carburization in a nitrogen or nitrogen-carbon atmosphere.
  • In a preferred way, in the two-part embodiment of a gas exchange valve here, the complete valve shaft (2) up to the friction weld (7), at which the hot working steel material is also delimited, is provided with the nitration layer (8), the area of the hollow cone (11) remains open. Of course, in general, both in the one-part and also in the multipart embodiment of a gas exchange valve, the two front faces on the valve disk (4) and on the valve shaft (2) may remain left out in regard to the nitride and/or carbon nitride layer (8).
  • However, preferably in the one-part embodiment, the complete valve cone (1) up to the armored valve seat area (5) of the valve disk (4) and also up to its disk floor and the valve shaft front side, may be provided with the nitration layer (8).
  • In the gas exchange valve according to the present invention, the surface is converted in such a way that a hard, wear-resistant boundary layer results. For this purpose, the valve cone blank is processed, either in the form of the valve shaft or in its entirety with valve shaft (2) and valve plate (4), over all manufacturing steps in such a way that it is provided in its final surface roughness, and the plasma nitration and/or plasma nitro-carburization is subsequently performed. Post-treatment of the nitrated gas exchange valve is possible but not necessary (however, the post-treatment is not to be performed in the areas of the gas exchange valve to be protected from corrosion so as not to remove the bonding layer generated). For example, the valve cone (1) may be ground after the nitration.
  • It may be specified as characteristic for the generated corrosion protection layers that the nitration layer has a diffusion layer (9) having a thickness (nitration hardness depth) of 0.1 mm to 0.3 mm and a bonding layer (10) built up thereon of 3 μm to 15 μm and offers a surface hardness greater than 750 HV (Vickers).
  • If a thickness around 10 μm is to be achieved for the bonding layer, plasma nitro-carburization with the addition of carbon is preferred.
  • Significantly improved corrosion protection and an increase of the alternating fatigue strength are achieved by the plasma nitration and/or plasma nitro-carburization of the valve cone (1), i.e., longer maintenance intervals and/or component service lives are achieved and cracking due to bending strains is counteracted.

Claims (9)

1. A gas exchange valve of an internal combustion engine, comprising:
a valve cone, said valve cone comprising:
a valve shaft and a valve disk, the valve shaft is connected to and extends into the valve disk while forming a hollow cone, at least the valve shaft being manufactured from a valve steel comprised of a nitride-forming based alloy up into an area of the hollow cone; and
a corrosion protection layer provided on at least partial areas of the valve cone, said corrosion protection layer comprising at least one of a nitride and carbon nitride layer;
wherein the corrosion protection layer is generated by reacting the nitride-forming base alloy by one of plasma nitration and plasma nitro-carburization in a nitrogen atmosphere.
2. The gas exchange valve according to claim 1, wherein the gas exchange valve is a one piece valve; and
wherein the corrosion protection layer is provided on an entire area of the valve cone, extending up to an armored valve seat area of the valve disk and a front side of the valve shaft.
3. The gas exchange valve according to claim 1, wherein the gas exchange valve is a two-piece valve; and
wherein valve shaft is provided, at least on external faces that contact combustion gases within the engine, with the corrosion protection layer extending completely up to a boundary face between the valve shaft and the valve disk, at which the valve steel material is also delimited, while at least one of the valve disk and the area of the hollow cone remain uncovered by the corrosion protection layer.
4. The gas exchange valve according to claim 1, wherein the corrosion protection layer has a diffusion layer thickness of 0.1 mm to 0.3 mm and a built up bonding layer on the diffusion layer of 3 μm to 15 μm and a surface hardness greater than 750 HV (Vickers).
5. The gas exchange valve according to claim 4, wherein the diffusion layer thickness is the nitration hardness depth.
6. The gas exchange valve according to claim 2, wherein the corrosion protection layer has a diffusion layer thickness of 0.1 mm to 0.3 mm and a built up bonding layer on the diffusion layer of 3 μm to 15 μm and a surface hardness greater than 750 HV (Vickers).
7. The gas exchange valve according to claim 3, wherein the corrosion protection layer has a diffusion layer thickness of 0.1 mm to 0.3 mm and a built up bonding layer on the diffusion layer of 3 μm to 15 μm and a surface hardness greater than 750 HV (Vickers).
8. The gas exchange valve according to claim 6, wherein the diffusion layer thickness is the nitration hardness depth.
9. The gas exchange valve according to claim 7, wherein the diffusion layer thickness is the nitration hardness depth.
US11/886,649 2005-03-18 2006-03-14 Gas Shuttle Valve Provided With an Anti-Corrosive Layer Abandoned US20080149062A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005013088.7 2005-03-18
DE102005013088A DE102005013088B4 (en) 2005-03-18 2005-03-18 Gas exchange valve with corrosion protection layer
PCT/EP2006/002292 WO2006097264A1 (en) 2005-03-18 2006-03-14 Gas shuttle valve provided with an anti-corrosive layer

Publications (1)

Publication Number Publication Date
US20080149062A1 true US20080149062A1 (en) 2008-06-26

Family

ID=36602668

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/886,649 Abandoned US20080149062A1 (en) 2005-03-18 2006-03-14 Gas Shuttle Valve Provided With an Anti-Corrosive Layer

Country Status (10)

Country Link
US (1) US20080149062A1 (en)
EP (1) EP1864003A1 (en)
JP (1) JP2008533372A (en)
KR (1) KR20070112287A (en)
CN (1) CN101142379A (en)
CA (1) CA2601053A1 (en)
DE (1) DE102005013088B4 (en)
NO (1) NO20075320L (en)
RU (1) RU2007138648A (en)
WO (1) WO2006097264A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110061365A1 (en) * 2008-05-13 2011-03-17 Mads Lytje Christensen Exhaust valve for a large sized two stroke diesel engine, process for reduction on nox-formation in such an engine and such engine
WO2014120670A1 (en) * 2013-01-31 2014-08-07 Caterpillar Inc. Valve assembly for fuel system and method
US8919316B2 (en) 2012-02-24 2014-12-30 Mahle International Gmbh Valve system for controlling the charge exchange
US9255559B2 (en) 2013-02-28 2016-02-09 Mahle International Gmbh Metallic hollow valve
US9611766B2 (en) 2013-06-11 2017-04-04 Mahle International Gmbh Gas exchange valve of an internal combustion engine
CN111980775A (en) * 2019-05-23 2020-11-24 马勒国际有限公司 Gas exchange valve

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008018875A1 (en) 2008-04-14 2009-10-15 Märkisches Werk GmbH Exhaust valve on a reciprocating engine
DE102008061237A1 (en) 2008-12-09 2010-06-10 Man Diesel Se Gas exchange valve and method for its production
WO2010083831A1 (en) * 2009-01-23 2010-07-29 Man Diesel & Turbo, Filial Af Man Diesel & Turbo Se, Tyskland A movable wall member in form of an exhaust valve spindle or a piston for an internal combustion engine, and a method of manufacturing such a member
KR101274239B1 (en) * 2010-12-02 2013-06-11 기아자동차주식회사 Intake and exhaust valve for vehicle
DE102013203443A1 (en) * 2013-02-28 2014-08-28 Mahle International Gmbh Metallic hollow valve
CN103498711A (en) * 2013-10-21 2014-01-08 济南沃德汽车零部件有限公司 Air valve with alloy arranged on plate conical face in bead-weld mode and nitride layer reserved on alloy layer
KR102309162B1 (en) * 2017-05-17 2021-10-05 페데랄-모굴 밸브트레인 게엠베하 POPPET VALVE AND METHOD FOR PRODUCTION THEREOF
CN114810270B (en) * 2022-04-07 2023-08-01 重庆乐瑞斯科技有限公司 Valve mechanism with self-adaptive lift adjustment function

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1902676A (en) * 1929-12-19 1933-03-21 Sutton Hubert Hardening alloy steels
US2745777A (en) * 1951-12-20 1956-05-15 Armco Steel Corp Internal combustion engine valves and the like
US3748195A (en) * 1970-07-21 1973-07-24 Nissan Motor Method for forming a soft nitride layer in a metal surface
US5441235A (en) * 1994-05-20 1995-08-15 Eaton Corporation Titanium nitride coated valve and method for making
US5934238A (en) * 1998-02-20 1999-08-10 Eaton Corporation Engine valve assembly
US5960760A (en) * 1998-02-20 1999-10-05 Eaton Corporation Light weight hollow valve assembly
US6318327B1 (en) * 1999-05-31 2001-11-20 Nippon Piston Ring Co., Ltd. Valve system for internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69330781T2 (en) * 1992-07-16 2002-04-18 Nippon Steel Corp TIT ALLOY ROD FOR PRODUCING ENGINE VALVES
JPH06146825A (en) * 1992-11-04 1994-05-27 Fuji Oozx Inc Titanium engine valve
DE4341811A1 (en) * 1993-12-08 1995-06-14 Man B & W Diesel Ag Gas exchange valve for an internal combustion engine
DE19618477C2 (en) * 1996-05-08 2000-08-03 Trw Deutschland Gmbh Manufacturing process for a nitrided bimetal valve
EP1146137A1 (en) * 1999-11-10 2001-10-17 Cemm Co., Ltd Method of nitriding iron group alloy base material
JP2003307105A (en) * 2002-04-12 2003-10-31 Fuji Oozx Inc Engine valve
SE525291C2 (en) * 2002-07-03 2005-01-25 Sandvik Ab Surface-modified stainless steel
US6912984B2 (en) * 2003-03-28 2005-07-05 Eaton Corporation Composite lightweight engine poppet valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1902676A (en) * 1929-12-19 1933-03-21 Sutton Hubert Hardening alloy steels
US2745777A (en) * 1951-12-20 1956-05-15 Armco Steel Corp Internal combustion engine valves and the like
US3748195A (en) * 1970-07-21 1973-07-24 Nissan Motor Method for forming a soft nitride layer in a metal surface
US5441235A (en) * 1994-05-20 1995-08-15 Eaton Corporation Titanium nitride coated valve and method for making
US5934238A (en) * 1998-02-20 1999-08-10 Eaton Corporation Engine valve assembly
US5960760A (en) * 1998-02-20 1999-10-05 Eaton Corporation Light weight hollow valve assembly
US6318327B1 (en) * 1999-05-31 2001-11-20 Nippon Piston Ring Co., Ltd. Valve system for internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110061365A1 (en) * 2008-05-13 2011-03-17 Mads Lytje Christensen Exhaust valve for a large sized two stroke diesel engine, process for reduction on nox-formation in such an engine and such engine
US8869511B2 (en) * 2008-05-13 2014-10-28 Man Diesel & Turbo, Filial Af Man Diesel & Turbo Se, Tyskland Exhaust valve for a large sized two stroke diesel engine, process for reduction on NOx-formation in such an engine and such engine
US8919316B2 (en) 2012-02-24 2014-12-30 Mahle International Gmbh Valve system for controlling the charge exchange
WO2014120670A1 (en) * 2013-01-31 2014-08-07 Caterpillar Inc. Valve assembly for fuel system and method
US9051910B2 (en) 2013-01-31 2015-06-09 Caterpillar Inc. Valve assembly for fuel system and method
CN104956065A (en) * 2013-01-31 2015-09-30 卡特彼勒公司 Valve assembly for fuel system and method
US9255559B2 (en) 2013-02-28 2016-02-09 Mahle International Gmbh Metallic hollow valve
US9611766B2 (en) 2013-06-11 2017-04-04 Mahle International Gmbh Gas exchange valve of an internal combustion engine
CN111980775A (en) * 2019-05-23 2020-11-24 马勒国际有限公司 Gas exchange valve

Also Published As

Publication number Publication date
NO20075320L (en) 2007-12-13
DE102005013088A1 (en) 2006-09-21
CN101142379A (en) 2008-03-12
WO2006097264A1 (en) 2006-09-21
RU2007138648A (en) 2009-04-27
DE102005013088B4 (en) 2006-12-28
KR20070112287A (en) 2007-11-22
CA2601053A1 (en) 2006-09-21
JP2008533372A (en) 2008-08-21
EP1864003A1 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
US20080149062A1 (en) Gas Shuttle Valve Provided With an Anti-Corrosive Layer
US7572344B2 (en) Method for the production of wear-resistant sides for a keystone ring for internal combustion engine
US20080256794A1 (en) Method For the Production of a Piston Ring For Internal Combustion Engine and a Piston Ring of this Type
US8407978B2 (en) Method for producing a control chain
KR20010093226A (en) Combination of cylinder liner and piston ring of internal combustion engine
CN101331246A (en) Method for coating a blade and blade of a gas turbine
US8919316B2 (en) Valve system for controlling the charge exchange
CN107109614A (en) Piston ring and internal combustion engine
FI124577B (en) Gas exchange valve and method for its manufacture
KR101179391B1 (en) Piston for a reciprocating internal combustion engine having hardened piston ring grooves
JPH11264468A (en) Piston ring and its combination
KR20070112806A (en) Multilayer steel gasket with nitrided metal layer
KR102625010B1 (en) Valve trim of cryogenic valves having a high-durability film of austenitic stainless steel surface in cryogenic fluids and surface hardening methods thereof
EP2318668B1 (en) Cylinder head with valve seat and method for the production thereof
JP5886537B2 (en) High durability engine valve
EP2324213B1 (en) Corrosion resistant valve guide
KR20190075527A (en) Valve trim device and valve trim device manufacturing method
US20070065330A1 (en) Dynamic seal
US10215065B2 (en) Valve for internal combustion engines
JP5397931B2 (en) Rolling bearing
JP3143835B2 (en) Combination of piston rings
JP2002226949A (en) Wear-resistant ring for piston made of aluminum alloy
Larkin An influence of prequenching on the properties of 15 Kh 16 K 5 N 2 MVFAB steel
JP2015121228A (en) High durability engine valve
JPH01318709A (en) Manufacture of engine valve

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAN DIESEL SE, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUPFERT, ANJA;REEL/FRAME:020389/0565

Effective date: 20071012

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION