US20070251251A1 - HVAC heat exchanger freeze control means - Google Patents

HVAC heat exchanger freeze control means Download PDF

Info

Publication number
US20070251251A1
US20070251251A1 US11/411,301 US41130106A US2007251251A1 US 20070251251 A1 US20070251251 A1 US 20070251251A1 US 41130106 A US41130106 A US 41130106A US 2007251251 A1 US2007251251 A1 US 2007251251A1
Authority
US
United States
Prior art keywords
temperature
blower
evaporator
heat exchanger
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/411,301
Inventor
Christopher Wojdyla
Jonathan Atwater
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Climate Control Corp
Original Assignee
Valeo Climate Control Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Climate Control Corp filed Critical Valeo Climate Control Corp
Priority to US11/411,301 priority Critical patent/US20070251251A1/en
Assigned to VALEO CLIMATE CONTROL CORP. reassignment VALEO CLIMATE CONTROL CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATWATER, JONATHAN T., WOJDYLA, CHRISTOPHER J.
Publication of US20070251251A1 publication Critical patent/US20070251251A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/321Control means therefor for preventing the freezing of a heat exchanger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3261Cooling devices information from a variable is obtained related to temperature of the air at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/328Cooling devices output of a control signal related to an evaporating unit
    • B60H2001/3282Cooling devices output of a control signal related to an evaporating unit to control the air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Definitions

  • the present invention relates to control strategies for heat exchangers, and specifically, evaporators, used in air conditioning systems.
  • An automotive heating, ventilation, and air conditioning (HVAC) system usually comprises heat exchangers such as an evaporator for cooling air and a heater-core for heating air.
  • the evaporator is designed to transfer heat from the incoming air to the passenger compartment in order to cool the passengers and defog the windows of the vehicle.
  • the cold air flows from the evaporator and is discharged through vents into the compartment of the vehicle.
  • Auxiliary evaporators are used to provide cold air to passengers in seating locations other than the front row, or to electronic components such as batteries, motors, cold storage areas or power modules.
  • Heat exchangers such as evaporators function at varying temperatures due to outside environment conditions.
  • evaporators have a tendency to reach freezing temperatures (below 0° C.) while functioning in an automotive HVAC unit under low load conditions, such as low inlet air temperature, low relative humidity of the inlet air, and/or reduced airflow rates through the evaporator due to blower speed changes.
  • auxiliary evaporator freeze-up is abated or reduced by using a refrigerant valve operated with a solenoid, whereby as the temperature decreases the refrigerant valve closes to stop the flow of refrigerant to the auxiliary evaporator thereby eliminating or reducing the heat transfer medium.
  • This solenoid is operated in a manner similar to the compressor clutch in a front HVAC evaporator system utilizing a cycling clutch freeze protection strategy.
  • an HVAC system is often found having front and auxiliary heat exchangers, such as evaporators.
  • a front evaporator is found in front of the automotive vehicle, and usually serves to provide cold air and therefore, thermal comfort to the occupants in the front row and to provide dehumidified air to defog the windshield and front side windows.
  • An auxiliary evaporator is found in the rear of a vehicle, and usually serves to provide cold air and therefore thermal comfort to occupants in the rear of the vehicle and/or to provide cold air to electronic components such as batteries, motors, or power modules.
  • a front evaporator can be protected from freezing by using either a cycling clutch fixed displacement compressor or variable displacement compressor in a controlled system.
  • the temperature of the evaporator is controlled by a system utilizing either a feedback signal from a temperature sensor mounted in the evaporator fins (or immediately downstream in the air path from the evaporator); or by reaction to a signal received based upon pressure measurements from a low side refrigerant path (e.g. evaporator return line).
  • Current technology has attempted to control auxiliary evaporator freezing through an electromechanical refrigerant valve which is cycled or regulated in a similar manner to a fixed displacement compressor; whereas the compressor/clutch is cycled on and off.
  • the present invention provides for a method and HVAC system design with a simpler and/or more efficient freeze protection function.
  • Various aspects also reduce the possibility of acoustic phenomena (evaporator hiss for instance) due to refrigerant system cycling (via valve or compressor clutch), from occurring as it functions in a different manner from the prior art and the refrigerant flow is not interrupted or changed.
  • the present invention in various aspects, relates to a method and a device to prevent freezing of an auxiliary evaporator in an HVAC system utilizing more than one evaporator.
  • HVAC systems having an auxiliary heat exchanger, and, in particular an auxiliary evaporator, in addition to the primary heat exchanger, such as evaporator lack an adequate way to assure correct functioning at minimum temperatures that can be reached in mild operating conditions.
  • auxiliary evaporators in such systems can freeze when run at a lower evaporator load condition relative to the primary evaporator.
  • Auxiliary evaporator freeze can result in reduced passenger comfort, evaporator failures including rupture due to freeze/thaw cycles, odor complaints, and performance complaints such as loss of cold air and airflow.
  • the present invention in various aspects, provide for an HVAC system having a temperature sensing device, and a method for altering and/or controlling auxiliary evaporator temperature in an HVAC unit.
  • air flows through the heat exchangers of an automotive HVAC unit, having been pulled, pushed or otherwise drawn through the unit, prior to coming out of the evaporator (being ‘discharged’). Air, therefore, is discharged downstream of the heat exchanger.
  • air is discharged downstream of an auxiliary heat exchanger of the HVAC unit, and the temperature of the discharged air or surface temperature of the heat exchanger is measured via a temperature sensing device.
  • the temperature sensing device monitors the temperature and sends a signal to a control device.
  • the control device causes a response to be sent out as a command to the blower device based on the relative value of the signal.
  • the blower device then causes the speed of the blower, and, therefore, the flow volume of the discharged air to be increased, linearly or by increments, for example, percent of full speed until the temperature of the sensing device, is above a predetermined threshold value.
  • aspects of the present invention include, therefore, a method for regulating the temperature of an heat exchanger of an automotive HVAC system, having a blower and a temperature sensing device capable of detecting temperatures that drop below a desired minimum operating temperature, by: measuring the surface temperature or the discharge air temperature of the heat exchanger using the temperature sensing device; detecting temperature conditions where the temperature in or around the heat exchanger drop below that minimum; sending a signal from the temperature sensing device to a control logic device; calculating a response to send as a command from the control logic device to the blower motor or blower motor controller based on the signal; increasing incrementally or linearly the airflow volume from the blower device in response to the response signal, thereby altering the operating temperature of the heat exchanger by the increased flow of air through the heat exchanger; and, preventing the temperature of the heat exchanger from reaching or being sustained at defined threshold level in normal operation.
  • the blower device has a motor
  • the parameter or parameters to be regulated or controlled are selected from the group consisting of speed
  • developed control strategies utilize a thermistor or other temperature sensing device capable of providing a signal corresponding to the propensity of the evaporator to reach freezing temperatures.
  • the temperature sensing device is generally located in, on or just downstream of the auxiliary evaporator.
  • a temperature sensing device can be a detector, such as an infra-red or other such a device, or sensor, or any device capable of directly or indirectly determining the parameters necessary to indicate a danger of “freeze condition” or freezing of an operator unit.
  • An evaporator temperature sensing device such as a thermistor, detects conditions where the auxiliary evaporator could freeze via measuring temperature, and providing such information, as signal to a control device; the control device processes the signal via a control algorithm operation and provides incremental commands that cause specific parameters to be incrementally increased, such as to incrementally increase the auxiliary blower speed to prevent auxiliary evaporator freezing.
  • parameters such as blower motor voltage, operating speed or current may be regulated, depending on the motor technology used, to prevent the freeze condition.
  • brushless blower motors may regulate blower speed based upon a blower speed control set point signal provided by the HVAC control logic.
  • a defined threshold level is correlated to the freezing point of the auxiliary heat exchanger, particularly where the auxiliary heat exchanger is an evaporator.
  • an evaporator thermistor is an existing part of an automotive or air conditioning system, which measures various other parameters for control purposes in the system.
  • control logic involves implementation and validation of software algorithms used for the blower control in response to the thermistor measurements.
  • a temperature sensing device is useful to monitor auxiliary evaporator discharge air temperature, for example, by means of a thermistor (of same design as used for main evaporator freeze protection).
  • thermistor temperature corresponds to the evaporator freeze threshold, (or a certain minimum threshold) the auxiliary blower motor speed is increased until the auxiliary evaporator discharge air temperature is above the freeze threshold.
  • Blower device parameters can be regulated in their responses by varying a supply voltage or a command signal.
  • the parameter to be regulated or controlled can be speed or voltage of the blower motor.
  • control logic device can use control logic that involves implementation and validation of software algorithms used for blower control.
  • the HVAC unit has, in various aspects, other devices that are regulated by one or more control parameters other than blower device parameters.
  • the output of the temperature sensing device affects one or more control parameters other than blower device parameters, it also can affect at least one blower device parameter.
  • aspects of the present invention provide auxiliary evaporator freeze protection without impacting the main evaporator performance.
  • embodiments of the present invention prevent thermal transients of the front AC system associated with rear system cycling using a valve as the refrigerant mass flow rate through the primary evaporator does not change.
  • a second set of actual operating parameters comprises a speed of a blower motor or volume of the air discharged from a blower through an evaporator.
  • a control method is implemented within an HVAC control device, which comprises memory means storing a software program adapted to implement the method and processing means adapted to execute the program, to process received signals, and to generate a command or commands to the blower device, particularly such that the blower device airflow output is affected in an incremental or linear fashion.
  • a control logic device is often located in an auxiliary or main control head of the HVAC module.
  • FIG. 1 shows a schematic diagram of an embodiment of an HVAC system in accordance with an aspect of the present invention
  • FIG. 2 shows a schematic diagram of an embodiment of a device for regulating auxiliary evaporator temperature in an HVAC system in accordance with an aspect of the present invention
  • FIG. 3 shows a schematic cross section of an auxiliary HVAC unit with temperature regulating device, in accordance with an aspect of the present invention.
  • FIG. 1 shows an HVAC system having auxiliary blower/motor ( 1 ) where discharge air passes through an auxiliary evaporator ( 2 ).
  • auxiliary blower/motor 1
  • auxiliary evaporator 2
  • Auxiliary evaporator discharge air flows by a thermal sensing device ( 3 A/ 3 B) located in the evaporator core face or downstream of the auxiliary evaporator.
  • the thermal sensing device transmits a signal to the HVAC control device ( 4 ) which adjusts the blower motor speed, and therefore airflow volume.
  • FIG. 2 describes, schematically, a method according to an aspect of the present invention.
  • the control logic comprises control algorithm operation, for example, a response to a signal which sends a command or so called (Blower motor speed control algorithm.)
  • the evaporator While the refrigerant system of the HVAC system ( 1 ) is operating, the evaporator will operate with a surface temperature dependant upon refrigerant compressor speed, airflow through the evaporator, temperature of the air entering the evaporator, humidity and several other parameters.
  • This temperature ( 2 ) can be measured with various types of sensors, and compared with a desired minimum operating temperature ( 3 ).
  • T evaporator Deficiency ( 4 ) as a positive or negative value
  • An additional boundary ( 5 ) can be applied allowing only controller actions to increase the evaporator temperature.
  • Output signal “Bounded T evaporator Deficiency” is monitored by a controller ( 6 ) (in this instance an integrating controller) that computes a bias value associated with the signal properties.
  • Tuning parameter ( 7 ) in the form of “Blower Bias Gain” is applied to allow for varying the aggressiveness of the algorithm.
  • a “Bias Limiter” ( 8 ) is applied to limit the maximum bias that may be added by the algorithm to a specified value ( 9 ).
  • “Bias” value is added ( 10 ) to the baseline blower command resulting in an incremental or linear increase of the blower speed command depending on the application.
  • the higher operating speed of the blower will cause an increase of the airflow through the evaporator resulting in an increased air discharge and increased heat transfer from the air to the evaporator. This raises the operating temperature of the evaporator core.
  • FIG. 3 shows an auxiliary HVAC unit ( 30 ), having auxiliary blower device ( 33 ), an auxiliary evaporator ( 31 ) downstream of auxiliary blower. Temperature sensing device ( 32 ) is found downstream of auxiliary evaporator ( 31 ). Optional blend door ( 36 ) and heater core ( 34 ) and outlet grill ( 35 ) are shown in illustration.
  • a blower device parameter is regulated in its response by varying a supply voltage or a command signal
  • the temperature sensing device for example, is a thermistor, thermocouple, or infra-red sensor
  • the auxiliary evaporator core average temperature is, under appropriate circumstances, operated at a time averaged temperature above 0° centigrade.

Abstract

A method and HVAC system having a heat exchanger and a device for adjusting parameters of an HVAC system via an algorithm, in an incremental or linear fashion, is provided. Various aspects provide a method for altering and/or controlling auxiliary evaporator temperature in an automotive HVAC unit and an HVAC system having an HVAC unit with a blower and a temperature sensing device capable of detecting temperatures that drop below a desired minimum operating temperature and sending a corresponding signal, ultimately preventing evaporator freezing.

Description

    FIELD OF THE INVENTION
  • The present invention relates to control strategies for heat exchangers, and specifically, evaporators, used in air conditioning systems.
  • BACKGROUND OF THE INVENTION
  • An automotive heating, ventilation, and air conditioning (HVAC) system usually comprises heat exchangers such as an evaporator for cooling air and a heater-core for heating air. The evaporator is designed to transfer heat from the incoming air to the passenger compartment in order to cool the passengers and defog the windows of the vehicle. The cold air flows from the evaporator and is discharged through vents into the compartment of the vehicle. Auxiliary evaporators are used to provide cold air to passengers in seating locations other than the front row, or to electronic components such as batteries, motors, cold storage areas or power modules.
  • Heat exchangers such as evaporators function at varying temperatures due to outside environment conditions. For example, evaporators have a tendency to reach freezing temperatures (below 0° C.) while functioning in an automotive HVAC unit under low load conditions, such as low inlet air temperature, low relative humidity of the inlet air, and/or reduced airflow rates through the evaporator due to blower speed changes.
  • Control strategies in production exist to prevent auxiliary evaporator freeze in air conditioning systems having primary and auxiliary evaporators as part of the system. In general, auxiliary evaporator freeze-up is abated or reduced by using a refrigerant valve operated with a solenoid, whereby as the temperature decreases the refrigerant valve closes to stop the flow of refrigerant to the auxiliary evaporator thereby eliminating or reducing the heat transfer medium. This solenoid is operated in a manner similar to the compressor clutch in a front HVAC evaporator system utilizing a cycling clutch freeze protection strategy.
  • In the automotive contexts, an HVAC system is often found having front and auxiliary heat exchangers, such as evaporators. A front evaporator is found in front of the automotive vehicle, and usually serves to provide cold air and therefore, thermal comfort to the occupants in the front row and to provide dehumidified air to defog the windshield and front side windows. An auxiliary evaporator is found in the rear of a vehicle, and usually serves to provide cold air and therefore thermal comfort to occupants in the rear of the vehicle and/or to provide cold air to electronic components such as batteries, motors, or power modules. A front evaporator can be protected from freezing by using either a cycling clutch fixed displacement compressor or variable displacement compressor in a controlled system. The temperature of the evaporator is controlled by a system utilizing either a feedback signal from a temperature sensor mounted in the evaporator fins (or immediately downstream in the air path from the evaporator); or by reaction to a signal received based upon pressure measurements from a low side refrigerant path (e.g. evaporator return line). Current technology has attempted to control auxiliary evaporator freezing through an electromechanical refrigerant valve which is cycled or regulated in a similar manner to a fixed displacement compressor; whereas the compressor/clutch is cycled on and off.
  • The present invention provides for a method and HVAC system design with a simpler and/or more efficient freeze protection function. Various aspects also reduce the possibility of acoustic phenomena (evaporator hiss for instance) due to refrigerant system cycling (via valve or compressor clutch), from occurring as it functions in a different manner from the prior art and the refrigerant flow is not interrupted or changed.
  • SUMMARY OF THE PRESENT INVENTION
  • The present invention, in various aspects, relates to a method and a device to prevent freezing of an auxiliary evaporator in an HVAC system utilizing more than one evaporator.
  • Though prior art control system may have desired end effects on heat exchange surface temperatures, it has been found that HVAC systems having an auxiliary heat exchanger, and, in particular an auxiliary evaporator, in addition to the primary heat exchanger, such as evaporator, lack an adequate way to assure correct functioning at minimum temperatures that can be reached in mild operating conditions. For example, auxiliary evaporators in such systems can freeze when run at a lower evaporator load condition relative to the primary evaporator. Auxiliary evaporator freeze can result in reduced passenger comfort, evaporator failures including rupture due to freeze/thaw cycles, odor complaints, and performance complaints such as loss of cold air and airflow.
  • The present invention, in various aspects, provide for an HVAC system having a temperature sensing device, and a method for altering and/or controlling auxiliary evaporator temperature in an HVAC unit. In general, air flows through the heat exchangers of an automotive HVAC unit, having been pulled, pushed or otherwise drawn through the unit, prior to coming out of the evaporator (being ‘discharged’). Air, therefore, is discharged downstream of the heat exchanger. In various aspects of the present invention, air is discharged downstream of an auxiliary heat exchanger of the HVAC unit, and the temperature of the discharged air or surface temperature of the heat exchanger is measured via a temperature sensing device. The temperature sensing device monitors the temperature and sends a signal to a control device. The control device causes a response to be sent out as a command to the blower device based on the relative value of the signal. The blower device then causes the speed of the blower, and, therefore, the flow volume of the discharged air to be increased, linearly or by increments, for example, percent of full speed until the temperature of the sensing device, is above a predetermined threshold value.
  • Aspects of the present invention include, therefore, a method for regulating the temperature of an heat exchanger of an automotive HVAC system, having a blower and a temperature sensing device capable of detecting temperatures that drop below a desired minimum operating temperature, by: measuring the surface temperature or the discharge air temperature of the heat exchanger using the temperature sensing device; detecting temperature conditions where the temperature in or around the heat exchanger drop below that minimum; sending a signal from the temperature sensing device to a control logic device; calculating a response to send as a command from the control logic device to the blower motor or blower motor controller based on the signal; increasing incrementally or linearly the airflow volume from the blower device in response to the response signal, thereby altering the operating temperature of the heat exchanger by the increased flow of air through the heat exchanger; and, preventing the temperature of the heat exchanger from reaching or being sustained at defined threshold level in normal operation. In various aspects of the present invention, where the blower device has a motor, the parameter or parameters to be regulated or controlled are selected from the group consisting of speed, current or voltage of the blower motor.
  • In aspects of the present invention, developed control strategies utilize a thermistor or other temperature sensing device capable of providing a signal corresponding to the propensity of the evaporator to reach freezing temperatures. The temperature sensing device, is generally located in, on or just downstream of the auxiliary evaporator. A temperature sensing device can be a detector, such as an infra-red or other such a device, or sensor, or any device capable of directly or indirectly determining the parameters necessary to indicate a danger of “freeze condition” or freezing of an operator unit.
  • An evaporator temperature sensing device, such as a thermistor, detects conditions where the auxiliary evaporator could freeze via measuring temperature, and providing such information, as signal to a control device; the control device processes the signal via a control algorithm operation and provides incremental commands that cause specific parameters to be incrementally increased, such as to incrementally increase the auxiliary blower speed to prevent auxiliary evaporator freezing. For example, parameters such as blower motor voltage, operating speed or current may be regulated, depending on the motor technology used, to prevent the freeze condition. For example, brushless blower motors may regulate blower speed based upon a blower speed control set point signal provided by the HVAC control logic. In various aspects of the present invention, a defined threshold level is correlated to the freezing point of the auxiliary heat exchanger, particularly where the auxiliary heat exchanger is an evaporator.
  • In various aspects of the invention, an evaporator thermistor is an existing part of an automotive or air conditioning system, which measures various other parameters for control purposes in the system. In aspects of the present invention, control logic involves implementation and validation of software algorithms used for the blower control in response to the thermistor measurements.
  • A temperature sensing device is useful to monitor auxiliary evaporator discharge air temperature, for example, by means of a thermistor (of same design as used for main evaporator freeze protection). When thermistor temperature corresponds to the evaporator freeze threshold, (or a certain minimum threshold) the auxiliary blower motor speed is increased until the auxiliary evaporator discharge air temperature is above the freeze threshold.
  • Blower device parameters can be regulated in their responses by varying a supply voltage or a command signal. In various aspects of the present invention, wherein the blower device has a motor, the parameter to be regulated or controlled can be speed or voltage of the blower motor. Also in various aspects wherein control logic device is present, the control logic device can use control logic that involves implementation and validation of software algorithms used for blower control.
  • The HVAC unit has, in various aspects, other devices that are regulated by one or more control parameters other than blower device parameters. In aspects wherein the output of the temperature sensing device affects one or more control parameters other than blower device parameters, it also can affect at least one blower device parameter.
  • In automotive HVAC systems having auxiliary evaporators, the use of the methods of regulating of the heat exchangers, in accordance with the present invention, reduce or prevent auxiliary system thermal transients or variation in the temperature of the air discharged from the auxiliary evaporator due to cycling which occurs in prior art solutions to the problem of auxiliary evaporator freeze control wherein a refrigerant valve is used.
  • In automotive HVAC system having auxiliary heat exchangers, and, in particular, evaporators, aspects of the present invention provide auxiliary evaporator freeze protection without impacting the main evaporator performance. In such a system, embodiments of the present invention prevent thermal transients of the front AC system associated with rear system cycling using a valve as the refrigerant mass flow rate through the primary evaporator does not change.
  • In an embodiment of the invention, a second set of actual operating parameters comprises a speed of a blower motor or volume of the air discharged from a blower through an evaporator. The advantage of this embodiment of the present invention is to provide a method to prevent auxiliary evaporator freeze-up which requires the use of a single temperature sensing device. Therefore, the present invention can be implemented at low cost.
  • Preferably, a control method is implemented within an HVAC control device, which comprises memory means storing a software program adapted to implement the method and processing means adapted to execute the program, to process received signals, and to generate a command or commands to the blower device, particularly such that the blower device airflow output is affected in an incremental or linear fashion. A control logic device is often located in an auxiliary or main control head of the HVAC module.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a schematic diagram of an embodiment of an HVAC system in accordance with an aspect of the present invention;
  • FIG. 2 shows a schematic diagram of an embodiment of a device for regulating auxiliary evaporator temperature in an HVAC system in accordance with an aspect of the present invention;
  • FIG. 3 shows a schematic cross section of an auxiliary HVAC unit with temperature regulating device, in accordance with an aspect of the present invention.
  • DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS OF THE PRESENT INVENTION
  • FIG. 1 shows an HVAC system having auxiliary blower/motor (1) where discharge air passes through an auxiliary evaporator (2). Auxiliary evaporator discharge air flows by a thermal sensing device (3A/3B) located in the evaporator core face or downstream of the auxiliary evaporator. The thermal sensing device transmits a signal to the HVAC control device (4) which adjusts the blower motor speed, and therefore airflow volume.
  • FIG. 2 describes, schematically, a method according to an aspect of the present invention. The control logic comprises control algorithm operation, for example, a response to a signal which sends a command or so called (Blower motor speed control algorithm.)
  • While the refrigerant system of the HVAC system (1) is operating, the evaporator will operate with a surface temperature dependant upon refrigerant compressor speed, airflow through the evaporator, temperature of the air entering the evaporator, humidity and several other parameters.
  • This temperature (2) can be measured with various types of sensors, and compared with a desired minimum operating temperature (3).
  • A temperature below the selected minimum is referred to as “Tevaporator Deficiency” (4) as a positive or negative value
  • An additional boundary (5) can be applied allowing only controller actions to increase the evaporator temperature.
  • Output signal “Bounded Tevaporator Deficiency” is monitored by a controller (6) (in this instance an integrating controller) that computes a bias value associated with the signal properties.
  • Tuning parameter (7) in the form of “Blower Bias Gain” is applied to allow for varying the aggressiveness of the algorithm.
  • A “Bias Limiter” (8) is applied to limit the maximum bias that may be added by the algorithm to a specified value (9).
  • “Bias” value is added (10) to the baseline blower command resulting in an incremental or linear increase of the blower speed command depending on the application.
  • The higher operating speed of the blower will cause an increase of the airflow through the evaporator resulting in an increased air discharge and increased heat transfer from the air to the evaporator. This raises the operating temperature of the evaporator core.
  • FIG. 3 shows an auxiliary HVAC unit (30), having auxiliary blower device (33), an auxiliary evaporator (31) downstream of auxiliary blower. Temperature sensing device (32) is found downstream of auxiliary evaporator (31). Optional blend door (36) and heater core (34) and outlet grill (35) are shown in illustration.
  • As can be envisioned from the above, when a blower device parameter is regulated in its response by varying a supply voltage or a command signal, and the temperature sensing device, for example, is a thermistor, thermocouple, or infra-red sensor, the auxiliary evaporator core average temperature is, under appropriate circumstances, operated at a time averaged temperature above 0° centigrade.
  • Unless stated otherwise, dimensions and geometries of the various structures depicted herein are not intended to be restrictive of the invention, and other dimensions or geometries are possible. Plural structural components can be provided by a single integrated structure. Alternatively, a single integrated structure might be divided into separate plural components. In addition, while a feature of the present invention may have been described in the context of only one of the illustrated embodiments, such feature may be combined with one or more other features of other embodiments, for any given application. It will also be appreciated from the above that the fabrication of the unique structures herein and the operation thereof also constitute methods in accordance with the present invention.
  • The preferred embodiment of the present invention has been disclosed. A person of ordinary skills in the art would realize, however, that certain modifications will come within the teachings of this invention. Therefore, the following claims should be studied to determine the true scope and content of the invention.

Claims (17)

1. A method for regulating the temperature of a heat exchanger of an automotive HVAC system, having an HVAC module with a blower and a temperature sensing device capable of detecting temperatures that drop below a desired minimum operating temperature, the method comprising:
measuring the surface temperature or the discharge air temperature of the heat exchanger using the temperature sensing device;
sending a signal from the temperature sensing device to a control logic device;
detecting temperature conditions where the temperature in or around the heat exchanger drops below the minimum operating temperature;
calculating a response to send as a command from the control logic device to the blower motor or blower motor controller based on the signal; and
increasing incrementally or linearly the airflow volume from the blower device in response to the response signal;
thereby altering the operating temperature of the heat exchanger by the increased flow of air through the heat exchanger, and preventing the temperature of the heat exchanger from reaching, or being sustained at, the minimum operating temperature in normal operation.
2. The method according to claim 1 wherein the heat exchanger is located in an auxiliary HVAC module and wherein the temperature sensing device is located on or in the auxiliary HVAC module.
3. The method according to claim 2 wherein the control logic device is located in an auxiliary or main control head of the HVAC module.
4. The method according to claim 2 wherein the temperature sensing device is downstream of the evaporator.
5. The method according to claim 4 wherein the defined threshold level is correlated to the freezing point of the auxiliary heat exchanger, and wherein the auxiliary heat exchanger is an evaporator.
6. The method according to claim 5 wherein a blower device parameter is regulated in its response by varying a supply voltage or a command signal.
7. The method according to claim 6 wherein the blower device has a motor, and wherein the parameter regulated or controlled is the speed, current or voltage of the blower motor.
8. The method according to claim 7 wherein the control logic device uses control logic that involves implementation and validation of software algorithms used for blower control.
9. The method according to claim 5 wherein the temperature sensing device is located downstream or in the discharge air face of the auxiliary evaporator.
10. The method according to claim 6 wherein the temperature sensing device is a thermistor, a thermocouple, or an infra-red sensor.
11. The method according to claim 6 wherein the HVAC system has other devices that are regulated by one or more control parameters other than blower device parameters.
12. The method according to claim 11 wherein the output of the temperature sensing device affects one or more control parameters other than blower device parameters, as well as at least one blower device parameter.
13. The method according to claim 10 wherein the auxiliary evaporator core average temperature is operated at a time averaged temperature above 0° centigrade.
14. An HVAC system, comprising:
an auxiliary HVAC module having a temperature sensing device and an evaporator;
a blower device; and
a control device;
wherein the temperature sensing device sends out a signal to the control device to ultimately prevent freezing of the evaporator.
15. The HVAC system according to claim 14 wherein the temperature sensing device is downstream the evaporator, and the blower device provides for discharged air through the evaporator.
16. The HVAC system according to claim 15 wherein the control device implements a control method to generate a command or commands to the blower device.
17. The HVAC system according to claim 16 wherein the command or commands are such that the amount of airflow provided by the blower device is affected in an incremental or linear fashion.
US11/411,301 2006-04-26 2006-04-26 HVAC heat exchanger freeze control means Abandoned US20070251251A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/411,301 US20070251251A1 (en) 2006-04-26 2006-04-26 HVAC heat exchanger freeze control means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/411,301 US20070251251A1 (en) 2006-04-26 2006-04-26 HVAC heat exchanger freeze control means

Publications (1)

Publication Number Publication Date
US20070251251A1 true US20070251251A1 (en) 2007-11-01

Family

ID=38647027

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/411,301 Abandoned US20070251251A1 (en) 2006-04-26 2006-04-26 HVAC heat exchanger freeze control means

Country Status (1)

Country Link
US (1) US20070251251A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120042685A1 (en) * 2009-03-20 2012-02-23 Axa Power Aps Preconditioned air unit with self-contained cooling modules
WO2011133234A3 (en) * 2010-04-19 2012-05-03 Nidec Motor Corporation Blower motor for hvac systems
US20130248166A1 (en) * 2012-03-21 2013-09-26 Delphi Technologies, Inc. Phase change material evaporator charging control
US20150017900A1 (en) * 2012-10-30 2015-01-15 Halla Visteon Climate Control Corp. Windowpane defogging device for a motor vehicle and windowpane defogging method using the same
US20150114614A1 (en) * 2013-10-29 2015-04-30 Lennox Industries Inc. Mixed air temperature sensor bypass
US20150246594A1 (en) * 2012-09-18 2015-09-03 Denso Corporation Air conditioner for vehicle
US20150267953A1 (en) * 2014-03-21 2015-09-24 Lennox Industries Inc. System for operating an hvac system having tandem compressors
JP2017150695A (en) * 2016-02-23 2017-08-31 株式会社デンソー Evaporator
US10655877B2 (en) * 2018-01-22 2020-05-19 Lennox Industries Inc. Evaporator coil protection for HVAC systems
US10823447B2 (en) 2011-10-06 2020-11-03 Lennox Industries Inc. System and method for controlling a blower of an energy recovery ventilator in response to internal air pressure
US20230288087A1 (en) * 2019-09-24 2023-09-14 Lennox Industries Inc. Avoiding Coil Freeze in HVAC Systems

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291542A (en) * 1977-01-19 1981-09-29 A/S Dantherm Air drying apparatus of the condensation type
US4350021A (en) * 1979-11-12 1982-09-21 Ab Volvo Device for preventing icing in an air conditioning unit for motor vehicles
US4949779A (en) * 1990-02-01 1990-08-21 Eaton Corporation Regulating heater discharge air temperature for front and rear passengers in a vehicle
US5065593A (en) * 1990-09-18 1991-11-19 Electric Power Research Institute, Inc. Method for controlling indoor coil freeze-up of heat pumps and air conditioners
US5335551A (en) * 1992-11-12 1994-08-09 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Pillow type pressure detector
US5704217A (en) * 1995-09-22 1998-01-06 Nippondenso Co., Ltd. Air conditioner for vehicle, improved for frost deposition
US6260363B1 (en) * 2000-01-27 2001-07-17 Eaton Corporation Control strategy for operating an on-board vehicle refrigeration system
US6330909B1 (en) * 1998-10-23 2001-12-18 Denso Corporation Vehicle air conditioning system
US6427465B1 (en) * 2000-05-11 2002-08-06 General Motors Corporatoin Compressor control system and method
US6655163B1 (en) * 2002-11-19 2003-12-02 Delphi Technologies, Inc. Dual evaporator air conditioning system and method of use
US6758054B2 (en) * 2002-11-19 2004-07-06 Delphi Technologies, Inc. Dual evaporator air conditioning system and method of use

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291542A (en) * 1977-01-19 1981-09-29 A/S Dantherm Air drying apparatus of the condensation type
US4350021A (en) * 1979-11-12 1982-09-21 Ab Volvo Device for preventing icing in an air conditioning unit for motor vehicles
US4949779A (en) * 1990-02-01 1990-08-21 Eaton Corporation Regulating heater discharge air temperature for front and rear passengers in a vehicle
US5065593A (en) * 1990-09-18 1991-11-19 Electric Power Research Institute, Inc. Method for controlling indoor coil freeze-up of heat pumps and air conditioners
US5335551A (en) * 1992-11-12 1994-08-09 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Pillow type pressure detector
US5704217A (en) * 1995-09-22 1998-01-06 Nippondenso Co., Ltd. Air conditioner for vehicle, improved for frost deposition
US6330909B1 (en) * 1998-10-23 2001-12-18 Denso Corporation Vehicle air conditioning system
US6260363B1 (en) * 2000-01-27 2001-07-17 Eaton Corporation Control strategy for operating an on-board vehicle refrigeration system
US6427465B1 (en) * 2000-05-11 2002-08-06 General Motors Corporatoin Compressor control system and method
US6655163B1 (en) * 2002-11-19 2003-12-02 Delphi Technologies, Inc. Dual evaporator air conditioning system and method of use
US6758054B2 (en) * 2002-11-19 2004-07-06 Delphi Technologies, Inc. Dual evaporator air conditioning system and method of use

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120042685A1 (en) * 2009-03-20 2012-02-23 Axa Power Aps Preconditioned air unit with self-contained cooling modules
US9902505B2 (en) * 2009-03-20 2018-02-27 Axa Power Aps Preconditioned air unit with self-contained cooling modules
WO2011133234A3 (en) * 2010-04-19 2012-05-03 Nidec Motor Corporation Blower motor for hvac systems
CN103038999A (en) * 2010-04-19 2013-04-10 尼得科电机有限公司 Blower motor for hvac systems
US8558493B2 (en) 2010-04-19 2013-10-15 Nidec Motor Corporation Blower motor for HVAC systems
CN105465825A (en) * 2010-04-19 2016-04-06 尼得科电机有限公司 Blower motor for HVAC systems
US10823447B2 (en) 2011-10-06 2020-11-03 Lennox Industries Inc. System and method for controlling a blower of an energy recovery ventilator in response to internal air pressure
US9400510B2 (en) * 2012-03-21 2016-07-26 Mahle International Gmbh Phase change material evaporator charging control
US20130248166A1 (en) * 2012-03-21 2013-09-26 Delphi Technologies, Inc. Phase change material evaporator charging control
US20150246594A1 (en) * 2012-09-18 2015-09-03 Denso Corporation Air conditioner for vehicle
US20150017900A1 (en) * 2012-10-30 2015-01-15 Halla Visteon Climate Control Corp. Windowpane defogging device for a motor vehicle and windowpane defogging method using the same
US9821770B2 (en) * 2012-10-30 2017-11-21 Hanon Systems Windowpane defogging device for a motor vehicle and windowpane defogging method using the same
US9581350B2 (en) * 2013-10-29 2017-02-28 Lennox Industries Inc. Mixed air temperature sensor bypass
US20170122612A1 (en) * 2013-10-29 2017-05-04 Lennox Industries Inc. Mixed air temperature sensor bypass
US10571149B2 (en) * 2013-10-29 2020-02-25 Lennox Industries Inc. Mixed air temperature sensor bypass
US20150114614A1 (en) * 2013-10-29 2015-04-30 Lennox Industries Inc. Mixed air temperature sensor bypass
US9581371B2 (en) * 2014-03-21 2017-02-28 Lennox Industries Inc. System for operating an HVAC system having tandem compressors
US20170167777A1 (en) * 2014-03-21 2017-06-15 Lennox lndustries Inc. System for operating an hvac system having tandem compressors
US20150267953A1 (en) * 2014-03-21 2015-09-24 Lennox Industries Inc. System for operating an hvac system having tandem compressors
US10156396B2 (en) * 2014-03-21 2018-12-18 Lennox Industries Inc. System for operating an HVAC system having tandem compressors
JP2017150695A (en) * 2016-02-23 2017-08-31 株式会社デンソー Evaporator
US10655877B2 (en) * 2018-01-22 2020-05-19 Lennox Industries Inc. Evaporator coil protection for HVAC systems
US20230288087A1 (en) * 2019-09-24 2023-09-14 Lennox Industries Inc. Avoiding Coil Freeze in HVAC Systems

Similar Documents

Publication Publication Date Title
US20070251251A1 (en) HVAC heat exchanger freeze control means
US5072597A (en) Control systems for automotive air conditioning systems
JP5055122B2 (en) System and method for controlling cooling fan based on vehicle speed and pressure of air conditioning system
US7762093B2 (en) Method for controlling variable capacity compressor of air conditioner
US7975496B2 (en) Vehicle air conditioning system
US9517677B2 (en) Vehicle air conditioning system
US20080315000A1 (en) Integrated Controller And Fault Indicator For Heating And Cooling Systems
US20010049943A1 (en) Air-conditioning system for vehicles
JP3596345B2 (en) Refrigeration cycle device and vehicle air conditioner
US7886552B2 (en) Compressor cycle control method for a vehicle air conditioning system
US20140318159A1 (en) Vehicle air conditioning system
US20080022704A1 (en) Air conditioner and method of controlling air conditioner
JP2005009794A (en) Freezing cycle control device
GB2389920A (en) Controlling vehicle air conditioner during fuel cut control
US20120152515A1 (en) Air conditioner for vehicle
US20170129311A1 (en) Air conditioning system and method of controlling the same
JP5786484B2 (en) Air conditioner for vehicles
JP2007032895A (en) Supercritical refrigerating cycle device and its control method
US6378316B2 (en) Method for checking the state of a closed loop air-conditioning system comprising a variable-throughput compressor
US9157672B2 (en) Device for controlling a fixed-capacity compressor
JP3155045B2 (en) Vehicle air conditioner
US8104300B2 (en) Method for adjusting a natural refrigeration cycle rate of an air conditioner
KR102383479B1 (en) Air conditioner of vehicle with improved performance in low temperature region and controlling method for air conditioner of vehicle in low temperature region
JP2007153055A (en) Air conditioning system for vehicle
JP4264293B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
AS Assignment

Owner name: VALEO CLIMATE CONTROL CORP., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WOJDYLA, CHRISTOPHER J.;ATWATER, JONATHAN T.;REEL/FRAME:017815/0993

Effective date: 20060426

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION