US20070012575A1 - Bright rhodium electrodeposition - Google Patents

Bright rhodium electrodeposition Download PDF

Info

Publication number
US20070012575A1
US20070012575A1 US11/179,269 US17926905A US2007012575A1 US 20070012575 A1 US20070012575 A1 US 20070012575A1 US 17926905 A US17926905 A US 17926905A US 2007012575 A1 US2007012575 A1 US 2007012575A1
Authority
US
United States
Prior art keywords
containing heterocyclic
organic compound
heterocyclic organic
nitrogen
electroplating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/179,269
Inventor
Ronald Morrissey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technic Inc
Original Assignee
Technic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technic Inc filed Critical Technic Inc
Priority to US11/179,269 priority Critical patent/US20070012575A1/en
Assigned to TECHNIC, INC. reassignment TECHNIC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MORRISSEY, DR. RONALD J.
Publication of US20070012575A1 publication Critical patent/US20070012575A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • C25D3/52Electroplating: Baths therefor from solutions of platinum group metals characterised by the organic bath constituents used

Definitions

  • Brightening Agents the effect of which is to reduce the average grain size of the electrodeposit.
  • specular reflectivity, or brightness the specular reflectivity of the deposit which in turn allows the deposit to be plated with high reflectivity to thicknesses greater than possible in the absence of the brightening agent.
  • specular reflectivity or brightness
  • the increase in specular reflectivity resulting from the use of a brightening agent is not uniform across the spectral range of interest. In such a case, the perceived color of the electrodeposit will change, as well as the reflectivity.
  • a suitable brightening agent for rhodium would be one which would increase the specular reflectivity of the deposit while preserving its uniform spectral response in the visible spectral range.
  • Phenolsulfonic acid is not believed to have ever been commercialized as a brightening agent for rhodium.
  • Lead and thallium in small (parts per million) quantities have been used as whitening agents for rhodium electrodeposits. These do not increase the specular reflectivity of the deposits, and they appear to be effective only at low deposit thicknesses. Additionally, selenic acid, sulfamic acid, and magnesium sulfamate are used to control stress in rhodium electrodeposits. The mechanisms by which these operate are not well understood. They do not appear to affect the reflectivity of the deposits.
  • a suitable brightening agent for rhodium electrodeposits i.e., one which is capable of increasing the specular reflectivity of the deposit while preserving or increasing its perceived whiteness of color. It is an object of this invention to provide such a brightening agent or agents. It is a further object of the invention to provide such a brightening agent or agents capable of allowing rhodium electrodeposits of improved specular reflectivity and perceived whiteness of color to be plated to increased thicknesses as are required for engineering as well as for decorative applications.
  • the brightening agent or agents thus provided be capable of operating in all of the electroplating systems commonly employed for rhodium; namely, the phosphate, sulfate, or mixed phosphate-sulfate systems.
  • This invention relates to aqueous electroplating solutions for the deposition of rhodium and to the use thereof, in which solutions rhodium is contained in the form of a soluble compound of rhodium with phosphate or sulfate; said solutions also containing an excess of phosphoric acid, sulfuric acid, or mixtures thereof; said solutions also containing a nitrogen-bearing heterocylic organic compound at least one nitrogen of which is incorporated into a six-membered aromatic ring.
  • the nitrogen-bearing heterocyclic organic compounds of this invention include or are derived from pyridine, picoline, pyrimidine, pyridazine, or pyrazine.
  • Compounds of this class brighten rhodium electrodeposits at threshold concentration ratios as low as 0.25 milligram per gram of rhodium (0.025 percent w/w).
  • maximum whiteness of deposit appearance is maintained up to concentration ratios about three to five times the threshold level, after which the deposit color gradually darkens, beginning at the lowest current densities. Brightness of the deposit is maintained to concentration ratios over 50 times the threshold value.
  • various members of the class produce somewhat different degrees of deposit brightness and whiteness. In all cases tested, however, the basic pattern demonstrated has been the same.
  • the present invention is directed to an electroplating solution for obtaining bright white rhodium electrodeposits.
  • the solution comprises rhodium in the form of a soluble sulfate or phosphate compound, together with an excess quantity of sulfuric acid, phosphoric acid, or mixtures of the two, and the improvement over known solutions of this type comprises the addition of one or more nitrogen-containing heterocyclic organic compounds, at least one nitrogen of which is incorporated into a six-membered aromatic ring.
  • Particularly preferred nitrogen-containing heterocyclic compounds include the following:
  • derivatives thereof are defined as simple derivatives of the basic structures, particularly as illustrated above. These derivatives replace one or more hydrogen atoms with another group selected from at least the following; halogen (Br, Cl, I, F), amino, nitro, hydroxy, hydroxy-C 1 -C 6 alkyl, methoxy, cyano, benzyloxy, carboxy, benzoyl, N-oxide, mercapto, thiobenzyl, vinyl, phenylethyl, thio, and the like.
  • halogen Br, Cl, I, F
  • Example 1 A solution was made up as in Example 1 except additionally containing 2.64 milligrams of pyridine. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 1. The resulting deposit was white and mirror-bright across the entire panel.
  • Example 1 A solution was made up as in Example 1 except additionally containing 13.2 milligrams of pyridine 3-sulfonic acid. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 1. The resulting deposit was white and mirror-bright across the entire panel.
  • Example 1 A solution was made up as in Example 1 except additionally containing 2.64 milligrams of nicotinamide. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 1. The resulting deposit was white and mirror-bright across the entire panel.
  • Example 1 A solution was made up as in Example 1 except additionally containing 13.2 milligrams of 2-picoline. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 1. The resulting deposit was white and mirror-bright across the entire panel.
  • Example 1 A solution was made up as in Example 1 except additionally containing 13.2 milligrams of pyrimidine. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 1. The resulting deposit was white and mirror-bright across the entire panel.
  • Example 1 A solution was made up as in Example 1 except additionally containing 2.64 milligrams of pyridazine. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 1. The resulting deposit was white and mirror-bright across the entire panel.
  • Example 1 A solution was made up as in Example 1 except additionally containing 2.64 milligrams of pyrazine. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 1. The resulting deposit was white and mirror-bright across the entire panel.
  • a solution was made up as in Example 1 except containing 10 grams rhodium per liter, rather than 5.28 grams per liter, in the form of rhodium sulfate.
  • a gold-struck brass coupon of area 12.9 cm2 was plated at 10 mA/cm2 for two hours at 50° C. in this solution in a 1 liter beaker with spinbar agitation.
  • the deposit weight was 0.3048 grams, indicating an approximate thickness of 19 micrometers.
  • the deposit appearance was matte grey.
  • Example 9 The experiment of Example 9 was repeated using a solution to which had been added 0.13 gram pyridine 3-sulfonic acid per liter.
  • the deposit weight obtained was 0.2138 grams, indicating an approximate thickness of 13 micrometers.
  • the deposit appearance was bright white.
  • Example 11 A solution was made up as in Example 11 except additionally containing 26.4 milligrams of pyridine 3-sulfonic acid. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 11. The deposit obtained was white and mirror-bright across the entire panel.
  • Example 13 A solution was made up as in Example 13 except additionally containing 2.64 milligrams of pyrazinamide. A 267 ml aliquot of this solution was plated in a Hull cell at 0.5 ampere for 5 minutes at 50° C. using moving-vane agitation. The resulting deposit was white and mirror-bright across the entire panel.

Abstract

Disclosed is an electroplating solution for obtaining bright white rhodium electrodeposits, said solution containing rhodium in the form of a soluble sulfate or phosphate compound, together with an excess quantity of sulfuric acid, phosphoric acid, or mixtures of the two; the improvement of which is the addition of one or more nitrogen-containing heterocyclic organic compounds, in which at least one nitrogen is incorporated into a six-membered aromatic ring.

Description

    BACKGROUND OF THE INVENTION
  • Smooth surfaces of rhodium exhibit a specular reflectivity of approximately 80 percent throughout the visible spectral range, resulting in a brilliant white appearance. Of the precious metals, only silver exhibits a higher reflectivity over this spectral range; but since silver is subject to tarnishing and rhodium is not, rhodium is ordinarily the coating of choice, even as a thin overplate on silver itself.
  • In electroplating it is common practice to employ various additives, referred to as Brightening Agents, the effect of which is to reduce the average grain size of the electrodeposit. Ordinarily such grain size reduction results in increased specular reflectivity, or brightness, of the deposit which in turn allows the deposit to be plated with high reflectivity to thicknesses greater than possible in the absence of the brightening agent. It sometimes happens, however, that the increase in specular reflectivity resulting from the use of a brightening agent is not uniform across the spectral range of interest. In such a case, the perceived color of the electrodeposit will change, as well as the reflectivity. Since whiteness of appearance in rhodium electrodeposits is considered highly desirable, a suitable brightening agent for rhodium would be one which would increase the specular reflectivity of the deposit while preserving its uniform spectral response in the visible spectral range.
  • Additives for rhodium electroplating solutions have been discussed by Safranek (1). Only phenolsulfonic acid is cited as a brightening agent. This material had been investigated by Wiesner and Meers (2) who reported its effective concentration range to be 1-1.5 milligrams per gram of rhodium in the plating solution (0.1-0.15 percent w/w). In rhodium plating solutions containing 5.28 grams rhodium metal per liter together with 33 milliliters concentrated sulfuric acid per liter, addition of 0.1 percent w/w of phenolsulfonic acid at 50° C. yields deposits more reflective but somewhat darker in color than deposits from the same solution without additives. Addition of phenolsulfonic acid at ratios of 0.25 percent w/w and over causes the deposit coloration to become progressively darker blue. Phenolsulfonic acid is not believed to have ever been commercialized as a brightening agent for rhodium.
  • Lead and thallium in small (parts per million) quantities have been used as whitening agents for rhodium electrodeposits. These do not increase the specular reflectivity of the deposits, and they appear to be effective only at low deposit thicknesses. Additionally, selenic acid, sulfamic acid, and magnesium sulfamate are used to control stress in rhodium electrodeposits. The mechanisms by which these operate are not well understood. They do not appear to affect the reflectivity of the deposits.
  • At this point there does not appear to exist a suitable brightening agent for rhodium electrodeposits, i.e., one which is capable of increasing the specular reflectivity of the deposit while preserving or increasing its perceived whiteness of color. It is an object of this invention to provide such a brightening agent or agents. It is a further object of the invention to provide such a brightening agent or agents capable of allowing rhodium electrodeposits of improved specular reflectivity and perceived whiteness of color to be plated to increased thicknesses as are required for engineering as well as for decorative applications. It is yet a further object that the brightening agent or agents thus provided be capable of operating in all of the electroplating systems commonly employed for rhodium; namely, the phosphate, sulfate, or mixed phosphate-sulfate systems.
  • SUMMARY OF THE INVENTION
  • This invention relates to aqueous electroplating solutions for the deposition of rhodium and to the use thereof, in which solutions rhodium is contained in the form of a soluble compound of rhodium with phosphate or sulfate; said solutions also containing an excess of phosphoric acid, sulfuric acid, or mixtures thereof; said solutions also containing a nitrogen-bearing heterocylic organic compound at least one nitrogen of which is incorporated into a six-membered aromatic ring.
  • The nitrogen-bearing heterocyclic organic compounds of this invention include or are derived from pyridine, picoline, pyrimidine, pyridazine, or pyrazine. Compounds of this class brighten rhodium electrodeposits at threshold concentration ratios as low as 0.25 milligram per gram of rhodium (0.025 percent w/w). Typically, maximum whiteness of deposit appearance is maintained up to concentration ratios about three to five times the threshold level, after which the deposit color gradually darkens, beginning at the lowest current densities. Brightness of the deposit is maintained to concentration ratios over 50 times the threshold value. As might be expected, various members of the class produce somewhat different degrees of deposit brightness and whiteness. In all cases tested, however, the basic pattern demonstrated has been the same.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As described above, the present invention is directed to an electroplating solution for obtaining bright white rhodium electrodeposits. In preferred embodiments, the solution comprises rhodium in the form of a soluble sulfate or phosphate compound, together with an excess quantity of sulfuric acid, phosphoric acid, or mixtures of the two, and the improvement over known solutions of this type comprises the addition of one or more nitrogen-containing heterocyclic organic compounds, at least one nitrogen of which is incorporated into a six-membered aromatic ring. Particularly preferred nitrogen-containing heterocyclic compounds include the following:
  • A. Pyridine and derivatives thereof;
  • B. Nicotinic acid and derivatives thereof;
  • C. Isonicotinic acid and derivatives thereof;
  • D. Nicotinamide and derivatives thereof;
  • E. Pyridine 3-sulfonic acid and derivatives thereof;
  • F. 3-Pyridylacrylic acid and derivatives thereof;
  • G. 2-Aminopyridine and derivatives thereof;
  • H. 3-Aminopyridine and derivatives thereof;
  • I. Picoline and derivatives thereof;
  • J. Picolinic acid and derivatives thereof;
  • K. Pyrimidine and derivatives thereof;
  • L. 2-Aminopyrimidine and derivatives thereof;
  • M. Pyridazine and derivatives thereof;
  • N. 3,6-Dihydroxypyridazine and derivatives thereof;
  • O. Pyrazine and derivatives thereof;
  • P. Pyrazinamide and derivatives thereof;
  • As used herein, the terms “derivatives thereof” are defined as simple derivatives of the basic structures, particularly as illustrated above. These derivatives replace one or more hydrogen atoms with another group selected from at least the following; halogen (Br, Cl, I, F), amino, nitro, hydroxy, hydroxy-C1-C6 alkyl, methoxy, cyano, benzyloxy, carboxy, benzoyl, N-oxide, mercapto, thiobenzyl, vinyl, phenylethyl, thio, and the like.
  • The following examples describe various preferred embodiments of the present invention.
  • EXAMPLE 1
  • Sufficient water was used to form one liter of a solution containing 5.28 grams of rhodium metal in the form of rhodium sulfate, together with 33 milliliters of concentrated sulfuric acid. A 267 ml aliquot of this solution was plated in a Hull cell at 0.5 ampere for 5 minutes at 50° C. using moving-vane agitation. The resulting deposit was white and bright up to an indicated current density of about 7.5 amperes per square foot, above which the deposit was hazy and yellowish in appearance up to the upper current density edge.
  • EXAMPLE 2
  • A solution was made up as in Example 1 except additionally containing 2.64 milligrams of pyridine. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 1. The resulting deposit was white and mirror-bright across the entire panel.
  • EXAMPLE 3
  • A solution was made up as in Example 1 except additionally containing 13.2 milligrams of pyridine 3-sulfonic acid. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 1. The resulting deposit was white and mirror-bright across the entire panel.
  • EXAMPLE 4
  • A solution was made up as in Example 1 except additionally containing 2.64 milligrams of nicotinamide. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 1. The resulting deposit was white and mirror-bright across the entire panel.
  • EXAMPLE 5
  • A solution was made up as in Example 1 except additionally containing 13.2 milligrams of 2-picoline. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 1. The resulting deposit was white and mirror-bright across the entire panel.
  • EXAMPLE 6
  • A solution was made up as in Example 1 except additionally containing 13.2 milligrams of pyrimidine. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 1. The resulting deposit was white and mirror-bright across the entire panel.
  • EXAMPLE 7
  • A solution was made up as in Example 1 except additionally containing 2.64 milligrams of pyridazine. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 1. The resulting deposit was white and mirror-bright across the entire panel.
  • EXAMPLE 8
  • A solution was made up as in Example 1 except additionally containing 2.64 milligrams of pyrazine. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 1. The resulting deposit was white and mirror-bright across the entire panel.
  • EXAMPLE 9
  • A solution was made up as in Example 1 except containing 10 grams rhodium per liter, rather than 5.28 grams per liter, in the form of rhodium sulfate. A gold-struck brass coupon of area 12.9 cm2 was plated at 10 mA/cm2 for two hours at 50° C. in this solution in a 1 liter beaker with spinbar agitation. The deposit weight was 0.3048 grams, indicating an approximate thickness of 19 micrometers. The deposit appearance was matte grey.
  • EXAMPLE 10
  • The experiment of Example 9 was repeated using a solution to which had been added 0.13 gram pyridine 3-sulfonic acid per liter. The deposit weight obtained was 0.2138 grams, indicating an approximate thickness of 13 micrometers. The deposit appearance was bright white.
  • EXAMPLE 11
  • Sufficient water was used to form one liter of a solution containing 2.64 grams of rhodium metal in the form of rhodium phosphate, together with 40 milliliters or concentrated phosphoric acid. A 267 ml aliquot of this solution was plated in a Hull cell at 0.5 ampere for 5 minutes at 50° C. using moving-vane agitation. The resulting deposit was reflective dark grey below about 3 amperes per square foot indicated, and hazy lighter gray at current densities above 3 amperes per square foot.
  • EXAMPLE 12
  • A solution was made up as in Example 11 except additionally containing 26.4 milligrams of pyridine 3-sulfonic acid. A 267 ml aliquot of this solution was plated in a Hull cell under conditions identical to those described in Example 11. The deposit obtained was white and mirror-bright across the entire panel.
  • EXAMPLE 13
  • Sufficient water was used to form one liter of a solution containing 2.11 grams rhodium metal in the form of rhodium sulfate, together with 13.2 milliliters of concentrated sulfuric acid and also 26.4 milliliters of concentrated phosphoric acid. A 267 ml aliquot of this solution was plated in a Hull cell at 0.5 ampere for 5 minutes at 50° C., using moving-vane agitation. The resulting deposit was white and bright below about 3 amperes per square foot indicated, and hazy and yellowish in appearance from about 3 amperes per square foot indicated up to the upper current density edge.
  • EXAMPLE 14
  • A solution was made up as in Example 13 except additionally containing 2.64 milligrams of pyrazinamide. A 267 ml aliquot of this solution was plated in a Hull cell at 0.5 ampere for 5 minutes at 50° C. using moving-vane agitation. The resulting deposit was white and mirror-bright across the entire panel.
  • It will be understood by those skilled in the art that the Examples cited herein are illustrative of the invention, but that they do not represent the totality of the useful embodiments thereof. Not all derivatives of the nitrogen-containing heterocyclic organic compounds of this invention are readily available, but they can be prepared using well known synthetic methods. For one commercial source for a number of such compounds see, http://www.flint.com.cn/products/Pyridine.htm. All of the derivatives tested herein, however, have been effective for the purposes of this invention.
  • REFERENCES
    • (1) W. H. Safranek, The Properties of Electrodeposited Metals and Alloys, 2nd Ed., American Electroplaters and Surface Finishers Society, Orlando, Fla., 1986, pp. 396-407
    • (2) H. J. Wiesner and H. A. Meers, Plating, 43 (3) 347-356 (1956)

Claims (44)

1. An electroplating solution for the deposition of rhodium; said solution containing rhodium in the form of a soluble sulfate or phosphate, together with an excess of sulfuric acid, phosphoric acid, or mixtures of the two;
the improvement of which comprises the addition of one or more nitrogen-containing heterocyclic organic compounds, in which at least one nitrogen is incorporated into a six-membered aromatic ring.
2. The electroplating solution of claim 1, wherein rhodium is in the form of rhodium sulfate.
3. The electroplating solution of claim 1, wherein the rhodium is in the form of rhodium phosphate.
4. The electroplating solution of claims 1, 2 or 3, wherein the electrolyte is sulfuric acid.
5. The electroplating solution of claims 1, 2 or 3, wherein the electrolyte is phosphoric acid.
6. The electroplating solution of claims 1, 2 or 3, wherein the electrolyte is a mixture of sulfuric and phosphoric acids.
7. The electroplating solution of claims 1, 2 or 3, wherein the nitrogen-containing heterocyclic organic compound is pyridine or a derivative thereof.
8. The electroplating solution of claim 7, wherein the nitrogen containing heterocyclic organic compound is nicotinic acid.
9. The electroplating solution of claim 7, wherein the nitrogen containing heterocyclic organic compound is isonicotinic acid.
10. The electroplating solution of claim 7, wherein the nitrogen containing heterocyclic organic compound is nicotinamide.
11. The electroplating solution of claim 7, wherein the nitrogen containing heterocyclic organic compound is pyridine 3-sulfonic acid.
12. The electroplating solution of claim 7, wherein the nitrogen containing heterocyclic organic compound is 3-pyridylacrylic acid.
13. The electroplating solution of claim 7, wherein the nitrogen containing heterocyclic organic compound is 2-aminopyridine.
14. The electroplating solution of claim 7, wherein the nitrogen containing heterocyclic organic compound is 3-aminopyridine.
15. The electroplating solution of claim 7, wherein the nitrogen containing heterocyclic organic compound is picoline.
16. The electroplating solution of claim 7, wherein the nitrogen containing heterocyclic organic compound is picolinic acid.
17. The electroplating solution of claims 1, 2 or 3, wherein the nitrogen-containing heterocyclic organic compound is pyrimidine or a derivative thereof.
18. The electroplating solution of claim 17, wherein the nitrogen containing heterocyclic organic compound is 2-aminopyrimidine.
19. The electroplating solution of claims 1, 2 or 3, wherein the nitrogen-containing heterocyclic organic compound is pyridazine or a derivative thereof.
20. The electroplating solution of claim 19, wherein the nitrogen containing heterocyclic organic compound is 3,6-dihydroxypyridazine.
21. The electroplating solution of claims 1, 2 or 3, wherein the nitrogen-containing heterocyclic organic compound is pyrazine or a derivative thereof.
22. The electroplating solution of claim 21, wherein the nitrogen containing heterocyclic organic compound is pyrazinamide.
23. An electroplating process comprising the steps of:
(a) immersing a substrate in an electroplating solution containing rhodium in the form of a soluble sulfate or phosphate, together with an excess of sulfuric acid, phosphoric acid, or mixtures of the two; wherein the solution further comprises one or more nitrogen-containing heterocyclic organic compounds, in which at least one nitrogen is incorporated into a six-membered aromatic ring; and
(b) applying a cathodic current to the substrate for the purpose of obtaining a bright and white deposit of rhodium thereon.
24. The electroplating process of claim 23, wherein rhodium is in the form of rhodium sulfate.
25. The electroplating process of claim 23, wherein the rhodium is in the form of rhodium phosphate.
26. The electroplating process of claims 23, 24 or 25, wherein the electrolyte is sulfuric acid.
27. The electroplating process of claims 23, 24 or 25, wherein the electrolyte is phosphoric acid.
28. The electroplating process of claims 23, 24 or 25, wherein the electrolyte is a mixture of sulfuric and phosphoric acids.
29. The electroplating process of claims 23, 24 or 25, wherein the nitrogen-containing heterocyclic organic compound is pyridine or a derivative thereof.
30. The electroplating process of claim 29, wherein the nitrogen containing heterocyclic organic compound is nicotinic acid.
31. The electroplating process of claim 29, wherein the nitrogen containing heterocyclic organic compound is isonicotinic acid.
32. The electroplating process of claim 29, wherein the nitrogen containing heterocyclic organic compound is nicotinamide.
33. The electroplating process of claim 29, wherein the nitrogen containing heterocyclic organic compound is pyridine 3-sulfonic acid.
34. The electroplating process of claim 29, wherein the nitrogen containing heterocyclic organic compound is 3-pyridylacrylic acid.
35. The electroplating process of claim 29, wherein the nitrogen containing heterocyclic organic compound is 2-aminopyridine.
36. The electroplating process of claim 29, wherein the nitrogen containing heterocyclic organic compound is 3-aminopyridine.
37. The electroplating process of claim 29, wherein the nitrogen containing heterocyclic organic compound is picoline.
38. The electroplating process of claim 29, wherein the nitrogen containing heterocyclic organic compound is picolinic acid.
39. The electroplating process of claims 23, 24 or 25, wherein the nitrogen-containing heterocyclic organic compound is pyrimidine or a derivative thereof.
40. The electroplating process of claim 39, wherein the nitrogen containing heterocyclic organic compound is 2-aminopyrimidine.
41. The electroplating process of claims 23, 24 or 25, wherein the nitrogen-containing heterocyclic organic compound is pyridazine or a derivative thereof.
42. The electroplating process of claim 41, wherein the nitrogen containing heterocyclic organic compound is 3,6-dihydroxypyridazine.
43. The electroplating process of claims 23, 24 or 25, wherein the nitrogen-containing heterocyclic organic compound is pyrazine or a derivative thereof.
44. The electroplating process of claim 43, wherein the nitrogen containing heterocyclic organic compound is pyrazinamide.
US11/179,269 2005-07-12 2005-07-12 Bright rhodium electrodeposition Abandoned US20070012575A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/179,269 US20070012575A1 (en) 2005-07-12 2005-07-12 Bright rhodium electrodeposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/179,269 US20070012575A1 (en) 2005-07-12 2005-07-12 Bright rhodium electrodeposition

Publications (1)

Publication Number Publication Date
US20070012575A1 true US20070012575A1 (en) 2007-01-18

Family

ID=37660676

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/179,269 Abandoned US20070012575A1 (en) 2005-07-12 2005-07-12 Bright rhodium electrodeposition

Country Status (1)

Country Link
US (1) US20070012575A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2401331A (en) * 1944-05-29 1946-06-04 Nasa Acid rhodium plating
US2895889A (en) * 1957-01-10 1959-07-21 Sel Rex Precious Metals Inc Low stress electrodeposited rhodium
US3775267A (en) * 1973-01-04 1973-11-27 Bell Telephone Labor Inc Electrodeposition of rhodium
US4402802A (en) * 1981-01-03 1983-09-06 Dequssa Aktiengesellschaft Electrolytic bath for the deposition of rhodium coatings
US4789437A (en) * 1986-07-11 1988-12-06 University Of Hong Kong Pulse electroplating process
US6241870B1 (en) * 1999-05-06 2001-06-05 Lucent Technologies Inc. Rhodium sulfate compounds and rhodium plating
US6455175B1 (en) * 2000-07-06 2002-09-24 Honeywell International Inc. Electroless rhodium plating
US6878411B2 (en) * 1999-12-23 2005-04-12 Umicore Galvanotechnik Gmbh Bath for the electrochemical deposition of high-gloss white rhodium coatings and whitening agent for the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2401331A (en) * 1944-05-29 1946-06-04 Nasa Acid rhodium plating
US2895889A (en) * 1957-01-10 1959-07-21 Sel Rex Precious Metals Inc Low stress electrodeposited rhodium
US3775267A (en) * 1973-01-04 1973-11-27 Bell Telephone Labor Inc Electrodeposition of rhodium
US4402802A (en) * 1981-01-03 1983-09-06 Dequssa Aktiengesellschaft Electrolytic bath for the deposition of rhodium coatings
US4789437A (en) * 1986-07-11 1988-12-06 University Of Hong Kong Pulse electroplating process
US6241870B1 (en) * 1999-05-06 2001-06-05 Lucent Technologies Inc. Rhodium sulfate compounds and rhodium plating
US6878411B2 (en) * 1999-12-23 2005-04-12 Umicore Galvanotechnik Gmbh Bath for the electrochemical deposition of high-gloss white rhodium coatings and whitening agent for the same
US6455175B1 (en) * 2000-07-06 2002-09-24 Honeywell International Inc. Electroless rhodium plating

Similar Documents

Publication Publication Date Title
CA2883815C (en) Plating solution and plating process for multi-layer cyanide-free plating copper-tin alloy coating, and coins made by the process
US3580820A (en) Palladium-nickel alloy plating bath
JP2016172933A (en) Electroplating bath and method for producing dark chromium layers
JP5882540B2 (en) Nickel or nickel alloy direct current electroplating bath for depositing semi-bright nickel or nickel alloy, method for electroplating, and use of the bath and compound therefor
JP2001519480A (en) Programmed pulse electroplating
US20060137991A1 (en) Method for bronze galvanic coating
JP2011520037A (en) Improved copper-tin electrolyte and bronze layer deposition method
JPH05271980A (en) Palladium-nickel alloy plating liquid
US5534129A (en) Cyanidic-alkaline baths for the galvanic deposition of copper-tin alloy coatings, uses thereof, and metallic bases coated with said copper-tin alloy coating
EP3765658B1 (en) Electroplated products and electroplating bath for providing such products
US6528185B2 (en) Cobalt-tungsten-phosphorus alloy diffusion barrier coatings, methods for their preparation, and their use in plated articles
JPS5932554B2 (en) Acidic plating solution
JPS61190089A (en) Bath for precipitation of gold/indium/alloy film by electroplating
US3671408A (en) Rhodium-platinum plating bath and process
US4104137A (en) Alloy plating
US20070012575A1 (en) Bright rhodium electrodeposition
JPS6250560B2 (en)
US3892638A (en) Electrolyte and method for electrodepositing rhodium-ruthenium alloys
JP2722328B2 (en) White Palladium Electroplating Bath and Method
NO782166L (en) GALVANIC PLATING PROCEDURE AND PLATING BATH FOR CARRYING OUT THE PROCEDURE
EP0871801B1 (en) Electroplating processes compositions and deposits
KR20090123928A (en) Electrolyte and method for depositing decorative and technical layers of black ruthenium
CN110785516A (en) Nickel electroplating bath for depositing decorative nickel coatings on substrates
US5792565A (en) Multiple layered article having a bright copper layer
US4297179A (en) Palladium electroplating bath and process

Legal Events

Date Code Title Description
AS Assignment

Owner name: TECHNIC, INC., RHODE ISLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MORRISSEY, DR. RONALD J.;REEL/FRAME:016306/0887

Effective date: 20050714

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION