US20060131007A1 - Heat exchanger and method of manufacturing - Google Patents

Heat exchanger and method of manufacturing Download PDF

Info

Publication number
US20060131007A1
US20060131007A1 US11/284,530 US28453005A US2006131007A1 US 20060131007 A1 US20060131007 A1 US 20060131007A1 US 28453005 A US28453005 A US 28453005A US 2006131007 A1 US2006131007 A1 US 2006131007A1
Authority
US
United States
Prior art keywords
tubes
heat exchanger
heat exchange
heat
exchange elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/284,530
Other languages
English (en)
Inventor
Jens Nies
Frank Opferkuch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modine Manufacturing Co
Original Assignee
Modine Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modine Manufacturing Co filed Critical Modine Manufacturing Co
Publication of US20060131007A1 publication Critical patent/US20060131007A1/en
Assigned to MODINE MANUFACTURING COMPANY reassignment MODINE MANUFACTURING COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NIES, JENS, OPFERKUCH, FRANK
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • B29C65/46Joining a heated non plastics element to a plastics element heated by induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53465Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat said single flat elements being provided with holes facing the tube ends, e.g. for making heat-exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0366Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/065Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/18Heat-exchangers or parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0273Cores having special shape, e.g. curved, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements

Definitions

  • the present invention is directed toward heat exchangers, and particularly toward heat exchangers having plastic components.
  • DE 33 02 150 A1 discloses one example of a heat exchanger having flat metal tubes and flat metal ribs having the contour of the openings corresponding to the flat tubes.
  • One flat tube each is inserted through each opening of a stack of ribs so that a heat exchanger block is formed by a number of tubes that are passed through a stack of ribs.
  • the heat exchanger also has side parts made of plastic and a bottom part viewed as a collecting tank, which also consists of plastic.
  • the soldering process often required to produce heat exchangers is avoided by this structure, thereby advantageously allowing the significant energy requirements, related costs and environmental burdens of soldering processes to be avoided.
  • DE 37 28 303 A1 discloses a heat exchanger having round tubes and heat exchange elements (flat or corrugated ribs) made of plastic, which were produced in one piece with the tubes. This heat exchanger can also be produced without soldering, but heat exchange efficiency is not ideal.
  • WO 00/43722 A1 also teaches round tubes made of plastic, without heat exchange elements between the tubes, where the tubes run in close wave-like rows to increase heat transfer between the cooling air flowing around the tubes and the charge air flowing in the tubes by deflecting the cooling air several times. Heat exchange efficiency is not ideal with this structure either.
  • a heat exchanger that can have either metal or plastic tubes is described in EP 191 956 A1.
  • the material to be used for the other components of the heat exchanger, especially for the heat exchange element, is not mentioned there, although it can be concluded from the configuration shown in the figures that it was produced from plastic.
  • the heat exchanger has no collecting tanks but the heat exchanger block is situated in a housing and is traversed in cross-flow by the two heat exchange media. Its heat exchange efficiency is also not ideal.
  • the present invention is directed toward overcoming one or more of the problems set forth above.
  • a heat exchanger including at least one collecting tank for input and output of a first heat transfer medium, a plurality of plastic tubes receiving the first heat transfer medium from the at least one collecting tank and outputting the first heat transfer medium to the at least one collecting tank, and a plurality of metal heat exchange elements between the tubes and in heat exchange contact with the tubes and a second heat transfer medium.
  • the tubes have walls, and at least some of the heat exchange elements are incorporated in the tube walls.
  • the corrugated ribs have wave crests and wave troughs, and the crests and troughs are embedded in the tube walls whereby the crests and troughs lie in furrows of the walls.
  • the wave crests and wave troughs have protrusions which penetrate into the tube walls.
  • the protrusions pass through the tube walls.
  • the tubes are extruded flat tubes.
  • the tubes are multi-chamber tubes.
  • the heat exchange elements are corrugated ribs.
  • the ribs are produced from one of the group consisting of an aluminum sheet and a non-ferrous heavy-metal sheet.
  • the heat exchange elements are flat ribs having protruding fins with the ends of the fins incorporated in walls of the tubes.
  • metal internal inserts are in the plastic tubes.
  • a method of producing a heat exchanger such as described above is provided, with the tubes and heat exchange elements assembled in a heat exchanger block, comprising the steps of (1) heating the heat exchange element to plasticize the tubes at least at the contact sites between the tubes and the heat exchange elements, and (2) producing intimate contact between the tube and the heat exchange element.
  • the heating step is accomplished by an electrical induction current.
  • the heat exchange elements are corrugated ribs with wave crests and wave troughs and, during the heating step, heat input is concentrated on the wave crests and wave troughs.
  • cooling within the tubes is accomplished during the heating step.
  • the cooling is accomplished by compressed air in the tubes.
  • FIG. 1 is a front view of a heat exchanger embodying the present invention
  • FIG. 2 is an enlarged cross-sectional view of a corner of the heat exchanger of FIG. 1 ;
  • FIG. 3 is a view of the tube ends of the heat exchanger
  • FIG. 4 is another cross-section through the FIG. 1 heat exchanger, running through one of the ribs.
  • FIG. 5 is an enlarged cross-sectional view of one of the tubes according to one embodiment of the present invention.
  • FIG. 6 is an illustration of the joining of a corrugated rib and a flat tube according to the present invention.
  • FIG. 7 is a cross-sectional view of a wall of a flat tube and an associated corrugated rib in another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a tube and associated rib according to another embodiment of the present invention.
  • FIG. 9 is a top view of a curved heat exchange block according to an embodiment of the present invention.
  • FIG. 10 is an exploded view of a tube and a heat exchanger element having protrusions according to an embodiment of the present invention.
  • FIG. 11 is a view from the side of FIG. 10 showing the heat exchanger element and protrusion
  • FIGS. 12 and 13 illustrate another embodiment of the present invention with another heat exchanger element
  • FIG. 14 is a schematic illustrating the production of a heat exchanger core according to the present invention.
  • FIG. 15 is a cross-sectional view of yet another flat tube and heat exchanger element combination with which the present invention may be used.
  • Heat exchangers 20 variously embodying the present invention are illustrated in the Figures. Such heat exchangers 20 can be advantageously used, for example, in a vehicle as a radiator, a charge air cooler or an oil cooler, but it should be understood that heat exchangers incorporating the present invention may advantageously be used in other applications as well
  • the heat exchanger has a heat exchanger block 22 assembled from flat tubes 26 and heat exchange elements (corrugated ribs 28 ).
  • the flat tubes 26 are a suitable, for example, one with the designation PA 6.6 which has proven to be particularly suitable in heat exchangers in the aforementioned area of application.
  • Extruded flat tubes are prescribed as the flat tubes 26 of the illustrated example, with the corrugated ribs 28 produced from sheet aluminum (though brass or copper or nonferrous heavy-metal sheets are other suitable alternatives) such as are already known and available.
  • the term “tube” according to the present invention may mean essentially all forms and designs of lines in which a medium can flow and exchange heat with a medium flowing outside of the line.
  • corrugated ribs in the present context includes all wave-like heat exchange elements, regardless of the design of the individual waves, wavelength, wave height, etc.
  • so-called rectangular plates also could be considered to be corrugated ribs for the purpose of this application.
  • the heat exchanger of the illustrated embodiment has two collecting tanks 30 and 32 arranged on opposite ends 36 of the flat tubes 26 .
  • the collecting tanks 30 , 32 as illustrated are inlet and outlet collecting tanks, although it will be understood by those skilled in the art that in some applications a single tank could serve as both the inlet and outlet.
  • a partition divides the collecting tank into an inlet and outlet collecting tank part and, in such cases, only one so-called deflection tank can be situated on the opposite end 36 of flat tube 26 or the ends 36 of flat tubes 26 can be closed, in which case the flat tubes 26 then advantageously have at least one internal partition. If a deflecting tank is provided, the partition in the tubes can be dispensed with, so that some tubes of the heat exchanger block are allocated to the inlet collecting tank part and other tubes to the outlet collecting tank part.
  • the collecting tanks 30 , 32 may also advantageously consist of plastic.
  • the ends 36 of the flat tubes 26 may be inserted into openings of the collecting tanks 30 , 32 or into openings of tube bottoms that are part of the collecting tanks 30 , 32 , with a suitable stable and tight fastening therebetween provided by, for example, by welding or gluing ( FIG. 2 ).
  • the heat exchanger 20 may also have side plates 38 on opposite sides lying against the outermost corrugated ribs 28 , with the plate ends connected to the collecting tanks 30 and 32 such as is known in the art.
  • part of the corrugated ribs 28 are embedded or incorporated in the wall 40 of the flat tubes 26 .
  • the wave crests 44 and the wave troughs 46 even pass through the walls 40 of adjacent flat tubes 26 , with the walls 40 perforated slit-like. It should be appreciated that, with this practical example, the tightness of the connections of wave crest 44 or wave trough 46 to wall 40 should be carefully controlled since a coolant is situated within the flat tubes 26 which must not leak through the connections. If necessary, good heat-conducting adhesives can also be used.
  • FIG. 5 arrows pointing from the bottom up in the interior of flat tube 26 show the coolant flowing in direct contact with the wave crests 44 and wave troughs 46 of the corrugated ribs 28 so that very good heat exchange efficiency is achieved.
  • the arrows in FIG. 5 also illustrate that flow of the coolant is disturbed by the inward extending parts of the corrugated ribs 28 , whereby heat exchange efficiency is additionally influenced in a positive way.
  • a heat exchanger of the described type is a distinct progress relative to the prior art in almost any relation, both in terms of cost-effective production and in terms of excellent heat exchange efficiency.
  • the heat exchanger also has a comparatively limited weight and may be readily adapted to different applications (i.e., the necessary design changes can be converted to a specific product with relatively limited expense).
  • the flat tubes 26 are multi-chamber tubes produced, for example, by an extrusion method.
  • Two separation joints 56 in each flat tube 26 form three chambers, with the wall thickness “s” (see FIG. 5 ) of the flat tube 26 advantageously lying in a range well below 1 mm.
  • Any suitable manufacturing methods for plastic tubes able to make the tubes with such wall thicknesses, including methods able to make smaller wall thicknesses than by extrusion, may be advantageously used in producing the present invention.
  • the wall thickness “s” of the corrugated ribs 28 may advantageously lie in the range from one tenth or even one-hundredth of a millimeter.
  • the flat tubes 26 may, where desired, advantageously be formed with conical broad sides 60 and increasing wall thicknesses rather than parallel sides.
  • the use of such flat tubes 26 permits the heat exchanger to be curved with a contour, rather than a flat heat exchanger block 22 .
  • FIG. 8 also illustrates another concept, wherein the penetration depth T of the corrugated ribs 28 into the wall 40 of the flat tube 26 is correspondingly deeper with increasing wall thickness “s” of the flat tube 26 .
  • a flat heat exchanger block 22 can also be produced in this manner, where the intended thermodynamic effects can be achieved by the fact that the channels between the flat tubes 26 through which the cooling air flows narrow or widen in the direction of cooling air flow. (Narrowing or widening of the channel can be recognized in FIG. 8 in that the “free” height of the corrugated rib 28 on the left side is less than on the right side. The penetration depth T on the left is therefore greater than on the right.
  • Cuts 64 are schematically shown in FIGS. 7 and 8 in the flanks 66 of the corrugated ribs 28 and also in other heat exchange elements 28 in order to ensure increased turbulence in the cooling air and therefore more efficient heat exchange.
  • no perforations are present through the wall 40 of the flat tube 26 , although the wall thickness is advantageously and significantly reduced to improve contact.
  • a wave crest 44 or wave trough 46 is arranged in a furrow 68 formed in the tube walls.
  • FIGS. 12 and 13 illustrate other heat exchange elements 28 having a flat surface 70 from which fins 72 point in the opposite direction protrude from surface at tight spacing.
  • FIG. 12 is a cross-sectional view of the heat exchanger block 22 showing the narrow sides of only two flat tubes 26 .
  • FIG. 13 shows the section through the top of FIG. 12 from which the longitudinal direction of the flat tubes 26 is consequently seen. Both Figures illustrate only features necessary to understand the basic structure disclosed therein.
  • FIG. 15 shows a practical example which is similar to FIG. 13 in terms of the view, wherein each flat tube 26 is formed from two plates 76 with two rods 78 extending along the longitudinal edges of the plates 76 .
  • the corrugated rib 28 penetrates the platex 76 , and the flank of corrugated rib 28 is provided with cuts 64 .
  • the heat exchanger of FIG. 15 also includes a metal insert 80 (made of, e.g., aluminum sheet) within each flat tubes 26 .
  • the insert 80 can also be incorporated in the plates 76 of the flat tubes 26 , in this case from the inside. Such designs are particularly advantageous for air-cooled charge air coolers.
  • FIG. 14 shows a more detailed view of an advantageous production method in which the plastic flat tubes 26 and heat exchange elements 28 are combined into a heat exchanger block 22 .
  • the heat exchanger block 22 is shown roughly in the center of FIG. 14 , with the metal heat transfer elements 28 heated by an induction current as indicated by the bundle of arrows 84 .
  • the walls 40 of the plastic flat tubes 26 are plasticized by heat input at least on the contact sites between the wall 40 and the heat exchange elements 28 whereby they are temporarily converted to a slightly doughy state. This process of plastification can be controlled, for example, by simultaneously supplying compressed cooling air through flat tubes 26 while heating the heat exchange elements 28 .
  • a corresponding ratio between cooling air inside the tubes 26 and heat input into the outer corrugated ribs 28 may be advantageously maintained or adjusted in order to optimize the contact therebetween.
  • a proportioned force is deliberately applied in the direction of the two arrows 86 against the left and right of heat exchanger block 22 whereby intimate contact is established between the tubes 26 and the heat exchange elements 28 .
  • the connections between the flat tubes 26 and the heat exchange elements 28 after completion of the process and a cooling time appear approximately as shown in FIG. 7 and described previously. No perforations on walls 40 are present, and consequently there are no problems with respect to sealing, although it should be appreciated that it would be within the scope of the present invention to otherwise form the connections such as previously described, including the connection of FIG. 5 in which the heat exchange elements 28 pass through wall 40 and reach the interior of flat tubes 26 , and the connection of FIGS. 10 and 11 in which protrusions 48 deeply penetrate walls 40 to ensure intense connection.
  • the production method can initially produce individual subblocks of the subsequent heat exchanger block 22 (e.g., a heat exchange element 28 and one or two tubes 26 ), with the heat exchange element or elements 28 heated and joined to the tube or tubes during production of the subblocks. Matching subblocks can then, as described, be assembled (also by heating) into an entire heat exchanger block 22 at the seams of the subblocks of the heat exchange elements 28 .
  • the heat exchanger block 22 can also be produced by assembling tubes 26 and heat exchange elements 28 in alternation individually. In this case, each individual-added heat exchange element 28 is heated and joined to one or two tubes 26 . Such production may be achieved without having to use a soldering method to produce the heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
US11/284,530 2004-11-24 2005-11-21 Heat exchanger and method of manufacturing Abandoned US20060131007A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04027827.7 2004-11-24
EP20040027827 EP1662223B1 (de) 2004-11-24 2004-11-24 Wärmeübertrager und Herstellungsverfahren

Publications (1)

Publication Number Publication Date
US20060131007A1 true US20060131007A1 (en) 2006-06-22

Family

ID=34927499

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/284,530 Abandoned US20060131007A1 (en) 2004-11-24 2005-11-21 Heat exchanger and method of manufacturing

Country Status (4)

Country Link
US (1) US20060131007A1 (de)
EP (1) EP1662223B1 (de)
DE (1) DE502004003238D1 (de)
ES (1) ES2285340T3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120312029A1 (en) * 2009-12-16 2012-12-13 Brehm Holger Thermoelectric heat exchanger
US20140196606A1 (en) * 2013-01-11 2014-07-17 Norm Pacific Automation Corp. Desiccant wheel dehumidifier and heat exchanger thereof
US20150034287A1 (en) * 2013-08-05 2015-02-05 Behr Gmbh & Co., Kg Heat exchanger for cooling a vehicle battery, in particular for hybrid or electric vehicles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008029455A1 (de) * 2008-06-20 2009-12-24 Mahle International Gmbh Wärmeübertrager
DE102008059737A1 (de) * 2008-12-01 2010-06-02 Behr Gmbh & Co. Kg Kreuzstrom-Wärmetauscher
DE102010056170A1 (de) * 2010-12-24 2012-06-28 Volkswagen Ag Thermoelektrisches Wärmetauschen
DE102016216114A1 (de) 2016-08-26 2018-03-01 Mahle International Gmbh Wärmeübertrager mit einem Wärmeübertragerblock
DE102020211603A1 (de) * 2020-09-16 2022-03-17 Fränkische Industrial Pipes GmbH & Co. KG Vorrichtung zum temperieren eines bauteils und herstellungsverfahren der vorrichtung
DE102020212918A1 (de) 2020-10-13 2022-04-14 Mahle International Gmbh Kühleinrichtung für eine elektrische Vorrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1191175B (it) * 1981-04-15 1988-02-24 Sueddeutsche Kuehler Behr Scambiatore di calore e procedimento per la sua fabbricazione
DE3502972A1 (de) * 1983-08-01 1986-07-31 Karlheinz Dipl.-Phys. Dr. 3300 Braunschweig Raetz Waermeaustauscher fuer die rueckgewinnung von waerme aus luft und gasen
DE3814306C1 (de) * 1988-04-28 1989-10-12 Happel Gmbh & Co, 4690 Herne, De
HUH3679A (en) * 1991-05-02 1993-09-28 Pest Megyei Mueanyagipari Plastic tube
DE50110536D1 (de) * 2000-11-01 2006-09-07 Akg Thermotechnik Gmbh & Co Kg Wärmeaustauscher, insbesondere für Kondensations-Wäschetrockner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120312029A1 (en) * 2009-12-16 2012-12-13 Brehm Holger Thermoelectric heat exchanger
US9291375B2 (en) * 2009-12-16 2016-03-22 Mahle International Gmbh Thermoelectric heat exchanger
US20140196606A1 (en) * 2013-01-11 2014-07-17 Norm Pacific Automation Corp. Desiccant wheel dehumidifier and heat exchanger thereof
US8956447B2 (en) * 2013-01-11 2015-02-17 Norm Pacific Automation Corp. Desiccant wheel dehumidifier and heat exchanger thereof
US20150034287A1 (en) * 2013-08-05 2015-02-05 Behr Gmbh & Co., Kg Heat exchanger for cooling a vehicle battery, in particular for hybrid or electric vehicles

Also Published As

Publication number Publication date
ES2285340T3 (es) 2007-11-16
EP1662223A1 (de) 2006-05-31
EP1662223B1 (de) 2007-03-14
DE502004003238D1 (de) 2007-04-26

Similar Documents

Publication Publication Date Title
US20060131007A1 (en) Heat exchanger and method of manufacturing
US6729389B2 (en) Heat transfer apparatus with zigzag passage
KR100809514B1 (ko) 핀 구조체 및 이 핀 구조체를 내장한 전열관 및 이전열관을 조립한 열 교환기
US6170565B1 (en) Heat exchanger
US9759492B2 (en) Heat exchanger having additional refrigerant channel
US6293337B1 (en) Exhaust gas heat exchanger
CA2392610C (en) Baffled surface cooled heat exchanger
US20060201663A1 (en) Heat exchanger and flat tubes
AU663168B2 (en) Heat exchanger assembly
KR100248615B1 (ko) 열교환기
US7484555B2 (en) Heat exchanger assembly
US6328100B1 (en) Heat exchanger with ribbed flat tubes
US20060131009A1 (en) Heat exchanger, especially for vehicles
US20050161206A1 (en) Heat exchanger with flat tubes
US20120031598A1 (en) Plate heat exchanger
EP2573494B1 (de) Verwendung eines wärmetauschers zur warmwasserversorgung
US20070056720A1 (en) Heat exchanger in particular for motor vehicles
US20040069472A1 (en) Heat exchanger
JPS61202084A (ja) 熱交換器
US6364006B1 (en) Beaded plate for a heat exchanger and method of making same
CN101598505B (zh) 大制冷能力的热交换器
US8151871B2 (en) Heat exchanger
US20040050531A1 (en) Heat exchanger
WO1986007628A1 (en) Heat exchanger and method of making it
CN110530190A (zh) 集管箱及换热器

Legal Events

Date Code Title Description
AS Assignment

Owner name: MODINE MANUFACTURING COMPANY, WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIES, JENS;OPFERKUCH, FRANK;REEL/FRAME:018173/0512

Effective date: 20051124

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION