US20050100494A1 - Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking - Google Patents

Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking Download PDF

Info

Publication number
US20050100494A1
US20050100494A1 US10/909,706 US90970604A US2005100494A1 US 20050100494 A1 US20050100494 A1 US 20050100494A1 US 90970604 A US90970604 A US 90970604A US 2005100494 A1 US2005100494 A1 US 2005100494A1
Authority
US
United States
Prior art keywords
metal
catalyst
composition
zeolite
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/909,706
Inventor
George Yaluris
Michael Ziebarth
Xinjin Zhao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/702,240 external-priority patent/US20050100493A1/en
Application filed by Individual filed Critical Individual
Priority to US10/909,706 priority Critical patent/US20050100494A1/en
Priority to CN2004800327499A priority patent/CN1878855B/en
Priority to CN200910126434.5A priority patent/CN101503632B/en
Priority to CA2544918A priority patent/CA2544918C/en
Priority to AU2004288928A priority patent/AU2004288928B2/en
Priority to EP04810274A priority patent/EP1680484B1/en
Priority to PCT/US2004/036642 priority patent/WO2005047429A1/en
Priority to JP2006538463A priority patent/JP4977469B2/en
Priority to BRPI0416147-5A priority patent/BRPI0416147B1/en
Priority to RU2006119619/04A priority patent/RU2365615C2/en
Priority to KR1020067008710A priority patent/KR101133833B1/en
Priority to SG200900862-4A priority patent/SG150502A1/en
Priority to AT04810274T priority patent/ATE550408T1/en
Publication of US20050100494A1 publication Critical patent/US20050100494A1/en
Priority to TW94125998A priority patent/TWI395614B/en
Priority to ARP050103203 priority patent/AR051556A1/en
Priority to IL174876A priority patent/IL174876A/en
Priority to NO20062598A priority patent/NO20062598L/en
Priority to US12/833,336 priority patent/US9931595B2/en
Priority to IL213527A priority patent/IL213527A0/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/14Silica and magnesia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • B01J35/19
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • C10G11/182Regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/405Limiting CO, NOx or SOx emissions

Definitions

  • the present invention relates to NO x reduction compositions and the method of use thereof to reduce NO x emissions in refinery processes, and specifically in fluid catalytic cracking (FCC) processes. More particularly, the present invention relates to NO x reduction compositions and their method of use to reduce the content of NO x off gases released from a fluid catalytic cracking unit (FCCU) regenerator during the FCC process without a substantial change in hydrocarbon conversion or the yield of valuable cracked products.
  • FCCU fluid catalytic cracking unit
  • FCCU Fluid catalytic cracking units
  • catalyst particles are continuously circulated between a catalytic cracking zone and a catalyst regeneration zone.
  • coke deposited on the cracking catalyst particles in the cracking zone is removed at elevated temperatures by oxidation with oxygen containing gases such as air.
  • oxygen containing gases such as air.
  • the removal of coke deposits restores the activity of the catalyst particles to the point where they can be reused in the cracking reaction.
  • the regenerator flue gas when coke is burned with a deficiency of oxygen, the regenerator flue gas has a high CO/CO 2 ratio and a low level of NO x , but when burned with excess oxygen, the flue gas has a high level of NO x and a reduced CO content.
  • CO and NO x , or mixtures of these pollutants are emitted with the flue gas in varying quantities, depending on such factors as unit feed rate, nitrogen content of the feed, regenerator design, mode of operation of the regenerator, and composition of the catalyst inventory.
  • Additives have also been used in attempts to deal with NO x emissions.
  • U.S. Pat. Nos. 6,379,536, 6,280,607, 6,129,834 and 6,143,167 disclose the use of NO x removal compositions for reducing NO x emissions from the FCCU regenerator.
  • U.S. Pat. Nos. 6,358,881 and 6,165,933 also disclose a NO x reduction composition, which promotes CO combustion during the FCC catalyst regeneration process step while simultaneously reducing the level of NO x emitted during the regeneration step.
  • NO x reduction compositions disclosed by these patents may be used as an additive which is circulated along with the FCC catalyst inventory, or incorporated as an integral component of the FCC catalyst.
  • U.S. Pat. Nos. 4,973,399 and 4,980,052 disclose reducing emissions of NO x from the regenerator of the FCCU by incorporating into the circulating inventory of cracking catalyst separate additive particles containing a copper-loaded zeolite.
  • the FCCU may have insufficient air capacity to burn the extra coke and may result in a lower feed throughput in the unit. If the additive increases the production of low value dry gas, the production of more valuable products may decrease. An increase in dry gas may exceed the ability of the unit to handle it, thus forcing a reduction of the amount of feed processed. While an additive that increases light olefins production may be desirable if the refinery values these products and the unit has the equipment necessary to process the extra light hydrocarbons, the additive may, however, reduce profitability if the refinery's goal is to maximize gasoline production. Light olefins are typically made in the FCCU at the expense of gasoline production. Even an additive which increases unit conversion may be undesirable if it affects product yields, causes the unit to reach an equipment limitation, and/or decreases the amount of feed that can be processed.
  • FCCU fluid catalytic cracking unit
  • FCC fluid catalytic cracking
  • the NO x reduction compositions comprise a particulate composition containing particles of ferrierite zeolite.
  • the ferrierite zeolite may be added as a separate additive particle to a circulating inventory of the cracking catalyst or incorporated directly into the Y-type zeolite containing cracking catalyst as an integral component of the catalyst.
  • the ferrierite zeolite are separate additive particles bound with an inorganic binder.
  • the binder preferably comprises silica, alumina or silica alumina.
  • the ferrierite zeolite is exchanged with hydrogen, ammonium, alkali metal and combinations thereof.
  • the preferred alkali metal is sodium, potassium and combinations thereof.
  • novel ferrierite zeolite-containing NO x reduction compositions are provided which are added to a circulating inventory of the catalytic cracking catalyst as a separate admixture of particles to reduce NO x emissions released from the FCCU regenerator during the FCC process.
  • novel NO x reduction compositions which comprise ferrierite zeolite incorporated as an integral component of the FCC catalyst, preferably containing a Y-type zeolite active component.
  • novel NO x reduction compositions are provided which compositions reduce NO x emissions from the FCCU regenerator during the FCC process while substantially maintaining hydrocarbon conversion and the yield of cracked petroleum products and minimizing an increase in the production of coke.
  • Another aspect of the invention is to provide improved FCC processes for the reduction of the content of NO x in the off gases of the FCCU regenerator without substantially affecting hydrocarbon conversion or the yield of petroleum products produced during the FCC process.
  • the FIGURE is a graphic representation of the effectiveness of Additive A and Additive B, prepared in EXAMPLES 1 and 2, respectively, to reduce NO x emissions from a DCR regenerator versus time on stream, when the additives are blended with a commercially available cracking catalyst (SUPERNOVA®-DMR+, obtained from Grace Davison, Columbia, Md.), which contains 0.25 weight percent of a platinum promoter, CP-3® (obtained from Grace Davison, Columbia, Md.) and which was deactivated using the Cyclic Propylene Steaming procedure as described in EXAMPLE 3.
  • SUPERNOVA®-DMR+ obtained from Grace Davison, Columbia, Md.
  • CP-3® obtained from Grace Davison, Columbia, Md.
  • NO x will be used herein to represent nitric oxide, nitrogen dioxide (the principal noxious oxides of nitrogen) as well as N 2 O 4 , N 2 O 5 and mixtures thereof.
  • the present invention encompasses the discovery that the use of ferrierite zeolite containing NO x reduction compositions in combination with a fluid catalytic cracking (FCC) catalyst, preferably a catalyst comprising an active Y-type zeolite, is very effective for the reduction of NO x emissions released from the FCCU regenerator under FCC process conditions without a substantial change in hydrocarbon feed conversion or the yield of cracked products.
  • the NO x reduction compositions typically comprise a particulate composition containing particles of ferrierite zeolite.
  • the ferrierite particles are bound with an inorganic binder.
  • the novel ferrierite zeolite-containing NO x reduction compositions may be added to the circulating inventory of the catalytic cracking catalyst as a separate particle additive or incorporated as an integral component into the cracking catalyst.
  • the phrase “a substantial change in hydrocarbon feed conversion or the yield of cracked products” is defined herein to mean in the alternative, (i) less than a 50% relative change, preferably less than a 30% relative change and most preferably less than a 15% relative change in the yield of LPG (liquefied petroleum gas) as compared to the baseline yield of the same or substantially the game product; or (ii) less than a 30% relative change, preferably less than a 20% relative change and most preferably less than a 10% relative change in the yield of LCO (light cycle oils), bottoms and gasoline in combination with LPG as compared to the baseline yield of the same or substantially the same products; or (iii) less than a 10% relative change, preferably less than a 6.5% relative change and most preferably less than a 5% relative change in the hydrocarbon feed conversion as compared to the baseline conversion.
  • the conversion is defined as 100% times (1—bottoms yield—LCO yield).
  • the baseline is the mean conversion or yield of a product in the FCCU, operating with the same or substantially the same feed and under the same or substantially the same reaction and unit conditions, but before the additive of the present invention is added to the catalyst inventory.
  • a significant change in the hydrocarbon conversion or yield of cracked products is determined using a baseline defined as the mean conversion or yield of a product in the same or substantially the same FCCU operating with the same or substantially the same feed, under the same or substantially the same reaction and unit conditions, and with a cracking catalyst inventory comprising the same or substantially the same cracking catalyst composition as that containing the NO x reduction composition, except that the NO x reduction composition is replaced in the cracking catalyst with a matrix component such as kaolin or other filler.
  • the percent changes specified above are derived from statistical analysis of DCR operating data.
  • any ferrierite zeolite is useful to prepare the NO x reduction compositions of the invention.
  • the ferrierite zeolite has a surface area of at least 100 m 2 /g, more preferably at least 200 m 2 /g and most preferably at least 300 m 2 /g and a SiO 2 to Al 2 O 3 molar ratio of less than 500, preferably less than 250, most preferably, less than 100.
  • the ferrierite zeolite is exchanged with a material selected from the group consisting of hydrogen, ammonium, alkali metal and combinations thereof, prior to incorporation into the binder or FCC catalyst.
  • the preferred alkali metal is one selected from the group consisting of sodium, potassium and mixtures thereof.
  • the ferrierite zeolite may contain stabilizing amounts, e.g., up to about 25 weight percent, of a stabilizing metal (or metal ion), preferably incorporated into the pores of the zeolite.
  • a stabilizing metal or metal ion
  • Suitable stabilizing metals include, but are not limited to, metals selected from the group consisting of Groups IIA, IIIB, IVB, VB, VIB, VIIB, VIII, IIB, IIIA, IVA, VA, the Lanthanide Series of The Periodic Table, Ag and mixtures thereof.
  • the stabilizing metals are selected from the group consisting of Groups IIIB, IIA, IIB, IIIA and the Lanthanide Series of the Periodic Table, and mixtures thereof.
  • the stabilizing metals are selected from the group consisting of lanthanum, aluminum, magnesium, zinc, and mixtures thereof.
  • the metal may be incorporated into the pores of the ferrierite zeolite by any method known in the art, e.g., ion exchange, impregnation or the like.
  • the Periodic Table referenced herein above is the Periodic Table as published by the American Chemical Society.
  • the amount of ferrierite zeolite used in the NO x reduction compositions of the invention will vary depending upon several factors, including but not limited to, the mode of combining the ferrierite zeolite with the catalytic cracking catalyst and the type of cracking catalyst used.
  • the NO x reduction compositions of the invention are separate catalyst/additive compositions and comprise a particulate composition formed by binding particles of a ferrierite zeolite with a suitable inorganic binder.
  • the amount of ferrierite zeolite present in the particulate NO x reduction compositions is at least 10, preferably at least 30, most preferably at least 40 and even more preferably at least 50, weight percent based on the total weight of the composition.
  • the particulate catalyst/additive composition of the invention contains from about 10 to about 85, preferably from about 30 to about 80, most preferably, from about 40 to about 75, weight percent of ferrierite zeolite based on the total weight of the catalyst/additive composition.
  • Binder materials useful to prepare the particulate compositions of the invention include any inorganic binder which is capable of binding ferrierite zeolite powder to form particles having properties suitable for use in the FCCU under FCC process conditions.
  • Typical inorganic binder materials useful to prepare compositions in accordance with the present invention include, but are not limited to, alumina, silica, silica alumina, aluminum phosphate and the like, and mixtures thereof.
  • the binder is selected from the group consisting of alumina, silica, silica alumina. More preferably, the binder comprises alumina. Even more preferably, the binder comprises an acid or base peptized alumina.
  • the binder comprises an alumina sol, e.g., aluminum chlorohydrol.
  • the amount of binder material present in the particular NO x reduction compositions comprises from about 5 to about 50 weight percent, preferably from about 10 to about 30 weight percent, most preferably from about 15 to about 25 weight percent, of the NO x reduction composition of the invention.
  • Additional materials optionally present in the compositions of the present invention include, but are not limited to, fillers (e.g., kaolin clay) or matrix materials (e.g., alumina, silica, silica alumina, yttria, lanthana, ceria, neodymia, samaria, europia, gadolinia, titania, zirconia, praseodymia and mixtures thereof).
  • the additional materials are used in an amount which does not significantly adversely affect the performance of the compositions to reduce NO x emissions released from the FCCU regenerator under FCC conditions, the hydrocarbon feed conversion or the product yield of the cracking catalyst.
  • the additional materials will comprise no more than about 70 weight percent of the compositions. It is preferred, however, that the compositions of the invention consist essentially of ferrierite and an inorganic binder.
  • Particulate NO x reduction compositions of the invention should have a particle size sufficient to permit the composition to be circulated throughout the FCCU simultaneously with the inventory of cracking catalyst during the FCC process.
  • the composition of the invention will have a mean particle size of greater than 45 ⁇ m.
  • the mean particle size is from about 50 to about 200 ⁇ m, most preferably from about 55 to about 150 ⁇ m, even more preferred from about 60 to about 120 ⁇ m.
  • the compositions of the invention typically have a Davison attrition index (DI) value of less than about 50, preferably less than about 20, most preferably less than about 15.
  • DI Davison attrition index
  • the particulate NO x reduction compositions of the invention are prepared by forming an aqueous slurry containing the ferrierite zeolite, optional zeolite components, the inorganic binder and optional matrix materials, in an amount sufficient to provide at least 10.0 weight percent of ferrierite zeolite and at least 5.0 weight percent of binder material in the final NO x reduction composition and, thereafter, spray drying the aqueous slurry to form particles.
  • the spray-dried particles are optionally dried at a sufficient temperature for a sufficient time to remove volatiles, e.g., at about 90° C. to about 320° C. for about 0.5 to about 24 hours.
  • the ferrierite zeolite containing aqueous slurry is milled prior to spray-drying to reduce the mean particle size of materials contained in the slurry to 10 ⁇ m or less, preferably 5 ⁇ m or less, most preferably 3 ⁇ m or less.
  • the aqueous slurry containing ferrierite zeolite may be milled prior to or after incorporation of the binder and/or matrix materials as desired.
  • the spray-dried composition may be calcined at a temperature and for a time sufficient to remove volatiles and provide sufficient hardness to the binder for use in the FCCU under FCC process conditions, preferably from about 320° C. to about 900° C. from about 0.5 to about 6 hours.
  • the dried or calcined composition is washed or exchanged with an aqueous solution of ammonia or ammonium salt (e.g., ammonium sulfate, nitrate, chloride, carbonate, phosphate and the like), or an inorganic or organic acid (e.g., sulfuric, nitric, phosphoric, hydrochloric, acetic, formic and the like) to reduce the amount of alkaline metals, e.g. sodium or potassium, in the finished product.
  • ammonia or ammonium salt e.g., ammonium sulfate, nitrate, chloride, carbonate, phosphate and the like
  • an inorganic or organic acid e.g., sulfuric, nitric, phosphoric, hydrochloric, acetic, formic and the like
  • Particulate NO x reduction compositions of the invention are circulated in the form of separate particle additives along with the main cracking catalyst throughout the FCCU.
  • the catalyst/additive composition is used in an amount of at least 0.1 weight percent of the FCC catalyst inventory.
  • the amount of the catalyst/additive composition used ranges from about 0.1 to about 75 weight percent, most preferably from about 1 to about 50 weight percent of the FCC catalyst inventory.
  • Separate particle catalyst/additive compositions of the invention may be added to the FCCU in the conventional manner, e.g., with make-up catalyst to the regenerator or by any other convenient method.
  • the ferrierite zeolite is integrated or incorporated into the cracking catalyst particles themselves to provide an integral NO x reduction catalyst system.
  • the ferrierite zeolite may be added to the catalyst at any stage during catalyst manufacturing prior to spray drying the cracking catalyst slurry to obtain the fluid cracking catalyst, regardless of any additional optional or required processing steps needed to finish the cracking catalyst preparation.
  • the ferrierite zeolite, any additional zeolites, the cracking catalyst zeolite, usually USY or REUSY-type, and any matrix materials are slurried in water.
  • the slurry is milled to reduce the mean particle size of solids in the slurry to less than 10 ⁇ m, preferably to less than 5 ⁇ m, most preferably less than 3 ⁇ m.
  • the milled slurry is combined with a suitable inorganic binder, i.e., a silica sol binder, and an optional matrix material, e.g. clay.
  • the resulting slurry is mixed and spray-dried to provide a catalyst material.
  • the spray-dried catalyst is optionally washed using an aqueous solution of ammonium hydroxide, an ammonium salt, an inorganic or organic acid, and water to remove the undesirable salts.
  • the washed catalyst may be exchanged with a water soluble rare-earth salt, e.g., rare-earth chlorides, nitrates and the like.
  • the ferrierite zeolite, optional additional zeolites, the cracking catalyst zeolite, any matrix materials, a rare-earth water soluble salt, clay and alumina sol binder are slurried in water and blended.
  • the slurry is milled and spray-dried.
  • the spray-dried catalyst is calcined at about 250° C. to about 900° C.
  • the spray-dried catalyst may then optionally be washed using an aqueous solution of ammonium hydroxide, an ammonium salt, an inorganic or organic acid, and water to remove the undesirable salts.
  • the catalyst may be exchanged with a water-soluble rare-earth salt after it has been washed, by any of the methods known in the art.
  • the ferrierite zeolite compound When integrated into the FCC catalyst particles, the ferrierite zeolite compound typically represents at least about 0.1 weight percent of the FCC catalyst particle. Preferably, the amount of the ferrierite zeolite used ranges from about 0.1 to about 60 weight percent, most preferably from about 1 to about 40 weight percent, of the FCC catalyst particles.
  • the integrated FCC catalyst will typically comprise the ferrierite zeolite along with the cracking catalyst zeolite, inorganic binder materials and optionally, matrix, fillers, and other additive components such as metals traps (for example, traps for Ni and V) to make up the cracking catalyst.
  • the cracking catalyst zeolite usually a Y. USY or REUSY-type, provides the majority of the cracking activity and is typically present in a range from about 10 to about 75, preferably from about 15 to about 60 and most preferably from about 20 to about 50 weight percent based on the total weight of the composition.
  • Inorganic binder materials useful to prepare integrated catalyst compositions in accordance with the present invention include, any inorganic material capable of binding the components of the integrated catalyst to form particles having properties suitable for use in the FCCU under FCC process conditions.
  • the inorganic binder materials include, but are not limited to, alumina, silica, silica alumina, aluminum phosphate and the like, and mixtures thereof.
  • the binder is selected from the group consisting of alumina, silica, silica alumina.
  • the amount of binder material present in the integrated catalyst composition is less than 50 weight percent, based on the total weight of the catalyst composition.
  • the, amount of binder material present in the integrated catalyst composition ranges from about 5 to about 45 weight percent, most preferably from about 10 to about 30 weight percent and even more preferably from about 15 to about 25 weight percent, based on the total weight of the composition.
  • the matrix materials optionally present in the integrated catalyst compositions of the present invention include, but are not limited to alumina, silica alumina, rare earth oxides such as lanthana, transition metal oxides such as titania, zirconia, and manganese oxide, Group IIA oxides such as magnesium and barium oxides, clays such as kaolin, and mixtures thereof.
  • the matrix or fillers may be present in the integral catalyst in the amount of less than 50 weight percent based on the total weight of the composition.
  • the matrix and fillers, if any, are present in an amount ranging from about 1 to about 45 weight present based on the total weight of the catalyst composition.
  • the particle size and attrition properties of the integral catalyst affect fluidization properties in the unit and determine how well the catalyst is retained in the commercial FCC unit.
  • the integral catalyst composition of the invention typically has a mean particle size of about 45 to about 200 ⁇ m, more preferably from about 50 ⁇ m to about 150 ⁇ m.
  • the attrition properties of the integral catalyst as measured by the Davison Attrition Index (DI), have a DI value of less than 50, more preferably less than 20 and most preferably less than 15.
  • the FCC cracking catalyst contains a Y-type zeolite.
  • the ferrierite zeolite may be added as a separate additive particle to a circulating inventory of the cracking catalyst or incorporated directly into the Y-type zeolite containing cracking catalyst as an integral component of the catalyst. In either case, it is preferred that ferrierite zeolite is present in the final composition in an amount sufficient to provide in the total catalyst inventory a ratio of ferrierite zeolite to Y-type zeolite of less than 2, preferably less than 1.
  • additional zeolite components in the ferrierite zeolite containing NO x reduction compositions of the invention.
  • the additional zeolite component may be any zeolite which does not adversely affect the NO x reduction performance or cause a substantial change in hydrocarbon conversion or cracked product yields during the FCC process.
  • the additional zeolite component is a zeolite having a pore size ranging from about 3 to about 7.2 Angstroms with a SiO 2 to Al 2 O 3 molar ratio of less than about 500, preferably less than 250.
  • the additional zeolite component is a zeolite selected from the group consisting of ZSM-5, ZSM-11, beta, MCM-49, mordenite, MCM-56, Zeolite-L, zeolite Rho, errionite, chabazite, clinoptilolite, MCM-22, MCM-35, MCM-61, Offretite, A, ZSM-12, ZSM-23, ZSM-18, ZSM-22, ZSM-35, ZSM-57, ZSM-61, ZK-5, NaJ, Nu-87, Cit-1, SSZ-35, SSZ-48, SSZ-44, SSZ-23, Dachiardite, Merlinoite, Lovdarite, Levyne, Laumontite, Epistilbite, Gmelonite, Gismondine, Cancrinite, Brewsterite, Stilbite, Paulingite, goosecreekite, Natrolite or mixtures thereof.
  • the additional zeolite component is selected from the group consisting of ZSM-5, ZSM-11, beta, MCM-49, mordenite, MCM-56, Zeolite-L, zeolite Rho, errionite, chabazite, clinoptilolite, MCM-22, MCM-35, Offretite, A, ZSM-12 and mixtures thereof.
  • the additional zeolite component is used in any amount that does not significantly adversely affect the performance of the NO x reduction compositions to reduce NO x emissions and substantially maintain the hydrocarbon conversion or the product yields of the cracking catalyst relative to the use of the cracking catalyst without the catalyst/additive composition.
  • the additional zeolite component is used in an amount ranging from about 1 to about 80, preferably from about 10 to about 70, weight percent of the catalyst/additive composition.
  • the additional zeolite component is preferably used in an amount ranging from about 0.1 to about 60, most preferably from about 1 to about 40, weight percent of the catalyst composition.
  • the FCC process involves the cracking of heavy hydrocarbon feedstocks to lighter products by contact of the feedstock in a cyclic catalyst recirculation cracking process with a circulating fluidizable cracking catalyst inventory consisting of particles having a mean size ranging from about 50 to about 150 ⁇ m, preferably from about 60 to about 120 ⁇ m.
  • the catalytic cracking of these relatively high molecular weight hydrocarbon feedstocks results in the production of a hydrocarbon product of lower molecular weight.
  • the significant steps in the cyclic FCC process are:
  • FCC catalysts include, for example, zeolite based catalysts with a faujasite cracking component as described in the seminal review by Venuto and Habib, Fluid Catalytic Cracking with Zeolite Catalysts, Marcel Dekker, New York 1979, ISBN 0-8247-6870-1, as well as in numerous other sources such as Sadeghbeigi, Fluid Catalytic Cracking Handbook, Gulf Publ. Co. Houston, 1995, ISBN 0-88415-290-1.
  • the FCC catalyst is a catalyst comprising a Y-type zeolite active cracking component.
  • the FCC catalysts consist of a binder, usually silica, alumina, or silica alumina, a Y-type zeolite active component, one or more matrix aluminas and/or silica aluminas, and fillers such as kaolin clay.
  • the Y-type zeolite may be present in one or more forms and may have been ultra stabilized and/or treated with stabilizing cations such as any of the rare-earths.
  • Typical FCC processes are conducted at reaction temperatures of 480° C. to 600° C. with catalyst regeneration temperatures of 600° C. to 800° C.
  • the catalyst regeneration zone may consist of a single or multiple reactor vessels.
  • the compositions of the invention may be used in FCC processing of any typical hydrocarbon feedstock. Suitable feedstocks include petroleum distillates or residuals of crude oils, which when catalytically cracked, provide either a gasoline or a gas oil product. Synthetic feeds having boiling points of about 204° C. to about 816° C., such as oil from coal, tar sands or shale oil, can also be included.
  • oxygen or air is added to the regeneration zone. This is performed by a suitable sparging device in the bottom of the regeneration zone, or if desired, additional oxygen is added to the dilute or dense phase of the regeneration zone.
  • NO x reduction compositions in accordance with the invention dramatically reduce, i.e., by at least 10%, preferably at least 20%, the emissions of NO x in the FCCU regenerator effluent during the catalyst regeneration, while substantially maintaining the hydrocarbon feed conversion or the yield of cracked products, e.g., gasoline and light olefins, obtained from the cracking catalyst.
  • NO x reduction of 90% or greater is readily achievable using the compositions and method of the invention without significantly affecting the cracked products yields or feed conversion.
  • the extent of NO x reduction will depend on such factors as, for example, the composition and amount of the additive utilized; the design and the manner in which the catalytic cracking unit is operated, including but not limited to oxygen level and distribution of air in the regenerator, catalyst bed depth in the regenerator, stripper operation and regenerator temperature, the properties of the hydrocarbon feedstock cracked, and the presence of other catalytic additives that may affect the chemistry and operation of the regenerator.
  • the effectiveness of the process of the invention may be expected to vary from unit to unit.
  • NO x reduction compositions of the invention also prevent a significant increase in the production of coke during the FCC process.
  • NO x reduction compositions of the invention may be used alone or in combination with one or more additional NO x reduction component to achieve NO x reduction more efficiently than the use of either of the compositions alone.
  • the additional NO x reduction component is a non-zeolitic material, that is, a material that contains no or substantially no (i.e., less than 5 weight percent, preferably less than I weight percent) zeolite.
  • non-zeolitic materials suitable for use in combination with the NO x reduction compositions of the invention include noble metal containing NO x reduction compositions such as disclosed and described in U.S. Pat. No. 6,660,683 the entire disclosure of which is herein incorporated by reference.
  • compositions in this class will typically comprise a particulate mixture of (1) an acidic metal oxide containing substantially no zeolite (preferably containing silica and alumina, most preferably containing at least 1 weight percent alumina); (2) an alkali metal (at least 0.5 weight percent, preferably about 1 to about 15 weight percent), an alkaline earth metal (at least 0.5 weight percent, preferably about 0.5 to about 50 weight percent) and mixtures thereof; (3) at least 0.1 weight percent of an oxygen storage metal oxide component (preferably ceria); and (4) at least 0.1 ppm of a noble metal component (preferably Pt, Pd, Rh, Ir, Os, Ru, Re and mixtures thereof).
  • a noble metal component preferably Pt, Pd, Rh, Ir, Os, Ru, Re and mixtures thereof.
  • compositions in this class of materials comprise (1) an acidic oxide containing at least 50 weight percent alumina and substantially no zeolite; (2) at least 0.5 weight percent of an alkali metal and/or an alkaline earth metal or mixtures thereof; (3) about 1 to about 25 weight percent of an oxygen storage capable transition metal oxide or a rare-earth (preferably, ceria); and (4) at least 0.1 ppm of a noble metal selected from the group consisting of Pt, Rh, Ir, and a combination thereof, all percentages being based on the total weight of the oxidative catalyst/additive composition.
  • non-zeolitic materials suitable for use in combination with the NO x reduction compositions of the invention include a low NO x , CO combustion promoter as disclosed and described in U.S. Pat. Nos. 6,165,933 and 6,358,881, the entire disclosure of these patents being herein incorporated by reference.
  • the low NO x CO combustion promoter compositions comprise (1) an acidic oxide support; (2) an alkali metal and/or alkaline earth metal or mixtures thereof; (3) a transition metal oxide having oxygen storage capability; and (4) palladium.
  • the acidic oxide support preferably contains silica alumina. Ceria is the preferred oxygen storage oxide.
  • the NO x reduction composition comprises (1) an acidic metal oxide support containing at least 50 weight percent alumina; (2) about 1-10 parts by weight, measured as metal oxide, of at least one alkali metal, alkaline earth metal or mixtures thereof; (3) at least 1 part by weight of CeO 2 ; and (4) about 0.01-5.0 parts by weight of Pd, all of said parts by weight of components (2)-(4) being per 100 parts by weight of said acidic metal oxide support material.
  • non-zeolitic materials suitable for use in combination with the NO x reduction compositions of the invention include NO x reduction compositions as disclosed and described in U.S. Pat. Nos. 6,280,607 B1, 6,143,167, 6,379,536 and 6,129,834, the entire disclosure of these patents being herein incorporated by reference.
  • the NO x reduction compositions comprise (1) an acidic oxide support; (2) an alkali metal and/or alkaline earth metal or mixtures thereof; (3) a transition metal oxide having oxygen storage capability; and (4) a transition metal selected from Groups IB and IIB of the Periodic Table.
  • the acidic oxide support contains at least 50 weight percent alumina and preferably contains silica alumina.
  • the NO x reduction compositions comprise (1) an acidic oxide support containing at least 50 weight percent alumina; (2) 1-10 weight percent, measured as the metal oxide, of an alkali metal, an alkaline earth metal or mixtures thereof; (3) at least 1 weight percent CeO 2 ; and (4) 0.01-5.0 parts weight percent of a transition metal, measured as metal oxide, of Cu or Ag, all parts by weight of components (2)-(4) being per 100 parts by weight of said acidic oxide support.
  • non-zeolitic NO x reduction materials suitable for use in combination with the NO x reduction compositions of the invention include magnesium-aluminum spinel based additives heretofore being useful for the removal of sulfur oxides from a FCC regenerator.
  • Exemplary patents which disclose and describe this type of materials include U.S. Pat. Nos.
  • compositions in this class comprise at least one metal-containing spinel which includes a first metal and a second metal having a valence higher than the valence of said first metal, at least one component of a third metal other than said first and second metals and at least one component of a fourth metal other than said first, second and third metals, wherein said third metal is selected from the group consisting of Group IB metals, Group IIB metals, Group VIA metals, the rare-earth metals, the Platinum Group metals and mixtures thereof, and said fourth metal is selected from the group consisting of iron, nickel, titanium, chromium, manganese, cobalt, germanium, tin, bismuth, molybdenum, antimony, vanadium and mixtures thereof.
  • the metal containing spinel comprises magnesium as said first metal and aluminum as said second metal, and the atomic ratio of magnesium to aluminum in said spinel is at least about 0.17.
  • the third metal in the spinel preferably comprises a metal selected from the group consisting of the Platinum Group metals, the rare-earth metals and mixtures thereof.
  • the third metal component is preferably present in an amount in the range of about 0.001 to about 20 weight percent, calculated as elemental third metal, and said fourth metal component is present in an amount in the range of about 0.001 to about 10 weight percent, calculated as elemental fourth metal.
  • non-zeolitic materials useful in combination with the NO x reduction additives of the invention include, but are not limited to, zinc based catalysts such as disclosed and described in U.S. Pat. No. 5,002,654; antimony based NO x reduction additives such as described and disclosed in U.S. Pat. No. 4,988,432; perovskite-spinel NO x reduction additives such as described and disclosed in U.S. Pat. Nos. 5,364,517 and 5,565,181; hydrotalcite catalyst and additive compositions such as described and disclosed, for example, in U.S. Pat. Nos.
  • Such NO x removal composition generally comprises (i) an acidic oxide support, (ii) cerium oxide, (iii) a lanthanide oxide other than ceria and (iv) optionally, at least one oxide of a transition metal selected from Groups IB and IIB of the Periodic Table, noble metals, and mixtures thereof.
  • the additional non-zeolitic NO x reduction compositions are used in an amount sufficient to provide increased NO x reduction when compared to the use of the ferrierite NO x reduction compositions alone.
  • the additional non-zeolitic compositions are used in an amount up to about 50 weight percent of the FCC catalyst inventory.
  • the non-zeolitic composition is used in an amount up to about 30 weight percent, most preferably up to about 10 weight percent of the FCC catalyst inventory.
  • the additional NO x reduction composition may be blended with the FCC catalyst inventory as a separate particle additive.
  • the additional NO x reduction composition may be incorporated into the FCC catalyst as an integral component of the catalyst.
  • NO x reduction compositions in accordance with the present invention may be used in combination with other additives conventionally used in the FCC process, e.g., SO x reduction additives, gasoline-sulfur reduction additives, CO combustion promoters, additives for the production of light olefins, and the like.
  • SO x reduction additives e.g., SO x reduction additives, gasoline-sulfur reduction additives, CO combustion promoters, additives for the production of light olefins, and the like.
  • any range of numbers recited in the specification or claims, such as that representing a particular set of properties, units of measure, conditions, physical states or percentages, is intended to literally incorporate expressly herein by reference or otherwise, any number falling within such range, including any subset of numbers within any range so recited.
  • a composition comprising 75% ferrierite and 25% alumina sol (Additive B) was prepared as follows.
  • the slurry was milled in a Drais mill to an average particle size of less than 2.5 ⁇ m and then spray-dried in a Bowen spray dryer.
  • the spray-dried product was calcined for 90 minutes at 1100° F.
  • Table 1 The properties of the catalyst are shown in Table 1 below.
  • Additives A and B were evaluated for their ability to reduce NO x emissions from a FCCU using the Davison Circulating Riser (DCR).
  • the description of the DCR has been published in the following papers: G. W. Young, G. D. Weatherbee, and S. W. Davey, “Simulating Commercial FCCU Yields With The Davison Circulating Riser (DCR) Pilot Plant Unit,” National Petroleum Refiners_Association (NPRA) Paper AM88-52; G. W. Young, “Realistic Assessment of FCC Catalyst Performance in the Laboratory,” in Fluid Catalytic Cracking: Science and Technology, J. S. Magee and M. M. Mitchell, Jr. Eds. Studies in Surface Science and Catalysis Volume 76, p. 257, Elsevier Science Publishers B.V., Amsterdam 1993, ISBN 0-444-89037-8.
  • the DCR was operated with 1% excess O 2 in the regenerator, and with the regenerator operating at 705° C. After the unit stabilized the baseline NO x emissions data were collected using an on-line Lear-Siegler SO 2 /NO x Analyzer (SM8100A). Subsequently, 100 g of catalyst were injected into the DCR consisting of 4.75 g of a commercial sample of a Pt-based combustion promoter, CP-3® (obtained from Grace Davison), which had been deactivated for 20 hours at 788° C. without any added Ni or V using the Cyclic Propylene Steaming method (CPS) and 95.25 grams of hydrothermally deactivated SUPERNOVA®-DMR+. The description of the CPS method has been published in L.
  • CP-3® obtained from Grace Davison
  • Table 4 shows the conversion and product yields with and without the composition of this invention.
  • the means of conversion and cracked product yields were calculated using a sample of 7 baseline DCR tests.
  • both Additives A and B are especially effective in decreasing NO x emissions without significantly affecting the cracked products yields.
  • both overall conversion and gasoline yield do not change substantially, even though the FCC feedstock used in these experiments is a high nitrogen feed.
  • a particulate NO x reduction composition (Additive D) was prepared as follows: A slurry was prepared from an aqueous slurry having 20% solids of a peptizable alumina (Versal 700 alumina powder obtained from La Roche Industries Inc., 99% Al 2 O 3 , 30% moisture). The alumina slurry was prepared using 31.6 lbs of the alumina. To the alumina slurry 3.87 lbs of an aqueous sodium hydroxide solution (50% NaOH) was added. Next, 10.4 lbs of cerium carbonate crystals (obtained from Rhone Poulenc, Inc., 96% CeO 2 , 4% La2O 3 , 50% moisture) was added to the slurry.
  • the slurry was diluted with a sufficient amount of water to bring the solids concentration of the slurry to 12%. Finally, 3.38 lbs of ion exchanged silica sol of Nalco 1140 (obtained from Nalco Chemicals Co.) was added to the slurry. The mixture was agitated to assure good mixing and then milled in a stirred media mill to reduce agglomerates to substantially less than 10 ⁇ m. The milled mixture was then spray-dried to form approximately 70 ⁇ m microspheres and thereafter calcined at approximately 650° C. to remove volatiles.
  • the resulting material was impregnated with an aqueous solution of a Cu containing salt (e.g., CuSO 4 ) to achieve about 2% Cu on the final product, and was flash dried.
  • a Cu containing salt e.g., CuSO 4
  • the final product had the following analysis (dry basis): 7.8% SiO 2 , 7.1% Na 2 O, 18.5% CeO 2 , 60.2% Al 2 O 3 , 1.9% Cu and BET surface area of 111 m 2 /g.
  • Additive C and a blend of Additives C and D consisting of 75% Additive C and 25% Additive D where tested in the DCR with a feedstock having the properties shown in Table 6.
  • the unit was loaded with 1995 g of an equilibrium cracking catalyst (ECAT) having the properties as shown in Table 7 below, and 5 g of the commercially available CO combustion promoter CP-3®, which had been deactivated for 20 hours at 788° C. without any added Ni or V using the CPS method. After the unit was stabilized, the baseline NO x emissions data were collected. Subsequently, 42 g of Additive C or the blend of Additive C and D were injected into the unit along with 0.25 g of the combustion promoter, and 157.75 g of the equilibrium catalyst.
  • ECAT equilibrium cracking catalyst

Abstract

Compositions for reduction of NOx generated during a catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise a fluid catalytic cracking catalyst composition, preferably containing a Y-type zeolite, and a particulate NOx reduction composition containing ferrierite zeolite particles. Preferably, the NOx reduction composition contains ferrierite zeolite particles bound with an inorganic binder. In the alternative, the ferrierite zeolite particles are incorporated into the cracking catalyst as an integral component of the catalyst. NOx reduction compositions in accordance with the invention are very effective for the reduction of NOx emissions released from the regenerator of a fluid catalytic cracking unit operating under FCC process conditions without a substantial change in conversion or yield of cracked products. Processes for the use of the compositions are also disclosed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The application is a continuation in part application of U.S. patent application Ser. No. 10/702,240, filed Nov. 6, 2003.
  • FIELD OF THE INVENTION
  • The present invention relates to NOx reduction compositions and the method of use thereof to reduce NOx emissions in refinery processes, and specifically in fluid catalytic cracking (FCC) processes. More particularly, the present invention relates to NOx reduction compositions and their method of use to reduce the content of NOx off gases released from a fluid catalytic cracking unit (FCCU) regenerator during the FCC process without a substantial change in hydrocarbon conversion or the yield of valuable cracked products.
  • BACKGROUND OF THE INVENTION
  • In recent years there has been an increased concern in the United States and elsewhere about air pollution from industrial emissions of noxious oxides of nitrogen, sulfur and carbon. In response to such concerns, government agencies have placed limits on allowable emissions of one or more of these pollutants, and the trend is clearly in the direction of increasingly stringent regulations.
  • NOx, or oxides of nitrogen, in flue gas streams exiting from fluid catalytic cracking (FCC) regenerators is a pervasive problem. Fluid catalytic cracking units (FCCU) process heavy hydrocarbon feeds containing nitrogen compounds, a portion of which is contained in the coke on the catalyst as it enters the regenerator. Some of this coke-nitrogen is eventually converted into NOx emissions, either in the FCC regenerator or in a downstream CO boiler. Thus, all FCCUs processing nitrogen-containing feeds can have a NOx emissions problem due to catalyst regeneration.
  • In the FCC process, catalyst particles (inventory) are continuously circulated between a catalytic cracking zone and a catalyst regeneration zone. During regeneration, coke deposited on the cracking catalyst particles in the cracking zone is removed at elevated temperatures by oxidation with oxygen containing gases such as air. The removal of coke deposits restores the activity of the catalyst particles to the point where they can be reused in the cracking reaction. In general, when coke is burned with a deficiency of oxygen, the regenerator flue gas has a high CO/CO2 ratio and a low level of NOx, but when burned with excess oxygen, the flue gas has a high level of NOx and a reduced CO content. Thus, CO and NOx, or mixtures of these pollutants are emitted with the flue gas in varying quantities, depending on such factors as unit feed rate, nitrogen content of the feed, regenerator design, mode of operation of the regenerator, and composition of the catalyst inventory.
  • Various attempts have been made to limit the amount of NOx gases emitted from the FCCU by treating the NOx gases after their formation, e.g., post-treatment of NOx containing gas streams as described in U.S. Pat. Nos. 4,434,147, 4,778,664, 4,735,927, 4,798,813, 4,855,115, 5,413, 699, and 5,547,648.
  • Another approach has been to modify the operation of the regenerator to partial burn and then treat the NOx precursors in the flue gas before they are converted to NOx, e.g., U.S. Pat. Nos. 5,173,278, 5,240,690, 5,372,706, 5,413,699, 5,705,053, 5,716,514, and 5,830,346.
  • Yet another approach has been to modify the operation of the regenerator as to reduce NOx emissions, e.g., U.S. Pat. No. 5,382,352, or modify the CO combustion promoter used, e.g., U.S. Pat. Nos. 4,199,435, 4,812,430, and 4,812,431. Enrichment of air with oxygen in a regenerator operating in partial burn mode has also been suggested, e.g., U.S. Pat. No. 5,908,804.
  • Additives have also been used in attempts to deal with NOx emissions. U.S. Pat. Nos. 6,379,536, 6,280,607, 6,129,834 and 6,143,167 disclose the use of NOx removal compositions for reducing NOx emissions from the FCCU regenerator. U.S. Pat. Nos. 6,358,881 and 6,165,933 also disclose a NOx reduction composition, which promotes CO combustion during the FCC catalyst regeneration process step while simultaneously reducing the level of NOx emitted during the regeneration step. NOx reduction compositions disclosed by these patents may be used as an additive which is circulated along with the FCC catalyst inventory, or incorporated as an integral component of the FCC catalyst.
  • U.S. Pat. Nos. 4,973,399 and 4,980,052 disclose reducing emissions of NOx from the regenerator of the FCCU by incorporating into the circulating inventory of cracking catalyst separate additive particles containing a copper-loaded zeolite.
  • Many additive compositions heretofore used to control NOx emissions have typically caused a significant decrease in hydrocarbon conversion or the yield of valuable cracked products, e.g., gasoline, light olefins and liquefied petroleum gases (LPGs), while increasing the production of coke. It is a highly desirable characteristic for NOx additives added to the FCCU not to affect the cracked product yields or change the overall unit conversion. The operation of the FCCU is typically optimized based on the unit design, feed and catalyst, to produce a slate of cracked products, and maximize refinery profitability. This product slate is based on the value model of the specific refinery. For example, during the peak summer driving season many refiners want to maximize gasoline production, while during the winter season refiners may want to maximize heating oil production. In other cases a refinery may find it profitable to produce light olefins products that can be sold in the open market or used in an associated petrochemical plant as feedstocks.
  • When a NOx reduction additive increases coke production, the FCCU may have insufficient air capacity to burn the extra coke and may result in a lower feed throughput in the unit. If the additive increases the production of low value dry gas, the production of more valuable products may decrease. An increase in dry gas may exceed the ability of the unit to handle it, thus forcing a reduction of the amount of feed processed. While an additive that increases light olefins production may be desirable if the refinery values these products and the unit has the equipment necessary to process the extra light hydrocarbons, the additive may, however, reduce profitability if the refinery's goal is to maximize gasoline production. Light olefins are typically made in the FCCU at the expense of gasoline production. Even an additive which increases unit conversion may be undesirable if it affects product yields, causes the unit to reach an equipment limitation, and/or decreases the amount of feed that can be processed.
  • Consequently, any change to the FCCU that affects the product slate or changes the ability to process feed at the desired rate can be detrimental to the refinery profitability. Therefore, there exists a need for NOx control compositions which do not significantly affect product yields and overall unit conversion.
  • SUMMARY OF THE INVENTION
  • It has now been discovered that the incorporation of a ferrierite zeolite component with a catalytically cracking catalyst inventory, in particular a cracking catalyst inventory containing an active Y-type zeolite, being circulated throughout a fluid catalytic cracking unit (FCCU) during a fluid catalytic cracking (FCC) process provides superior NOx control performance without substantially changing or affecting the hydrocarbon conversion or the yield of cracked petroleum products produced during the FCC process.
  • In accordance with the present invention, novel NOx reduction compositions are provided. Typically, the NOx reduction compositions comprise a particulate composition containing particles of ferrierite zeolite. The ferrierite zeolite may be added as a separate additive particle to a circulating inventory of the cracking catalyst or incorporated directly into the Y-type zeolite containing cracking catalyst as an integral component of the catalyst. In a preferred embodiment of the invention, the ferrierite zeolite are separate additive particles bound with an inorganic binder. The binder preferably comprises silica, alumina or silica alumina. Preferably, the ferrierite zeolite is exchanged with hydrogen, ammonium, alkali metal and combinations thereof. The preferred alkali metal is sodium, potassium and combinations thereof.
  • In one aspect of the invention, novel ferrierite zeolite-containing NOx reduction compositions are provided which are added to a circulating inventory of the catalytic cracking catalyst as a separate admixture of particles to reduce NOx emissions released from the FCCU regenerator during the FCC process.
  • In another aspect of the invention, novel NOx reduction compositions are provided which comprise ferrierite zeolite incorporated as an integral component of the FCC catalyst, preferably containing a Y-type zeolite active component.
  • In yet another aspect of the invention, novel NOx reduction compositions are provided which compositions reduce NOx emissions from the FCCU regenerator during the FCC process while substantially maintaining hydrocarbon conversion and the yield of cracked petroleum products and minimizing an increase in the production of coke.
  • It is another aspect of the present invention to provide a process for the reduction of the content of NOx in the off gas of the FCCU regenerator during the FCC process using NOx reduction compositions in accordance with the present invention.
  • Another aspect of the invention is to provide improved FCC processes for the reduction of the content of NOx in the off gases of the FCCU regenerator without substantially affecting hydrocarbon conversion or the yield of petroleum products produced during the FCC process.
  • These and other aspects of the present invention are described in further detail below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The FIGURE is a graphic representation of the effectiveness of Additive A and Additive B, prepared in EXAMPLES 1 and 2, respectively, to reduce NOx emissions from a DCR regenerator versus time on stream, when the additives are blended with a commercially available cracking catalyst (SUPERNOVA®-DMR+, obtained from Grace Davison, Columbia, Md.), which contains 0.25 weight percent of a platinum promoter, CP-3® (obtained from Grace Davison, Columbia, Md.) and which was deactivated using the Cyclic Propylene Steaming procedure as described in EXAMPLE 3.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Although several nitrogen oxides are known which are relatively stable at ambient conditions, for purposes of the present invention, NOx will be used herein to represent nitric oxide, nitrogen dioxide (the principal noxious oxides of nitrogen) as well as N2O4, N2O5 and mixtures thereof.
  • The present invention encompasses the discovery that the use of ferrierite zeolite containing NOx reduction compositions in combination with a fluid catalytic cracking (FCC) catalyst, preferably a catalyst comprising an active Y-type zeolite, is very effective for the reduction of NOx emissions released from the FCCU regenerator under FCC process conditions without a substantial change in hydrocarbon feed conversion or the yield of cracked products. The NOx reduction compositions typically comprise a particulate composition containing particles of ferrierite zeolite. In a preferred embodiment of the invention, the ferrierite particles are bound with an inorganic binder. The novel ferrierite zeolite-containing NOx reduction compositions may be added to the circulating inventory of the catalytic cracking catalyst as a separate particle additive or incorporated as an integral component into the cracking catalyst.
  • For purposes of the present invention, the phrase “a substantial change in hydrocarbon feed conversion or the yield of cracked products” is defined herein to mean in the alternative, (i) less than a 50% relative change, preferably less than a 30% relative change and most preferably less than a 15% relative change in the yield of LPG (liquefied petroleum gas) as compared to the baseline yield of the same or substantially the game product; or (ii) less than a 30% relative change, preferably less than a 20% relative change and most preferably less than a 10% relative change in the yield of LCO (light cycle oils), bottoms and gasoline in combination with LPG as compared to the baseline yield of the same or substantially the same products; or (iii) less than a 10% relative change, preferably less than a 6.5% relative change and most preferably less than a 5% relative change in the hydrocarbon feed conversion as compared to the baseline conversion. The conversion is defined as 100% times (1—bottoms yield—LCO yield). When the NOx reduction composition is used as a separate additive, the baseline is the mean conversion or yield of a product in the FCCU, operating with the same or substantially the same feed and under the same or substantially the same reaction and unit conditions, but before the additive of the present invention is added to the catalyst inventory. When the NOx reduction composition is integrated or incorporated into the cracking catalyst particles to provide an integral NOx reduction catalyst system, a significant change in the hydrocarbon conversion or yield of cracked products is determined using a baseline defined as the mean conversion or yield of a product in the same or substantially the same FCCU operating with the same or substantially the same feed, under the same or substantially the same reaction and unit conditions, and with a cracking catalyst inventory comprising the same or substantially the same cracking catalyst composition as that containing the NOx reduction composition, except that the NOx reduction composition is replaced in the cracking catalyst with a matrix component such as kaolin or other filler. The percent changes specified above are derived from statistical analysis of DCR operating data.
  • Any ferrierite zeolite is useful to prepare the NOx reduction compositions of the invention. However, it is preferred that the ferrierite zeolite has a surface area of at least 100 m2/g, more preferably at least 200 m2/g and most preferably at least 300 m2/g and a SiO2 to Al2O3 molar ratio of less than 500, preferably less than 250, most preferably, less than 100. In one embodiment of the invention, the ferrierite zeolite is exchanged with a material selected from the group consisting of hydrogen, ammonium, alkali metal and combinations thereof, prior to incorporation into the binder or FCC catalyst. The preferred alkali metal is one selected from the group consisting of sodium, potassium and mixtures thereof.
  • Optionally, the ferrierite zeolite may contain stabilizing amounts, e.g., up to about 25 weight percent, of a stabilizing metal (or metal ion), preferably incorporated into the pores of the zeolite. Suitable stabilizing metals include, but are not limited to, metals selected from the group consisting of Groups IIA, IIIB, IVB, VB, VIB, VIIB, VIII, IIB, IIIA, IVA, VA, the Lanthanide Series of The Periodic Table, Ag and mixtures thereof. Preferably, the stabilizing metals are selected from the group consisting of Groups IIIB, IIA, IIB, IIIA and the Lanthanide Series of the Periodic Table, and mixtures thereof. Most preferably, the stabilizing metals are selected from the group consisting of lanthanum, aluminum, magnesium, zinc, and mixtures thereof. The metal may be incorporated into the pores of the ferrierite zeolite by any method known in the art, e.g., ion exchange, impregnation or the like. For purposes of this invention, the Periodic Table referenced herein above is the Periodic Table as published by the American Chemical Society.
  • The amount of ferrierite zeolite used in the NOx reduction compositions of the invention will vary depending upon several factors, including but not limited to, the mode of combining the ferrierite zeolite with the catalytic cracking catalyst and the type of cracking catalyst used. In one embodiment of the invention, the NOx reduction compositions of the invention are separate catalyst/additive compositions and comprise a particulate composition formed by binding particles of a ferrierite zeolite with a suitable inorganic binder. Generally, the amount of ferrierite zeolite present in the particulate NOx reduction compositions is at least 10, preferably at least 30, most preferably at least 40 and even more preferably at least 50, weight percent based on the total weight of the composition. Typically, the particulate catalyst/additive composition of the invention contains from about 10 to about 85, preferably from about 30 to about 80, most preferably, from about 40 to about 75, weight percent of ferrierite zeolite based on the total weight of the catalyst/additive composition.
  • Binder materials useful to prepare the particulate compositions of the invention include any inorganic binder which is capable of binding ferrierite zeolite powder to form particles having properties suitable for use in the FCCU under FCC process conditions. Typical inorganic binder materials useful to prepare compositions in accordance with the present invention include, but are not limited to, alumina, silica, silica alumina, aluminum phosphate and the like, and mixtures thereof. Preferably, the binder is selected from the group consisting of alumina, silica, silica alumina. More preferably, the binder comprises alumina. Even more preferably, the binder comprises an acid or base peptized alumina. Most preferably, the binder comprises an alumina sol, e.g., aluminum chlorohydrol. Generally, the amount of binder material present in the particular NOx reduction compositions comprises from about 5 to about 50 weight percent, preferably from about 10 to about 30 weight percent, most preferably from about 15 to about 25 weight percent, of the NOx reduction composition of the invention.
  • Additional materials optionally present in the compositions of the present invention include, but are not limited to, fillers (e.g., kaolin clay) or matrix materials (e.g., alumina, silica, silica alumina, yttria, lanthana, ceria, neodymia, samaria, europia, gadolinia, titania, zirconia, praseodymia and mixtures thereof). When used, the additional materials are used in an amount which does not significantly adversely affect the performance of the compositions to reduce NOx emissions released from the FCCU regenerator under FCC conditions, the hydrocarbon feed conversion or the product yield of the cracking catalyst. In general the additional materials will comprise no more than about 70 weight percent of the compositions. It is preferred, however, that the compositions of the invention consist essentially of ferrierite and an inorganic binder.
  • Particulate NOx reduction compositions of the invention should have a particle size sufficient to permit the composition to be circulated throughout the FCCU simultaneously with the inventory of cracking catalyst during the FCC process. Typically the composition of the invention will have a mean particle size of greater than 45 μm. Preferably, the mean particle size is from about 50 to about 200 μm, most preferably from about 55 to about 150 μm, even more preferred from about 60 to about 120 μm. The compositions of the invention typically have a Davison attrition index (DI) value of less than about 50, preferably less than about 20, most preferably less than about 15.
  • While the present invention is not limited to any particular process of preparation, typically the particulate NOx reduction compositions of the invention are prepared by forming an aqueous slurry containing the ferrierite zeolite, optional zeolite components, the inorganic binder and optional matrix materials, in an amount sufficient to provide at least 10.0 weight percent of ferrierite zeolite and at least 5.0 weight percent of binder material in the final NOx reduction composition and, thereafter, spray drying the aqueous slurry to form particles. The spray-dried particles are optionally dried at a sufficient temperature for a sufficient time to remove volatiles, e.g., at about 90° C. to about 320° C. for about 0.5 to about 24 hours. In a preferred embodiment of the invention, the ferrierite zeolite containing aqueous slurry is milled prior to spray-drying to reduce the mean particle size of materials contained in the slurry to 10 μm or less, preferably 5 μm or less, most preferably 3 μm or less. The aqueous slurry containing ferrierite zeolite may be milled prior to or after incorporation of the binder and/or matrix materials as desired.
  • The spray-dried composition may be calcined at a temperature and for a time sufficient to remove volatiles and provide sufficient hardness to the binder for use in the FCCU under FCC process conditions, preferably from about 320° C. to about 900° C. from about 0.5 to about 6 hours.
  • Optionally, the dried or calcined composition is washed or exchanged with an aqueous solution of ammonia or ammonium salt (e.g., ammonium sulfate, nitrate, chloride, carbonate, phosphate and the like), or an inorganic or organic acid (e.g., sulfuric, nitric, phosphoric, hydrochloric, acetic, formic and the like) to reduce the amount of alkaline metals, e.g. sodium or potassium, in the finished product.
  • Particulate NOx reduction compositions of the invention are circulated in the form of separate particle additives along with the main cracking catalyst throughout the FCCU. Generally, the catalyst/additive composition is used in an amount of at least 0.1 weight percent of the FCC catalyst inventory. Preferably the amount of the catalyst/additive composition used ranges from about 0.1 to about 75 weight percent, most preferably from about 1 to about 50 weight percent of the FCC catalyst inventory. Separate particle catalyst/additive compositions of the invention may be added to the FCCU in the conventional manner, e.g., with make-up catalyst to the regenerator or by any other convenient method.
  • In a second embodiment of the invention, the ferrierite zeolite is integrated or incorporated into the cracking catalyst particles themselves to provide an integral NOx reduction catalyst system. In accordance with this embodiment of the invention, the ferrierite zeolite may be added to the catalyst at any stage during catalyst manufacturing prior to spray drying the cracking catalyst slurry to obtain the fluid cracking catalyst, regardless of any additional optional or required processing steps needed to finish the cracking catalyst preparation. Without intending to limit the incorporation of the ferrierite, and any optional zeolite components, within the cracking catalyst to any specific method of cracking catalyst manufacturing, typically the ferrierite zeolite, any additional zeolites, the cracking catalyst zeolite, usually USY or REUSY-type, and any matrix materials are slurried in water. The slurry is milled to reduce the mean particle size of solids in the slurry to less than 10 μm, preferably to less than 5 μm, most preferably less than 3 μm. The milled slurry is combined with a suitable inorganic binder, i.e., a silica sol binder, and an optional matrix material, e.g. clay. The resulting slurry is mixed and spray-dried to provide a catalyst material. The spray-dried catalyst is optionally washed using an aqueous solution of ammonium hydroxide, an ammonium salt, an inorganic or organic acid, and water to remove the undesirable salts. The washed catalyst may be exchanged with a water soluble rare-earth salt, e.g., rare-earth chlorides, nitrates and the like.
  • Alternatively, the ferrierite zeolite, optional additional zeolites, the cracking catalyst zeolite, any matrix materials, a rare-earth water soluble salt, clay and alumina sol binder are slurried in water and blended. The slurry is milled and spray-dried. The spray-dried catalyst is calcined at about 250° C. to about 900° C. The spray-dried catalyst may then optionally be washed using an aqueous solution of ammonium hydroxide, an ammonium salt, an inorganic or organic acid, and water to remove the undesirable salts. Optionally, the catalyst may be exchanged with a water-soluble rare-earth salt after it has been washed, by any of the methods known in the art.
  • When integrated into the FCC catalyst particles, the ferrierite zeolite compound typically represents at least about 0.1 weight percent of the FCC catalyst particle. Preferably, the amount of the ferrierite zeolite used ranges from about 0.1 to about 60 weight percent, most preferably from about 1 to about 40 weight percent, of the FCC catalyst particles.
  • The integrated FCC catalyst will typically comprise the ferrierite zeolite along with the cracking catalyst zeolite, inorganic binder materials and optionally, matrix, fillers, and other additive components such as metals traps (for example, traps for Ni and V) to make up the cracking catalyst. The cracking catalyst zeolite, usually a Y. USY or REUSY-type, provides the majority of the cracking activity and is typically present in a range from about 10 to about 75, preferably from about 15 to about 60 and most preferably from about 20 to about 50 weight percent based on the total weight of the composition. Inorganic binder materials useful to prepare integrated catalyst compositions in accordance with the present invention include, any inorganic material capable of binding the components of the integrated catalyst to form particles having properties suitable for use in the FCCU under FCC process conditions. Typically, the inorganic binder materials include, but are not limited to, alumina, silica, silica alumina, aluminum phosphate and the like, and mixtures thereof. Preferably, the binder is selected from the group consisting of alumina, silica, silica alumina. Generally, the amount of binder material present in the integrated catalyst composition is less than 50 weight percent, based on the total weight of the catalyst composition. Preferably, the, amount of binder material present in the integrated catalyst composition ranges from about 5 to about 45 weight percent, most preferably from about 10 to about 30 weight percent and even more preferably from about 15 to about 25 weight percent, based on the total weight of the composition.
  • The matrix materials optionally present in the integrated catalyst compositions of the present invention include, but are not limited to alumina, silica alumina, rare earth oxides such as lanthana, transition metal oxides such as titania, zirconia, and manganese oxide, Group IIA oxides such as magnesium and barium oxides, clays such as kaolin, and mixtures thereof. The matrix or fillers may be present in the integral catalyst in the amount of less than 50 weight percent based on the total weight of the composition. Preferably, the matrix and fillers, if any, are present in an amount ranging from about 1 to about 45 weight present based on the total weight of the catalyst composition.
  • The particle size and attrition properties of the integral catalyst affect fluidization properties in the unit and determine how well the catalyst is retained in the commercial FCC unit. The integral catalyst composition of the invention typically has a mean particle size of about 45 to about 200 μm, more preferably from about 50 μm to about 150 μm. The attrition properties of the integral catalyst, as measured by the Davison Attrition Index (DI), have a DI value of less than 50, more preferably less than 20 and most preferably less than 15.
  • In a preferred embodiment of the invention, the FCC cracking catalyst contains a Y-type zeolite. The ferrierite zeolite may be added as a separate additive particle to a circulating inventory of the cracking catalyst or incorporated directly into the Y-type zeolite containing cracking catalyst as an integral component of the catalyst. In either case, it is preferred that ferrierite zeolite is present in the final composition in an amount sufficient to provide in the total catalyst inventory a ratio of ferrierite zeolite to Y-type zeolite of less than 2, preferably less than 1.
  • It is also within the scope of the invention to include additional zeolite components in the ferrierite zeolite containing NOx reduction compositions of the invention. The additional zeolite component may be any zeolite which does not adversely affect the NOx reduction performance or cause a substantial change in hydrocarbon conversion or cracked product yields during the FCC process. Preferably, the additional zeolite component is a zeolite having a pore size ranging from about 3 to about 7.2 Angstroms with a SiO2 to Al2O3 molar ratio of less than about 500, preferably less than 250. Preferably, the additional zeolite component is a zeolite selected from the group consisting of ZSM-5, ZSM-11, beta, MCM-49, mordenite, MCM-56, Zeolite-L, zeolite Rho, errionite, chabazite, clinoptilolite, MCM-22, MCM-35, MCM-61, Offretite, A, ZSM-12, ZSM-23, ZSM-18, ZSM-22, ZSM-35, ZSM-57, ZSM-61, ZK-5, NaJ, Nu-87, Cit-1, SSZ-35, SSZ-48, SSZ-44, SSZ-23, Dachiardite, Merlinoite, Lovdarite, Levyne, Laumontite, Epistilbite, Gmelonite, Gismondine, Cancrinite, Brewsterite, Stilbite, Paulingite, Goosecreekite, Natrolite or mixtures thereof. Most preferably the additional zeolite component is selected from the group consisting of ZSM-5, ZSM-11, beta, MCM-49, mordenite, MCM-56, Zeolite-L, zeolite Rho, errionite, chabazite, clinoptilolite, MCM-22, MCM-35, Offretite, A, ZSM-12 and mixtures thereof. The additional zeolite component is used in any amount that does not significantly adversely affect the performance of the NOx reduction compositions to reduce NOx emissions and substantially maintain the hydrocarbon conversion or the product yields of the cracking catalyst relative to the use of the cracking catalyst without the catalyst/additive composition. Typically, the additional zeolite component is used in an amount ranging from about 1 to about 80, preferably from about 10 to about 70, weight percent of the catalyst/additive composition. Where the NOx reduction composition is used as an integral component of the catalyst, the additional zeolite component is preferably used in an amount ranging from about 0.1 to about 60, most preferably from about 1 to about 40, weight percent of the catalyst composition.
  • Somewhat briefly, the FCC process involves the cracking of heavy hydrocarbon feedstocks to lighter products by contact of the feedstock in a cyclic catalyst recirculation cracking process with a circulating fluidizable cracking catalyst inventory consisting of particles having a mean size ranging from about 50 to about 150 μm, preferably from about 60 to about 120 μm. The catalytic cracking of these relatively high molecular weight hydrocarbon feedstocks results in the production of a hydrocarbon product of lower molecular weight. The significant steps in the cyclic FCC process are:
      • (i). the feed is catalytically cracked in a catalytic cracking zone, normally a riser cracking zone, operating at catalytic cracking conditions by contacting feed with a source of hot, regenerated cracking catalyst to produce an effluent comprising cracked products and spent catalyst containing coke and strippable hydrocarbons;
      • (ii) the effluent is discharged and separated, normally in one or more cyclones, into a vapor phase rich in cracked product and a solids rich phase comprising the spent catalyst;
      • (iii) the vapor phase is removed as product and fractionated in the FCC main column and its associated side columns to form gas and liquid cracking products including gasoline;
      • (iv) the spent catalyst is stripped, usually with steam, to remove occluded hydrocarbons from the catalyst, after which the stripped catalyst is oxidatively regenerated in a catalyst regeneration zone to produce hot, regenerated catalyst which is then recycled to the cracking zone for cracking further quantities of feed.
  • Conventional FCC catalysts include, for example, zeolite based catalysts with a faujasite cracking component as described in the seminal review by Venuto and Habib, Fluid Catalytic Cracking with Zeolite Catalysts, Marcel Dekker, New York 1979, ISBN 0-8247-6870-1, as well as in numerous other sources such as Sadeghbeigi, Fluid Catalytic Cracking Handbook, Gulf Publ. Co. Houston, 1995, ISBN 0-88415-290-1. Preferably, the FCC catalyst is a catalyst comprising a Y-type zeolite active cracking component. In a particularly preferred embodiment of the invention, the FCC catalysts consist of a binder, usually silica, alumina, or silica alumina, a Y-type zeolite active component, one or more matrix aluminas and/or silica aluminas, and fillers such as kaolin clay. The Y-type zeolite may be present in one or more forms and may have been ultra stabilized and/or treated with stabilizing cations such as any of the rare-earths.
  • Typical FCC processes are conducted at reaction temperatures of 480° C. to 600° C. with catalyst regeneration temperatures of 600° C. to 800° C. As it is well known in the art, the catalyst regeneration zone may consist of a single or multiple reactor vessels. The compositions of the invention may be used in FCC processing of any typical hydrocarbon feedstock. Suitable feedstocks include petroleum distillates or residuals of crude oils, which when catalytically cracked, provide either a gasoline or a gas oil product. Synthetic feeds having boiling points of about 204° C. to about 816° C., such as oil from coal, tar sands or shale oil, can also be included.
  • In order to remove coke from the catalyst, oxygen or air is added to the regeneration zone. This is performed by a suitable sparging device in the bottom of the regeneration zone, or if desired, additional oxygen is added to the dilute or dense phase of the regeneration zone.
  • NOx reduction compositions in accordance with the invention dramatically reduce, i.e., by at least 10%, preferably at least 20%, the emissions of NOx in the FCCU regenerator effluent during the catalyst regeneration, while substantially maintaining the hydrocarbon feed conversion or the yield of cracked products, e.g., gasoline and light olefins, obtained from the cracking catalyst. In some cases, NOx reduction of 90% or greater is readily achievable using the compositions and method of the invention without significantly affecting the cracked products yields or feed conversion. However, as will be understood by one skilled in the catalyst art, the extent of NOx reduction will depend on such factors as, for example, the composition and amount of the additive utilized; the design and the manner in which the catalytic cracking unit is operated, including but not limited to oxygen level and distribution of air in the regenerator, catalyst bed depth in the regenerator, stripper operation and regenerator temperature, the properties of the hydrocarbon feedstock cracked, and the presence of other catalytic additives that may affect the chemistry and operation of the regenerator. Thus, since each FCCU is different in some or all of these respects, the effectiveness of the process of the invention may be expected to vary from unit to unit. NOx reduction compositions of the invention also prevent a significant increase in the production of coke during the FCC process.
  • It is also within the scope of the invention that NOx reduction compositions of the invention may be used alone or in combination with one or more additional NOx reduction component to achieve NOx reduction more efficiently than the use of either of the compositions alone. Preferably, the additional NOx reduction component is a non-zeolitic material, that is, a material that contains no or substantially no (i.e., less than 5 weight percent, preferably less than I weight percent) zeolite.
  • One such class of non-zeolitic materials suitable for use in combination with the NOx reduction compositions of the invention include noble metal containing NOx reduction compositions such as disclosed and described in U.S. Pat. No. 6,660,683 the entire disclosure of which is herein incorporated by reference. Compositions in this class will typically comprise a particulate mixture of (1) an acidic metal oxide containing substantially no zeolite (preferably containing silica and alumina, most preferably containing at least 1 weight percent alumina); (2) an alkali metal (at least 0.5 weight percent, preferably about 1 to about 15 weight percent), an alkaline earth metal (at least 0.5 weight percent, preferably about 0.5 to about 50 weight percent) and mixtures thereof; (3) at least 0.1 weight percent of an oxygen storage metal oxide component (preferably ceria); and (4) at least 0.1 ppm of a noble metal component (preferably Pt, Pd, Rh, Ir, Os, Ru, Re and mixtures thereof). Preferred compositions in this class of materials comprise (1) an acidic oxide containing at least 50 weight percent alumina and substantially no zeolite; (2) at least 0.5 weight percent of an alkali metal and/or an alkaline earth metal or mixtures thereof; (3) about 1 to about 25 weight percent of an oxygen storage capable transition metal oxide or a rare-earth (preferably, ceria); and (4) at least 0.1 ppm of a noble metal selected from the group consisting of Pt, Rh, Ir, and a combination thereof, all percentages being based on the total weight of the oxidative catalyst/additive composition.
  • Another class of non-zeolitic materials suitable for use in combination with the NOx reduction compositions of the invention include a low NOx, CO combustion promoter as disclosed and described in U.S. Pat. Nos. 6,165,933 and 6,358,881, the entire disclosure of these patents being herein incorporated by reference. Typically, the low NOx CO combustion promoter compositions comprise (1) an acidic oxide support; (2) an alkali metal and/or alkaline earth metal or mixtures thereof; (3) a transition metal oxide having oxygen storage capability; and (4) palladium. The acidic oxide support preferably contains silica alumina. Ceria is the preferred oxygen storage oxide. Preferably, the NOx reduction composition comprises (1) an acidic metal oxide support containing at least 50 weight percent alumina; (2) about 1-10 parts by weight, measured as metal oxide, of at least one alkali metal, alkaline earth metal or mixtures thereof; (3) at least 1 part by weight of CeO2; and (4) about 0.01-5.0 parts by weight of Pd, all of said parts by weight of components (2)-(4) being per 100 parts by weight of said acidic metal oxide support material.
  • Yet another class of non-zeolitic materials suitable for use in combination with the NOx reduction compositions of the invention include NOx reduction compositions as disclosed and described in U.S. Pat. Nos. 6,280,607 B1, 6,143,167, 6,379,536 and 6,129,834, the entire disclosure of these patents being herein incorporated by reference. In general, the NOx reduction compositions comprise (1) an acidic oxide support; (2) an alkali metal and/or alkaline earth metal or mixtures thereof; (3) a transition metal oxide having oxygen storage capability; and (4) a transition metal selected from Groups IB and IIB of the Periodic Table. Preferably, the acidic oxide support contains at least 50 weight percent alumina and preferably contains silica alumina. Ceria is the preferred oxygen storage oxide. In a preferred embodiment of the invention, the NOx reduction compositions comprise (1) an acidic oxide support containing at least 50 weight percent alumina; (2) 1-10 weight percent, measured as the metal oxide, of an alkali metal, an alkaline earth metal or mixtures thereof; (3) at least 1 weight percent CeO2; and (4) 0.01-5.0 parts weight percent of a transition metal, measured as metal oxide, of Cu or Ag, all parts by weight of components (2)-(4) being per 100 parts by weight of said acidic oxide support.
  • Another class of non-zeolitic NOx reduction materials suitable for use in combination with the NOx reduction compositions of the invention include magnesium-aluminum spinel based additives heretofore being useful for the removal of sulfur oxides from a FCC regenerator. Exemplary patents which disclose and describe this type of materials include U.S. Pat. Nos. 4,963,520, 4,957,892, 4,957,718, 4,790,982, 4,471,070, 4,472,532, 4,476,245, 4,728,635, 4,830,840, 4,904,627, 4,428,827, 5,371,055, 4,495,304, 4,642,178, 4,469,589, 4,758,418, 4,522,937, 4,472,267 and 4,495,305 the entire disclosure of said patents being herein incorporated by reference. Preferably, compositions in this class comprise at least one metal-containing spinel which includes a first metal and a second metal having a valence higher than the valence of said first metal, at least one component of a third metal other than said first and second metals and at least one component of a fourth metal other than said first, second and third metals, wherein said third metal is selected from the group consisting of Group IB metals, Group IIB metals, Group VIA metals, the rare-earth metals, the Platinum Group metals and mixtures thereof, and said fourth metal is selected from the group consisting of iron, nickel, titanium, chromium, manganese, cobalt, germanium, tin, bismuth, molybdenum, antimony, vanadium and mixtures thereof. Preferably, the metal containing spinel comprises magnesium as said first metal and aluminum as said second metal, and the atomic ratio of magnesium to aluminum in said spinel is at least about 0.17. The third metal in the spinel preferably comprises a metal selected from the group consisting of the Platinum Group metals, the rare-earth metals and mixtures thereof. The third metal component is preferably present in an amount in the range of about 0.001 to about 20 weight percent, calculated as elemental third metal, and said fourth metal component is present in an amount in the range of about 0.001 to about 10 weight percent, calculated as elemental fourth metal.
  • Other non-zeolitic materials useful in combination with the NOx reduction additives of the invention include, but are not limited to, zinc based catalysts such as disclosed and described in U.S. Pat. No. 5,002,654; antimony based NOx reduction additives such as described and disclosed in U.S. Pat. No. 4,988,432; perovskite-spinel NOx reduction additives such as described and disclosed in U.S. Pat. Nos. 5,364,517 and 5,565,181; hydrotalcite catalyst and additive compositions such as described and disclosed, for example, in U.S. Pat. Nos. 4,889,615, 4,946,581, 4,952,382, 5,114,691, 5,114,898, 6,479,421 B1 and PCT International Publication No. WO 95/03876; and low NOx promoter additive compositions such as described, for example in U.S. Pat. No. 4,290,878; the entire disclosure of each patent being herein incorporated by reference.
  • It is also within the scope of the invention to use the NOx reduction compositions of the invention in combination with NOx removal compositions as disclosed and described in PCT International Publication Number WO 03/046112 A1 and PCT International Publication No. WO 2004/033091 A1, the entire disclosures of which are herein incorporated by reference. Such NOx removal composition generally comprises (i) an acidic oxide support, (ii) cerium oxide, (iii) a lanthanide oxide other than ceria and (iv) optionally, at least one oxide of a transition metal selected from Groups IB and IIB of the Periodic Table, noble metals, and mixtures thereof.
  • When used, the additional non-zeolitic NOx reduction compositions are used in an amount sufficient to provide increased NOx reduction when compared to the use of the ferrierite NOx reduction compositions alone. Typically, the additional non-zeolitic compositions are used in an amount up to about 50 weight percent of the FCC catalyst inventory. Preferably, the non-zeolitic composition is used in an amount up to about 30 weight percent, most preferably up to about 10 weight percent of the FCC catalyst inventory. The additional NOx reduction composition may be blended with the FCC catalyst inventory as a separate particle additive. Alternatively, the additional NOx reduction composition may be incorporated into the FCC catalyst as an integral component of the catalyst.
  • It is also contemplated within the scope of the present invention that NOx reduction compositions in accordance with the present invention may be used in combination with other additives conventionally used in the FCC process, e.g., SOx reduction additives, gasoline-sulfur reduction additives, CO combustion promoters, additives for the production of light olefins, and the like.
  • The scope of the invention is not in any way intended to be limited by the examples set forth below. The examples include the preparation of catalyst/additives useful in the process of the invention and the evaluation of the invention process to reduce NOx in a catalytic cracking environment. The examples are given as specific illustrations of the claimed invention. It should be understood, however, that the invention is not limited to the specific details set forth in the examples.
  • All parts and percentages in the examples, as well as the remainder of the specification which refers to solid compositions or concentrations, are by weight unless otherwise specified. Concentrations of gaseous mixtures are by volume unless otherwise specified.
  • Further, any range of numbers recited in the specification or claims, such as that representing a particular set of properties, units of measure, conditions, physical states or percentages, is intended to literally incorporate expressly herein by reference or otherwise, any number falling within such range, including any subset of numbers within any range so recited.
  • EXAMPLES Example 1
  • A composition comprising 40% ferrierite, 40% clay and 20% silica sol (Additive A) was prepared as follows. An aqueous slurry containing 29% ferrierite (SiO2/Al2O3=20) was milled in a Drais mill to an average particle size of less than 2.5 μm. The milled ferrierite slurry (4160 g) was combined with 1200 g Natka clay (dry basis) and 6000 g silica sol binder (10% solids). The silica sol binder was prepared from sodium silicate and acid alum. The catalyst slurry was then spray-dried in a Bowen spray drier. The resulting spray-dried product was washed with ammonium sulfate solution, followed by water to give a catalyst with a Na2O level of less than 0.1 weight percent. The properties of the additive are shown in Table 1 below.
  • Example 2
  • A composition comprising 75% ferrierite and 25% alumina sol (Additive B) was prepared as follows. An aqueous slurry was prepared which contained 2174 g of aluminum chlorohydrol solution (23% solids), 1500 g (dry basis) of ferrierite (SiO2/Al2O3=20, Na2O+K2O<0.2) and enough additional water to make a slurry which contained about 40% solids. The slurry was milled in a Drais mill to an average particle size of less than 2.5 μm and then spray-dried in a Bowen spray dryer. The spray-dried product was calcined for 90 minutes at 1100° F. The properties of the catalyst are shown in Table 1 below.
  • Example 3
  • Additives A and B were evaluated for their ability to reduce NOx emissions from a FCCU using the Davison Circulating Riser (DCR). The description of the DCR has been published in the following papers: G. W. Young, G. D. Weatherbee, and S. W. Davey, “Simulating Commercial FCCU Yields With The Davison Circulating Riser (DCR) Pilot Plant Unit,” National Petroleum Refiners_Association (NPRA) Paper AM88-52; G. W. Young, “Realistic Assessment of FCC Catalyst Performance in the Laboratory,” in Fluid Catalytic Cracking: Science and Technology, J. S. Magee and M. M. Mitchell, Jr. Eds. Studies in Surface Science and Catalysis Volume 76, p. 257, Elsevier Science Publishers B.V., Amsterdam 1993, ISBN 0-444-89037-8.
  • The DCR was started up by charging the unit with approximately 1800 g of a commercially available cracking catalyst, SUPERNOVA®-DMR+, obtained from Grace Davison, hydrothermally deactivated in a fluidized bed reactor with 100% steam for 4 hours at 816° C.
    TABLE I
    Properties of Additives Made in Example 1 and Example 2
    Additive A Additive B
    TV @ 1750 F. 10.78 4.68
    SiO2 wt. %
    Al2O3 wt. % 21.741 29.4
    RE2O3 wt. % 0.011 <0.025
    Na2O wt. % 0.035 0.10
    Fe wt. % 0.441 0.1
    TiO2 wt. % 0.913 0.0
    wt. %
    SA wt. % 245 320
    Matrix wt. % 58 85
    Zeolite wt. % 187 235
    Average Particle Size μm 76 83
  • For the purposes of the evaluation, a commercial FCC feed was used as described in Table 2 below.
    TABLE 2
    Properties of Feed Used in DCR Tests Described in Example 3
    API Gravity @ 60° F. 21.2
    Sulfur, wt. % 0.206
    Total Nitrogen, wt. % 0.31
    Basic Nitrogen, wt. % 0.0868
    Conradson Carbon, wt. % 0.3
    Ni, ppm 1.5
    V, ppm 2.5
    K Factor 11.61
    Simulated Distillation, vol. %, of
     5 498
    20 682
    40 789
    60 865
    80 943
    FBP 1265
  • The DCR was operated with 1% excess O2 in the regenerator, and with the regenerator operating at 705° C. After the unit stabilized the baseline NOx emissions data were collected using an on-line Lear-Siegler SO2/NOx Analyzer (SM8100A). Subsequently, 100 g of catalyst were injected into the DCR consisting of 4.75 g of a commercial sample of a Pt-based combustion promoter, CP-3® (obtained from Grace Davison), which had been deactivated for 20 hours at 788° C. without any added Ni or V using the Cyclic Propylene Steaming method (CPS) and 95.25 grams of hydrothermally deactivated SUPERNOVA®-DMR+. The description of the CPS method has been published in L. T. Boock, T. F. Petti, and J. A Rudesill, “Contaminant-Metal Deactivation and Metal-Dehydrogenation Effects During Cyclic Propylene Steaming of Fluid Catalytic Cracking Catalysts,” Deactivation and Testing of Hydrocarbon Processing Catalysts, ACS Symposium Series 634, p. 171 (1996), ISBN 0-8412-3411-6.
  • After the unit was again stabilized, the NOx emissions data were collected. Thereafter, 0.525 g of the CO promoter with 210 g of Additive A, or 105 g of the same steamed deactivated cracking catalyst originally loaded into the DCR with 105 g of Additive B was added to the DCR. The results are recorded in Table 3 below. TOS is time on stream from the time of adding Pt CO combustion promoter to the unit. As shown in that table and the FIGURE, Additives A and B are effective in reducing NOx emissions from the DCR regenerator.
  • Table 4 shows the conversion and product yields with and without the composition of this invention. In Table 4 the means of conversion and cracked product yields were calculated using a sample of 7 baseline DCR tests. As shown in Table 4, when accounting for the expected variation from experiment to experiment, both Additives A and B are especially effective in decreasing NOx emissions without significantly affecting the cracked products yields. In particular, both overall conversion and gasoline yield do not change substantially, even though the FCC feedstock used in these experiments is a high nitrogen feed.
    TABLE 3
    Reduction of NOx Emissions From the Regenerator
    of the Davison Circulating Riser (DCR) When Using
    Ferrierite Zeolite Based Additives A and B
    Flue Gas NOx
    Amount TOS Rate NOx Reduction
    Additive (%) (h) (l/h NPT) (nppm) (%)
    Catalyst 918 17
    CP-3 ® CPS 0.25 1.9 928 534
    Additive A 10 3 906 42 92
    4 902 69 87
    24 874 141 74
    Catalyst 943 32
    CP-3 ® CPS 0.25 1.6 937 474
    Additive B 5 3 889 55 88
    4 874 82 83
    24 874 165 65
  • TABLE 4
    Conversion and Cracked Product Yields
    Cracking Catalyst w/10% w/5% w/5%
    w/0.25% CP-3(CPS) Additive A Additive B Additive B
    Catalyst Name Average of All Tests TOS = 1 h TOS = 3 h TOS = 23 h
    Rx Exit Temp, C. 521 521 521 521
    Conversion, wt % 58.52 57.16 58.14 57.97
    C/O RATIO 8.72 8.59 8.69 8.60
    H2 Yield, wt % 0.05 0.05 0.05 0.05
    Dry Gas, wt % 2.00 2.08 2.10 2.03
    Total C3, wt % 4.00 4.36 4.48 4.07
    C3 =, wt % 3.44 3.78 3.90 3.51
    Total C4, wt % 7.03 7.04 7.22 7.26
    iC4, wt % 1.66 1.53 1.62 1.59
    Total C4 =, wt % 5.00 5.15 5.24 5.31
    iC4 =, wt % 1.52 1.59 1.62 1.65
    Total LPG 11.03 11.39 11.71 11.33
    Gasoline, wt % 42.08 40.46 41.12 41.48
    G-Con RON EST 93.21 93.12 93.20 93.12
    LCO, wt % 25.93 25.77 25.40 25.51
    Bottoms, wt % 15.55 17.07 16.45 16.52
    Coke, wt % 3.37 3.17 3.16 3.13
  • Example 4
  • A composition comprising 65% ferrierite, 20% Alumina Sol and 15% kaolin clay (ADDITIVE C) was prepared as follows: An aqueous slurry was prepared which contained 40.1 lbs of aluminum chlorohydrol solution (23% solids), 29.3 lbs (dry basis) of ferrierite (SiO2/Al2O3=16, Na2O+K2O<0.2), 7.9 lbs kaolin clay (as is), and 32.5 lbs additional water, enough to make a slurry which contained about 40% solids. The slurry was milled in a Drais mill to an average particle size of less than 2.5 μm and then spray-dried in a Bowen Engineering spray drier. The spray-dried product was calcined for 60 minutes at 1100° F. The properties of the catalyst are shown in Table 5 below.
    TABLE 5
    Properties of Additive Made in Example 4
    Additive C
    T.V., %: 4.76
    SiO2, %: 64.73
    Al2O3, %: 33.004
    RE2O3, %: 0.049
    Na2O, %: 0.135
    Fe2O3, %: 0.295
    TiO2, %: 0.448
    DI: 1.3
    APS, microns: 93
    Surface Area, m2/g: 257
    ZSA, m2/g: 205
    MSA, m2/g: 52
  • Example 5
  • A particulate NOx reduction composition (Additive D) was prepared as follows: A slurry was prepared from an aqueous slurry having 20% solids of a peptizable alumina (Versal 700 alumina powder obtained from La Roche Industries Inc., 99% Al2O3, 30% moisture). The alumina slurry was prepared using 31.6 lbs of the alumina. To the alumina slurry 3.87 lbs of an aqueous sodium hydroxide solution (50% NaOH) was added. Next, 10.4 lbs of cerium carbonate crystals (obtained from Rhone Poulenc, Inc., 96% CeO2, 4% La2O3, 50% moisture) was added to the slurry. The slurry was diluted with a sufficient amount of water to bring the solids concentration of the slurry to 12%. Finally, 3.38 lbs of ion exchanged silica sol of Nalco 1140 (obtained from Nalco Chemicals Co.) was added to the slurry. The mixture was agitated to assure good mixing and then milled in a stirred media mill to reduce agglomerates to substantially less than 10 μm. The milled mixture was then spray-dried to form approximately 70 μm microspheres and thereafter calcined at approximately 650° C. to remove volatiles. The resulting material was impregnated with an aqueous solution of a Cu containing salt (e.g., CuSO4) to achieve about 2% Cu on the final product, and was flash dried. The final product had the following analysis (dry basis): 7.8% SiO2, 7.1% Na2O, 18.5% CeO2, 60.2% Al2O3, 1.9% Cu and BET surface area of 111 m2/g.
  • Example 6
  • Additive C and a blend of Additives C and D consisting of 75% Additive C and 25% Additive D where tested in the DCR with a feedstock having the properties shown in Table 6. The unit was loaded with 1995 g of an equilibrium cracking catalyst (ECAT) having the properties as shown in Table 7 below, and 5 g of the commercially available CO combustion promoter CP-3®, which had been deactivated for 20 hours at 788° C. without any added Ni or V using the CPS method. After the unit was stabilized, the baseline NOx emissions data were collected. Subsequently, 42 g of Additive C or the blend of Additive C and D were injected into the unit along with 0.25 g of the combustion promoter, and 157.75 g of the equilibrium catalyst. The results are shown in Table 8 below. TOS is time on stream from the time of adding the Pt CO combustion promoter to the unit. As this Table shows, both Additive C and the blend of Additives C and D are effective in decreasing NOx emissions in the DCR unit regenerator. However, the blend of Additives C and D when used in the catalyst inventory in the same amount as Additive C alone is more effective in reducing NOx than Additive C.
    TABLE 6
    Properties of Feed Used in DCR Tests Described in Example 6
    API Gravity @ 60° F. 25.5
    Sulfur, wt. % 0.369
    Total Nitrogen, wt. % 0.12
    Basic Nitrogen, wt. % 0.05
    Conradson Carbon, wt. % 0.68
    Fe, ppm 4
    Na, ppm 1.2
    K Factor 11.94
    Simulated Distillation, vol. %, ° F.
     5 513
    20 691
    40 782
    60 859
    80 959
    FBP 1257
  • TABLE 7
    Properties of the Equilibrium Catalyst
    CHEMICAL ANALYSES:
    SiO2: wt. % 49.0
    Al2O3: wt. % 46.1
    RE2O3: wt. % 1.44
    Na2O: wt. % 0.32
    SO4: wt. % 0.10
    Fe: wt. % 0.6
    TiO2: wt. % 1.2
    Ni: ppm 1060
    V: ppm 1760
    SA: m2/g 174
    Zeolite: m2/g 127
    Matrix: m2/g 47
    Unit Cell Angstroms 24.28
  • TABLE 8
    Reduction of NOx Emissions From The Regenerator
    Of The Davison Circulating Riser (DCR) When Using
    Additive C Or The Blend Of Additives C and D
    Additive Flue Gas NOx
    Amount TOS Rate NOx Reduction
    Additive (%) (h) (l/h NPT) (nppm) (%)
    Catalyst + CP-3 ® 0.25 2 895 152
    Additive C 1.9 7 895 91 40
    12 895 90 41
    Catalyst + CP-3 ® 0.25 2.8 907 169
    Additives C + D 1.9 7.8 918 78 54
    12.3 922 78 54

Claims (193)

1. A process of reducing NOx emissions from the regeneration zone during fluid catalytic cracking of a hydrocarbon feedstock into lower molecular weight components, said process comprising
a. contacting a hydrocarbon feedstock during a fluid catalytic cracking (FCC) process wherein NOx emissions are released from a regeneration zone of a fluid catalytic cracking unit (FCCU) operating under FCC conditions with a circulating inventory of a cracking catalyst and a particulate NOx reduction composition having a mean particle size of greater than 45 μm and comprising (i) at least 10 weight percent of ferrierite zeolite, and (ii) from about 5 to about 50 weight percent of an inorganic binder, selected from the group consisting of alumina, silica, silica alumina, alumina phosphate and mixtures thereof; and
b. reducing the amount of NOx emissions released from the regeneration zone of the FCCU by at least 10% as compared to the amount of NOx emissions released in the absence of the particulate NOx reduction composition.
2. The process of claim 1 wherein the FCC cracking catalyst comprises a Y-type zeolite.
3. The process of claim 1 wherein step (b) is accomplished without a substantial change in the hydrocarbon feedstock conversion or yield of cracked hydrocarbons as compared to the hydrocarbon feedstock conversion or yield of cracked hydrocarbons obtained from the cracking catalyst alone.
4. The process of claim 1 wherein the amount of ferrierite zeolite present in the NOx reduction composition is at least 30 weight percent of the composition.
5. The process of claim 4 wherein the amount of ferrierite zeolite present in the NOx reduction composition is at least 40 weight percent of the composition.
6. The process of claim 5 wherein the amount of ferrierite zeolite present in the NOx reduction composition is at least 50 weight percent of the composition.
7. The process of claim 1 wherein the amount of ferrierite zeolite present in the NOx reduction composition ranges from about 10 to about 85 weight percent of the composition.
8. The process of claim 7 wherein the amount of ferrierite zeolite present in the NOx reduction composition ranges from about 30 to about 80 weight percent of the composition.
9. The process of claim 8 wherein the amount of ferrierite zeolite present in the NOx reduction composition ranges from about 40 to about 75 weight percent of the composition.
10. The process of claim 1 or 3 wherein the ferrierite zeolite is exchanged with a cation selected from the group consisting of hydrogen, ammonium, alkali metal and combinations thereof.
11. The process of claim 1 wherein the ferrierite zeolite further comprises at least one stabilizing metal.
12. The process of claim 11 wherein the stabilizing metal is a metal selected from the group consisting of Groups IIA, IIIB, IVB, VB, VIB, VIIB, VIII, IIB, IIIA, IVA, VA, the Lanthanide Series of The Periodic Table, Ag and mixtures thereof.
13. The process of claim 12 wherein the stabilizing metal is selected from the group consisting of Groups IIIB, IIA, IIB, IIIA and the Lanthanide Series of the Periodic Table, and mixtures thereof.
14. The process of claim 13 wherein the stabilizing metal is selected from the group consisting of lanthanum, aluminum, magnesium and zinc, and mixtures thereof.
15. The process of claim 11 wherein the stabilizing metal is incorporated into the pores of the ferrierite zeolite.
16. The process of claim 1 wherein the inorganic binder is selected from the group consisting of silica, alumina, silica alumina and mixtures thereof.
17. The process of claim 16 wherein the inorganic binder is alumina.
18. The process of claim 17 wherein the alumina is an acid or base peptized alumina.
19. The process of claim 17 wherein the alumina is aluminum chlorohydrol.
20. The process of claim 1 wherein the amount of inorganic binder present in the particulate NOx reduction composition ranges from about 10 to about 30 weight percent of the composition.
21. The process of claim 20 wherein the amount of inorganic binder present in the particulate NOx reduction composition ranges from about 15 to about 25 weight percent of the composition.
22. The process of claim 1 wherein the particulate NOx reduction composition further comprises an additional zeolite other than ferrierite zeolite.
23. The process of claim 22 wherein the additional zeolite is a zeolite having a pore size ranging from about 3 to about 7.2 Angstroms and a SiO2 to Al2O3 molar ratio less than about 500.
24. The process of claim 23 wherein the SiO2 to Al2O3 molar ratio is less than 250.
25. The process of claim 22 wherein the additional zeolite is selected from the group consisting of ZSM-5, ZSM-11, beta, MCM-49, mordenite, MCM-56, Zeolite-L, zeolite Rho, errionite, chabazite, clinoptilolite, MCM-22, MCM-35, MCM-61; Offretite, A, ZSM-12, ZSM-23, ZSM-18, ZSM-22, ZSM-35, ZSM-57, ZSM-61, ZK-5, NaJ, Nu-87, Cit-1, SSZ-35, SSZ-48, SSZ-44, SSZ-23, Dachiardite, Merlinoite, Lovdarite, Levyne, Laumontite, Epistilbite, Gmelonite, Gismondine, Cancrinite, Brewsterite, Stilbite, Paulingite, Goosecreekite, Natrolite and mixtures thereof.
26. The process of claim 25 wherein the additional zeolite is selected from the group consisting of ZSM-5, ZSM-11, beta, MCM-49, mordenite, MCM-56, Zeolite-L, zeolite Rho, errionite, chabazite, clinoptilolite, MCM-22, MCM-35, Offretite, A, ZSM-12 and mixtures thereof.
27. The process of claim 22, 23 or 25 wherein the additional zeolite is present in an amount ranging from about 1 to about 80 weight percent of the composition.
28. The process of claim 27 wherein the additional zeolite is present in an amount ranging from about 10 to about 70 weight percent of the composition.
29. The process of claim 1 or 3 wherein the NOx reduction composition further comprises a matrix material selected from the group consisting of alumina, silica, silica alumina, titania, zirconia, yttria, lanthana, ceria, neodymia, samaria, europia, gadolinia, praseodymia, and mixtures thereof.
30. The process of claim 29 wherein the matrix material is present in an amount less than 70 weight percent.
31. The process of claim 1 or 3 further comprising recovering the cracking catalyst from said contacting step and treating the used catalyst in a regeneration zone to regenerate said catalyst.
32. The process of claim 31 wherein the cracking catalyst and the particulate NOx reduction composition are fluidized during contacting said hydrocarbon feedstock.
33. The process of claim 1 or 3 further comprising contacting the hydrocarbon feed with at least one additional NOx reduction composition.
34. The process of claim 33 wherein the additional NOx reduction composition is a non-zeolitic composition.
35. The process of claim 34 wherein the additional NOx reduction composition comprises (1) an acidic metal oxide containing substantially no zeolite; (2) a metal component, measured as the oxide, selected from the group consisting of an alkali metal, an alkaline earth metal and mixtures thereof; (3) an oxygen storage metal oxide component; and (4) at least one noble metal component.
36. The process of claim 33 wherein the additional NOx reduction composition is a low NOx CO combustion promoter composition which comprises (1) an acidic oxide support; (2) an alkali metal and/or alkaline earth metal or mixtures thereof; (3) a transition metal oxide having oxygen storage capability; and (4) palladium.
37. The process of claim 33 wherein the additional NOx reduction composition comprises (1) an acidic oxide support; (2) an alkali metal and/or alkaline earth metal or mixtures thereof; (3) a transition metal oxide having oxygen storage capability; and (4) a transition metal selected from Groups IB and IIB of the Periodic Table, and mixtures thereof.
38. The process of claim 33 wherein the additional NOx reduction composition comprises at least one metal-containing spinel which includes a first metal and a second metal having a valence higher than the valence of said first metal, at least one component of a third metal other than said first and second metals and at least one component of a fourth metal other than said first, second and third metals, wherein said third metal is selected from the group consisting of Group IB metals, Group IIB metals, Group VIA metals, the rare-earth metals, the Platinum Group metals and mixtures thereof, and said fourth metal is selected from the group consisting of iron, nickel, titanium, chromium, manganese, cobalt, germanium, tin, bismuth, molybdenum, antimony, vanadium and mixtures thereof.
39. The process of claim 38 wherein the metal containing spinel comprises magnesium as said first metal and aluminum as said second metal.
40. The process of claim 39 wherein the third metal component in the metal containing spinel is selected from the group consisting of a Platinum Group metal, the rare-earth metals and mixtures thereof.
41. The process of claim 38 wherein the third metal component is present in an amount in the range of about 0.001 to about 20 weight percent, calculated as elemental third metal.
42. The process of claim 38 wherein said fourth metal component is present in an amount in the range of about 0.001 to about 10 weight percent, calculated as elemental fourth metal.
43. The process of claim 33 wherein the additional NOx reduction additive is a zinc based catalyst.
44. The process of claim 33 wherein the additional NOx reduction additive is an antimony based NOx reduction additive.
45. The process of claim 33 wherein the additional NOx reduction additive is a perovskite-spinel NOx reduction additive.
46. The process of claim 33 wherein the additional NOx reduction additive is a hydrotalcite containing composition.
47. The process of claim 1 wherein the particulate NOx reduction composition has a mean particle size from about 50 to about 200 μm.
48. The process of claim 47 wherein the particulate NOx reduction composition has a mean particle size from about 55 to about 150 μm.
49. The process of claim 1 or 3 wherein the particulate NOx reduction composition has a Davison attrition index (DI) value of less than 50.
50. The process of claim 49 wherein the particulate NOx reduction composition has a DI value of less than 20.
51. The process of claim 49 wherein the particulate NOx reduction composition has a DI value of less than 15.
52. The process of claim 2 wherein the amount of the NOx reduction composition is that amount sufficient to provide a ratio of ferrierite zeolite to Y-type zeolite in the total catalyst inventory of less than 2.
53. The process of claim 33 wherein the additional NOx reduction composition comprises (i) an acidic metal oxide, (ii) cerium oxide, (iii) a lanthanide oxide other than ceria, and (iv) optionally, at least one oxide of a transition metal selected from Groups IB and IIB of the Periodic Table, noble metals and mixtures thereof.
54. A fluid cracking catalyst (FCC) composition, which composition comprises (a) a FCC cracking component suitable for catalyzing the cracking of hydrocarbons under FCC conditions, and (b) a particulate NOx reduction composition having a mean particle size of greater than 45 μm and comprising (i) at least 10 weight percent of ferrierite zeolite, and (ii) about 5 to about 50 weight percent of an inorganic binder selected from the group consisting of alumina, silica, silica alumina, alumina phosphate, and mixtures thereof.
55. The catalyst of claim 54 wherein the FCC cracking component contains a Y-type zeolite.
56. The catalyst of claim 55 wherein the NOx reduction composition is present in an amount sufficient to provide a ratio of ferrierite zeolite to Y-type zeolite of less than 2 in the total catalyst composition.
57. The catalyst of claim 54 wherein the amount of ferrierite zeolite present in the NOx reduction composition is at least 30 weight percent of the composition.
58. The catalyst of claim 57 wherein the amount of ferrierite zeolite present in the NOx reduction composition is at least 40 weight percent of the composition.
59. The catalyst of claim 58 wherein the amount of ferrierite zeolite present in the NOx reduction composition is at least 50 weight percent of the composition.
60. The catalyst of claim 54 wherein the amount of ferrierite zeolite present in the NOx reduction composition ranges from about 10 to about 85 weight percent of the composition.
61. The catalyst of claim 60 wherein the amount of ferrierite zeolite present in the NOx reduction composition ranges from about 30 to about 80 weight percent of the composition.
62. The catalyst of claim 61 wherein the amount of ferrierite zeolite present in the NOx reduction composition ranges from about 40 to about 75 weight percent of the composition.
63. The catalyst of claim 54 wherein the ferrierite zeolite is exchanged with a cation selected from the group consisting of hydrogen, ammonium; alkali-metal and combinations thereof.
64. The catalyst of claim 54 wherein the ferrierite zeolite further comprises at least one stabilizing metal.
65. The catalyst of claim 64 wherein the stabilizing metal is a metal selected from the group consisting of Groups IIA, IIIB, IVB, VB, VIB, VIIB, VIII, IIB, IIIA, IVA, VA, the Lanthanide Series of The Periodic Table, Ag and mixtures thereof.
66. The catalyst of claim 65 wherein the stabilizing metal is selected from the group consisting of Groups IIIB, IIA, IIB, IIIA, the Lanthanide Series of the Periodic Table, and mixtures thereof.
67. The catalyst of claim 66 wherein the stabilizing metal is selected from the group consisting of lanthanum, aluminum, magnesium and zinc, and mixtures thereof.
68. The catalyst of claim 64 wherein the stabilizing metal is incorporated into the pores of the ferrierite zeolite.
69. The catalyst of claim 54 wherein the inorganic binder in the particulate NOx reduction composition is selected from the group consisting of silica, alumina, silica alumina and mixtures thereof.
70. The catalyst of claim 69 wherein the inorganic binder is alumina.
71. The catalyst of claim 70 wherein the inorganic binder is an aluminum chlorohydrol.
72. The catalyst of claim 70 wherein the alumina is an acid or base peptized alumina.
73. The catalyst of claim 54 wherein the amount of inorganic binder present in the particulate NOx reduction composition ranges from about 10 to about 30 weight percent of the composition.
74. The catalyst of claim 73 wherein the amount of inorganic binder present in the particulate NOx reduction composition ranges from about 15 to about 25 weight percent of the composition.
75. The catalyst of claim 54 wherein the particulate NOx reduction composition further comprises an additional zeolite other than ferrierite zeolite.
76. The catalyst of claim 75 wherein the additional zeolite is a zeolite having a pore size ranging from about 3 to about 7.2 Angstroms and a SiO2 to Al2O3 molar ratio less than about 500.
77. The catalyst of claim 76 wherein the SiO2 to Al2O3 molar ratio is less than 250.
78. The catalyst of claim 75 wherein the additional zeolite is selected from the group consisting of ZSM-5, ZSM-11, beta, MCM-49, mordenite, MCM-56, Zeolite-L, zeolite Rho, errionite, chabazite, clinoptilolite, MCM-22, MCM-35, MCM-61, Offretite, A, ZSM-12, ZSM-23, ZSM-18, ZSM-22, ZSM-35, ZSM-57, ZSM-61, ZK-5, NaJ, Nu-87, Cit-1, SSZ-35, SSZ-48, SSZ-44, SSZ-23, Dachiardite, Merlinoite, Lovdarite, Levyne, Laumontite, Epistilbite, Gmelonite, Gismondine, Cancrinite, Brewsterite, Stilbite, Paulingite, Goosecreekite, Natrolite and mixtures thereof.
79. The catalyst of claim 78 wherein the additional zeolite is selected from the group consisting of ZSM-5, ZSM-11, beta, MCM-49, mordenite, MCM-56, Zeolite-L, zeolite Rho, errionite, chabazite, clinoptilolite, MCM-22, MCM-35, Offretite, A, ZSM-12 and mixtures thereof.
80. The catalyst of claim 75, 76 or 78 wherein the additional zeolite is present in an amount ranging from about 1 to about 80 weight percent of the composition.
81. The catalyst of claim 80 wherein the additional zeolite is present in an amount ranging from about 10 to about 70 weight percent of the composition.
82. The catalyst of claim 54 wherein the composition further comprises a matrix material selected from the group consisting of alumina, silica, silica alumina, titania, zirconia, yttria, lanthana, ceria, neodymia, samaria, europia, gadolinia, praseodymia and mixtures thereof.
83. The catalyst of claim 82 wherein the matrix material is present in an amount less than 70 weight percent.
84. The catalyst of claim 54 further comprising at least one additional NOx reduction composition.
85. The catalyst of claim 84 wherein the additional NOx reduction composition is a non-zeolitic composition.
86. The catalyst of claim 85 wherein the additional NOx reduction composition comprises (a) an acidic metal oxide containing substantially no zeolite; (b) a metal component, measured as the oxide, selected from the group consisting of an alkali metal, an alkaline earth metal and mixtures thereof; (c) an oxygen storage metal oxide component; and, (d) at least one noble metal component.
87. The catalyst of claim 84 wherein the additional NOx reduction composition comprises (a) an acidic metal oxide support; (b) an alkali metal, alkaline earth metal or mixtures thereof; (c) a transition metal oxide having oxygen storage capability; and, (d) a transition metal selected from Groups IB and IIB of the Periodic Table, and mixtures thereof.
88. The catalyst of claim 84 wherein the additional NOx reduction composition is a low NOx, CO combustion promoter composition which comprises (a) an acidic oxide support; (b) an alkali metal, an alkaline earth metal or mixtures thereof; (c) a transition metal oxide having oxygen storage capability; and (d) palladium.
89. The catalyst of claim 84 wherein the additional NOx reduction composition comprises at least one metal-containing spinel which includes a first metal and a second metal having a valence higher than the valence of said first metal, at least one component of a third metal other than said first and second metals and at least one component of a fourth metal other than said first, second and third metals, wherein said third metal is selected from the group consisting of Group IB metals, Group IIB metals, Group VIA metals, the rare-earth metals, the Platinum Group metals and mixtures thereof, and said fourth metal is selected from the group consisting of iron, nickel, titanium, chromium, manganese, cobalt, germanium, tin, bismuth, molybdenum, antimony, vanadium and mixtures thereof.
90. The catalyst of claim 89 wherein the metal containing spinel comprises magnesium as said first metal and aluminum as said second metal.
91. The catalyst of claim 89 wherein the third metal component in the metal containing spinel is selected from the group consisting of a Platinum Group metal, the rare-earth metals and mixtures thereof.
92. The catalyst of claim 89 wherein the third metal component is present in an amount in the range of about 0.001 to about 20 weight percent, calculated as elemental third metal.
93. The catalyst of claim 89 wherein said fourth metal component is present in an amount in the range of about 0.001 to about 10 weight percent, calculated as elemental fourth metal.
94. The catalyst of claim 84 wherein the additional NOx reduction additive is a zinc based catalyst.
95. The catalyst of claim 84 wherein the additional NOx reduction additive is an antimony based NOx reduction additive.
96. The catalyst of claim 84 wherein the additional NOx reduction additive is a perovskite-spinel NOx reduction additive.
97. The catalyst of claim 84 wherein the additional NOx reduction additive is a hydrotalcite containing composition.
98. The catalyst of claim 54 wherein the particulate NOx reduction composition has a mean particle size from about 50 to about 200 μm.
99. The catalyst of claim 98 wherein the particulate NOx reduction composition has a mean particle size from about 55 to about 150 μm.
100. The catalyst of claim 54 wherein the particulate NOx reduction composition has a Davison attrition index (DI) value of less than 50.
101. The catalyst of claim 100 wherein the particulate NOx reduction composition has a DI value of less than 20.
102. The catalyst of claim 101 wherein the particulate NOx reduction composition has a DI value of less than 15.
103. The catalyst of claim 84 wherein the additional NOx reduction composition comprises (i) an acidic metal oxide, (ii) cerium oxide, (iii) a lanthanide oxide other than ceria, and (iv) optionally, at least one oxide of a transition metal selected from Groups IB and IIB of the Periodic Table, noble metals, and mixtures thereof.
104. A method of reducing NOx emissions from the regeneration zone during fluid catalytic cracking of a hydrocarbon feedstock into lower molecular weight components, said method comprising contacting a hydrocarbon feedstock with a cracking catalyst at elevated temperature whereby lower molecular weight hydrocarbon components are formed, said cracking catalyst comprising the composition of claim 54, 56, 64 or 75.
105. The method of claim 104 further comprising recovering the cracking catalyst from said contacting step and treating the used catalyst in a regeneration zone to regenerate said catalyst.
106. The method of claim 105 wherein the cracking catalyst is fluidized during contacting said hydrocarbon feedstock.
107. The method of claim 104 wherein the cracking catalyst further comprises an additional NOx reduction additive composition.
108. A fluid cracking catalyst comprising (a) a cracking component suitable for catalyzing the cracking of hydrocarbons, (b) at least 0.1 weight percent of ferrierite zeolite and (c) less than 50 weight percent of an inorganic binder material, components (b) and (c) being based oh the total weight of the cracking catalyst.
109. The cracking catalyst of claim 108 wherein said catalyst comprises integral particles which contain components (a), (b) and (c).
110. The cracking catalyst of claim 108 wherein component (b) comprises from about 0.1 to about 60 wt % of the cracking catalyst.
111. The cracking catalyst of claim 110 wherein component (b) comprises from about 1 to about 40 wt % of the cracking catalyst.
112. The catalyst of claim 108 further comprising at least one additional NOx reduction composition.
113. The catalyst of claim 112 wherein the additional NOx reduction composition is a non-zeolitic composition.
114. The catalyst of claim 113 wherein the additional NOx reduction composition comprises (a) an acidic metal oxide containing substantially no zeolite; (b) a metal component, measured as the oxide, selected from the group consisting of an alkali metal, an alkaline earth metal and mixtures thereof; (c) an oxygen storage metal oxide component; and (d) at least one noble metal component.
115. The catalyst of claim 112 wherein the additional NOx reduction composition comprises (a) an acidic metal oxide support; (b) an alkali metal, alkaline earth metal or mixtures thereof; (c) a transition metal oxide having oxygen storage capability; and, (d) a transition metal selected from Groups IB and IIB of the Periodic Table, and mixtures thereof.
116. The catalyst of claim 112 wherein the additional NOx reduction composition is a low NOx, CO combustion promoter composition which comprises (a) an acidic oxide support; (b) an alkali metal, an alkaline earth metal or mixtures thereof; (c) a transition metal oxide having oxygen storage capability; and (d) palladium.
117. The catalyst of claim 112 wherein the additional NOx reduction composition comprises at least one metal-containing spinel which includes a first metal and a second metal having a valence higher than the valence of said first metal, at least one component of a third metal other than said first and second metals and at least one component of a fourth metal other than said first, second and third metals, wherein said third metal is selected from the group consisting of Group IB metals, Group IIB metals, Group VIA metals, the rare-earth metals, the Platinum Group metals and mixtures thereof, and said fourth metal is selected from the group consisting of iron, nickel, titanium, chromium, manganese, cobalt, germanium, tin, bismuth, molybdenum, antimony, vanadium and mixtures thereof.
118. The catalyst of claim 117 wherein the metal containing spinel comprises magnesium as said first metal and aluminum as said second metal.
119. The catalyst of claim 117 wherein the third metal component in the metal containing spinel is selected from the group consisting of a Platinum Group metal, the rare-earth metals and mixtures thereof.
120. The catalyst of claim 117 wherein the third metal component is present in an amount in the range of about 0.001 to about 20 weight percent, calculated as elemental third metal.
121. The catalyst of claim 117 wherein said fourth metal component is present in an amount in the range of about 0.001 to about 10 weight percent, calculated as elemental fourth metal.
122. The catalyst of claim 112 wherein the additional NOx reduction additive is a zinc based catalyst.
123. The catalyst of claim 112 wherein the additional NOx reduction additive is an antimony based NOx reduction additive.
124. The catalyst of claim 112 wherein the additional NOx reduction additive is a perovskite-spinel NOx reduction additive.
125. The catalyst of claim 112 wherein the additional NOx reduction additive is a hydrotalcite containing composition.
126. A method of reducing NOx emissions from the regeneration zone during fluid catalytic cracking of a hydrocarbon feedstock into lower molecular weight components, said process comprising (a) contacting a hydrocarbon feedstock during a fluid catalytic cracking (FCC) process wherein NOx emissions are released from a regeneration zone of the FCCU operating under FCC conditions with the cracking catalyst composition of claim 108; and (b) reducing the amount of NOx emissions released from the regeneration zone of the FCCU by at least 10 percent as compared to the amount of NOx emissions released in the absence of the NOx reduction composition.
127. The method of claim 126 wherein step (b) is accomplished without a substantial change in the hydrocarbon feedstock conversion or yield of cracked hydrocarbons obtained during the FCC process as compared to the hydrocarbon feedstock conversion or yield of cracked hydrocarbons obtained from the cracking catalyst alone.
128. The method of claim 126 or 127 wherein the amount of ferrierite zeolite present in the cracking catalyst composition comprises at least about 0.1 wt % of the cracking catalyst composition.
129. The method of claim 126 or 127 wherein the amount of ferrierite zeolite present in the cracking catalyst composition ranges from about 0.1 to about 60 wt % of the cracking catalyst composition.
130. The method of claim 129 wherein the amount of ferrierite zeolite present in the cracking catalyst composition ranges from about 1 to about 40 wt % of the cracking catalyst composition.
131. The method of claim 126 or 127 wherein the ferrierite zeolite is exchanged with a cation selected from the group consisting of hydrogen, ammonium, alkali metal and combinations thereof.
132. The method of claim 126 or 127 wherein the ferrierite zeolite further comprises at least one stabilizing metal.
133. The method of claim 132 wherein the stabilizing metal is a metal selected from the group consisting of Groups IIA, IIIB, IVB, VB, VIB, VIIB, VIII, IIB, IIIA, IVA, VA the Lanthanide Series of The Periodic Table, Ag and mixtures thereof.
134. The method of claim 133 wherein the stabilizing metal is selected from the group consisting of Groups IIIB, IIA, IIB, IIIA and the Lanthanide Series of the Periodic Table, and mixtures thereof.
135. The method of claim 134 wherein the stabilizing metal is selected from the group consisting of lanthanum, aluminum, magnesium and zinc, and mixtures thereof.
136. The method of claim 132 wherein the stabilizing metal is incorporated into the pores of the ferrierite zeolite.
137. The method of claim 126 or 127 further comprising recovering the cracking catalyst and treating the used catalyst in a regeneration zone to regenerate said catalyst.
138. The method of claim 126 or 127 wherein the cracking catalyst is fluidized during contacting said hydrocarbon feedstock.
139. The method of claim 126 further comprising contacting the hydrocarbon feed with at least one additional NOx reduction additive composition.
140. The method of claim 139 wherein the additional NOx reduction additive composition is a non-zeolitic composition.
141. The method of claim 140 wherein the additional NOx reduction additive composition comprises (a) an acidic metal oxide containing substantially no zeolite; (b) a metal component, measured as the oxide, selected from the group consisting of an alkali metal, an alkaline earth metal and mixtures thereof; (c) an oxygen storage metal oxide component; and (d) at least one noble metal component.
142. The method of claim 139 wherein the NOx reduction additive composition is a low NOx, CO combustion promoter composition which comprises (a) an acidic oxide support; (b) an alkali metal and/or alkaline earth metal or mixtures thereof; (c) a transition metal oxide having oxygen storage capability; and (d) palladium.
143. The method of claim 139 wherein the additional NOx reduction additive composition comprises at least one metal-containing spinel which includes a first metal and a second metal having a valence higher than the valence of said first metal, at least one component of a third metal other than said first and second metals and at least one component of a fourth metal other than said first, second and third metals, wherein said third metal is selected from the group consisting of Group IB metals, Group IIB metals, Group VIA metals, the rare-earth metals, the Platinum Group metals, and mixtures thereof, and said fourth metal is selected from the group consisting of iron, nickel, titanium, chromium, manganese, cobalt, germanium, tin, bismuth, molybdenum, antimony, vanadium and mixtures thereof.
144. The method of claim 143 wherein the metal-containing spinel comprises magnesium as said first metal and aluminum as said second metal.
145. The method of claim 143 wherein the third metal component in the metal-containing spinel is selected from the group consisting of a Platinum Group metal, the rare-earth metals and mixtures thereof.
146. The method of claim 143 wherein the third metal component is present in an amount in the range of about 0.001 to about 20 weight percent, calculated as elemental third metal.
147. The method of claim 143 wherein said fourth metal component is present in an amount in the range of about 0.001 to about 10 weight percent, calculated as elemental fourth metal.
148. The method of claim 139 wherein the additional NOx reduction additive composition comprises (a) an acidic oxide support; (b) an alkali metal and/or alkaline earth metal or mixtures thereof; (c) a transition metal oxide having oxygen storage capability; and (d) a transition metal selected from the Groups IB and IIB of the Periodic Table.
149. The method of claim 139 wherein the additional NOx reduction additive composition is a zinc based catalyst.
150. The method of claim 139 wherein the additional NOx reduction additive composition is an antimony based NOx reduction additive.
151. The method of claim 139 wherein the additional NOx reduction additive composition is a perovskite-spinel NOx reduction additive.
152. The method of claim 139 wherein the additional, NOx reduction additive composition is a hydrotalcite containing composition.
153. The cracking catalyst of claim 108 wherein component (a) comprises a Y-type zeolite and component (b) is present in an amount sufficient to provide a ratio of ferrierite to Y-type zeolite of less than 2 in the total catalyst.
154. The cracking catalyst of claim 108 wherein component (b) further comprises at least one stabilizing metal.
155. The cracking catalyst of claim 154 wherein the stabilizing metal is a metal selected from the group consisting of Groups IIA, IIIB, IVB, VB, VIB, VIIB, VIII, IIB, IIIA, IVA, VA, the Lanthanide Series of The Periodic Table, Ag and mixtures thereof.
156. The cracking catalyst of claim 155 wherein the stabilizing metal is selected from the group consisting of Groups IIIB, IIA, IIB, IIIA, the Lanthanide Series of the Periodic Table, and mixtures thereof.
157. The cracking catalyst of claim 156 wherein the stabilizing metal is selected from the group consisting of lanthanum, aluminum, magnesium and zinc, and mixtures thereof.
158. The cracking catalyst of claim 154 wherein the stabilizing metal is incorporated into the pores of component (b).
159. The cracking catalyst of claim 112 wherein the additional NOx reduction composition comprises (i) an acidic metal oxide, (ii) cerium oxide, (iii) a lanthanide oxide other than ceria, and (iv) optionally, at least one oxide of a transition metal selected from Groups IB and IIB of the Periodic Table, noble metals and mixtures thereof.
160. The cracking catalyst of claim 108 further comprising an additional zeolite other than ferrierite zeolite.
161. The cracking catalyst of claim 160 wherein the additional zeolite is a zeolite having a pore size ranging from about 3 to about 7.2 Angstroms and a SiO2 to Al2O3 molar ratio less than about 500.
162. The cracking catalyst of claim 161 wherein the SiO2 to Al2O3 molar ratio is less than 250.
163. The cracking catalyst of claim 160 wherein the additional zeolite is selected from the group consisting of ZSM-5, ZSM-11, beta, MCM-49, mordenite, MCM-56, Zeolite-L, zeolite Rho, errionite, chabazite, clinoptilolite, MCM-22, MCM-35, MCM-61, Offretite, A, ZSM-12, ZSM-23, ZSM-18, ZSM-22, ZSM-35, ZSM-57, ZSM-61, ZK-5, NaJ, Nu-87, Cit-1, SSZ-35, SSZ-48, SSZ-44, SSZ-23, Dachiardite, Merlinoite, Lovdarite, Levyne, Laumontite, Epistilbite, Gmelonite, Gismondine, Cancrinite, Brewsterite, Stilbite, Paulingite, Goosecreekite, Natrolite and mixtures thereof.
164. The cracking catalyst of claim 163 wherein the additional zeolite is selected from the group consisting of ZSM-5, ZSM-11, beta, MCM-49, mordenite, MCM-56, Zeolite-L, zeolite Rho, errionite, chabazite, clinoptilolite, MCM-22, MCM-35, Offretite, A, ZSM-12 and mixtures thereof.
165. The cracking catalyst of claim 160, 161 or 163 wherein the additional zeolite is present in an amount ranging from about 1 to about 80 weight percent of the composition.
166. The cracking catalyst of claim 165 wherein the additional zeolite is present in an amount ranging from about 10 to about 70 weight percent of the composition.
167. The method of claim 139 wherein the additional NOx reduction composition comprises (i) an acidic metal oxide, (ii) cerium oxide, (iii) a lanthanide oxide other than ceria, and (iv) optionally, at least one oxide of a transition metal selected from Groups IB and IIB of the Periodic Table, noble metals and mixtures thereof.
168. The process of claim 2 wherein step (b) is accomplished without a substantial change in the hydrocarbon feedstock conversion or yield of cracked hydrocarbons as compared to the hydrocarbon feedstock conversion or yield of cracked hydrocarbons obtained from the cracking catalyst alone.
169. The cracking catalyst of claim 108 wherein component (c) comprises from about 1 to about 45 weight percent of the cracking catalyst.
170. The method of claim 126 wherein the cracking catalyst further comprises an additional zeolite other than ferrierite zeolite.
171. The process of claim 170 wherein the additional zeolite is a zeolite having a pore size ranging from about 3 to about 7.2 Angstroms and a SiO2 to Al2O3 molar ratio less than about 500.
172. The process of claim 171 wherein the SiO2 to Al2O3 molar ratio is less than 250.
173. The process of claim 170 wherein the additional zeolite is selected from the group consisting of ZSM-5, ZSM-11, beta, MCM-49, mordenite, MCM-56, Zeolite-L, zeolite Rho, errionite, chabazite, clinoptilolite, MCM-22, MCM-35, MCM-61, Offretite, A, ZSM-12, ZSM-23, ZSM-18, ZSM-22, ZSM-35, ZSM-57, ZSM-61, ZK-5, NaJ, Nu-87, Cit-1, SSZ-35, SSZ-48, SSZ-44, SSZ-23, Dachiardite, Merlinoite, Lovdarite, Levyne, Laumontite, Epistilbite, Gmelonite, Gismondine, Cancrinite, Brewsterite, Stilbite, Paulingite, Goosecreekite, Natrolite and mixtures thereof.
174. The process of claim 173 wherein the additional zeolite is selected from the group consisting of ZSM-5, ZSM-11, beta, MCM-49, mordenite, MCM-56, Zeolite-L, zeolite Rho, errionite, chabazite, clinoptilolite, MCM-22, MCM-35, Offretite, A, ZSM-12 and mixtures thereof.
175. The process of claim 170, 171 or 173 wherein the additional zeolite is present in an amount ranging from about 1 to about 80 weight percent of the composition.
176. The process of claim 175 wherein the additional zeolite is present in an amount ranging from about 10 to about 70 weight percent of the composition
177. The catalyst of claim 108 wherein the ferrierite zeolite is exchanged with a cation selected from the group consisting of hydrogen, ammonium, alkali metal and combinations thereof.
178. The method of claim 126 wherein the cracking catalyst composition comprises a Y-type zeolite as component (a) and component (b) is present in an amount sufficient to provide a ratio of ferrierite to Y-type zeolite of less than 2 in the total catalyst composition.
179. The method of claim 104 wherein the reduction of NOx emissions is accomplished without a substantial change in the hydrocarbon feedstock conversion or yield of cracked hydrocarbons as compared to the hydrocarbon feedstock conversion or yield of cracked hydrocarbons obtained from the cracking catalyst alone.
180. The method of claim 107 wherein the additional NOx reduction additive composition is a non-zeolitic composition.
181. The method of claim 107 wherein the NOx reduction additive composition is a low NOx, CO combustion promoter composition which comprises (a) an acidic oxide support; (b) an alkali metal and/or alkaline earth metal or mixtures thereof; (c) a transition metal oxide having oxygen storage capability; and (d) palladium.
182. The method of claim 107 wherein the additional NOx reduction additive composition comprises at least one metal-containing spinel which includes a first metal and a second metal having a valence higher than the valence of said first metal, at least one component of a third metal other than said first and second metals and at least one component of a fourth metal other than said first, second and third metals, wherein said third metal is selected from the group consisting of Group IB metals, Group IIB metals, Group VIA metals, the rare-earth metals, the Platinum Group metals, and mixtures thereof, and said fourth metal is selected from the group consisting of iron, nickel, titanium, chromium, manganese, cobalt, germanium, tin, bismuth, molybdenum, antimony, vanadium and mixtures thereof.
183. The method of claim 182 wherein the metal-containing spinel comprises magnesium as said first metal and aluminum as said second metal.
184. The method of claim 182 wherein the third metal component in the metal-containing spinel is selected from the group consisting of a Platinum Group metal, the rare-earth metals and mixtures thereof.
185. The method of claim 182 wherein the third metal component is present in an amount in the range of about 0.001 to about 20 weight percent, calculated as elemental third metal.
186. The method of claim 182 wherein said fourth metal component is present in an amount in the range of about 0.001 to about 10 weight percent, calculated as elemental fourth metal.
187. The method of claim 107 wherein the additional NOx reduction additive composition comprises (a) an acidic oxide support; (b) an alkali metal and/or alkaline earth metal or mixtures thereof; (c) a transition metal oxide having oxygen storage capability; and (d) a transition metal selected from the Groups IB and IIB of the Periodic Table.
188. The method of claim 107 wherein the additional NOx reduction additive composition is a zinc based catalyst.
189. The method of claim 107 wherein the additional NOx reduction additive composition is an antimony based NOx reduction additive.
190. The method of claim 107 wherein the additional NOx reduction additive composition is a perovskite-spinel NOx reduction additive.
191. The method of claim 107 wherein the additional NOx reduction additive composition is a hydrotalcite containing composition.
192. The method of claim 107 wherein the additional NOx reduction composition comprises (i) an acidic metal oxide, (ii) cerium oxide, (iii) a lanthanide oxide other than ceria, and (iv) optionally, at least one oxide of a transition metal selected from Groups IB and IIB of the Periodic Table, noble metals and mixtures thereof.
193. The method of claim 180 wherein the additional NOx reduction additive composition comprises (a) an acidic metal oxide containing substantially no zeolite; (b) a metal component, measured as the oxide, selected from the group consisting of an alkali metal, an alkaline earth metal and mixtures thereof; (c) an oxygen storage metal oxide component; and (d) at least one noble metal component.
US10/909,706 2003-11-06 2004-08-02 Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking Abandoned US20050100494A1 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
US10/909,706 US20050100494A1 (en) 2003-11-06 2004-08-02 Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
AT04810274T ATE550408T1 (en) 2003-11-06 2004-11-04 FERRIERITE COMPOSITIONS FOR REDUCING NOX EMISSIONS DURING CATALYTIC CRACKING IN THE FLUIDIZED BED
BRPI0416147-5A BRPI0416147B1 (en) 2003-11-06 2004-11-04 FERRIERITE COMPOSITIONS FOR NOx EMISSION REDUCTION DURING CATALYTIC FLUID CRACKING
KR1020067008710A KR101133833B1 (en) 2003-11-06 2004-11-04 FERRIERITE COMPOSITIONS FOR REDUCING NOx EMISSIONS DURING FLUID CATALYTIC CRACKING
CA2544918A CA2544918C (en) 2003-11-06 2004-11-04 Ferrierite compositions for reducing nox emissions during fluid catalytic cracking
AU2004288928A AU2004288928B2 (en) 2003-11-06 2004-11-04 Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
EP04810274A EP1680484B1 (en) 2003-11-06 2004-11-04 FERRIERITE COMPOSITIONS FOR REDUCING NOx EMISSIONS DURING FLUID CATALYTIC CRACKING
PCT/US2004/036642 WO2005047429A1 (en) 2003-11-06 2004-11-04 FERRIERITE COMPOSITIONS FOR REDUCING NOx EMISSIONS DURING FLUID CATALYTIC CRACKING
JP2006538463A JP4977469B2 (en) 2003-11-06 2004-11-04 Ferrierite composition for reducing NOx emissions during fluid catalytic cracking
CN2004800327499A CN1878855B (en) 2003-11-06 2004-11-04 Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
RU2006119619/04A RU2365615C2 (en) 2003-11-06 2004-11-04 Ferrierite compositions for reduction of nox emissions during cracking process with fluidised catalyst
CN200910126434.5A CN101503632B (en) 2003-11-06 2004-11-04 Fluidizing cracking catalyst and method for reducing NOx emissions during fluid catalytic cracking
SG200900862-4A SG150502A1 (en) 2003-11-06 2004-11-04 Ferrierite compositions for reducing nox emissions during fluid catalytic cracking
ARP050103203 AR051556A1 (en) 2004-08-02 2005-08-01 FERRIERITA COMPOSITIONS TO REDUCE NOX EMISSIONS DURING FLUID CATALYTIC CRACHING
TW94125998A TWI395614B (en) 2004-08-02 2005-08-01 Ferrierite compositions for reducing nox emissions during fluid catalytic cracking
IL174876A IL174876A (en) 2003-11-06 2006-04-09 FERRIERITE COMPOSITIONS FOR REDUCING NOx EMISSIONS DURING FLUID CATALYTIC CRACKING
NO20062598A NO20062598L (en) 2003-11-06 2006-06-06 Ferriertite compositions to reduce NOx emissions during fluid catalytic cracking
US12/833,336 US9931595B2 (en) 2003-11-06 2010-07-09 Ferrierite composition for reducing NOx emissions during fluid catalytic cracking
IL213527A IL213527A0 (en) 2003-11-06 2011-06-13 FERRIERITE COMPOSITIONS FOR REDUCING NOx EMISSIONS DURING FLUID CATALYTIC CRACKING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/702,240 US20050100493A1 (en) 2003-11-06 2003-11-06 Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
US10/909,706 US20050100494A1 (en) 2003-11-06 2004-08-02 Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/702,240 Continuation-In-Part US20050100493A1 (en) 2003-11-06 2003-11-06 Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
US10/909,709 Continuation US20050232839A1 (en) 2004-04-15 2004-08-02 Compositions and processes for reducing NOx emissions during fluid catalytic cracking

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/918,086 Continuation US7918991B2 (en) 2005-04-27 2006-03-24 Compositions and processes for reducing NOx emissions during fluid catalytic cracking
US12/833,336 Division US9931595B2 (en) 2003-11-06 2010-07-09 Ferrierite composition for reducing NOx emissions during fluid catalytic cracking

Publications (1)

Publication Number Publication Date
US20050100494A1 true US20050100494A1 (en) 2005-05-12

Family

ID=34595355

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/909,706 Abandoned US20050100494A1 (en) 2003-11-06 2004-08-02 Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
US12/833,336 Active 2024-10-08 US9931595B2 (en) 2003-11-06 2010-07-09 Ferrierite composition for reducing NOx emissions during fluid catalytic cracking

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/833,336 Active 2024-10-08 US9931595B2 (en) 2003-11-06 2010-07-09 Ferrierite composition for reducing NOx emissions during fluid catalytic cracking

Country Status (14)

Country Link
US (2) US20050100494A1 (en)
EP (1) EP1680484B1 (en)
JP (1) JP4977469B2 (en)
KR (1) KR101133833B1 (en)
CN (1) CN1878855B (en)
AT (1) ATE550408T1 (en)
AU (1) AU2004288928B2 (en)
BR (1) BRPI0416147B1 (en)
CA (1) CA2544918C (en)
IL (1) IL174876A (en)
NO (1) NO20062598L (en)
RU (1) RU2365615C2 (en)
SG (1) SG150502A1 (en)
WO (1) WO2005047429A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887467A1 (en) * 2005-06-22 2006-12-29 Air Liquide Treatment process for fumes from catalytic regenerator includes catalytic reduction at least partly by wet gas from catalytic cracking unit
US20080213150A1 (en) * 2005-03-24 2008-09-04 George Yaluris Method for Controlling Nox Emissions in the Fccu
US20090057199A1 (en) * 2005-04-27 2009-03-05 Michael Scott Ziebarth Compositions and Processes for Reducing NOx Emissions During Fluid Catalytic Cracking
US20090107885A1 (en) * 2007-10-29 2009-04-30 Petroleo Brasileiro S.A.- Petrobras Catalytic system and additive for maximisation of light olefins in fluid catalytic cracking units in operations of low severity
US7976697B2 (en) 2005-04-29 2011-07-12 W. R. Grace & Co.-Conn. NOX reduction compositions for use in partial burn FCC processes
US20130005565A1 (en) * 2010-03-18 2013-01-03 W. R. Grace & Co.-Conn. Process for making improved zeolite catalysts from peptized aluminas
EP2729553A4 (en) * 2011-07-06 2015-04-29 Reliance Ind Ltd Process and composition of catalyst/ additive for reducing fuel gas yield in fluid catalytic cracking (fcc) process
US9416322B2 (en) 2010-03-18 2016-08-16 W. R. Grace & Co.-Conn. Process for making improved catalysts from clay-derived zeolites
WO2017216617A1 (en) * 2016-06-15 2017-12-21 Hindustan Petroleum Corporation Limited A fluid catalytic cracking process for obtaining cracked run naphtha from vacuum gas oil
WO2018071905A1 (en) * 2016-10-14 2018-04-19 Gevo, Inc. Conversion of mixtures of c2-c8 olefins to jet fuel and/or diesel fuel in high yield from bio-based alcohols
WO2018225036A1 (en) * 2017-06-09 2018-12-13 Basf Corporation Catalytic washcoat with controlled porosity for nox abatement
EP3504297A4 (en) * 2016-08-23 2020-06-17 Quanta Technologies, LLC Improving the efficiency of refinery fccu additives
WO2020156801A1 (en) * 2019-02-01 2020-08-06 Casale Sa Process for removing nitrogen oxides from a gas
US11298656B2 (en) 2016-06-08 2022-04-12 Basf Corporation Copper-promoted GMElinite and use thereof in the selective catalytic reduction of NOX
CN115025777A (en) * 2014-08-29 2022-09-09 中国石油化工股份有限公司 For reducing CO and NO in FCC (fluid catalytic cracking) regeneration flue gas x Composition for discharging and preparation method thereof
RU2809651C2 (en) * 2019-02-01 2023-12-14 Касале Са Method for removing nitrogen oxides from gas

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050232839A1 (en) * 2004-04-15 2005-10-20 George Yaluris Compositions and processes for reducing NOx emissions during fluid catalytic cracking
WO2006098712A1 (en) * 2005-03-11 2006-09-21 Uop Llc Catalytic naphtha cracking catalyst and process
US7678735B2 (en) * 2005-11-28 2010-03-16 Engelhard Corporation FCC additive for partial and full burn NOx control
CN101314725B (en) * 2007-05-31 2012-01-25 中国石油化工股份有限公司 Composition for reducing NO<x> discharge in FCC regenerated flue gas
CN102371165B (en) * 2010-08-26 2013-06-05 中国石油化工股份有限公司 Low-bulk-density composition for reducing discharge of regenerated flue gases CO and NOx during FCC (Fluid Catalytic Cracking)
JP5660674B2 (en) * 2011-02-18 2015-01-28 コスモ石油株式会社 Hydrocarbon oil catalytic cracking catalyst and method for producing the same
JP5972694B2 (en) * 2012-07-18 2016-08-17 ユニゼオ株式会社 Fe (II) -substituted MEL type zeolite, gas adsorbent containing the same, method for producing the same, and method for removing nitric oxide and hydrocarbon
WO2014016764A1 (en) * 2012-07-24 2014-01-30 Indian Oil Corporation Limited Catalyst composition for fluid catalytic cracking, process for preparing the same and use thereof
KR101598578B1 (en) * 2013-08-05 2016-02-29 (주)후산 A Removing Method Of Nitrogen Components Contained In Light Cycle Oil
WO2022072544A1 (en) * 2020-10-01 2022-04-07 W.R. Grace & Co.-Conn. Catalyst composition for fluid catalytic cracking, and preparation methods thereof

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892801A (en) * 1955-12-13 1959-06-30 Gen Electric Catalysts
US3036973A (en) * 1958-11-21 1962-05-29 Hoffmann La Roche Racemization catalyst and process for the manufacture thereof
US3129252A (en) * 1960-12-29 1964-04-14 Gen Aniline & Fihn Corp Purification of butynediol
US3184417A (en) * 1960-12-29 1965-05-18 Gen Aniline & Film Corp Method of preparing a copper modified nickel catalyst composition
US3634140A (en) * 1968-09-20 1972-01-11 Asea Ab Fuel cell device utilizing air as oxidant
US4199435A (en) * 1978-12-04 1980-04-22 Chevron Research Company NOx Control in cracking catalyst regeneration
US4309279A (en) * 1979-06-21 1982-01-05 Mobil Oil Corporation Octane and total yield improvement in catalytic cracking
US4368057A (en) * 1980-10-14 1983-01-11 Matthews Ronald D Method for reducing ammonia concentration in pre-combusted fuel gas using nitric oxide
US4377502A (en) * 1979-12-26 1983-03-22 Standard Oil Company (Indiana) Synthesis of crystalline aluminosilicate molecular sieves
US4427536A (en) * 1982-02-02 1984-01-24 Chevron Research Company Promoter for the oxidation of SO2 in an FCC process
US4428827A (en) * 1983-01-24 1984-01-31 Uop Inc. FCC Sulfur oxide acceptor
US4434147A (en) * 1981-10-05 1984-02-28 Chevron Research Company Simultaneous sulfur oxide and nitrogen oxide control in FCC units using cracking catalyst fines with ammonia injection
US4495305A (en) * 1980-07-29 1985-01-22 Atlantic Richfield Company Catalyst for conversion of hydrocarbons
US4495304A (en) * 1980-07-29 1985-01-22 Atlantic Richfield Company Catalyst for conversion of hydrocarbons
US4513091A (en) * 1983-02-14 1985-04-23 Mobil Oil Corporation Hydrothermal zeolite activation
US4521298A (en) * 1980-07-18 1985-06-04 Mobil Oil Corporation Promotion of cracking catalyst octane yield performance
US4522937A (en) * 1982-11-29 1985-06-11 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4582815A (en) * 1984-07-06 1986-04-15 Mobil Oil Corporation Extrusion of silica-rich solids
US4642178A (en) * 1980-07-29 1987-02-10 Katalistiks, Inc. Process for conversion of hydrocarbons
US4654318A (en) * 1984-02-28 1987-03-31 Toa Nenryo Kogyo Kabushiki Kaisha Process for preparing catalyst component for polymerization of olefins
US4728635A (en) * 1986-04-07 1988-03-01 Katalistiks International Inc. Alkaline earth metal spinels and processes for making
US4735927A (en) * 1985-10-22 1988-04-05 Norton Company Catalyst for the reduction of oxides of nitrogen
US4744962A (en) * 1987-07-22 1988-05-17 Shell Oil Company Process for the reduction of ammonia in regeneration zone off gas by select addition of NOx to the regeneration zone or to the regeneration zone off gas
US4747935A (en) * 1986-03-26 1988-05-31 Union Oil Company Of California Process for the catalytic cracking of feedstocks containing nitrogen
US4797266A (en) * 1986-08-07 1989-01-10 Shell Oil Company Method of preparation of a combined ZSM-5-ferrierite aluminosilicate
US4798813A (en) * 1986-07-04 1989-01-17 Babcock-Hitachi Kabushiki Kaisha Catalyst for removing nitrogen oxide and process for producing the catalyst
US4810369A (en) * 1987-05-07 1989-03-07 Union Oil Company Of California Process for the catalytic cracking of feedstocks containing high levels of nitrogen
US4812431A (en) * 1987-08-12 1989-03-14 Mobil Oil Corporation NOx control in fluidized bed combustion
US4812430A (en) * 1987-08-12 1989-03-14 Mobil Oil Corporation NOx control during multistage combustion
US4818509A (en) * 1984-03-23 1989-04-04 Mobil Oil Corporation Continuous process for manufacturing crystalline zeolites in continuously stirred backmixed crystallizers
US4826799A (en) * 1988-04-14 1989-05-02 W. R. Grace & Co.-Conn. Shaped catalyst and process for making it
US4830840A (en) * 1987-03-13 1989-05-16 Uop Process for removing sulfur oxide and nitrogen oxide
US4839026A (en) * 1978-09-11 1989-06-13 Atlantic Richfield Company Catalytic cracking with reduced emissions of sulfur oxides
US4895994A (en) * 1988-04-14 1990-01-23 W. R. Grace & Co.-Conn. Shaped catalysts and processes
US4898846A (en) * 1986-03-21 1990-02-06 W. R. Grace & Co.-Conn. Cracking catalysts with octane enhancement
US4904627A (en) * 1987-03-13 1990-02-27 Uop Alkaline earth metal spinel/kaolin clays and processes for making
US4923842A (en) * 1988-10-11 1990-05-08 Allied-Signal Inc. Lanthanum containing catalyst for treating automotive exhaust
US4986897A (en) * 1989-12-28 1991-01-22 Mobil Oil Corporation Catalytic conversion of NOx with NH3
US4988432A (en) * 1989-12-28 1991-01-29 Mobil Oil Corporation Reducing NOx emissions with antimony additive
US4988654A (en) * 1989-12-29 1991-01-29 Chevron Research Company Dual component cracking catalyst with vanadium passivation and improved sulfur tolerance
US5002653A (en) * 1989-12-29 1991-03-26 Chevron Research Company Catalytic cracking process with vanadium passivation and improved
US5002654A (en) * 1989-12-28 1991-03-26 Mobil Oil Corporation Reducing NOx emissions with zinc catalyst
US5015362A (en) * 1989-12-28 1991-05-14 Mobil Oil Corporation Catalytic conversion of NOx over carbonaceous particles
US5017538A (en) * 1988-04-18 1991-05-21 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas and a method of producing the same
US5021144A (en) * 1989-02-28 1991-06-04 Shell Oil Company Process for the reduction of NOX in an FCC regeneration system by select control of CO oxidation promoter in the regeneration zone
US5102530A (en) * 1986-03-21 1992-04-07 W. R. Grace & Co.-Conn. Cracking catalysts with octane enhancement
US5114691A (en) * 1990-01-18 1992-05-19 Board Of Trustees Operating Michigan State University Process using sorbents for the removal of SOx from flue gas
US5114898A (en) * 1990-01-18 1992-05-19 Board Of Trustees Operating Michigan State University Layered double hydroxide sorbents for the removal of SOx from flue gas and other gas streams
US5190736A (en) * 1991-10-18 1993-03-02 Mobil Oil Corporation Synthesis of crystalline ZSM-35
US5206196A (en) * 1990-12-18 1993-04-27 Tosoh Corporation Catalyst for purifying exhaust gas
US5208198A (en) * 1990-12-18 1993-05-04 Tosoh Corporation Catalyst for purifying exhaust gas
US5286693A (en) * 1991-11-06 1994-02-15 Nippon Oil Co., Ltd. Method of producing catalyst for converting hydrocarbons
US5294332A (en) * 1992-11-23 1994-03-15 Amoco Corporation FCC catalyst and process
US5317055A (en) * 1989-06-02 1994-05-31 Exxon Chemical Patents Inc. Internal resin-tackified acrylic polymers
US5320822A (en) * 1991-11-20 1994-06-14 The Dow Chemical Company Process of growing crystalline microporous solids in a fluoride-containing, substantially non-aqueous growth medium
US5379536A (en) * 1993-11-15 1995-01-10 Lorenzana; Moises B. Ironing board attachment including basket
US5382352A (en) * 1992-10-20 1995-01-17 Mobil Oil Corporation Conversion of NOx in FCC bubbling bed regenerator
US5413699A (en) * 1993-10-14 1995-05-09 Mobil Oil Corporation FCC process with fines tolerant SCR reactor
US5413977A (en) * 1992-02-27 1995-05-09 Union Oil Company Of California Catalyst containing zeolite beta and a layered magnesium silicate
US5422333A (en) * 1992-08-25 1995-06-06 Idemitsu Kosan Company Limited Exhaust gas purifying catalyst
US5503818A (en) * 1993-11-01 1996-04-02 Csir Aluminosilicate catalyst, a process for the manufacture thereof and a process for the skeletal isomerization of linear olefins
US5510306A (en) * 1993-12-29 1996-04-23 Shell Oil Company Process for isomerizing linear olefins to isoolefins
US5591418A (en) * 1994-06-01 1997-01-07 Amoco Corporation Process for removing sulfur oxides or nitrogen oxides from a gaseous mixture
US5599520A (en) * 1994-11-03 1997-02-04 Garces; Juan M. Synthesis of crystalline porous solids in ammonia
US5614453A (en) * 1991-09-11 1997-03-25 Uop Catalyst containing zeolite beta and a pillared clay
US5627125A (en) * 1994-07-01 1997-05-06 Monsanto Company Process for preparing carboxylic acid salts and methods for making such catalysts and catalysts useful in such process
US5705053A (en) * 1995-08-30 1998-01-06 Mobil Oil Corporation FCC regenerator NOx reduction by homogeneous and catalytic conversion
US5716514A (en) * 1995-08-30 1998-02-10 Mobil Oil Corporation FCC NOx reduction by turbulent/laminar thermal conversion
US5741468A (en) * 1994-12-28 1998-04-21 Kabushiki Kaisha Riken Exhaust gas cleaner and method for cleaning exhaust gas
US5744686A (en) * 1995-09-20 1998-04-28 Uop Process for the removal of nitrogen compounds from an aromatic hydrocarbon stream
US5744113A (en) * 1993-05-27 1998-04-28 Siemens Aktiengesellschaft Process and catalyst for decomposing oxides of nitrogen
US5879645A (en) * 1994-11-03 1999-03-09 Korea Research Institute Of Chemical Technology Method for removing nitrogen oxides in exhaust gas by selective catalytic reduction and catalyst for reduction of nitrogen oxides
US6017508A (en) * 1995-10-24 2000-01-25 The Dow Chemical Company Process of modifying the porosity of aluminosilicates and silicas, and mesoporous compositions derived therefrom
US6027696A (en) * 1997-04-11 2000-02-22 Indian Oil Corporation Ltd. Fluidized catalytic cracking apparatus
US6033641A (en) * 1996-04-18 2000-03-07 University Of Pittsburgh Of The Comonwealth System Of Higher Education Catalyst for purifying the exhaust gas from the combustion in an engine or gas turbines and method of making and using the same
US6040259A (en) * 1996-05-29 2000-03-21 Exxon Chemical Patents Inc. Metal-containing zeolite catalyst, preparation thereof and use for hydrocarbon conversion
US6190538B1 (en) * 1998-08-03 2001-02-20 Shell Oil Company Process for the preparation of a catalyst composition
US6214211B1 (en) * 1998-04-21 2001-04-10 Idemitsu Kosan Co., Ltd Catalytic cracking catalyst
US20010002426A1 (en) * 1994-11-23 2001-05-31 Mohr Gary David Hydrocarbon conversion process using a zeolite bound zeolite catalyst
US20020013228A1 (en) * 2000-06-20 2002-01-31 Takeshi Matsumoto Exhaust gas purifying catalyst and method for purifying exhaust gas
US20020016259A1 (en) * 2000-06-28 2002-02-07 Tatsuya Yoshikawa Exhaust gas purifying catalyst
US20020022574A1 (en) * 2000-07-17 2002-02-21 Hiroshi Tanada Exhaust gas purifying catalyst
US20020022573A1 (en) * 2000-06-22 2002-02-21 Hiroshi Tanada Exhaust gas purifying catalyst
US6358881B1 (en) * 1995-05-05 2002-03-19 W. R. Grace & Co.-Conn. Reduced NOx combustion promoter for use in FCC processes
US20020038051A1 (en) * 2000-02-18 2002-03-28 Degussa-Huls Ag Raney copper
US20020037808A1 (en) * 1999-07-31 2002-03-28 Degussa-Huels Aktiengesellschaft Fixed bed catalysts
US20020039550A1 (en) * 2000-04-22 2002-04-04 Adolf Schafer-Sindlinger Process and catalyst for reducing nitrogen oxides
US6376708B1 (en) * 2000-04-11 2002-04-23 Monsanto Technology Llc Process and catalyst for dehydrogenating primary alcohols to make carboxylic acid salts
US20020049132A1 (en) * 1998-11-03 2002-04-25 Deng-Yang Jan Process for preparing attrition resistant zeolitic layered catalyst composition
US6380119B1 (en) * 1997-06-06 2002-04-30 Basf Aktiengesellschaft Method for regenerating a zeolitic catalyst
US6395403B2 (en) * 1999-05-06 2002-05-28 W. R. Grace & Co. Conn Promoted porous catalyst
US20030019794A1 (en) * 2001-04-13 2003-01-30 Schmidt Stephen Raymond Process for sulfur removal from hydrocarbon liquids
US6514470B1 (en) * 1999-10-28 2003-02-04 The Regents Of The University Of California Catalysts for lean burn engine exhaust abatement
US20030040425A1 (en) * 2001-08-21 2003-02-27 Sud-Chemie Prototech Inc. Method for washcoating a catalytic material onto a monolithic structure
US6528031B1 (en) * 1998-12-31 2003-03-04 Korea Research Institute Of Chemical Technology Method for preparing noble metal-supported zeolite catalyst for catalytic reduction of nitrogen oxide
US6538169B1 (en) * 2000-11-13 2003-03-25 Uop Llc FCC process with improved yield of light olefins
US20030073566A1 (en) * 2001-10-11 2003-04-17 Marshall Christopher L. Novel catalyst for selective NOx reduction using hydrocarbons
US20040086442A1 (en) * 2002-08-13 2004-05-06 Intercat, Inc. Flue gas treatments to reduce NOx and CO emissions

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617488A (en) 1969-12-19 1971-11-02 Sigmund M Csicsery Hydrotreating catalyst comprising clay-type aluminosilicate component and a crystalline zeolitic molecular sieve component, and process using said catalyst
US4473658A (en) 1973-09-20 1984-09-25 Mobil Oil Corporation Moving bed catalytic cracking process with platinum group metal or rhenium supported directly on the cracking catalyst
US3894940A (en) * 1973-11-15 1975-07-15 Grace W R & Co Hydrocarbon cracking catalysts with promoter mixtures
US4086187A (en) * 1976-06-17 1978-04-25 Filtrol Corporation Attrition resistant zeolitic catalyst
US4064511A (en) 1976-09-24 1977-12-20 Raytheon Company Clutter subtraction system
US4138326A (en) * 1977-08-12 1979-02-06 Gulf Research & Development Hydrotreating process and catalyst
US6042797A (en) 1997-07-02 2000-03-28 Tosoh Corporation Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
US4170571A (en) 1977-12-27 1979-10-09 Union Carbide Corporation Novel combustion catalyst
US4290878A (en) 1978-12-08 1981-09-22 Chevron Research Company NOx control in platinum-promoted complete combustion cracking catalyst regeneration
US4472267A (en) 1980-07-29 1984-09-18 Atlantic Richfield Company Catalyst and process for conversion of hydrocarbons
US4957892A (en) 1980-07-29 1990-09-18 Uop Process for combusting solid sulfur containing material
JPS5761085A (en) 1980-07-29 1982-04-13 Atlantic Richfield Co Conversion of hydrocarbon
US4758418A (en) 1980-07-29 1988-07-19 Union Carbide Corporation Process for combusting solid sulfur-containing material
US4458023A (en) * 1981-08-10 1984-07-03 W. R. Grace & Co. Catalyst manufacture
US4471070A (en) 1982-11-29 1984-09-11 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4476245A (en) 1982-11-29 1984-10-09 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4472532A (en) 1982-11-29 1984-09-18 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4608355A (en) 1983-08-10 1986-08-26 Mobil Oil Corporation Hydrocarbon conversion catalyst
JPS6123689A (en) * 1984-07-13 1986-02-01 Toa Nenryo Kogyo Kk Production of lcgo having low pour point
GB8420205D0 (en) 1984-08-09 1984-09-12 British Petroleum Co Plc Selective dealumination of zeolites
US4778664A (en) 1986-03-10 1988-10-18 The Dow Chemical Company Process for the removal of NO from fluid streams using a water soluble polymeric chelate of a polyvalent metal
US4708786A (en) 1986-03-26 1987-11-24 Union Oil Company Of California Process for the catalytic cracking of nitrogen-containing feedstocks
US4790982A (en) 1986-04-07 1988-12-13 Katalistiks International, Inc. Metal-containing spinel composition and process of using same
CA1295598C (en) 1986-07-29 1992-02-11 Makoto Imanari Process for removing nitrogen oxides from exhaust gases
US4778665A (en) 1986-09-09 1988-10-18 Mobil Oil Corporation Abatement of NOx in exhaust gases
FR2607128B1 (en) 1986-11-21 1989-04-28 Inst Francais Du Petrole NEW FERRIERITES, THEIR PREPARATION PROCESS AND THEIR USE
US4866019A (en) 1987-01-13 1989-09-12 Akzo N.V. Catalyst composition and absorbent which contain an anionic clay
US4880521A (en) 1987-05-07 1989-11-14 Union Oil Company Of California Process for the cracking of feedstocks containing high levels of nitrogen
US4755282A (en) 1987-07-22 1988-07-05 Shell Oil Company Process for the reduction of NH3 in regeneration zone off gas by select recycle of certain-sized NH3 decomposition catalysts
US4957718A (en) 1987-11-24 1990-09-18 Uop Process for reducing emissions of sulfur oxides and composition useful in same
US5057205A (en) 1988-06-10 1991-10-15 Mobil Oil Corporation Additive for vanadium and sulfur oxide capture in catalytic cracking
GB8904409D0 (en) 1989-02-27 1989-04-12 Shell Int Research Process for the conversion of a hydrocarbonaceous feedstock
US5371055A (en) 1988-07-07 1994-12-06 W. R. Grace & Co.-Conn. Increasing metal-tolerance of FCC catalyst by sulfur oxide removal
NL8802081A (en) * 1988-08-23 1990-03-16 Nagron Precision Tooling METHOD FOR MANUFACTURING A CARRIER WITH OPTICALLY READABLE DIGITAL INFORMATION
GB8820358D0 (en) 1988-08-26 1988-09-28 Shell Int Research Process for catalytic cracking of hydrocarbon feedstock
US4980052A (en) 1988-12-05 1990-12-25 Mobil Oil Corporation Catalytic cracking of hydrocarbons
US4889615A (en) 1988-12-06 1989-12-26 Mobil Oil Corporation Additive for vanadium capture in catalytic cracking
US5145815A (en) 1989-08-10 1992-09-08 Uop Regeneration of zeolitic molecular sieves with sulfur oxide absorption on soda-lime bed
CA2024154C (en) 1989-08-31 1995-02-14 Senshi Kasahara Catalyst for reducing nitrogen oxides from exhaust gas
US4973399A (en) 1989-11-03 1990-11-27 Mobil Oil Corporation Catalytic cracking of hydrocarbons
JPH07106300B2 (en) 1989-12-08 1995-11-15 財団法人産業創造研究所 Method for removing nitrogen oxides in combustion exhaust gas
DE69030161T2 (en) 1989-12-21 1997-08-14 Tosoh Corp Process for cleaning exhaust gases with excess oxygen
US5260240A (en) 1989-12-29 1993-11-09 Chevron Research And Technology Company Process for the demetallization of FCC catalyst
US5037538A (en) 1990-02-26 1991-08-06 Mobil Oil Corporation Catalytic cracking process with isolated catalyst for conversion of NO.sub.x
CA2044893C (en) 1990-06-20 1998-11-03 Senshi Kasahara Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
JP2973524B2 (en) 1990-12-18 1999-11-08 東ソー株式会社 Exhaust gas purification catalyst
US5130012A (en) 1991-01-24 1992-07-14 Mobil Oil Corporation Process and apparatus for reducing NOx emissions from high-efficiency FFC regenerators
US5173278A (en) 1991-03-15 1992-12-22 Mobil Oil Corporation Denitrification of flue gas from catalytic cracking
US5260043A (en) 1991-08-01 1993-11-09 Air Products And Chemicals, Inc. Catalytic reduction of NOx and carbon monoxide using methane in the presence of oxygen
JP3086015B2 (en) 1991-08-07 2000-09-11 トヨタ自動車株式会社 Exhaust gas purification catalyst
US5174980A (en) 1991-10-04 1992-12-29 Mobil Oil Corp. Synthesis of crystalline ZSM-35
US5171553A (en) 1991-11-08 1992-12-15 Air Products And Chemicals, Inc. Catalytic decomposition of N2 O
US5785947A (en) 1991-12-18 1998-07-28 Chevron U.S.A. Inc. Preparation of zeolites using organic template and amine
US5547648A (en) 1992-04-15 1996-08-20 Mobil Oil Corporation Removing SOx, NOX and CO from flue gases
US5240690A (en) 1992-04-24 1993-08-31 Shell Oil Company Method of removing NH3 and HCN from and FCC regenerator off gas
US5268089A (en) 1992-06-24 1993-12-07 Mobil Oil Corporation FCC of nitrogen containing hydrocarbons and catalyst regeneration
US5316661A (en) 1992-07-08 1994-05-31 Mobil Oil Corporation Processes for converting feedstock organic compounds
US5364517A (en) 1993-02-19 1994-11-15 Chevron Research And Technology Company Perovskite-spinel FCC NOx reduction additive
US5372706A (en) 1993-03-01 1994-12-13 Mobil Oil Corporation FCC regeneration process with low NOx CO boiler
JP3185448B2 (en) 1993-03-11 2001-07-09 日産自動車株式会社 Exhaust gas purification catalyst
DE69401036T2 (en) 1993-06-25 1997-04-10 Tosoh Corp Process for the removal of nitrogen oxides
US5407652A (en) 1993-08-27 1995-04-18 Engelhard Corporation Method for decomposing N20 utilizing catalysts comprising calcined anionic clay minerals
DE69519243T2 (en) 1994-02-15 2001-03-08 Tokyo Gas Co Ltd Process and catalyst for cleaning NOx-containing exhaust gases
US6114265A (en) 1994-03-15 2000-09-05 Exxon Research And Engineering Company Combustion control in a fluid catalytic cracking regenerator
US5589147A (en) 1994-07-07 1996-12-31 Mobil Oil Corporation Catalytic system for the reducton of nitrogen oxides
US5552129A (en) 1994-07-07 1996-09-03 Mobil Oil Corporation Catalytic system for the reduction of nitrogen oxides
CA2156464C (en) 1994-09-30 1999-07-20 Raghu K. Menon Reduction of emissions from fcc regenerators
US20020120169A1 (en) 1995-01-13 2002-08-29 Michel Spagnol Process facilitating the regeneration of a catalyst based on a zeolite used in an acylation reaction, catalyst and use
DE19505579A1 (en) 1995-02-18 1996-08-22 Sued Chemie Ag Adsorbent for the treatment of oils and / or fats
AU718321B2 (en) * 1995-05-05 2000-04-13 W.R. Grace & Co.-Conn. Compositions for reduced NOx and combustion promotion in FCC processes
US6129834A (en) 1995-05-05 2000-10-10 W. R. Grace & Co. -Conn. NOx reduction compositions for use in FCC processes
US5968466A (en) 1995-06-07 1999-10-19 Asec Manufacturing Copper-silver zeolite catalysts in exhaust gas treatment
US6471924B1 (en) 1995-07-12 2002-10-29 Engelhard Corporation Method and apparatus for NOx abatement in lean gaseous streams
US5830346A (en) 1995-08-30 1998-11-03 Mobil Oil Corporation FCC regenerator in partial CO burn with downstream air addition
DE69629258T2 (en) 1995-10-06 2004-04-22 Enitecnologie S.P.A. Catalyst and method for removing nitrogen oxides in exhaust gas
US5827793A (en) 1996-04-11 1998-10-27 Exxon Research And Engineering Company Controlled FCC catalyst regeneration using a distributed air system
JP3889467B2 (en) 1996-09-25 2007-03-07 日本特殊陶業株式会社 Nitrogen oxide removing catalyst material, nitrogen oxide treatment apparatus using the material, and nitrogen oxide removing method
US6103949A (en) 1997-04-14 2000-08-15 Bulldog Technologies U.S.A., Inc. Alkaline phosphate-activated clay/zeolite catalysts
US5958818A (en) 1997-04-14 1999-09-28 Bulldog Technologies U.S.A., Inc. Alkaline phosphate-activated clay/zeolite catalysts
US6090271A (en) 1997-06-10 2000-07-18 Exxon Chemical Patents Inc. Enhanced olefin yields in a catalytic process with diolefins
US6028023A (en) 1997-10-20 2000-02-22 Bulldog Technologies U.S.A., Inc. Process for making, and use of, anionic clay materials
CN1290193A (en) 1997-12-03 2001-04-04 埃克森化学专利公司 Catalyst comprising a zeolite partially coated with a second zeolite, its use for hydrocarbon conversion
US6143261A (en) 1997-12-15 2000-11-07 Exxon Research And Engineering Company Catalytic reduction of nitrogen oxide emissions with MCM-49 and MCM-56
US6106697A (en) 1998-05-05 2000-08-22 Exxon Research And Engineering Company Two stage fluid catalytic cracking process for selectively producing b. C.su2 to C4 olefins
US6908604B2 (en) 1999-05-17 2005-06-21 Exxonmobil Chemical Patents Inc. Macrostructures of porous inorganic material and process for their preparation
US6143681A (en) 1998-07-10 2000-11-07 Northwestern University NOx reduction catalyst
US6037307A (en) 1998-07-10 2000-03-14 Goal Line Environmental Technologies Llc Catalyst/sorber for treating sulfur compound containing effluent
US6110258A (en) 1998-10-06 2000-08-29 Matheson Tri-Gas, Inc. Methods for removal of water from gases using superheated zeolites
DE19854502A1 (en) * 1998-11-25 2000-05-31 Siemens Ag Catalyst body and process for breaking down nitrogen oxides
US20020003103A1 (en) 1998-12-30 2002-01-10 B. Erik Henry Fluid cat cracking with high olefins prouduction
DE19936135A1 (en) 1999-07-31 2001-02-15 Degussa Fixed bed catalyst for hydrogenation of saturated or unsaturated esters to mono- or multiple hydroxy alcohols, is obtained by doping rhenium to Raney metal type metal fixed bed catalyst
AU1461201A (en) * 1999-12-28 2001-07-09 Corning Incorporated Zeolite/alumina catalyst support compositions and method of making the same
US6555492B2 (en) 1999-12-29 2003-04-29 Corning Incorporated Zeolite/alumina catalyst support compositions and method of making the same
US6358169B1 (en) * 2000-05-02 2002-03-19 Borgwarner Inc. Chain tensioner system having a pivoting tensioner arm
US6585952B1 (en) 2000-05-25 2003-07-01 Board Of Trustees Operating Michigan State University Ultrastable hexagonal, cubic and wormhole aluminosilicate mesostructures
CN1156555C (en) 2000-08-10 2004-07-07 中国石油化工集团公司 Assistant for calalytic cracking and its preparing process
US7081431B2 (en) 2000-09-08 2006-07-25 Toyota Jidosha Kabushiki Kaisha NOx absorbent and absorption reduction-type NOx purifying catalyst
US6492297B1 (en) 2000-09-15 2002-12-10 Engelhard Corporation Catalyst composition for purifying exhaust gas
US20020094314A1 (en) 2000-11-27 2002-07-18 National Institute Of Advanced Industrial Science And Technology Method for the reduction and removal of nitrogen oxides
JP2002253967A (en) 2001-02-28 2002-09-10 Showa Denko Kk Nitrous oxide decomposing catalyst, manufacturing method therefor and method of decomposing nitrous oxide
US6632768B2 (en) 2001-03-12 2003-10-14 University Of Missouri-Columbia Adsorbent for HC in exhaust gas, and process for producing the same
JP3981915B2 (en) 2001-04-03 2007-09-26 日産自動車株式会社 Exhaust gas purification system
DE10132890A1 (en) 2001-07-06 2003-01-16 Daimler Chrysler Ag Solid used for adsorption and desorption of nitrogen oxides found in internal combustion engine exhaust gases comprises a porous support; a metal component selected from alkali metals, alkaline earth
US6800586B2 (en) 2001-11-23 2004-10-05 Engelhard Corporation NOx reduction composition for use in FCC processes
WO2003045547A2 (en) * 2001-11-26 2003-06-05 Atofina Research Composition based on a ferrierite and its use in a gas treatment method for reducing nitrogen oxide emissions
US6912847B2 (en) 2001-12-21 2005-07-05 Engelhard Corporation Diesel engine system comprising a soot filter and low temperature NOx trap
US6709572B2 (en) * 2002-03-05 2004-03-23 Exxonmobil Research And Engineering Company Catalytic cracking process
US7025873B2 (en) 2002-06-25 2006-04-11 Albemarle Netherlands Bv. Use of cationic layered materials, compositions, comprising these materials, and the preparation of cationic layered materials
US7045056B2 (en) 2002-10-10 2006-05-16 Engelhard Corporation CO oxidation promoters for use in FCC processes
US20040262197A1 (en) 2003-06-24 2004-12-30 Mcgregor Duane R. Reduction of NOx in low CO partial-burn operation using full burn regenerator additives

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892801A (en) * 1955-12-13 1959-06-30 Gen Electric Catalysts
US3036973A (en) * 1958-11-21 1962-05-29 Hoffmann La Roche Racemization catalyst and process for the manufacture thereof
US3129252A (en) * 1960-12-29 1964-04-14 Gen Aniline & Fihn Corp Purification of butynediol
US3184417A (en) * 1960-12-29 1965-05-18 Gen Aniline & Film Corp Method of preparing a copper modified nickel catalyst composition
US3634140A (en) * 1968-09-20 1972-01-11 Asea Ab Fuel cell device utilizing air as oxidant
US4839026A (en) * 1978-09-11 1989-06-13 Atlantic Richfield Company Catalytic cracking with reduced emissions of sulfur oxides
US4199435A (en) * 1978-12-04 1980-04-22 Chevron Research Company NOx Control in cracking catalyst regeneration
US4309279A (en) * 1979-06-21 1982-01-05 Mobil Oil Corporation Octane and total yield improvement in catalytic cracking
US4377502A (en) * 1979-12-26 1983-03-22 Standard Oil Company (Indiana) Synthesis of crystalline aluminosilicate molecular sieves
US4521298A (en) * 1980-07-18 1985-06-04 Mobil Oil Corporation Promotion of cracking catalyst octane yield performance
US4495305A (en) * 1980-07-29 1985-01-22 Atlantic Richfield Company Catalyst for conversion of hydrocarbons
US4495304A (en) * 1980-07-29 1985-01-22 Atlantic Richfield Company Catalyst for conversion of hydrocarbons
US4642178A (en) * 1980-07-29 1987-02-10 Katalistiks, Inc. Process for conversion of hydrocarbons
US4368057A (en) * 1980-10-14 1983-01-11 Matthews Ronald D Method for reducing ammonia concentration in pre-combusted fuel gas using nitric oxide
US4434147A (en) * 1981-10-05 1984-02-28 Chevron Research Company Simultaneous sulfur oxide and nitrogen oxide control in FCC units using cracking catalyst fines with ammonia injection
US4427536A (en) * 1982-02-02 1984-01-24 Chevron Research Company Promoter for the oxidation of SO2 in an FCC process
US4522937A (en) * 1982-11-29 1985-06-11 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4428827A (en) * 1983-01-24 1984-01-31 Uop Inc. FCC Sulfur oxide acceptor
US4513091A (en) * 1983-02-14 1985-04-23 Mobil Oil Corporation Hydrothermal zeolite activation
US4654318A (en) * 1984-02-28 1987-03-31 Toa Nenryo Kogyo Kabushiki Kaisha Process for preparing catalyst component for polymerization of olefins
US4818509A (en) * 1984-03-23 1989-04-04 Mobil Oil Corporation Continuous process for manufacturing crystalline zeolites in continuously stirred backmixed crystallizers
US4582815A (en) * 1984-07-06 1986-04-15 Mobil Oil Corporation Extrusion of silica-rich solids
US4735927A (en) * 1985-10-22 1988-04-05 Norton Company Catalyst for the reduction of oxides of nitrogen
US5102530A (en) * 1986-03-21 1992-04-07 W. R. Grace & Co.-Conn. Cracking catalysts with octane enhancement
US4898846A (en) * 1986-03-21 1990-02-06 W. R. Grace & Co.-Conn. Cracking catalysts with octane enhancement
US4747935A (en) * 1986-03-26 1988-05-31 Union Oil Company Of California Process for the catalytic cracking of feedstocks containing nitrogen
US4728635A (en) * 1986-04-07 1988-03-01 Katalistiks International Inc. Alkaline earth metal spinels and processes for making
US4798813A (en) * 1986-07-04 1989-01-17 Babcock-Hitachi Kabushiki Kaisha Catalyst for removing nitrogen oxide and process for producing the catalyst
US4797266A (en) * 1986-08-07 1989-01-10 Shell Oil Company Method of preparation of a combined ZSM-5-ferrierite aluminosilicate
US4830840A (en) * 1987-03-13 1989-05-16 Uop Process for removing sulfur oxide and nitrogen oxide
US4904627A (en) * 1987-03-13 1990-02-27 Uop Alkaline earth metal spinel/kaolin clays and processes for making
US4810369A (en) * 1987-05-07 1989-03-07 Union Oil Company Of California Process for the catalytic cracking of feedstocks containing high levels of nitrogen
US4744962A (en) * 1987-07-22 1988-05-17 Shell Oil Company Process for the reduction of ammonia in regeneration zone off gas by select addition of NOx to the regeneration zone or to the regeneration zone off gas
US4812431A (en) * 1987-08-12 1989-03-14 Mobil Oil Corporation NOx control in fluidized bed combustion
US4812430A (en) * 1987-08-12 1989-03-14 Mobil Oil Corporation NOx control during multistage combustion
US4826799A (en) * 1988-04-14 1989-05-02 W. R. Grace & Co.-Conn. Shaped catalyst and process for making it
US4895994A (en) * 1988-04-14 1990-01-23 W. R. Grace & Co.-Conn. Shaped catalysts and processes
US5017538A (en) * 1988-04-18 1991-05-21 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas and a method of producing the same
US4923842A (en) * 1988-10-11 1990-05-08 Allied-Signal Inc. Lanthanum containing catalyst for treating automotive exhaust
US5021144A (en) * 1989-02-28 1991-06-04 Shell Oil Company Process for the reduction of NOX in an FCC regeneration system by select control of CO oxidation promoter in the regeneration zone
US5317055A (en) * 1989-06-02 1994-05-31 Exxon Chemical Patents Inc. Internal resin-tackified acrylic polymers
US5002654A (en) * 1989-12-28 1991-03-26 Mobil Oil Corporation Reducing NOx emissions with zinc catalyst
US5015362A (en) * 1989-12-28 1991-05-14 Mobil Oil Corporation Catalytic conversion of NOx over carbonaceous particles
US4988432A (en) * 1989-12-28 1991-01-29 Mobil Oil Corporation Reducing NOx emissions with antimony additive
US4986897A (en) * 1989-12-28 1991-01-22 Mobil Oil Corporation Catalytic conversion of NOx with NH3
US5002653A (en) * 1989-12-29 1991-03-26 Chevron Research Company Catalytic cracking process with vanadium passivation and improved
US4988654A (en) * 1989-12-29 1991-01-29 Chevron Research Company Dual component cracking catalyst with vanadium passivation and improved sulfur tolerance
US5114691A (en) * 1990-01-18 1992-05-19 Board Of Trustees Operating Michigan State University Process using sorbents for the removal of SOx from flue gas
US5114898A (en) * 1990-01-18 1992-05-19 Board Of Trustees Operating Michigan State University Layered double hydroxide sorbents for the removal of SOx from flue gas and other gas streams
US5206196A (en) * 1990-12-18 1993-04-27 Tosoh Corporation Catalyst for purifying exhaust gas
US5208198A (en) * 1990-12-18 1993-05-04 Tosoh Corporation Catalyst for purifying exhaust gas
US5614453A (en) * 1991-09-11 1997-03-25 Uop Catalyst containing zeolite beta and a pillared clay
US5190736A (en) * 1991-10-18 1993-03-02 Mobil Oil Corporation Synthesis of crystalline ZSM-35
US5286693A (en) * 1991-11-06 1994-02-15 Nippon Oil Co., Ltd. Method of producing catalyst for converting hydrocarbons
US5320822A (en) * 1991-11-20 1994-06-14 The Dow Chemical Company Process of growing crystalline microporous solids in a fluoride-containing, substantially non-aqueous growth medium
US5413977A (en) * 1992-02-27 1995-05-09 Union Oil Company Of California Catalyst containing zeolite beta and a layered magnesium silicate
US5422333A (en) * 1992-08-25 1995-06-06 Idemitsu Kosan Company Limited Exhaust gas purifying catalyst
US5382352A (en) * 1992-10-20 1995-01-17 Mobil Oil Corporation Conversion of NOx in FCC bubbling bed regenerator
US5294332A (en) * 1992-11-23 1994-03-15 Amoco Corporation FCC catalyst and process
US5744113A (en) * 1993-05-27 1998-04-28 Siemens Aktiengesellschaft Process and catalyst for decomposing oxides of nitrogen
US5413699A (en) * 1993-10-14 1995-05-09 Mobil Oil Corporation FCC process with fines tolerant SCR reactor
US5503818A (en) * 1993-11-01 1996-04-02 Csir Aluminosilicate catalyst, a process for the manufacture thereof and a process for the skeletal isomerization of linear olefins
US5379536A (en) * 1993-11-15 1995-01-10 Lorenzana; Moises B. Ironing board attachment including basket
US5510306A (en) * 1993-12-29 1996-04-23 Shell Oil Company Process for isomerizing linear olefins to isoolefins
US5591418A (en) * 1994-06-01 1997-01-07 Amoco Corporation Process for removing sulfur oxides or nitrogen oxides from a gaseous mixture
US5627125A (en) * 1994-07-01 1997-05-06 Monsanto Company Process for preparing carboxylic acid salts and methods for making such catalysts and catalysts useful in such process
US5599520A (en) * 1994-11-03 1997-02-04 Garces; Juan M. Synthesis of crystalline porous solids in ammonia
US5879645A (en) * 1994-11-03 1999-03-09 Korea Research Institute Of Chemical Technology Method for removing nitrogen oxides in exhaust gas by selective catalytic reduction and catalyst for reduction of nitrogen oxides
US20010002426A1 (en) * 1994-11-23 2001-05-31 Mohr Gary David Hydrocarbon conversion process using a zeolite bound zeolite catalyst
US5741468A (en) * 1994-12-28 1998-04-21 Kabushiki Kaisha Riken Exhaust gas cleaner and method for cleaning exhaust gas
US6358881B1 (en) * 1995-05-05 2002-03-19 W. R. Grace & Co.-Conn. Reduced NOx combustion promoter for use in FCC processes
US5705053A (en) * 1995-08-30 1998-01-06 Mobil Oil Corporation FCC regenerator NOx reduction by homogeneous and catalytic conversion
US5716514A (en) * 1995-08-30 1998-02-10 Mobil Oil Corporation FCC NOx reduction by turbulent/laminar thermal conversion
US5744686A (en) * 1995-09-20 1998-04-28 Uop Process for the removal of nitrogen compounds from an aromatic hydrocarbon stream
US6017508A (en) * 1995-10-24 2000-01-25 The Dow Chemical Company Process of modifying the porosity of aluminosilicates and silicas, and mesoporous compositions derived therefrom
US6033641A (en) * 1996-04-18 2000-03-07 University Of Pittsburgh Of The Comonwealth System Of Higher Education Catalyst for purifying the exhaust gas from the combustion in an engine or gas turbines and method of making and using the same
US6040259A (en) * 1996-05-29 2000-03-21 Exxon Chemical Patents Inc. Metal-containing zeolite catalyst, preparation thereof and use for hydrocarbon conversion
US6027696A (en) * 1997-04-11 2000-02-22 Indian Oil Corporation Ltd. Fluidized catalytic cracking apparatus
US6380119B1 (en) * 1997-06-06 2002-04-30 Basf Aktiengesellschaft Method for regenerating a zeolitic catalyst
US6214211B1 (en) * 1998-04-21 2001-04-10 Idemitsu Kosan Co., Ltd Catalytic cracking catalyst
US6190538B1 (en) * 1998-08-03 2001-02-20 Shell Oil Company Process for the preparation of a catalyst composition
US20020049132A1 (en) * 1998-11-03 2002-04-25 Deng-Yang Jan Process for preparing attrition resistant zeolitic layered catalyst composition
US6528031B1 (en) * 1998-12-31 2003-03-04 Korea Research Institute Of Chemical Technology Method for preparing noble metal-supported zeolite catalyst for catalytic reduction of nitrogen oxide
US6395403B2 (en) * 1999-05-06 2002-05-28 W. R. Grace & Co. Conn Promoted porous catalyst
US20020037808A1 (en) * 1999-07-31 2002-03-28 Degussa-Huels Aktiengesellschaft Fixed bed catalysts
US6514470B1 (en) * 1999-10-28 2003-02-04 The Regents Of The University Of California Catalysts for lean burn engine exhaust abatement
US20020038051A1 (en) * 2000-02-18 2002-03-28 Degussa-Huls Ag Raney copper
US6376708B1 (en) * 2000-04-11 2002-04-23 Monsanto Technology Llc Process and catalyst for dehydrogenating primary alcohols to make carboxylic acid salts
US20020039550A1 (en) * 2000-04-22 2002-04-04 Adolf Schafer-Sindlinger Process and catalyst for reducing nitrogen oxides
US20020013228A1 (en) * 2000-06-20 2002-01-31 Takeshi Matsumoto Exhaust gas purifying catalyst and method for purifying exhaust gas
US20020022573A1 (en) * 2000-06-22 2002-02-21 Hiroshi Tanada Exhaust gas purifying catalyst
US20020016259A1 (en) * 2000-06-28 2002-02-07 Tatsuya Yoshikawa Exhaust gas purifying catalyst
US20020022574A1 (en) * 2000-07-17 2002-02-21 Hiroshi Tanada Exhaust gas purifying catalyst
US6538169B1 (en) * 2000-11-13 2003-03-25 Uop Llc FCC process with improved yield of light olefins
US20030019794A1 (en) * 2001-04-13 2003-01-30 Schmidt Stephen Raymond Process for sulfur removal from hydrocarbon liquids
US6558533B2 (en) * 2001-04-13 2003-05-06 W.R. Grace & Co.-Conn Process for sulfur removal from hydrocarbon liquids
US20030040425A1 (en) * 2001-08-21 2003-02-27 Sud-Chemie Prototech Inc. Method for washcoating a catalytic material onto a monolithic structure
US20030073566A1 (en) * 2001-10-11 2003-04-17 Marshall Christopher L. Novel catalyst for selective NOx reduction using hydrocarbons
US20040086442A1 (en) * 2002-08-13 2004-05-06 Intercat, Inc. Flue gas treatments to reduce NOx and CO emissions

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080213150A1 (en) * 2005-03-24 2008-09-04 George Yaluris Method for Controlling Nox Emissions in the Fccu
US7780935B2 (en) 2005-03-24 2010-08-24 W. R. Grace & Co.-Conn. Method for controlling NOx emissions in the FCCU
US20090057199A1 (en) * 2005-04-27 2009-03-05 Michael Scott Ziebarth Compositions and Processes for Reducing NOx Emissions During Fluid Catalytic Cracking
US7918991B2 (en) 2005-04-27 2011-04-05 W. R. Grace & Co.-Conn. Compositions and processes for reducing NOx emissions during fluid catalytic cracking
US7976697B2 (en) 2005-04-29 2011-07-12 W. R. Grace & Co.-Conn. NOX reduction compositions for use in partial burn FCC processes
FR2887467A1 (en) * 2005-06-22 2006-12-29 Air Liquide Treatment process for fumes from catalytic regenerator includes catalytic reduction at least partly by wet gas from catalytic cracking unit
US20090107885A1 (en) * 2007-10-29 2009-04-30 Petroleo Brasileiro S.A.- Petrobras Catalytic system and additive for maximisation of light olefins in fluid catalytic cracking units in operations of low severity
US9617480B2 (en) * 2010-03-18 2017-04-11 W. R. Grace & Co.-Conn. Process for making improved zeolite catalysts from peptized aluminas
US9416322B2 (en) 2010-03-18 2016-08-16 W. R. Grace & Co.-Conn. Process for making improved catalysts from clay-derived zeolites
US20130005565A1 (en) * 2010-03-18 2013-01-03 W. R. Grace & Co.-Conn. Process for making improved zeolite catalysts from peptized aluminas
EP2729553A4 (en) * 2011-07-06 2015-04-29 Reliance Ind Ltd Process and composition of catalyst/ additive for reducing fuel gas yield in fluid catalytic cracking (fcc) process
CN115025777A (en) * 2014-08-29 2022-09-09 中国石油化工股份有限公司 For reducing CO and NO in FCC (fluid catalytic cracking) regeneration flue gas x Composition for discharging and preparation method thereof
US11298656B2 (en) 2016-06-08 2022-04-12 Basf Corporation Copper-promoted GMElinite and use thereof in the selective catalytic reduction of NOX
WO2017216617A1 (en) * 2016-06-15 2017-12-21 Hindustan Petroleum Corporation Limited A fluid catalytic cracking process for obtaining cracked run naphtha from vacuum gas oil
EP3504297A4 (en) * 2016-08-23 2020-06-17 Quanta Technologies, LLC Improving the efficiency of refinery fccu additives
US11078433B2 (en) 2016-10-14 2021-08-03 Gevo, Inc. Conversion of mixtures of C2—C8 olefins to jet fuel and/or diesel fuel in high yield from bio-based alcohols
WO2018071905A1 (en) * 2016-10-14 2018-04-19 Gevo, Inc. Conversion of mixtures of c2-c8 olefins to jet fuel and/or diesel fuel in high yield from bio-based alcohols
WO2018225036A1 (en) * 2017-06-09 2018-12-13 Basf Corporation Catalytic washcoat with controlled porosity for nox abatement
US11717814B2 (en) 2017-06-09 2023-08-08 Basf Corporation Catalytic washcoat with controlled porosity for NOx abatement
WO2020156801A1 (en) * 2019-02-01 2020-08-06 Casale Sa Process for removing nitrogen oxides from a gas
RU2809651C2 (en) * 2019-02-01 2023-12-14 Касале Са Method for removing nitrogen oxides from gas

Also Published As

Publication number Publication date
NO20062598L (en) 2006-08-07
EP1680484A1 (en) 2006-07-19
CN1878855A (en) 2006-12-13
AU2004288928B2 (en) 2011-03-10
EP1680484B1 (en) 2012-03-21
BRPI0416147A (en) 2007-01-09
CA2544918C (en) 2014-07-29
US20100276337A1 (en) 2010-11-04
WO2005047429A1 (en) 2005-05-26
US9931595B2 (en) 2018-04-03
IL174876A (en) 2011-07-31
KR101133833B1 (en) 2012-04-06
IL174876A0 (en) 2006-08-20
JP2007510782A (en) 2007-04-26
AU2004288928A1 (en) 2005-05-26
CA2544918A1 (en) 2005-05-26
RU2006119619A (en) 2007-12-27
SG150502A1 (en) 2009-03-30
RU2365615C2 (en) 2009-08-27
JP4977469B2 (en) 2012-07-18
KR20060113916A (en) 2006-11-03
CN1878855B (en) 2010-12-01
BRPI0416147B1 (en) 2014-11-18
ATE550408T1 (en) 2012-04-15

Similar Documents

Publication Publication Date Title
US9931595B2 (en) Ferrierite composition for reducing NOx emissions during fluid catalytic cracking
US7641787B2 (en) Compositions and processes for reducing NOx emissions during fluid catalytic cracking
CA2606513C (en) Nox reduction compositions for use in partial burn fcc processes
CA2606249C (en) Compositions and processes for reducing nox emissions during fluid catalytic cracking
ZA200608953B (en) Compositions and processes for reducing NOx emissions during catalytic cracking
ZA200604345B (en) Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
TWI395614B (en) Ferrierite compositions for reducing nox emissions during fluid catalytic cracking
MXPA06005000A (en) FERRIERITE COMPOSITIONS FOR REDUCING NOx

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION