US20030083823A1 - Gels, methods and apparatus for identification and characterization of biomolecules - Google Patents

Gels, methods and apparatus for identification and characterization of biomolecules Download PDF

Info

Publication number
US20030083823A1
US20030083823A1 US10/263,356 US26335602A US2003083823A1 US 20030083823 A1 US20030083823 A1 US 20030083823A1 US 26335602 A US26335602 A US 26335602A US 2003083823 A1 US2003083823 A1 US 2003083823A1
Authority
US
United States
Prior art keywords
biomolecules
dimensional array
proteins
computer
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/263,356
Inventor
Rajesh Parekh
James Bruce
Robin Philp
Lida Kimmel
David Friedman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/263,356 priority Critical patent/US20030083823A1/en
Publication of US20030083823A1 publication Critical patent/US20030083823A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/24Extraction; Separation; Purification by electrochemical means
    • C07K1/26Electrophoresis
    • C07K1/28Isoelectric focusing
    • C07K1/285Isoelectric focusing multi dimensional electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography

Definitions

  • This invention relates to computer-assisted methods and apparatus for efficiently and systematically studying molecules that are present in biological samples and determining their role in health and disease.
  • this invention relates to the emerging field of proteomics, which involves the systematic identification and characterization of proteins that are present in biological samples, including proteins that are glycosylated or that exhibit other post-translational modifications.
  • proteomics approach offers great advantages for identifying proteins that are useful for diagnosis, prognosis, or monitoring response to therapy and in identifying protein targets for the prevention and treatment of disease.
  • the present invention is directed to efficient, computer-assisted methods and apparatus for identifying, selecting and characterizing biomolecules in a biological sample.
  • a biological sample is first treated to isolate biomolecules of interest, and a two-dimensional array is then generated by separating the biomolecules present in a complex mixture.
  • the invention provides a computer-generated digital profile representing the identity and relative abundance of a plurality of biomolecules detected in the two-dimensional array, thereby permitting computer-mediated comparison of profiles from multiple biological samples.
  • This automatable technology for screening biological samples and comparing their profiles permits rapid and efficient identification of individual biomolecules whose presence, absence or altered expression is associated with a disease or condition of interest.
  • biomolecules are useful as therapeutic agents, as targets for therapeutic intervention, and as markers for diagnosis, prognosis, and evaluating response to treatment.
  • This technology also permits rapid and efficient identification of sets of biomolecules whose pattern of expression is associated with a disease or condition of interest: such sets of biomolecules provide constellations of markers for diagnosis, prognosis, and evaluating response to treatment.
  • the high throughput, automatable methods and apparatus of the present invention further permit operator-independent selection of individual separated biomolecules (or subsets of separated biomolecules) according to pre-ordained criteria, without any requirement for knowledge of sequence information or other structural characteristics of the biomolecules.
  • This in turn provides automated, operator-independent isolation and parallel characterization of a plurality of selected biomolecules detected in a biological sample.
  • the present invention advantageously permits automated selection of biomolecules prior to sequencing or structural characterization.
  • the present invention provides methods for rapidly and efficiently identifying and characterizing bio-molecules, for example proteins, in a biological sample.
  • a biological sample is treated to isolate the biomolecules of interest prior to separating the biomolecules for characterisation.
  • Purification is performed with a view either to selectively enrich certain desirable biomolecules, e.g. proteins, from within the sample or to selectively deplete the sample of certain undesirable biomolecules.
  • desirable biomolecules e.g. proteins
  • glycoproteins may be selectively isolated from a sample using lectin-affinity chromatography or lectin affinity precipitation. Such enrichment can both enhance and simplify the subsequent protein separation and analysis.
  • any proteins or group of proteins carrying a structural determinant for which an antibody or other specific purification reagent is available may be so extracted, e.g. tyrosine phospho-proteins by using an anti-phosphotyrosine antibody.
  • a sample may be depleted of specific proteins, again using protein-specific affinity methods. For example, albumin may be removed from body fluids using an anti-albumin antibody, and immunoglobulins may be removed using protein A or protein G (preferably immobilised) and haptoglobin and transferrin can be similarly removed. It is clear that a sample may be selectively depleted (or enriched) for more than one protein by using protein-specific reagents serially or in combination. Such enrichment/depletion can often have a beneficial effect during analysis, by concentrating proteins of interest/removing proteins that interfere with or may, for example by their predominance, limit the analysis of proteins of interest.
  • the end result is to provide a sample containing the biomolecules of interest in a more isolated or “pure” form with respect to the original biological sample.
  • a preferred method for achieving this is affinity chromatography e.g. Fast Protein Liquid Chromatography (FPLC).
  • the sample containing the biomolecules is subjected to two successive separation steps.
  • the biomolecules are separated according to one physical or chemical property so as to generate a one-dimensional array containing the biomolecules; for example, proteins are separated by isoelectric focusing along a first axis.
  • the biomolecules in this one-dimensional array are separated according to a second physical or chemical characteristic so as to generate a two-dimensional array of separated biomolecules; for example, proteins separated by isoelectric focusing are subjected to SDS-PAGE along a second axis perpendicular to the first axis.
  • the separated biomolecules are stably maintained in the two-dimensional array for subsequent imaging.
  • the stable two-dimensional array can be stored or archived for an extended period (e.g. months or years) and selected biomolecules can be retrieved from the array at any desired time, based on automated computer analysis of the data derived from imaging.
  • the two-dimensional array is imaged with a detector to generate a computer-readable output that contains a set of x,y coordinates and a signal value for each detected biomolecule.
  • the computer-readable output can be displayed to a human operator—before or after computer-mediated analysis—as a computer-generated image on a screen or on any suitable medium.
  • Computer-mediated analysis of the computer-readable output is performed, resulting in a computer-readable profile that represents, for a plurality of detected biomolecules, the relative abundance of each such biomolecule and its attributes as deduced from its x,y coordinates in the two-dimensional array.
  • a profile derived from imaging a gel containing proteins separated by isoelectric focusing followed by SDS-PAGE represents the isoelectric point (pl), apparent molecular weight (MW) and relative abundance of a plurality of detected proteins.
  • the computer-readable profiles of the present invention are suitable for computer-mediated analysis to identify one or more biomolecules that satisfy specified criteria.
  • a first set of profiles is compared with a second set of profiles to identify biomolecules that are represented in all the profiles of the first set (or in a first percentage of the profiles of the first set) and are absent from the profiles of the second set (or are absent from a second percentage of the profiles of the second set, where the first and second percentages can be independently specified).
  • sets of profiles are compared to identify biomolecules that are present at a designated higher level of expression in a specified percentage of profiles of one sample set than in a specified percentage of profiles of another sample set, or to identify biomolecules whose post-translational processing differs from one sample set to another.
  • One or more biomolecules so identified are selected for isolation. In one embodiment, this selection is made automatically by a computer, in accordance with pre-ordained programmed criteria, without further human intervention. In another embodiment, a human operator reviews the results of the computer-mediated analysis and then enters a selection into a computer. For isolation of each selected biomolecule, a computer generates machine-readable instructions that direct a robotic device (a) to remove one or more portions of the two-dimensional array that contain the selected biomolecule and (b) to deliver the removed portions to one or more suitable vessels for further characterization.
  • a selected protein can be analyzed to determine its full or partial amino acid sequence, to detect and characterize any associated oligosaccharide moieties, and to study other aspects of post-translational processing, e.g. phosphorylation, myristylation and the like.
  • the invention advantageously permits automated parallel processing of biomolecules removed from the two-dimensional array, thereby facilitating rapid and efficient characterization of a plurality of selected biomolecules.
  • FIG. 1 of WO-A-9823950 presents a flowchart illustrating processing of a sample.
  • biomolecule refers to any organic molecule that is present in a biological sample, and includes peptides, polypeptides, proteins, oligosaccharides, lipids, steroids, prostaglandins, prostacyclines, and nucleic acids (including DNA and RNA).
  • protein includes glycosylated and unglycosylated proteins.
  • FPLC Fast Protein Liquid Chromatography
  • ion exchange chromatography or affinity chromatography.
  • affinity chromatography Preferably FPLC is used, comprising one or more affinity columns containing affinity chromatography media which binds selectively the biomolecules of interest.
  • Proteins in serum and synovial fluid from patients with rheumatoid arthritis were purified by FPLC, separated by isoelectric focusing followed by SDS-PAGE and compared.
  • Selected proteins which are desired to be specifically removed from the sample prior to proteome analysis e.g. albumin, haptoglobin and transferrin present in serum were removed by a FPLC purification step. This was achieved by passing the biological sample through a series of Hi-trap affinity chromatography columns each comprising immobilised antibodies specific for a particular protein. The specific proteins bind to the column and the eluate is collected and concentrated by centrifugal ultrafiltration.
  • IEF gels were prepared for SDS-PAGE by equilibration in a SDS buffer system according to a two step procedure comprising initial reduction of the disulfide bonds, followed by alkylation of the free thiol groups, as described by Sanchez et al., id. Thereafter, SDS-PAGE was carried out according to Hochstrasser et al., 1988, Analytical Biochemistry 173: 412-423 (incorporated herein by reference in its entirety), with modifications as specified below.
  • the top plate was treated with RepelSilane (Pharmacia Biotech) to minimize gel attachment. After applying the reagent, the top plate was heated by applying a flow of heated air (e.g. from a hot air gun) to the surface of the plate. Excess reagent was again removed by water washing, and the top plate was allowed to dry.
  • a flow of heated air e.g. from a hot air gun
  • the dried plates were assembled into a casting box with a capacity of 13 gel sandwiches.
  • Several casting boxes can be assembled in parallel to cast more gels under the same conditions.
  • the top and bottom plates of each sandwich were spaced by means of 1 mm thick spacers.
  • the sandwiches were interleaved with acetate sheets to facilitate separation of the sandwiches after gel polymerization. Casting was then carried out according to Hochstrasser et al., op. cit.
  • the top plate of the gel cassette was carefully removed, leaving the gel bonded to the bottom plate.
  • the bottom plate with its attached gel was then placed into a staining apparatus, which has the capacity to accommodate 12 gels.
  • the gels were completely immersed overnight in fixative solution, comprising 40% (v/v) ethanol, 10% (v/v) acetic acid, 50% (v/v) water.
  • fixative was then drained from the tank, and the gels were primed by immersion in 7.5% (v/v) acetic acid, 0.05% (w/v) SDS for 30 mins.
  • the priming solution was then drained, and the gels were stained by complete immersion in the dye solution for 4 hours.
  • a stock solution of fluorescent dye was prepared by diluting Sypro Red (Molecular Bioprobes, Inc., Eugene, Oreg.), according to the manufacturer's instructions.
  • the diluted solution was filtered under vacuum though a 0.4 ⁇ m filter.
  • a computer-readable output was produced by imaging the fluorescently stained gels with a Storm scanner (Molecular Dynamics, Sunnyvale, Calif.) according to the manufacturer's instructions, (see Storm User's Guide, 1995, Version 4.0, Part No. 149-355, incorporated herein by reference in its entirety) with modifications as described below. Since the gel was rigidly bonded to a glass plate, the gel was held in contact with the scanner bed during imaging. To avoid interference patterns arising from non-uniform contact between the gel and the scanner bed, a film of water was introduced under the gel, taking care to avoid air pockets.
  • the gel was placed in a frame provided with two fluorescent buttons that were imaged together with the gel to provide reference points (designated M1 and M2) for determining the x,y coordinates of other features detected in the gel.
  • a matched frame was provided on a robotic gel excisor in order to preserve accurate alignment of the gel. After imaging, the gels were sealed in polyethylene bags containing a small volume of staining solution, and then stored at 4° C.
  • the output from the scanner was first processed using MELANIE® to autodetect the registration points, M1 and M2; to autocrop the images (i.e., to eliminate signals originating from areas of the scanned image lying outside the boundaries of the gel, e.g. the reference frame); to filter out artifacts due to dust; to detect and quantify features; and to create image files in GIF format.
  • Features were detected by a computer-mediated comparison of potential protein spots with the background to select areas of the gel associated with a signal that exceeded a given threshold representing background staining.
  • a second program was used for interactive editing of the features detected and to match duplicate gels for each sample.
  • images were evaluated to reject images which had gross abnormalities, or were of too low a loading or overall image intensity, or were of too poor a resolution, or where duplicates were too dissimilar. If one image of a duplicate was rejected then the other image belonging to the duplicate was also rejected regardless of image quality. Samples that were rejected were scheduled for repeat analysis.
  • Landmark Identification was used to correct for any variability in the running of the gel. This process involves the identification of certain proteins which are expected to be found in any given biological sample. As these common proteins exhibit identical isoelectric points and molecular weight from sample to sample, they can be used as standards to correct for any possible gel variation or distortion.
  • the pl and molecular weight values for the landmarks in the reference gel were determined by co-running a sample with E. coli proteins which had previously been calibrated with respect to known protein in human plasma. Features which were considered to be artifacts, mainly at the edges of the gel image and particularly those due to the sample application point and the dye-front, were removed.
  • Duplicate gels were then aligned via the landmarks and a matching process performed so as to pair identical spots on the duplicate gels. This provided increased assurance that subsequently measured isoelectric points and molecular weights were accurate, as paired spots demonstrated the reproducibility of the separation.
  • the corrected gel in addition to being used for subsequent analysis, was printed out for visual inspection.
  • the end result of this aspect of the analysis was the generation of a digital profile which contained, for each identified spot: 1) a unique arbitrary identification code, 2) the x,y coordinates, 3) the isoelectric point, 4) the molecular weight, 5) the signal value, 6) the standard deviation for each of the preceding measurements, and 7) a pointer to the MCI of the spot on the master gel to which this spot was matched.
  • this profile was traceable to the actual stored gel from which it was generated, so that proteins identified by computer analysis of gel profile databases could be retrieved.
  • the LIMS also permitted the profile to be traced back to the original sample or patient.
  • the protein features in the individual images from the paired serum and synovial fluid samples were compared electronically. Molecular identity of any one feature across the set of images is defined in this analysis as identity of position in the 2-D separation. Quantitative measurement of the abundance of an individual feature in an individual image was based on normalized fluorescence intensity measured for that feature in that image. Those proteins whose abundance differed between the sets of serum and synovial fluid samples were revealed by electronic comparison of all detected features in all relevant images.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention is directed to efficient, computer-assisted methods and apparatus for identifying, selecting and characterizing biomolecules in a biological sample. According to the invention, a biological sample is first treated to isolate biomolecules of interest, and a two-dimensional array is then generated by separating the biomolecules present in a complex mixture. The invention provides a computer-generated digital profile representing the identity and relative abundance of a plurality of biomolecules detected in the two-dimensional array, thereby permitting computer-mediated comparison of profiles from multiple biological samples. This automatable technology for screening biological samples and comparing their profiles permits rapid and efficient identification of individual biomolecules whose presence, absence or altered expression is associated with a disease or condition of interest.

Description

    1. INTRODUCTION
  • This invention relates to computer-assisted methods and apparatus for efficiently and systematically studying molecules that are present in biological samples and determining their role in health and disease. In particular, this invention relates to the emerging field of proteomics, which involves the systematic identification and characterization of proteins that are present in biological samples, including proteins that are glycosylated or that exhibit other post-translational modifications. The proteomics approach offers great advantages for identifying proteins that are useful for diagnosis, prognosis, or monitoring response to therapy and in identifying protein targets for the prevention and treatment of disease. [0001]
  • 2. BACKGROUND OF THE INVENTION
  • Recent advances in molecular genetics have revealed the benefits of high-throughput sequencing techniques and systematic strategies for studying nucleic acids expressed in a given cell or tissue. These advances have highlighted the need for operator-independent computer-mediated methods for identifying and selecting subsets or individual molecules from complex mixtures of proteins, oligosaccharides and other biomolecules and isolating such selected biomolecules for further analysis. [0002]
  • Strategies for target-driven drug discovery and rational drug design require identifying key cellular components, such as proteins, that are causally related to disease processes and the use of such components as targets for therapeutic intervention. However, present methods of analyzing biomolecules such as proteins are time consuming and expensive, and suffer from inefficiencies in detection, imaging, purification and analysis. [0003]
  • Though the genomics approach has advanced our understanding of the genetic basis of biological processes, it has significant limitations. First, the functions of products encoded by identified genes—and especially by partial cDNA sequences—are frequently unknown. Second, information about post-translational modifications of a protein can rarely be deduced from a knowledge of its gene sequence, and it is now apparent that a large proportion of proteins undergo post-translational modifications (such as glycosylation and phosphorylation) that can profoundly influence their biochemical properties. Third, protein expression is often subject to post-translational control, so that the cellular level of an mRNA does not necessarily correlate with the expression level of its gene product. Fourth, automated strategies for random sequencing of nucleic acids involve the analysis of large numbers of nucleic acid molecules prior to determining which, if any, show indicia of clinical or scientific significance. [0004]
  • For these reasons, there is a need to supplement genomic data by studying the patterns of protein and carbohydrate expression, and of post-translational modification generally, in a biological or disease process through direct analysis of proteins, oligosaccharides and other biomolecules. However, technical constraints have heretofore impeded the rapid, cost-effective, reproducible, systematic analysis of proteins and other biomolecules present in biological samples. [0005]
  • 3. SUMMARY OF THE INVENTION
  • The present invention is directed to efficient, computer-assisted methods and apparatus for identifying, selecting and characterizing biomolecules in a biological sample. According to the invention, a biological sample is first treated to isolate biomolecules of interest, and a two-dimensional array is then generated by separating the biomolecules present in a complex mixture. The invention provides a computer-generated digital profile representing the identity and relative abundance of a plurality of biomolecules detected in the two-dimensional array, thereby permitting computer-mediated comparison of profiles from multiple biological samples. This automatable technology for screening biological samples and comparing their profiles permits rapid and efficient identification of individual biomolecules whose presence, absence or altered expression is associated with a disease or condition of interest. Such biomolecules are useful as therapeutic agents, as targets for therapeutic intervention, and as markers for diagnosis, prognosis, and evaluating response to treatment. This technology also permits rapid and efficient identification of sets of biomolecules whose pattern of expression is associated with a disease or condition of interest: such sets of biomolecules provide constellations of markers for diagnosis, prognosis, and evaluating response to treatment. [0006]
  • The high throughput, automatable methods and apparatus of the present invention further permit operator-independent selection of individual separated biomolecules (or subsets of separated biomolecules) according to pre-ordained criteria, without any requirement for knowledge of sequence information or other structural characteristics of the biomolecules. This in turn provides automated, operator-independent isolation and parallel characterization of a plurality of selected biomolecules detected in a biological sample. Thus, the present invention advantageously permits automated selection of biomolecules prior to sequencing or structural characterization.[0007]
  • 4. DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides methods for rapidly and efficiently identifying and characterizing bio-molecules, for example proteins, in a biological sample. In a first step, a biological sample is treated to isolate the biomolecules of interest prior to separating the biomolecules for characterisation. Purification is performed with a view either to selectively enrich certain desirable biomolecules, e.g. proteins, from within the sample or to selectively deplete the sample of certain undesirable biomolecules. For example, if glycosylated proteins only are of interest, such glycoproteins may be selectively isolated from a sample using lectin-affinity chromatography or lectin affinity precipitation. Such enrichment can both enhance and simplify the subsequent protein separation and analysis. Any proteins or group of proteins carrying a structural determinant for which an antibody or other specific purification reagent is available may be so extracted, e.g. tyrosine phospho-proteins by using an anti-phosphotyrosine antibody. Conversely, a sample may be depleted of specific proteins, again using protein-specific affinity methods. For example, albumin may be removed from body fluids using an anti-albumin antibody, and immunoglobulins may be removed using protein A or protein G (preferably immobilised) and haptoglobin and transferrin can be similarly removed. It is clear that a sample may be selectively depleted (or enriched) for more than one protein by using protein-specific reagents serially or in combination. Such enrichment/depletion can often have a beneficial effect during analysis, by concentrating proteins of interest/removing proteins that interfere with or may, for example by their predominance, limit the analysis of proteins of interest. [0008]
  • In either case of enrichment or depletion, the end result is to provide a sample containing the biomolecules of interest in a more isolated or “pure” form with respect to the original biological sample. A preferred method for achieving this is affinity chromatography e.g. Fast Protein Liquid Chromatography (FPLC). [0009]
  • After purification, the sample containing the biomolecules is subjected to two successive separation steps. In the first separation step, the biomolecules are separated according to one physical or chemical property so as to generate a one-dimensional array containing the biomolecules; for example, proteins are separated by isoelectric focusing along a first axis. In the second separation step, the biomolecules in this one-dimensional array are separated according to a second physical or chemical characteristic so as to generate a two-dimensional array of separated biomolecules; for example, proteins separated by isoelectric focusing are subjected to SDS-PAGE along a second axis perpendicular to the first axis. The separated biomolecules are stably maintained in the two-dimensional array for subsequent imaging. The stable two-dimensional array can be stored or archived for an extended period (e.g. months or years) and selected biomolecules can be retrieved from the array at any desired time, based on automated computer analysis of the data derived from imaging. [0010]
  • The two-dimensional array is imaged with a detector to generate a computer-readable output that contains a set of x,y coordinates and a signal value for each detected biomolecule. If desired, the computer-readable output can be displayed to a human operator—before or after computer-mediated analysis—as a computer-generated image on a screen or on any suitable medium. Computer-mediated analysis of the computer-readable output is performed, resulting in a computer-readable profile that represents, for a plurality of detected biomolecules, the relative abundance of each such biomolecule and its attributes as deduced from its x,y coordinates in the two-dimensional array. For example, a profile derived from imaging a gel containing proteins separated by isoelectric focusing followed by SDS-PAGE represents the isoelectric point (pl), apparent molecular weight (MW) and relative abundance of a plurality of detected proteins. [0011]
  • The computer-readable profiles of the present invention are suitable for computer-mediated analysis to identify one or more biomolecules that satisfy specified criteria. In one embodiment, a first set of profiles is compared with a second set of profiles to identify biomolecules that are represented in all the profiles of the first set (or in a first percentage of the profiles of the first set) and are absent from the profiles of the second set (or are absent from a second percentage of the profiles of the second set, where the first and second percentages can be independently specified). In other embodiments, sets of profiles are compared to identify biomolecules that are present at a designated higher level of expression in a specified percentage of profiles of one sample set than in a specified percentage of profiles of another sample set, or to identify biomolecules whose post-translational processing differs from one sample set to another. [0012]
  • One or more biomolecules so identified are selected for isolation. In one embodiment, this selection is made automatically by a computer, in accordance with pre-ordained programmed criteria, without further human intervention. In another embodiment, a human operator reviews the results of the computer-mediated analysis and then enters a selection into a computer. For isolation of each selected biomolecule, a computer generates machine-readable instructions that direct a robotic device (a) to remove one or more portions of the two-dimensional array that contain the selected biomolecule and (b) to deliver the removed portions to one or more suitable vessels for further characterization. For example, a selected protein can be analyzed to determine its full or partial amino acid sequence, to detect and characterize any associated oligosaccharide moieties, and to study other aspects of post-translational processing, e.g. phosphorylation, myristylation and the like. The invention advantageously permits automated parallel processing of biomolecules removed from the two-dimensional array, thereby facilitating rapid and efficient characterization of a plurality of selected biomolecules. FIG. 1 of WO-A-9823950 presents a flowchart illustrating processing of a sample. [0013]
  • The present invention is useful for identifying and analyzing proteins, but is more generally applicable to the identification and analysis of any biomolecule. As used herein, the term “biomolecule” refers to any organic molecule that is present in a biological sample, and includes peptides, polypeptides, proteins, oligosaccharides, lipids, steroids, prostaglandins, prostacyclines, and nucleic acids (including DNA and RNA). As used herein, the term “protein” includes glycosylated and unglycosylated proteins. These and other terms and procedures are as defined in WO-A-9823950; see the sections headed “Biological samples”, Analysis of proteins” (twice), “Analysis of oligosaccharides”, “Computer analysis of the detector output”, “Computer generation and analysis of profiles”, “Removal of selected portions of a supported gel”, and “Processing removed portions of the gel”. [0014]
  • In connection with the first “Analysis of proteins” section, a purification step is now introduced. A wide variety of purification techniques may be used in this first step. For example, purification may occur by the use of Fast Protein Liquid Chromatography (FPLC), ion exchange chromatography or affinity chromatography. Preferably FPLC is used, comprising one or more affinity columns containing affinity chromatography media which binds selectively the biomolecules of interest. [0015]
  • 5. EXAMPLE Proteins from Serum and Synovial Fluid of Patients with Rheumatoid Arthritis
  • Proteins in serum and synovial fluid from patients with rheumatoid arthritis (RA) were purified by FPLC, separated by isoelectric focusing followed by SDS-PAGE and compared. [0016]
  • 5.1. FPLC Purification [0017]
  • Selected proteins which are desired to be specifically removed from the sample prior to proteome analysis e.g. albumin, haptoglobin and transferrin present in serum were removed by a FPLC purification step. This was achieved by passing the biological sample through a series of Hi-trap affinity chromatography columns each comprising immobilised antibodies specific for a particular protein. The specific proteins bind to the column and the eluate is collected and concentrated by centrifugal ultrafiltration. [0018]
  • 5.2. Isoelectric Focusing [0019]
  • For isoelectric focusing (IEF), each sample (after FPLC treatment) was applied to an lmmobiline® DryStrip Kit (Pharmacia BioTech), following the procedure described in the manufacturer's instructions, see Instructions for Immobiline® DryStrip Kit, Pharmacia, #18-1038-63, Edition AB (incorporated herein by reference in its entirety), with optional modifications as described by Sanchez et al. 1997, Electrophoresis 18: 324-327 (incorporated herein by reference in its entirety). [0020]
  • In certain cases, in order to increase the resolution in a particular pH range or to load a larger quantity of a target protein onto the gel, a narrow-range “zoom gel” having a pH range of 2 pH units or less was used, according to the method described in Westermeier, 1993, Electrophoresis in Practice (VCH, Weinheim, Germany), pp. 197-209 (which is incorporated herein by reference in its entirety). [0021]
  • 5.3. Gel Equilibration and SDS-PAGE [0022]
  • IEF gels were prepared for SDS-PAGE by equilibration in a SDS buffer system according to a two step procedure comprising initial reduction of the disulfide bonds, followed by alkylation of the free thiol groups, as described by Sanchez et al., id. Thereafter, SDS-PAGE was carried out according to Hochstrasser et al., 1988, Analytical Biochemistry 173: 412-423 (incorporated herein by reference in its entirety), with modifications as specified below. [0023]
  • 5.4. Preparation of Supported Gels [0024]
  • Covalent attachment of SDS-PAGE gels to a glass support was achieved by applying a 0.4% solution of γ-methacryl-oxypropyltrimethoxysilane in ethanol to the glass plate (“the bottom plate”) to which the gel was to be attached. Excess reagent was removed by washing with water, and the bottom plate was allowed to dry. At this stage, both as identification for the gel, and as a marker to identify the coated face of the plate, an adhesive bar-code was attached to the bottom plate in a position such that it would not come into contact with the gel matrix. [0025]
  • An opposing glass plate (“the top plate”) was treated with RepelSilane (Pharmacia Biotech) to minimize gel attachment. After applying the reagent, the top plate was heated by applying a flow of heated air (e.g. from a hot air gun) to the surface of the plate. Excess reagent was again removed by water washing, and the top plate was allowed to dry. [0026]
  • The dried plates were assembled into a casting box with a capacity of 13 gel sandwiches. Several casting boxes can be assembled in parallel to cast more gels under the same conditions. The top and bottom plates of each sandwich were spaced by means of 1 mm thick spacers. The sandwiches were interleaved with acetate sheets to facilitate separation of the sandwiches after gel polymerization. Casting was then carried out according to Hochstrasser et al., op. cit. [0027]
  • 5.5. SDS-PAGE [0028]
  • The gel strips from the IEF step were applied to the top of the poured SDS-PAGE gel and electrophoresis begun. In order to ensure even cooling of the gel during the electrophoresis run, a system was designed essentially as described by Amess et al,. 1995, Electrophoresis 16: 1255-1267 (incorporated herein by reference in its entirety). Even, efficient cooling is desirable in order to minimize thermal fluctuations during electrophoresis and hence to maintain the consistency of migration of the proteins. Electrophoresis was carried out until the tracking dye reached the bottom edge of the gel. The gels were then removed immediately for staining. [0029]
  • 5.6. Staining [0030]
  • The top plate of the gel cassette was carefully removed, leaving the gel bonded to the bottom plate. The bottom plate with its attached gel was then placed into a staining apparatus, which has the capacity to accommodate 12 gels. The gels were completely immersed overnight in fixative solution, comprising 40% (v/v) ethanol, 10% (v/v) acetic acid, 50% (v/v) water. The fixative was then drained from the tank, and the gels were primed by immersion in 7.5% (v/v) acetic acid, 0.05% (w/v) SDS for 30 mins. The priming solution was then drained, and the gels were stained by complete immersion in the dye solution for 4 hours. A stock solution of fluorescent dye was prepared by diluting Sypro Red (Molecular Bioprobes, Inc., Eugene, Oreg.), according to the manufacturer's instructions. The diluted solution was filtered under vacuum though a 0.4 μm filter. [0031]
  • In order to achieve a continuous, even circulation of the various solutions over all 12 gels, solutions were introduced into the tank via a distribution bar, extending along the bottom of the tank across its entire width and provided with holes that allow the solution to flow evenly over each of the gels. [0032]
  • 5.7. Imaging of the Gel [0033]
  • A computer-readable output was produced by imaging the fluorescently stained gels with a Storm scanner (Molecular Dynamics, Sunnyvale, Calif.) according to the manufacturer's instructions, (see Storm User's Guide, 1995, Version 4.0, Part No. 149-355, incorporated herein by reference in its entirety) with modifications as described below. Since the gel was rigidly bonded to a glass plate, the gel was held in contact with the scanner bed during imaging. To avoid interference patterns arising from non-uniform contact between the gel and the scanner bed, a film of water was introduced under the gel, taking care to avoid air pockets. Moreover, the gel was placed in a frame provided with two fluorescent buttons that were imaged together with the gel to provide reference points (designated M1 and M2) for determining the x,y coordinates of other features detected in the gel. A matched frame was provided on a robotic gel excisor in order to preserve accurate alignment of the gel. After imaging, the gels were sealed in polyethylene bags containing a small volume of staining solution, and then stored at 4° C. [0034]
  • The output from the scanner was first processed using MELANIE® to autodetect the registration points, M1 and M2; to autocrop the images (i.e., to eliminate signals originating from areas of the scanned image lying outside the boundaries of the gel, e.g. the reference frame); to filter out artifacts due to dust; to detect and quantify features; and to create image files in GIF format. Features were detected by a computer-mediated comparison of potential protein spots with the background to select areas of the gel associated with a signal that exceeded a given threshold representing background staining. [0035]
  • A second program was used for interactive editing of the features detected and to match duplicate gels for each sample. First, images were evaluated to reject images which had gross abnormalities, or were of too low a loading or overall image intensity, or were of too poor a resolution, or where duplicates were too dissimilar. If one image of a duplicate was rejected then the other image belonging to the duplicate was also rejected regardless of image quality. Samples that were rejected were scheduled for repeat analysis. [0036]
  • Landmark Identification was used to correct for any variability in the running of the gel. This process involves the identification of certain proteins which are expected to be found in any given biological sample. As these common proteins exhibit identical isoelectric points and molecular weight from sample to sample, they can be used as standards to correct for any possible gel variation or distortion. The pl and molecular weight values for the landmarks in the reference gel were determined by co-running a sample with [0037] E. coli proteins which had previously been calibrated with respect to known protein in human plasma. Features which were considered to be artifacts, mainly at the edges of the gel image and particularly those due to the sample application point and the dye-front, were removed. Duplicate gels were then aligned via the landmarks and a matching process performed so as to pair identical spots on the duplicate gels. This provided increased assurance that subsequently measured isoelectric points and molecular weights were accurate, as paired spots demonstrated the reproducibility of the separation. The corrected gel, in addition to being used for subsequent analysis, was printed out for visual inspection.
  • Generation of the image was followed by computer measurement of the x,y coordinates of each protein, which were correlated with particular isoelectric points and molecular weights by reference to the known landmark proteins or standards. A measurement of the intensity of each protein spot was taken and stored. Each protein spot was assigned an identification code and matched to a spot on a master gel, i.e., a reference gel which contained most or all of the protein spots seen in each type of sample and was used as a template to which the protein spots of the other samples were matched. This step allowed for the identification of putative correlate spots across many different gels. The data collected during collection of the original biological sample, as described in section 5.1, were reunited with the gel data, thereby permitting the analysis of computer selected cross-sections of the samples based on information such as age or clinical outcome. [0038]
  • The end result of this aspect of the analysis was the generation of a digital profile which contained, for each identified spot: 1) a unique arbitrary identification code, 2) the x,y coordinates, 3) the isoelectric point, 4) the molecular weight, 5) the signal value, 6) the standard deviation for each of the preceding measurements, and 7) a pointer to the MCI of the spot on the master gel to which this spot was matched. By virtue of the LIMS, this profile was traceable to the actual stored gel from which it was generated, so that proteins identified by computer analysis of gel profile databases could be retrieved. The LIMS also permitted the profile to be traced back to the original sample or patient. [0039]
  • 5.8. Digital Analysis of the Gel [0040]
  • Once the profile was generated, analysis was directed toward the selection of interesting proteins. [0041]
  • The protein features in the individual images from the paired serum and synovial fluid samples were compared electronically. Molecular identity of any one feature across the set of images is defined in this analysis as identity of position in the 2-D separation. Quantitative measurement of the abundance of an individual feature in an individual image was based on normalized fluorescence intensity measured for that feature in that image. Those proteins whose abundance differed between the sets of serum and synovial fluid samples were revealed by electronic comparison of all detected features in all relevant images. [0042]
  • 5.9. Recovery and Analysis of Selected Proteins [0043]
  • Differentially expressed proteins were robotically excised and processed to generate tryptic peptides; partial amino acid sequences of these peptides were determined by mass spectroscopy, using de novo sequencing. [0044]
  • 5.10 Results [0045]
  • These initial experiments identified 12 proteins that were present at higher levels in human RA synovial fluid than in matched serum samples, and 9 proteins that were present at lower levels in human RA synovial fluid than in matched serum samples. Partial amino acid sequences were determined for each of these differentially expressed proteins. Computer analysis of public databases revealed that 16 of these partially sequenced proteins were known in the art and that 5 were not described in any public database examined. [0046]
  • References herein to U.S. patent application Ser. No. 08/877,605 apply also to the International Patent Application No. PCT/GB98/01486. In addition, reference may be made to WO-A-9801749, for a discussion of techniques for the enhanced separation of species, e.g. in a gel. [0047]

Claims (12)

1. A computer-assisted method for selecting and directing the isolation of one or more biomolecules present in a two-dimensional array, comprising:
a purification step, wherein a plurality of biomolecules of interest are substantially isolated from a first biological sample;
a first separation step, wherein said biomolecules are separated according to a first physical or chemical property to form a one-dimensional array of biomolecules;
a second separation step, wherein said one-dimensional array of biomolecules is separated according to a second physical or chemical property to form said two-dimensional array;
imaging said two-dimensional array or a replica thereof to generate a computer-readable output comprising, for each of a plurality of biomolecules detected in said two-dimensional array, a pair of x,y coordinates and a signal value;
processing said output in at least one computer to select one or more of said detected biomolecules in accordance with previously ordained or operator-specified criteria; and optionally
generating machine-readable instructions that direct a robotic device to isolate at least one of said selected biomolecules from said two-dimensional array.
2. The method according to claim 1, further comprising:
isolating at least one of said selected biomolecules from said two-dimensional array by means of said robotic device in accordance with said machine-readable instructions.
3. The method according to claim 1 or claim 2, in which said biomolecules are oligosaccharides.
4. The method according to claim 1 or claim 2, in which said biomolecules are proteins.
5. The method according to claim 4, in which said proteins are glycoproteins.
6. The method according to any preceding claim, in which said two-dimensional array is contained in a polyacrylamide gel.
7. The method according to claim 6, in which said biomolecules have been separated by isoelectric focusing, followed by electrophoresis in the presence of sodium dodecyl sulfate.
8. The method according to claim 6 or claim 7, in which said polyacrylamide gel is bonded to a generally planar solid support such that the gel has two-dimensional spatial stability, and the support is substantially non-interfering with respect to detection of a detectable label carried by the proteins.
9. The method according to claim 8, in which said polyacrylamide gel is covalently bonded to said solid support.
10. The method according to claim 8 or claim 9, in which said detectable label is a fluorescent label.
11. The method according to any of claims 8 to 10, in which said solid support is glass.
12. The method according to any preceding claim, wherein the purification step is carried out using FPLC.
US10/263,356 1998-05-29 2002-09-30 Gels, methods and apparatus for identification and characterization of biomolecules Abandoned US20030083823A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/263,356 US20030083823A1 (en) 1998-05-29 2002-09-30 Gels, methods and apparatus for identification and characterization of biomolecules

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9811656.9 1998-05-29
GBGB9811656.9A GB9811656D0 (en) 1998-05-29 1998-05-29 Gels, methods and apparatus for identification and characterization of biomolecules
US09/724,383 US6459994B1 (en) 1998-05-29 2000-11-28 Methods for computer-assisted isolation of proteins
US10/263,356 US20030083823A1 (en) 1998-05-29 2002-09-30 Gels, methods and apparatus for identification and characterization of biomolecules

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/724,383 Continuation US6459994B1 (en) 1998-05-29 2000-11-28 Methods for computer-assisted isolation of proteins

Publications (1)

Publication Number Publication Date
US20030083823A1 true US20030083823A1 (en) 2003-05-01

Family

ID=10832966

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/724,383 Expired - Fee Related US6459994B1 (en) 1998-05-29 2000-11-28 Methods for computer-assisted isolation of proteins
US10/263,356 Abandoned US20030083823A1 (en) 1998-05-29 2002-09-30 Gels, methods and apparatus for identification and characterization of biomolecules

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/724,383 Expired - Fee Related US6459994B1 (en) 1998-05-29 2000-11-28 Methods for computer-assisted isolation of proteins

Country Status (5)

Country Link
US (2) US6459994B1 (en)
EP (1) EP1084400A2 (en)
AU (1) AU4275799A (en)
GB (1) GB9811656D0 (en)
WO (1) WO1999063351A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013067477A1 (en) * 2011-11-04 2013-05-10 Bio-Rad Laboratories, Inc. Affinity methods and compositions employing electronic control of ph
US9234875B2 (en) 2011-11-04 2016-01-12 Bio-Rad Laboratories, Inc. Simultaneous purification of cell components
US9321012B2 (en) 2012-04-04 2016-04-26 Bio-Rad Laboratories, Inc. Electronic protein fractionation
US9658195B2 (en) 2012-02-15 2017-05-23 Bio-Rad Laboratories, Inc. Electronic control of pH and ionic strength
US9766207B2 (en) 2011-11-04 2017-09-19 Bio-Rad Laboratories, Inc. Affinity methods and compositions employing electronic control of pH

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993627A (en) 1997-06-24 1999-11-30 Large Scale Biology Corporation Automated system for two-dimensional electrophoresis
SE0002041D0 (en) * 2000-05-12 2000-06-13 Amersham Pharm Biotech Ab Gel spot picker
US7691645B2 (en) * 2001-01-09 2010-04-06 Agilent Technologies, Inc. Immunosubtraction method
AU2002951240A0 (en) 2002-08-23 2002-09-19 Royal Women's Hospital Depletion of plasma proteins
US7319031B2 (en) * 2002-11-27 2008-01-15 3M Innovative Properties Company Mounting platform for biological growth plate scanner
US20040101954A1 (en) * 2002-11-27 2004-05-27 Graessle Josef A. Back side plate illumination for biological growth plate scanner
US7298885B2 (en) * 2002-11-27 2007-11-20 3M Innovative Properties Company Biological growth plate scanner with automated image processing profile selection
US7351574B2 (en) * 2002-11-27 2008-04-01 3M Innovative Properties Company Loading and ejection systems for biological growth plate scanner
US20040102903A1 (en) * 2002-11-27 2004-05-27 Graessle Josef A. Biological growth plate scanner
US7496225B2 (en) * 2003-09-04 2009-02-24 3M Innovative Properties Company Biological growth plate scanner with automated intake
US7298886B2 (en) * 2003-09-05 2007-11-20 3M Innovative Properties Company Counting biological agents on biological growth plates
US20080220442A1 (en) * 2006-12-06 2008-09-11 Proteinics Difference detection methods using isoelectric focusing chips
US8417013B2 (en) * 2008-03-04 2013-04-09 3M Innovative Properties Company Information management in automated processing of biological growth media
JP5306382B2 (en) * 2008-03-04 2013-10-02 スリーエム イノベイティブ プロパティズ カンパニー Treatment of biological growth media based on measured manufacturing characteristics
WO2019183334A1 (en) 2018-03-21 2019-09-26 Waters Technologies Corporation Non-antibody high-affinity-based sample preparation, sorbents, devices and methods

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3499360A (en) 1968-02-12 1970-03-10 Charles L Davis Pattern cutting device and indexing system
DE2823360C3 (en) 1978-05-29 1981-06-25 Texas Instruments Deutschland Gmbh, 8050 Freising Device for transferring objects
US4341735A (en) 1980-03-28 1982-07-27 American Cyanamid Company Sample carrier material handling apparatus
DE3032069C2 (en) 1980-08-26 1982-06-16 Nikolaus Dr. 6900 Heidelberg Grubhofer Lacquer-like adhesion promoters for aqueous polyacrylamide gels on smooth polyester films, process for their production and their use for electrophoresis
US4613573A (en) 1982-05-20 1986-09-23 Hitachi, Ltd. Automatic bacterial colony transfer apparatus
JPS59164950A (en) 1983-03-11 1984-09-18 Fuji Photo Film Co Ltd Medium material for electrophoresis
JPS59166850A (en) 1983-03-11 1984-09-20 Fuji Photo Film Co Ltd Medium material for electrophoresis
JPS59212752A (en) 1983-05-19 1984-12-01 Fuji Photo Film Co Ltd Medium material for electrophoresis
US4592089A (en) 1983-08-15 1986-05-27 Bio Image Corporation Electrophoretogram analytical image processing system
FR2563343B1 (en) 1984-04-19 1986-06-13 Rhone Poulenc Sante DEVICE FOR PERFORMING SAMPLES IN SEMI-SOLID MEDIA
JPS60243551A (en) 1984-05-18 1985-12-03 Fuji Photo Film Co Ltd Medium material for electrophoresis and manufacture thereof
EP0162693A3 (en) 1984-05-21 1988-05-11 Fuji Photo Film Co., Ltd. Medium for electrophoresis
US4865707A (en) 1986-10-21 1989-09-12 Northeastern University Capillary gel electrophoresis columns
US5217591A (en) 1990-05-14 1993-06-08 Labintelligence, Inc. Gel electrophoresis sample applicator/retriever
US5275710A (en) 1990-05-14 1994-01-04 Labintelligence, Inc. Gel electrophoresis system including optical stage, sample applicator and sample retriever
US5073963A (en) * 1990-05-25 1991-12-17 Arizona Technology Development Corp. Computerized method of matching two-dimensional (2-d) patterns
US5098539A (en) 1991-04-19 1992-03-24 Beckman Instruments, Inc. Gel-containing microcapillary column
US5301671A (en) 1991-09-17 1994-04-12 The United States Of America As Represented By The Department Of Health And Human Services Two- and three-dimensional autoradiographic imaging utilizing charge coupled devices
JP3067347B2 (en) 1991-10-30 2000-07-17 株式会社島津製作所 Gel-like bead sorting equipment
DE69318008T2 (en) 1992-01-31 1998-08-20 Beckman Instruments Inc CAPILLARY COLUMN WITH A REMOVABLE SEPARATING COMPOSITION AND METHOD FOR USE
US5340461A (en) 1992-02-03 1994-08-23 Nakano Vinegar Co., Ltd. Electrophoretic medium for electrophoretic separation, gel holder for holding the same medium, slab type electrophoretic apparatus using the same medium and gel holder, and electrophoretic gel cutter
AU1183195A (en) 1993-11-17 1995-06-06 Applied Hydrogel Technology Corporation Methods for the separation of biological materials
US5631734A (en) 1994-02-10 1997-05-20 Affymetrix, Inc. Method and apparatus for detection of fluorescently labeled materials
JPH07260742A (en) 1994-03-23 1995-10-13 Sanyo Electric Co Ltd Electrophoresis device
SE9404274D0 (en) 1994-12-08 1994-12-08 Pharmacia Biotech Ab Device at a gel electrophoresis apparatus
US5710628A (en) 1994-12-12 1998-01-20 Visible Genetics Inc. Automated electrophoresis and fluorescence detection apparatus and method
US6127134A (en) 1995-04-20 2000-10-03 Carnegie Mellon University Difference gel electrophoresis using matched multiple dyes
WO1996039625A1 (en) * 1995-06-06 1996-12-12 Beltronics Inc. Automatic protein and/or dna analysis system and method
US6660233B1 (en) 1996-01-16 2003-12-09 Beckman Coulter, Inc. Analytical biochemistry system with robotically carried bioarray
US5587062A (en) 1996-01-24 1996-12-24 Shimadzu Corporation Sample collecting apparatus by gel electrophoresis
US5717602A (en) 1996-02-05 1998-02-10 Kenning; Gregory G. Automated electrophoresis and analysis system
US6068753A (en) 1996-05-06 2000-05-30 Helena Laboratories Corporation Automatic electrophoresis apparatus with fluorescent and visible scanning
US5949899A (en) 1996-10-01 1999-09-07 Nebular Vision Research & Development Inc. Apparatus for measuring and analyzing electrophoresis images
CA2269744A1 (en) * 1996-10-25 1998-05-07 Peter Mose Larsen Proteome analysis for characterization of up- and down-regulated proteins in biological samples
GB9624927D0 (en) * 1996-11-29 1997-01-15 Oxford Glycosciences Uk Ltd Gels and their use
US5993627A (en) 1997-06-24 1999-11-30 Large Scale Biology Corporation Automated system for two-dimensional electrophoresis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013067477A1 (en) * 2011-11-04 2013-05-10 Bio-Rad Laboratories, Inc. Affinity methods and compositions employing electronic control of ph
US9234875B2 (en) 2011-11-04 2016-01-12 Bio-Rad Laboratories, Inc. Simultaneous purification of cell components
US9766207B2 (en) 2011-11-04 2017-09-19 Bio-Rad Laboratories, Inc. Affinity methods and compositions employing electronic control of pH
US9658195B2 (en) 2012-02-15 2017-05-23 Bio-Rad Laboratories, Inc. Electronic control of pH and ionic strength
US9321012B2 (en) 2012-04-04 2016-04-26 Bio-Rad Laboratories, Inc. Electronic protein fractionation

Also Published As

Publication number Publication date
EP1084400A2 (en) 2001-03-21
WO1999063351A3 (en) 2000-01-27
AU4275799A (en) 1999-12-20
GB9811656D0 (en) 1998-07-29
WO1999063351A2 (en) 1999-12-09
US6459994B1 (en) 2002-10-01

Similar Documents

Publication Publication Date Title
US6459994B1 (en) Methods for computer-assisted isolation of proteins
US6064754A (en) Computer-assisted methods and apparatus for identification and characterization of biomolecules in a biological sample
Hanash Biomedical applications of two‐dimensional electrophoresis using immobilized pH gradients: Current status
Kilár Recent applications of capillary isoelectric focusing
Penque Two‐dimensional gel electrophoresis and mass spectrometry for biomarker discovery
US7130459B2 (en) Reference database
US6660149B1 (en) Multichannel microscale system for high throughput preparative separation with comprehensive collection and analysis
Ahmed et al. Strategies for revealing lower abundance proteins in two-dimensional protein maps
Vesterberg A short history of electrophoretic methods
US20020012920A1 (en) Method and kit for proteomic identification
Chiou et al. Evaluation of commonly used electrophoretic methods for the analysis of proteins and peptides and their application to biotechnology
US6676819B1 (en) Methods and apparatus for automatic on-line multi-dimensional electrophoresis
Lopez et al. Reproducibility of polypeptide spot positions in two‐dimensional gels run using carrier ampholytes in the isoelectric focusing dimension
JP4541894B2 (en) Biomolecule sample substance separation device and separation method
US7652129B2 (en) Parallel process for protein or virus separation from a sample
JPH05322770A (en) Multi-marker electrophoresis
US20110094886A1 (en) Automated, High Band Resolution Electrophoretic System for Digital Visualization and Method of Use
Chin Independent Parallel Capillary Array Separations for Rapid Second Dimension Sampling in On-Line Two-Dimensional Capillary Electrophoresis of Complex Biological Samples
Kannan et al. Two dimensional gel electrophoresis in cancer proteomics
Gianazza et al. Biomedical relevance of two-dimensional protein mapping
Hochstrasser et al. Present status of proteomics
Ventzki et al. 3D‐Gel Electrophoresis–A New Development in Protein Analysis
Westermeier et al. 19Gel Electrophoresis
Dwyer Electrophoretic techniques of analysis and isolation
Fosslien et al. Discussion on Methodology

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION