US20010042369A1 - Steam cooled type combined cycle power generation plant and operation method thereof - Google Patents

Steam cooled type combined cycle power generation plant and operation method thereof Download PDF

Info

Publication number
US20010042369A1
US20010042369A1 US09/911,800 US91180001A US2001042369A1 US 20010042369 A1 US20010042369 A1 US 20010042369A1 US 91180001 A US91180001 A US 91180001A US 2001042369 A1 US2001042369 A1 US 2001042369A1
Authority
US
United States
Prior art keywords
steam
gas turbine
waste heat
plant
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/911,800
Inventor
Osamu Wakazono
Yasushi Fukuizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP9176945A external-priority patent/JPH1122419A/en
Application filed by Individual filed Critical Individual
Priority to US09/911,800 priority Critical patent/US20010042369A1/en
Publication of US20010042369A1 publication Critical patent/US20010042369A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a combined cycle power generation plant, constructed by combining a gas turbine unit and a steam turbine unit, in which a stabilizing burner is incorporated in a waste heat recovery boiler thereof.
  • a combined cycle power generation plant is a power generation system constructed by combining a gas turbine unit and a steam turbine unit.
  • a high temperature range of the power generation plant thermal energy is used by the gas turbine, and a low temperature range is used by the steam turbine.
  • the thermal energy is recovered and used effectively, so that this type of power generation system has recently come to be widely used.
  • a combined cycle power generation plant constructed by combining a gas turbine unit and a steam turbine unit.
  • the combined plant includes a waste heat recovery boiler for generating steam for driving the steam turbine by using waste heat from the gas turbine.
  • a stabilizing burner is incorporated at an upstream position in the waste heat recovery boiler.
  • the stabilizing burner which is incorporated at the upstream position in the waste heat recovery boiler, is ignited during start-up and speed increases of the gas turbine so that generation of steam at the waste heat recovery boiler is accelerated.
  • the steam is used effectively for cooling the gas turbine, driving the steam turbine and also as gland steam.
  • exhaust steam from the high pressure steam turbine is also used to cool the gas turbine. Therefore, the time for the plant to reach a full load can be shortened.
  • FIG. 1 is an explanatory view showing schematically a main part of a combined cycle power generation plant of one embodiment of the present invention.
  • FIG. 1 shows schematically a gas turbine unit, a steam turbine unit, and a waste heat recovery unit of a combined cycle power generation plant.
  • Numeral 10 designates the gas turbine unit which comprises a gas turbine 11 (including a high temperature portion having a cooling component 36 ), an air compressor 12 which has a shaft joined directly to a shaft of the gas turbine 11 , a combustor 13 which is supplied with compressed air from the air compressor 12 for the combustion of fuel (which is supplied from another source).
  • the combustor 13 supplies the gas turbine 11 with operation gas, etc.
  • a generator 14 has a shaft which is joined to the other end of the shaft of the air compressor 12 , and a starting apparatus 15 is connected to the generator 14 .
  • the gas turbine 11 , air compressor 12 and generator 14 may also share single, continuous shaft.
  • Numeral 16 designates a fuel supply pipe and numeral 17 designates a control valve disposed in the supply pipe 16 for controlling the supply of fuel to the combustor 13 .
  • Numeral 20 designates the waste heat recovery unit comprising a waste heat recovery boiler which includes an economizer and a superheater, but neither of these are shown in FIG. 1.
  • the waste heat recovery boiler 20 also includes a reheater 34 , a high pressure drum 22 , an intermediate pressure drum 23 and a low pressure drum 24 .
  • Numeral 25 designates a stabilizing burner which is disposed at an upstream position, preferably at an upstream position of the superheater or the reheater, in the waste heat recovery boiler 20 .
  • Numeral 26 designates a fuel supply pipe for supplying the stabilizing burner 25 with fuel. On a downstream side of the fuel supply pipe 26 , there is disposed a control valve 27 . An upstream end of the fuel supply pipe 26 joins the fuel supply pipe 16 for the combustor 13 .
  • the fuel supply pipes 16 and 26 may also be connected to separate fuel supply sources.
  • Numeral 30 designates the steam turbine unit comprising a high pressure steam turbine 31 , an intermediate pressure steam turbine 32 , and a low pressure steam turbine 33 .
  • High pressure steam including steam 37 from the high pressure drum 22 of the waste heat recovery boiler, enters the high pressure steam turbine 31 .
  • This steam from the reheater 34 and the high temperature portion cooling component 36 of the gas turbine 11 then becomes intermediate pressure steam 40 which enters the intermediate pressure steam turbine 32 .
  • Exhaust steam 41 from intermediate pressure steam turbine 32 and/or low pressure steam 42 from low pressure drum 24 of the waste heat recovery boiler enters the lower pressure steam turbine 33 as low pressure steam 43 .
  • exhaust steam 44 from low pressure steam turbine 33 enters a condenser 35 .
  • the gas turbine 11 in order to restart the plant after the plant has been stopped (such as for a plant start-up after completion of inspection work, or for a WSS or DSS in which the start and stop of operation are done in weekly or daily intervals), the gas turbine 11 is started at first by the starting apparatus 15 via the air compressor 12 .
  • the stabilizing burner 25 is ignited during the spin rotation by the starting apparatus 15 so that heating of the waste heat recovery boiler 20 is started therewith.
  • the gas turbine 11 is increased in speed and load-increased as time passes (i.e., a speed increasing period of the operation of the plant).
  • Fuel supplied to the stabilizing burner 25 is controlled to correspond to the increase in load and speed of gas turbine 11 so that heating of the waste heat recovery boiler 20 by the stabilizing burner 25 is regulated.
  • the stabilizing burner 25 is provided as mentioned above. Therefore, the temperature of inflow gas to the waste heat recovery boiler 20 can be maintained at a rated state from the starting time. In addition, steam generation at the waste heat recovery boiler 20 is accelerated so that the generated steam can be used quickly as a cooling medium for the high temperature portion cooling component 36 of the gas turbine 11 , as an energy source for the steam turbine unit 30 , or as gland steam.
  • exhaust steam from the high pressure steam turbine 31 can be used as an alternate or additional cooling medium for the high temperature portion cooling component 36 of the gas turbine 11 .
  • a combined cycle power generation plant constructed by combining a gas turbine unit and a steam turbine unit.
  • a waste heat recovery boiler is provided for generating steam for driving the steam turbine by using waste heat from the gas turbine.
  • a stabilizing burner is incorporated at an upstream position in the waste heat recovery boiler. The stabilizing burner is ignited during the startup and speed increase of the gas turbine so that the generation of steam at the waste heat recovery boiler is accelerated.
  • This steam is used effectively for cooling of the gas turbine, as an energy source of the steam turbine, and further for a gland steam. Therefore, the time for the plant to reach a full load can be shortened.
  • exhaust steam from the high pressure steam turbine is also used as a cooling medium for the gas turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A combined cycle power generation plant comprises a waste heat recovery boiler (20) having a stabilizing burner (25) at an upstream position thereof. The stabilizing burner is ignited during the time of start-up and speed increase of a gas turbine (11) so that steam generation at the waste heat recovery boiler is accelerated. The steam is used effectively for cooling the gas turbine, driving a steam turbine, and for gland steam. In addition, exhaust steam from the steam turbine is also used to cool the gas turbine. Consequently, the time for the plant to reach a full load can be shortened.

Description

  • This application is a Divisional application of application Ser. No. 09/537,865, filed Mar. 29, 2000.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to a combined cycle power generation plant, constructed by combining a gas turbine unit and a steam turbine unit, in which a stabilizing burner is incorporated in a waste heat recovery boiler thereof. [0003]
  • 2. Description of the Prior Art [0004]
  • A combined cycle power generation plant is a power generation system constructed by combining a gas turbine unit and a steam turbine unit. A high temperature range of the power generation plant thermal energy is used by the gas turbine, and a low temperature range is used by the steam turbine. Thus, the thermal energy is recovered and used effectively, so that this type of power generation system has recently come to be widely used. [0005]
  • In such combined cycle power generation plant, it is an active tendency to employ a steam cooling method for cooling the gas turbine, steam turbine, etc. using a cooling medium comprised of steam generated in its own cycle. That is, according to this steam cooling method, a high temperature portion of the gas turbine, for example, is cooled by steam, and the thermal energy obtained thereby is recovered by a bottom cycle of the steam turbine. Consequently, a highly advantageous system having an enhanced thermal efficiency can be obtained. [0006]
  • However, in order to effect a restart of the plant after the plant has been stopped (such as for a plant start-up after completion of inspection work, a weekly start and stop (WSS) in which a start and stop of operation are done in weekly intervals, or a daily start and stop (DSS) in which a start and stop of operation are done in daily intervals), the steam for cooling must be obtained from outside of the plant's own cycle. For example, the plant must depend on the steam from an auxiliary boiler which is installed outside. [0007]
  • In order to obtain the steam, which is needed at the time the plant is restarted after the plant has been stopped, various additional facilities are needed. This results in a complex plant increased cost, and troublesome operation. On the other hand, if dependence on the auxiliary boiler is avoided by only waiting for steam generation at the waste heat recovery boiler while the gas turbine is held in start-up and during speed increases, then an unfavorable situation occurs from the view point of resonance of the compressor and turbine blades. [0008]
  • SUMMARY OF THE INVENTION
  • In order to solve the problems in the prior art as mentioned above, it is an object of the present invention to provide a combined cycle power generation plant which is able to secure steam needed at the time a plant is restarted after the plant has been stopped (i.e., a start-up period of the operation of the plant). Moreover, it is an object to shorten the time for the plant to reach a full load from the start-up. [0009]
  • In order to attain these objects, it is a feature of the present invention to provide a combined cycle power generation plant constructed by combining a gas turbine unit and a steam turbine unit. The combined plant includes a waste heat recovery boiler for generating steam for driving the steam turbine by using waste heat from the gas turbine. In addition, a stabilizing burner is incorporated at an upstream position in the waste heat recovery boiler. [0010]
  • That is, the stabilizing burner, which is incorporated at the upstream position in the waste heat recovery boiler, is ignited during start-up and speed increases of the gas turbine so that generation of steam at the waste heat recovery boiler is accelerated. Thus, the steam is used effectively for cooling the gas turbine, driving the steam turbine and also as gland steam. In addition, exhaust steam from the high pressure steam turbine is also used to cool the gas turbine. Therefore, the time for the plant to reach a full load can be shortened. [0011]
  • It is another feature of the present invention to provide a combined cycle power generation plant as mentioned above, in which the stabilizing burner provided in the waste heat recovery boiler is constructed such that the stabilizing burner is supplied with fuel from a fuel supply source which is common to a combustor of the gas turbine. [0012]
  • It is also a feature of the present invention to provide a combined cycle power generation plant as first mentioned above, in which the stabilizing burner provided in the waste heat recovery boiler is constructed such that the stabilizing burner is supplied with fuel from a fuel supply source which is different from a fuel supply source of a combustor of the gas turbine.[0013]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an explanatory view showing schematically a main part of a combined cycle power generation plant of one embodiment of the present invention.[0014]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • One embodiment of the present invention will be described with reference to FIG. 1. FIG. 1 shows schematically a gas turbine unit, a steam turbine unit, and a waste heat recovery unit of a combined cycle power generation plant. [0015]
  • Numeral [0016] 10 designates the gas turbine unit which comprises a gas turbine 11 (including a high temperature portion having a cooling component 36), an air compressor 12 which has a shaft joined directly to a shaft of the gas turbine 11, a combustor 13 which is supplied with compressed air from the air compressor 12 for the combustion of fuel (which is supplied from another source). The combustor 13 supplies the gas turbine 11 with operation gas, etc. A generator 14 has a shaft which is joined to the other end of the shaft of the air compressor 12, and a starting apparatus 15 is connected to the generator 14. The gas turbine 11, air compressor 12 and generator 14 may also share single, continuous shaft.
  • Numeral [0017] 16 designates a fuel supply pipe and numeral 17 designates a control valve disposed in the supply pipe 16 for controlling the supply of fuel to the combustor 13. Numeral 20 designates the waste heat recovery unit comprising a waste heat recovery boiler which includes an economizer and a superheater, but neither of these are shown in FIG. 1. The waste heat recovery boiler 20 also includes a reheater 34, a high pressure drum 22, an intermediate pressure drum 23 and a low pressure drum 24.
  • Numeral [0018] 25 designates a stabilizing burner which is disposed at an upstream position, preferably at an upstream position of the superheater or the reheater, in the waste heat recovery boiler 20.
  • Numeral [0019] 26 designates a fuel supply pipe for supplying the stabilizing burner 25 with fuel. On a downstream side of the fuel supply pipe 26, there is disposed a control valve 27. An upstream end of the fuel supply pipe 26 joins the fuel supply pipe 16 for the combustor 13. Of course, the fuel supply pipes 16 and 26, respectively, may also be connected to separate fuel supply sources.
  • Numeral [0020] 30 designates the steam turbine unit comprising a high pressure steam turbine 31, an intermediate pressure steam turbine 32, and a low pressure steam turbine 33. High pressure steam, including steam 37 from the high pressure drum 22 of the waste heat recovery boiler, enters the high pressure steam turbine 31. Exhaust steam 38 from the high pressure turbine and/or intermediate pressure steam 39 from the intermediate pressure drum 23 of the waste heat recovery boiler flows into the high temperature portion cooling component 36 of the gas turbine 11 (for cooling purposes) and into the reheater 34 of the waste heat recovery boiler.
  • This steam from the [0021] reheater 34 and the high temperature portion cooling component 36 of the gas turbine 11 then becomes intermediate pressure steam 40 which enters the intermediate pressure steam turbine 32. Exhaust steam 41 from intermediate pressure steam turbine 32 and/or low pressure steam 42 from low pressure drum 24 of the waste heat recovery boiler enters the lower pressure steam turbine 33 as low pressure steam 43. Finally, exhaust steam 44 from low pressure steam turbine 33 enters a condenser 35.
  • In the present embodiment constructed as above, in order to restart the plant after the plant has been stopped (such as for a plant start-up after completion of inspection work, or for a WSS or DSS in which the start and stop of operation are done in weekly or daily intervals), the [0022] gas turbine 11 is started at first by the starting apparatus 15 via the air compressor 12. The stabilizing burner 25 is ignited during the spin rotation by the starting apparatus 15 so that heating of the waste heat recovery boiler 20 is started therewith.
  • The [0023] gas turbine 11 is increased in speed and load-increased as time passes (i.e., a speed increasing period of the operation of the plant). Fuel supplied to the stabilizing burner 25 is controlled to correspond to the increase in load and speed of gas turbine 11 so that heating of the waste heat recovery boiler 20 by the stabilizing burner 25 is regulated.
  • According to the present embodiment, the stabilizing [0024] burner 25 is provided as mentioned above. Therefore, the temperature of inflow gas to the waste heat recovery boiler 20 can be maintained at a rated state from the starting time. In addition, steam generation at the waste heat recovery boiler 20 is accelerated so that the generated steam can be used quickly as a cooling medium for the high temperature portion cooling component 36 of the gas turbine 11, as an energy source for the steam turbine unit 30, or as gland steam.
  • In addition, exhaust steam from the high [0025] pressure steam turbine 31 can be used as an alternate or additional cooling medium for the high temperature portion cooling component 36 of the gas turbine 11.
  • Moreover, because these sources of cooling steam can be obtained so quickly as mentioned above, the speed increase and load increase of [0026] gas turbine 11 can be quickened, and the time for reaching a full load operation can be shortened.
  • Because [0027] exhaust steam 38 from the high pressure steam turbine 31 and steam generated by the stabilizing burner 25 (incorporated in the waste heat recovery unit 20) is used to cool the gas turbine 11, auxiliary steam from an auxiliary boiler becomes unnecessary. Therefore, there is no need to provide a particular surrounding piping system for the auxiliary steam, and the plant can be greatly simplified as a whole.
  • The present invention has been described with respect to one embodiment, but the present invention is not to be limited to that embodiment. Various modifications may be added to the base structure within the scope of the claims as set forth hereinbelow. [0028]
  • According to the present invention, provided is a combined cycle power generation plant constructed by combining a gas turbine unit and a steam turbine unit. A waste heat recovery boiler is provided for generating steam for driving the steam turbine by using waste heat from the gas turbine. A stabilizing burner is incorporated at an upstream position in the waste heat recovery boiler. The stabilizing burner is ignited during the startup and speed increase of the gas turbine so that the generation of steam at the waste heat recovery boiler is accelerated. This steam is used effectively for cooling of the gas turbine, as an energy source of the steam turbine, and further for a gland steam. Therefore, the time for the plant to reach a full load can be shortened. In addition, exhaust steam from the high pressure steam turbine is also used as a cooling medium for the gas turbine. [0029]
  • Moreover, according to the present invention so constructed, there is no need for auxiliary steam from an auxiliary boiler. Consequently, no particular surrounding piping system for the auxiliary steam is needed. Therefore, due to simplification of the plant, an economic effect thereof can be greatly enhanced. [0030]

Claims (8)

We claim:
1. A power generation plant comprising:
a gas turbine unit including a gas turbine having a high temperature portion with a cooling component;
a steam turbine unit; and
a waste heat recovery unit including a waste heat recovery boiler having a stabilizing burner at an upstream position in said waste heat recovery boiler, said stabilizing burner being operable to create steam during at least one of a start-up period of operation and a speed-increasing period of operation of the power generation plant, said waste heat recovery boiler being operable to generate steam using waste heat from said gas turbine unit, wherein the steam generated by said waste heat recovery boiler drives said steam turbine unit, and wherein at least one of a portion of an exhaust steam from said steam turbine unit and a portion of the steam generated by said waste heat recovery boiler flows through said cooling component of said high temperature portion of said gas turbine so as to cool said high temperature portion.
2. The plant of
claim 1
, further comprising a fuel supply source, said stabilizing burner having a fuel supply line, and said gas turbine unit including a combustor having a fuel supply line, wherein said fuel supply line of said stabilizing burner and said fuel supply line of said combustor are connected to said fuel supply source such that said fuel supply source supplies fuel to said stabilizing burner and said combustor.
3. The plant of
claim 1
, wherein said steam turbine unit includes a high pressure steam turbine, an intermediate pressure turbine, and a low pressure turbine, wherein said high pressure steam turbine is connected to said cooling component of said high temperature portion of said gas turbine such that exhaust steam from said high pressure steam turbine is capable of flowing through said cooling component of said high temperature portion of said gas turbine.
4. The plant of
claim 3
, wherein said waste heat recovery boiler includes a high pressure drum, an intermediate pressure drum, and a low pressure drum, wherein said intermediate pressure drum is connected to said cooling component of said high temperature portion of said gas turbine such that intermediate pressure steam from said intermediate pressure drum is capable of flowing through said cooling component of said high temperature portion of said gas turbine.
5. The plant of
claim 1
, wherein said waste heat recovery boiler includes a high pressure drum, an intermediate pressure drum, and a low pressure drum, wherein said intermediate pressure drum is connected to said cooling component of said high temperature portion of said gas turbine such that intermediate pressure steam from said intermediate pressure drum is capable of flowing through said cooling component of said high temperature portion of said gas turbine.
6. The plant of
claim 1
, wherein said gas turbine unit further includes an air compressor and a starting apparatus.
7. The plant of
claim 6
, wherein said gas turbine, said air compressor, and said starting apparatus share a common shaft.
8. The plant of
claim 1
, wherein said gas turbine unit further includes a starting apparatus connected to said stabilizing burner of said waste heat recovery unit such that said starting apparatus is operable to ignite said stabilizing burner when said starting apparatus is rotated to start said gas turbine unit.
US09/911,800 1997-07-02 2001-07-25 Steam cooled type combined cycle power generation plant and operation method thereof Abandoned US20010042369A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/911,800 US20010042369A1 (en) 1997-07-02 2001-07-25 Steam cooled type combined cycle power generation plant and operation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9176945A JPH1122419A (en) 1997-07-02 1997-07-02 Combined cycle power plant
JP9-176945 1997-07-02
US09/537,865 US6286297B1 (en) 1997-07-02 2000-03-29 Steam cooled type combined cycle power generation plant and operation method thereof
US09/911,800 US20010042369A1 (en) 1997-07-02 2001-07-25 Steam cooled type combined cycle power generation plant and operation method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/537,865 Division US6286297B1 (en) 1997-07-02 2000-03-29 Steam cooled type combined cycle power generation plant and operation method thereof

Publications (1)

Publication Number Publication Date
US20010042369A1 true US20010042369A1 (en) 2001-11-22

Family

ID=26497665

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/537,865 Expired - Lifetime US6286297B1 (en) 1997-07-02 2000-03-29 Steam cooled type combined cycle power generation plant and operation method thereof
US09/911,800 Abandoned US20010042369A1 (en) 1997-07-02 2001-07-25 Steam cooled type combined cycle power generation plant and operation method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/537,865 Expired - Lifetime US6286297B1 (en) 1997-07-02 2000-03-29 Steam cooled type combined cycle power generation plant and operation method thereof

Country Status (1)

Country Link
US (2) US6286297B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040088966A1 (en) * 2002-11-13 2004-05-13 Satoshi Tanaka 1-Axis type combined cycle plant
US20120011852A1 (en) * 2010-07-14 2012-01-19 General Electric Company Steam turbine flow adjustment system
WO2015080697A1 (en) * 2013-11-26 2015-06-04 Volvo Truck Corporation Supplemental heating in waste heat recovery
US11506089B2 (en) * 2016-07-12 2022-11-22 Mitsubishi Heavy Industries, Ltd. Combined cycle plant, control device thereof, and steam turbine startup method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4337960B2 (en) * 1998-12-17 2009-09-30 ゼネラル・エレクトリック・カンパニイ Apparatus and method for supplying auxiliary steam in a combined cycle system
WO2002081870A1 (en) * 2001-04-06 2002-10-17 Alstom (Switzerland) Ltd Method for placing a combined power plant on standby
JP2003083003A (en) * 2001-09-13 2003-03-19 Mitsubishi Heavy Ind Ltd Method for operating gas turbine and gas turbine combined power generating plant
US6851265B2 (en) * 2002-02-19 2005-02-08 Siemens Westinghouse Power Corporation Steam cooling control for a combined cycle power plant
US6957540B1 (en) * 2004-04-28 2005-10-25 Siemens Westinghouse Power Corporation Multi-mode complex cycle power plant
JP4581563B2 (en) * 2004-08-31 2010-11-17 株式会社日立製作所 Combined cycle power generation facilities, steam power generation facilities
US8671687B2 (en) * 2011-02-18 2014-03-18 Chris Gudmundson Hydrogen based combined steam cycle apparatus
JP7269761B2 (en) * 2019-03-15 2023-05-09 三菱重工業株式会社 Raw material fluid processing plant and raw material fluid processing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH470578A (en) 1963-11-09 1969-03-31 Babcock & Wilcox France Power plant
US3751866A (en) 1972-03-03 1973-08-14 F Renchen Mobile home anchor
US3930367A (en) 1974-10-23 1976-01-06 General Electric Company Fluid flow control system
EP0062932B1 (en) * 1981-04-03 1984-12-05 BBC Aktiengesellschaft Brown, Boveri & Cie. Combined steam and gas turbine power plant
US5577377A (en) * 1993-11-04 1996-11-26 General Electric Co. Combined cycle with steam cooled gas turbine
JP3681434B2 (en) 1995-04-25 2005-08-10 重昭 木村 Cogeneration system and combined cycle power generation system
JP3564242B2 (en) * 1996-10-29 2004-09-08 三菱重工業株式会社 Cooling steam system for steam-cooled gas turbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040088966A1 (en) * 2002-11-13 2004-05-13 Satoshi Tanaka 1-Axis type combined cycle plant
US6880324B2 (en) * 2002-11-13 2005-04-19 Mitsubishi Heavy Industries, Ltd. 1-axis type combined cycle plant
DE10329849B4 (en) * 2002-11-13 2010-04-29 Mitsubishi Heavy Industries, Ltd. Combined cycle system of 1-axis type
US20120011852A1 (en) * 2010-07-14 2012-01-19 General Electric Company Steam turbine flow adjustment system
US8505299B2 (en) * 2010-07-14 2013-08-13 General Electric Company Steam turbine flow adjustment system
WO2015080697A1 (en) * 2013-11-26 2015-06-04 Volvo Truck Corporation Supplemental heating in waste heat recovery
US11506089B2 (en) * 2016-07-12 2022-11-22 Mitsubishi Heavy Industries, Ltd. Combined cycle plant, control device thereof, and steam turbine startup method

Also Published As

Publication number Publication date
US6286297B1 (en) 2001-09-11

Similar Documents

Publication Publication Date Title
KR100268611B1 (en) Combined cycle power plant and supplying method of coolant therof
US4282708A (en) Method for the shutdown and restarting of combined power plant
US6109019A (en) Steam cooled gas turbine system
JP4754090B2 (en) Compressor discharge bleed air circuit and related method in gas turbine power plant
JP4337960B2 (en) Apparatus and method for supplying auxiliary steam in a combined cycle system
EP0939202B1 (en) Steam cooled gas turbine system
RU2352859C2 (en) Steam generator on waste heat
JPH094417A (en) Composite cycle-system
US6286297B1 (en) Steam cooled type combined cycle power generation plant and operation method thereof
CA2242073C (en) Combined cycle power generation plant
JP3009712B2 (en) Method and apparatus for forming steam and power for starting operation of a steam power station
JPH10196316A (en) Combined power generating plant and closed air cooling gas turbine system
US5873238A (en) Startup cooling steam generator for combustion turbine
JP2000130108A (en) Starting method for combined cycle power plant
US20220195896A1 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JP4208397B2 (en) Start-up control device for combined cycle power plant
JPH0416612B2 (en)
JP3872407B2 (en) Combined power plant and closed air cooled gas turbine system
JP3586539B2 (en) Combined cycle power plant
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JP2019173697A (en) Combined cycle power generation plant and operation method of the same
JP4209060B2 (en) Steam cooling rapid start system
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JPH0688502A (en) Power generating plant
JPH04246244A (en) Pressurizing fluidized bed combined plant and partial load operation control and device therefor

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION