JP4209060B2 - Steam cooling rapid start system - Google Patents

Steam cooling rapid start system Download PDF

Info

Publication number
JP4209060B2
JP4209060B2 JP2000013057A JP2000013057A JP4209060B2 JP 4209060 B2 JP4209060 B2 JP 4209060B2 JP 2000013057 A JP2000013057 A JP 2000013057A JP 2000013057 A JP2000013057 A JP 2000013057A JP 4209060 B2 JP4209060 B2 JP 4209060B2
Authority
JP
Japan
Prior art keywords
steam
gas
gas turbine
exhaust
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000013057A
Other languages
Japanese (ja)
Other versions
JP2001207808A (en
Inventor
雅幸 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000013057A priority Critical patent/JP4209060B2/en
Publication of JP2001207808A publication Critical patent/JP2001207808A/en
Application granted granted Critical
Publication of JP4209060B2 publication Critical patent/JP4209060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

【0001】
【発明の属する技術分野】
本発明は、コンバインドサイクルプラントの排熱回収ボイラにおいて、排ガス温度を高めて蒸気発生を速め、プラントの急速起動を行いうるようにした蒸気冷却急速起動システムに関するものである。
【0002】
【従来の技術】
従来のものについて図4により説明する。
図4はコンバインドサイクルプラントの概略系統図である。
【0003】
軸流圧縮機(コンプレッサー)21に流入した空気は圧縮されて燃焼器22に入り、別途供給される燃料を燃焼させて高温ガスを生成し、同高温ガスはガスタービン23で膨張して回転エネルギを発生する。
【0004】
ガスタービン23は軸流圧縮機21とともに発電機24と機械的に軸結合された構造となっているので、同ガスタービン23の回転により発電機24が駆動されて電力を得る。
【0005】
この様にして発電機24を駆動し、電気エネルギイの確保という一仕事を行ったガスタービン23の排気は、次いで排熱回収ボイラ(HRSG)25に導かれて蒸気を発生させた後、煙突26から大気へ放出される。
【0006】
他方、排熱回収ボイラ25で発生した蒸気は、その圧力、及び温度レベルに応じて高圧タービン、中圧タービン、低圧タービンの中、相応の蒸気タービン27、28、29に供給され、同蒸気タービン27、28、29と機械的に結合された発電機30を駆動して更に電力を得る。
【0007】
なお、前記した一連のサイクルの中、その上流側に当たる、いわゆるトッピングサイクルに含まれるガスタービン部分において、高温のガスに晒される1〜2段の静翼、動翼及びその他のガスタービン高温被冷却部の冷却は、従来、長年に亘って軸流圧縮機21の吐出空気の一部を冷却した圧縮空気によって行われるのが普通であったが、昨今においてはプラント全体の更なる熱効率の向上を目指して、蒸気冷却サイクルが採用されるようになってきている。
【0008】
【発明が解決しようとする課題】
しかしながら前記した蒸気冷却サイクルにおいては、ガスタービンの排ガス温度が高ければ高いほど自缶蒸気(HRSG発生蒸気)の発生は早まり、ああ早期に冷却蒸気を確保できるが、高温ガスに晒されるガスタービンの翼及びその他の高温被冷却部の冷却に蒸気が供給される蒸気冷却系統では、この高温被冷却部にある程度の量の蒸気を通気しない限りガスタービンを高負荷に上げることができないという制約があり、このためプラントの起動は徐々に行わねばならず、起動時間は長くならざるを得ない。
【0009】
このため、起動時間の短縮を図るべく図4のものにも略示するように、別途補助ボイラ(Aux.B)を設け、同補助ボイラで蒸気を発生させ、これをプラント起動時のガスタービン高温被冷却部の冷却蒸気として用いるものがあるが、この補助ボイラを1基併設することはプラントの建設コスト、ランニングコスト等を大幅に増大することになる。
【0010】
本発明はこの様な背景の下でなされたもので、蒸気冷却サイクルを備えたコンバインドサイクルプラントにおいて省設備化を図った上で、サイクルの起動時間の短縮化を達成するようにしたものを提供することを課題とするものである。
【0011】
【課題を解決するための手段】
本発明は、前記した課題を解決すべくなされたもので、コンバインドサイクルプラントの蒸気冷却サイクルにおいて、ガスタービン排気を供給される排熱回収ボイラの入口部に助燃バーナを設け、起動の際の低負荷時にガスタービンコンプレッサーの入口弁を全開にして起動させるように構成した蒸気冷却急速起動システムを提供するものである。
【0012】
すなわち、本発明によれば、排熱回収ボイラの入口部に助燃バーナを採用することにより、同排熱回収ボイラの加熱源をガスタービンの高温排気のみに依存しなくてもよいので、ガスタービン冷却蒸気として自缶蒸気を通気せずにガスタービンの負荷を高め、しかも、コンプレッサーのガス入口弁の全開により、排ガス量を十分に確保して助燃バーナを適切に機能させ、その結果自缶蒸気の発生を速め、プラントの急速起動を可能とするものである。
【0013】
【発明の実施の形態】
本発明の実施の一形態について図1に基づいて説明する。
図1は、本実施の形態に係るコンバインドサイクルプラントの概略系統を示している。
【0014】
1は排熱回収ボイラ(HRSG)で、詳細図示は省略しているものの、ここにはエコノマイザ、エバポレータ、スーパーヒータ、リヒータ等の各ユニットがそれぞれ順序立って内蔵されている。
【0015】
2は排ガスダクトで、その上流にあるガスタービンで膨張して一仕事終わったものの、未だ十分に熱エネルギを保有している排ガスを前記排熱回収ボイラ1に供給する径路である。
【0016】
3は助燃バーナで、前記排ガスダクト2の末端部に相当する排熱回収ボイラ1の排ガス入口に配置され、かつ、同助燃バーナ3の燃料はガスタービン燃焼器の燃料系統から分岐した燃料管4により供給されている。
【0017】
5、6、7はそれぞれ蒸気タービンで、排熱回収ボイラ1から高圧蒸気、中圧蒸気、または低圧蒸気を供給される高圧蒸気タービン、中圧蒸気タービン、低圧蒸気タービンであり、機械的に軸結合された発電機8を駆動して発電を行ない、かつ、最後の排気は復水器10で復水され、復水管路11を経て排熱回収ボイラ1へ給水として戻される。
【0018】
なお、9は蒸気管で、蒸気タービン(高圧タービンに相当する)5の高圧排気を分岐し、冷却蒸気としてガスタービンの翼や尾筒等の高温被冷却部へ供給する通路であり、この蒸気管9から供給された冷却蒸気は、所定の冷却過程を経て自身は加熱された後、必要によっては排熱回収ボイラ1を経由して再熱調整された後、前記蒸気タービン(中圧タービンに相当する)6で熱回収される。
【0019】
また、概略的な表示であるが前記蒸気冷却されるガスタービンはコンプレッサー及び発電機と回転軸で機械的に結合されており、かつ、同コンプレッサーに備えられた図示省略のガス入口弁(IGV)の開度を制御することにより燃焼器を経てガスタービンに供給されるガス量を調節することができる。
【0020】
この様に構成された本実施の形態においては、排熱回収ボイラ1に対して排ガスダクト2が連通した排熱回収ボイラ1の排ガス入口部で、ここに設けられた助燃バーナ3が燃焼を進行させることにより、助燃バーナ3による燃焼ガスとガスタービン排ガスとが混合され、より高い温度となって自缶蒸気の発生を促進することができる。
【0021】
しかも助燃バーナ3は、燃料系統から燃料管4を通して供給される燃料が、ガスタービン排ガスとして供給される燃焼成分と共に燃焼するので、ここに供給される排ガス量が多いほど燃焼は確実に、かつ、安定して進行することになる。
【0022】
従ってこの排熱回収ボイラ1による自缶蒸気の発生が適切に進行すれば、この蒸気は、前記した様にそれぞれの圧力、温度レベルに応じて蒸気タービン5、6、7に送られ 発電機8を駆動するとともに発生蒸気の一部は蒸気管9を通ってガスタービン翼、尾筒などの高温部に送られて冷却に供せられることになる。
【0023】
ここに比較のために従来の形態における補助ボイラを採用したものを図3に示し、本実施の形態のものを図2に示すと、従来の補助ボイラ使用の場合には、コンバインドサイクル効率を高めるために、ガス入口弁(IGV)スケジュールは低負荷時に全閉で負荷上昇させるので、排ガス温度は徐々に上昇する形態を辿り、所定の排ガス温度を確保して自缶蒸気の発生に至るまでに一定の時間が必要となる。
【0024】
他方、本実施の形態のものでは、図2に示した様に、低負荷時にガス入口弁(IGV)を全開にして運転するので、ガスタービンを経て供給される排ガス分量は十分であり、助燃バーナの燃焼は適切、かつ好適に進行して排ガス温度はスタート早々に高い温度域となり、排熱回収ボイラ1の機能を十分に発揮して自缶蒸気発生が早まり、ガスタービン急速起動が可能となる。
【0025】
すなわち本実施の形態によれば、ガス入口弁(IGV)を全開することにより得られる十分な量の排ガスを助燃バーナに対して供給することにより、自缶蒸気による蒸気冷却サイクルの立ち上げを急速に行うことが可能となり、その結果補助ボイラ等の設備増強を不要とし、製作及び運転を通じて経済的効果を大幅に向上することができるものである。
【0026】
以上、本発明を図示の実施の形態について説明したが、本発明はかかる実施の形態に限定されず、本発明の範囲内でその具体的構造に種々の変更を加えてよいことはいうまでもない。
【0027】
【発明の効果】
以上説明したように本発明によれば、コンバインドサイクルプラントの蒸気冷却サイクルにおいて、ガスタービン排気を供給される排熱回収ボイラの入口部に助燃バーナを設け、起動の際の低負荷時にガスタービンコンプレッサーの入口弁を全開にして起動させるようにして蒸気冷却急速起動システムを構成したので、排熱回収ボイラの入口部に設けた助燃バーナの作動により、排熱回収ボイラの加熱源としてガスタービンの高温排気のみに依存しなくてもよくなり、ガスタービン冷却蒸気として自缶蒸気を通気せずにガスタービンの負荷を高め、かつ、コンプレッサーのガス入口弁の全開により、排ガス量を十分に確保して助燃バーナを適切に機能させ、以て補助ボイラの採用を必要とせずに省設備化によるコスト低減の達成と急速起動を可能とした蒸気冷却急速起動システムを得ることができたものである。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係るコンバインンドサイクルプラントの概略的な系統図である。
【図2】本実施形態におけるサイクル起動の際の低負荷時における排ガス温度及びガス入口弁(IGV)の開閉の関係を示す説明図である。
【図3】従来のものにおけるサイクル起動の際の低負荷時における排ガス温度及びガス入口弁(IGV)の開閉の関係を示す説明図である。
【図4】従来のコンバインンドサイクルプラントの概略的な系統図である。
【符号の説明】
1 排熱回収ボイラ
2 排ガスダクト
3 助燃バーナ
4 燃料管
5 蒸気タービン
6 蒸気タービン
7 蒸気タービン
8 発電機
9 蒸気管
10 復水器
11 復水管路
21 軸流圧縮機
22 燃焼器
23 ガスタービン
24 発電機
25 排熱回収ボイラ
26 煙突
27 蒸気タービン
28 蒸気タービン
29 蒸気タービン
30 発電機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steam-cooled rapid start-up system in a waste heat recovery boiler of a combined cycle plant, in which exhaust gas temperature is increased to accelerate steam generation, thereby enabling rapid start-up of the plant.
[0002]
[Prior art]
A conventional one will be described with reference to FIG.
FIG. 4 is a schematic system diagram of the combined cycle plant.
[0003]
The air flowing into the axial flow compressor (compressor) 21 is compressed and enters the combustor 22, and the separately supplied fuel is combusted to generate a high temperature gas. The high temperature gas is expanded by the gas turbine 23 to rotate energy. Is generated.
[0004]
Since the gas turbine 23 is mechanically coupled to the generator 24 together with the axial compressor 21, the generator 24 is driven by the rotation of the gas turbine 23 to obtain electric power.
[0005]
The exhaust of the gas turbine 23 that has driven the generator 24 in this way and performed the work of securing electric energy is then led to an exhaust heat recovery boiler (HRSG) 25 to generate steam, and then the chimney 26 To the atmosphere.
[0006]
On the other hand, the steam generated in the exhaust heat recovery boiler 25 is supplied to the corresponding steam turbines 27, 28, and 29 among the high-pressure turbine, the intermediate-pressure turbine, and the low-pressure turbine according to the pressure and temperature level. The generator 30 mechanically coupled to 27, 28, 29 is driven to obtain more power.
[0007]
In the above-described series of cycles, in the gas turbine part included in the so-called topping cycle that corresponds to the upstream side of the cycle, one or two stages of stationary blades, moving blades, and other gas turbines that are exposed to high temperature gas are cooled at high temperatures. Conventionally, the cooling of the part is usually performed by compressed air obtained by cooling a part of the discharge air of the axial compressor 21 for many years. However, in recent years, further improvement in thermal efficiency of the entire plant has been achieved. Aiming at this is the adoption of a steam cooling cycle.
[0008]
[Problems to be solved by the invention]
However, in the above-described steam cooling cycle, the higher the exhaust gas temperature of the gas turbine, the faster the generation of self-generated steam (HRSG generated steam), and the faster the cooling steam can be secured, the higher the temperature of the gas turbine exposed to high-temperature gas. In a steam cooling system in which steam is supplied to cool blades and other high-temperature cooled parts, there is a restriction that the gas turbine cannot be raised to a high load unless a certain amount of steam is passed through the high-temperature cooled parts. Therefore, the start-up of the plant has to be performed gradually, and the start-up time has to be long.
[0009]
Therefore, as schematically shown in FIG. 4 in order to shorten the start-up time, a separate auxiliary boiler (Aux.B) is provided and steam is generated by the auxiliary boiler, which is used as a gas turbine at the time of starting the plant. Some are used as the cooling steam of the high-temperature cooled part. However, the installation of one auxiliary boiler greatly increases the construction cost and running cost of the plant.
[0010]
The present invention has been made under such a background, and provides a system that achieves a reduction in cycle start-up time while reducing the number of facilities in a combined cycle plant equipped with a steam cooling cycle. It is an object to do.
[0011]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems. In the steam cooling cycle of a combined cycle plant, an auxiliary combustion burner is provided at the inlet portion of an exhaust heat recovery boiler to which gas turbine exhaust gas is supplied. A steam-cooled rapid start-up system configured to be started by fully opening an inlet valve of a gas turbine compressor at the time of load is provided.
[0012]
That is, according to the present invention, by adopting a combustion burner at the inlet portion of the exhaust heat recovery boiler, the heating source of the exhaust heat recovery boiler does not have to depend only on the high temperature exhaust of the gas turbine. Increase the load of the gas turbine without venting the canned steam as cooling steam, and by fully opening the gas inlet valve of the compressor, ensure sufficient exhaust gas amount to make the auxiliary burner function properly, and as a result It is possible to speed up the generation of plants and enable rapid plant startup.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG.
FIG. 1 shows a schematic system of a combined cycle plant according to the present embodiment.
[0014]
Reference numeral 1 denotes an exhaust heat recovery boiler (HRSG), which is not shown in detail, but includes units such as an economizer, an evaporator, a super heater, and a reheater in order.
[0015]
An exhaust gas duct 2 is a path for supplying exhaust gas having sufficient thermal energy to the exhaust heat recovery boiler 1 although one work is completed after being expanded by a gas turbine upstream thereof.
[0016]
An auxiliary combustion burner 3 is disposed at the exhaust gas inlet of the exhaust heat recovery boiler 1 corresponding to the end of the exhaust gas duct 2, and the fuel of the auxiliary combustion burner 3 is branched from the fuel system of the gas turbine combustor. It is supplied by
[0017]
Reference numerals 5, 6, and 7 denote steam turbines, which are a high-pressure steam turbine, an intermediate-pressure steam turbine, and a low-pressure steam turbine, which are supplied with high-pressure steam, medium-pressure steam, or low-pressure steam from the exhaust heat recovery boiler 1, and mechanically shafts. The combined generator 8 is driven to generate power, and the final exhaust is condensed by the condenser 10 and returned to the exhaust heat recovery boiler 1 through the condensate pipe 11 as feed water.
[0018]
Reference numeral 9 denotes a steam pipe, which is a passage for branching the high-pressure exhaust of a steam turbine (corresponding to a high-pressure turbine) 5 and supplying it as a cooling steam to a high-temperature cooled part such as a blade or tail tube of a gas turbine. The cooling steam supplied from the pipe 9 is heated by itself through a predetermined cooling process and, if necessary, reheat-adjusted via the exhaust heat recovery boiler 1, and then the steam turbine (to the intermediate pressure turbine). (Corresponding) 6 is heat recovered.
[0019]
Moreover, although it is a schematic display, the steam-cooled gas turbine is mechanically coupled to a compressor and a generator by a rotating shaft, and a gas inlet valve (IGV) (not shown) provided in the compressor is provided. The amount of gas supplied to the gas turbine via the combustor can be adjusted by controlling the opening degree of.
[0020]
In the present embodiment configured as described above, the auxiliary combustion burner 3 provided in the exhaust gas inlet portion of the exhaust heat recovery boiler 1 in which the exhaust gas duct 2 communicates with the exhaust heat recovery boiler 1 proceeds with combustion. By making it, the combustion gas and gas turbine exhaust gas by the auxiliary combustion burner 3 are mixed, it becomes higher temperature, and generation | occurrence | production of self-propelled steam can be accelerated | stimulated.
[0021]
Moreover, since the fuel supplied from the fuel system through the fuel pipe 4 burns together with the combustion component supplied as the gas turbine exhaust gas, the auxiliary combustion burner 3 reliably burns as the amount of exhaust gas supplied here increases. It will proceed stably.
[0022]
Therefore, if the generation of self-generated steam by the exhaust heat recovery boiler 1 proceeds appropriately, this steam is sent to the steam turbines 5, 6 and 7 according to the respective pressure and temperature levels as described above. And a part of the generated steam is sent to a high temperature part such as a gas turbine blade or a tail pipe through the steam pipe 9 to be cooled.
[0023]
For comparison, FIG. 3 shows the conventional boiler using the auxiliary boiler, and FIG. 2 shows the present embodiment. When the conventional auxiliary boiler is used, the combined cycle efficiency is increased. Therefore, the gas inlet valve (IGV) schedule is fully closed when the load is low and the load is increased. Therefore, the exhaust gas temperature follows a form in which the exhaust gas temperature gradually rises, and the predetermined exhaust gas temperature is secured until the self-generated steam is generated. A certain amount of time is required.
[0024]
On the other hand, in the present embodiment, as shown in FIG. 2, since the gas inlet valve (IGV) is operated fully opened at low load, the amount of exhaust gas supplied through the gas turbine is sufficient and auxiliary combustion is performed. Combustion of the burner proceeds appropriately and suitably, and the exhaust gas temperature becomes a high temperature range as soon as the start, and the function of the exhaust heat recovery boiler 1 is fully exerted so that self-generated steam generation is accelerated and the gas turbine can be rapidly started. Become.
[0025]
That is, according to the present embodiment, a sufficient amount of exhaust gas obtained by fully opening the gas inlet valve (IGV) is supplied to the auxiliary combustion burner, so that the steam cooling cycle can be quickly started by the self-generated steam. As a result, it is unnecessary to reinforce the equipment such as an auxiliary boiler, and the economic effect can be greatly improved through production and operation.
[0026]
Although the present invention has been described with reference to the illustrated embodiment, the present invention is not limited to this embodiment, and it goes without saying that various modifications may be made to the specific structure within the scope of the present invention. Absent.
[0027]
【The invention's effect】
As described above, according to the present invention, in the steam cooling cycle of the combined cycle plant, the auxiliary combustion burner is provided at the inlet portion of the exhaust heat recovery boiler to which the gas turbine exhaust gas is supplied, and the gas turbine compressor is operated at a low load during startup. The steam cooling rapid startup system is configured so that the inlet valve of the exhaust gas is fully opened, and the auxiliary combustion burner provided at the inlet of the exhaust heat recovery boiler is operated, so that the high temperature of the gas turbine can be used as the heating source of the exhaust heat recovery boiler. It is not necessary to rely only on the exhaust gas, increasing the gas turbine load without venting the self-generated steam as gas turbine cooling steam, and fully opening the compressor gas inlet valve to ensure a sufficient amount of exhaust gas Achieving cost reduction and rapid start-up by reducing equipment without having to use an auxiliary boiler by properly functioning the auxiliary burner In which it was possible to obtain a vapor cooling rapidly launch system with ability.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram of a combined cycle plant according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing the relationship between the exhaust gas temperature and the opening and closing of the gas inlet valve (IGV) at the time of low load when the cycle is started in the present embodiment.
FIG. 3 is an explanatory diagram showing the relationship between the exhaust gas temperature and the opening and closing of the gas inlet valve (IGV) at the time of low load at the time of cycle start in the conventional one.
FIG. 4 is a schematic system diagram of a conventional combined cycle plant.
[Explanation of symbols]
1 Exhaust Heat Recovery Boiler 2 Exhaust Duct 3 Auxiliary Burner 4 Fuel Pipe 5 Steam Turbine 6 Steam Turbine 7 Steam Turbine 8 Generator 9 Steam Pipe 10 Condenser 11 Condensation Pipe Line 21 Axial Compressor 22 Combustor 23 Gas Turbine 24 Power Generation Machine 25 Waste heat recovery boiler 26 Chimney 27 Steam turbine 28 Steam turbine 29 Steam turbine 30 Generator

Claims (1)

コンバインドサイクルプラントの蒸気冷却サイクルにおいて、ガスタービン排気を供給される排熱回収ボイラの入口部に助燃バーナを設け、起動の際の低負荷時にガスタービンコンプレッサーの入口弁を全開にして起動させるように構成したことを特徴とする蒸気冷却急速起動システム。In the combined cycle plant steam cooling cycle, an auxiliary combustion burner is installed at the inlet of the exhaust heat recovery boiler to which gas turbine exhaust is supplied, and the inlet valve of the gas turbine compressor is fully opened at low load during startup. A steam-cooled quick start system characterized by comprising.
JP2000013057A 2000-01-21 2000-01-21 Steam cooling rapid start system Expired - Fee Related JP4209060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000013057A JP4209060B2 (en) 2000-01-21 2000-01-21 Steam cooling rapid start system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000013057A JP4209060B2 (en) 2000-01-21 2000-01-21 Steam cooling rapid start system

Publications (2)

Publication Number Publication Date
JP2001207808A JP2001207808A (en) 2001-08-03
JP4209060B2 true JP4209060B2 (en) 2009-01-14

Family

ID=18540704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000013057A Expired - Fee Related JP4209060B2 (en) 2000-01-21 2000-01-21 Steam cooling rapid start system

Country Status (1)

Country Link
JP (1) JP4209060B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5067653B2 (en) * 2006-07-25 2012-11-07 独立行政法人土木研究所 Pressurized incinerator equipment and operating method thereof
JP6188122B2 (en) * 2012-01-10 2017-08-30 ゼネラル・エレクトリック・カンパニイ Combined cycle power plant
JP7143107B2 (en) * 2018-04-13 2022-09-28 三菱重工業株式会社 Combined power plant

Also Published As

Publication number Publication date
JP2001207808A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
US6782703B2 (en) Apparatus for starting a combined cycle power plant
EP0939202B1 (en) Steam cooled gas turbine system
US8505309B2 (en) Systems and methods for improving the efficiency of a combined cycle power plant
JP4705018B2 (en) Operation method of gas turbine assembly
US20060254280A1 (en) Combined cycle power plant using compressor air extraction
JP3652962B2 (en) Gas turbine combined cycle
CN106089341B (en) Method for enhancing cold steam turbine startup in a multi-gas turbine combined cycle plant
NO322002B1 (en) Method and apparatus for starting emission-free gas turbine power stations
JPH08114104A (en) Composite gas-steam turbine power plant
KR101322359B1 (en) Method for starting a gas and steam turbine system
US20090126338A1 (en) Combined cycle power generating plant
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JPH1150812A (en) Full fired heat recovery combined cycle power generation plant
JP2699808B2 (en) Steam-cooled gas turbine combined plant
JP4209060B2 (en) Steam cooling rapid start system
KR101753526B1 (en) Combined cycle power generation system
JP5734117B2 (en) Combined cycle power plant and operation method thereof
JP2602951B2 (en) How to start a combined cycle plant
JP2004169625A (en) Co-generation plant and its starting method
JP3389019B2 (en) Steam cooled gas turbine
JP3518252B2 (en) Closed steam cooled gas turbine combined plant and gas turbine combined plant
JPH09209713A (en) Steam cooling combined cycle plant
JP4090668B2 (en) Combined cycle power generation facility
JP2005344528A (en) Combined cycle power generating plant and method for starting the same
JPH1073008A (en) Combined cycle plant and start-stop method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees