US1984458A - Cast iron alloy articles - Google Patents

Cast iron alloy articles Download PDF

Info

Publication number
US1984458A
US1984458A US682631A US68263133A US1984458A US 1984458 A US1984458 A US 1984458A US 682631 A US682631 A US 682631A US 68263133 A US68263133 A US 68263133A US 1984458 A US1984458 A US 1984458A
Authority
US
United States
Prior art keywords
cast iron
casting
iron
iron alloy
carbide forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US682631A
Inventor
Charies O Burgess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ELECTRO METALLURG CO
ELECTRO METALLURGICAL Co
Original Assignee
ELECTRO METALLURG CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ELECTRO METALLURG CO filed Critical ELECTRO METALLURG CO
Priority to US682631A priority Critical patent/US1984458A/en
Application granted granted Critical
Publication of US1984458A publication Critical patent/US1984458A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon

Definitions

  • Suitable carbide forming elements according to the invention include chromium, tungsten, and vanadium.
  • the cast iron composition and casting procedure are chosen to give in known manner a white or mottled iron, and the casting is then annealed.
  • the resultant product is ductile and workable, yet has a strong, heat resistant, wear resistant pearlitic or partly pearlitic ground mass structure.
  • the improved strength of the ground mass probably results in part from the retention of the pearlitic structure, and in part from the strengthening and hardening efiect of the carbide forming element dissolved in the ferrite.
  • the carbon is distributed as graphite and carbides of the carbide forming elements, and the distribution and form of the carbon issuch that it does'not tend materially to weaken the casting. At least a major part of the graphite is in the form of temper carbon.
  • composition of the cast iron to which the carbide forming element is added may suitably be substantially 1.5% to 4% carbon, 0.5% to 3.5% silicon and/or nickel, manganese 0.15% to 0.7%, phosphorus 0.05% to 1.5%, sulfur up to about 0.5%, and the remainder iron.
  • a preferred composition comprises substantially 2% to 3% carbon, 0.6% to 2.5% silicon, 0.15% to 0.7% manganese, 0.05% to 0.2% phosphorus up to 0.1% sulfur, and the remainder iron.
  • carbide forming element The amount of carbide forming element to be added for the best results is governed to some extent by the percentage of total carbon and silicon in the cast iron, and by the casting conditions. Suflicient carbide forming element should be present so that a strong pearlitic ground mass is retained after annealing. In general, 0.10% to 5% of the carbide forming element will be willcient, and a preferred range under most circum stances is 0.10% to 0.75%.
  • the preferred range of annealing temperatures is between about 900 F. and about 1900 F., the most favorable annealing temperature, in general, being governed by the contentof the carbide forming element, and being higher with an increased content of the carbide forming element.
  • the annealing treatment may comprise a single long treatment at an annealing temperature, or a series of short treatments alternately at 1700" F. to 1900 F. and at 900 F. to 1500 F.
  • the annealed casting should'be cooled very slowly from the annealing temperature to room temperature.
  • a strong, wear resistant, cast article consisting in its metallographic structure substantially of pearlite, chrome-ferrite, flake graphite, and temper carbon, and containing about 1.5% to 4% carbon, 0.5% to 3.5% silicon, 0.15% to 0.7% manganese, 0.05% to 0.3% phosphorus, up to about 0.5% sulfur, 0.10% to 5% of a carbide forming element of the group consisting of chromium, tungsten, and vanadium, the remainder iron; which article has been annealed at temperatures between about 900 F. and about 1900 F., and thereafter slowly cooled.
  • Method of producing strong, wear resistant, cast articles which comprises adding about 0.10% to about 5% of a carbide stabilizing element of the group consisting of chromium, tungsten, and vanadium, to a molten composition consisting substantially of 1.5% to 4% carbon, 0.5% to 3.5% silicon, 0.15% to 0.7% manganese, 0.05% to 0.3% phosphorus, up to about 0.5% sulfur, remainder iron; casting the mixture to give a mottled casting; annealing the casting at temperatures between about 900 F. and about 1900 F., and thereafter slowly cooling the casting.
  • a carbide stabilizing element of the group consisting of chromium, tungsten, and vanadium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Braking Arrangements (AREA)

Description

Patented Dec. 18, 1934 UNITED STATES I CAST IRON ALLOY ARTICLES Charles 0. Burgess, New York, N. Y., assignor to Electra Metallurgical Company, a corporation of West Virginia No Drawing. Application July 28, 1933,
Serial No. 682,631
'2 Claims.
When ordinary grey cast iron is slowly cooled, raphite separates from the grpund mass in the form of relatively large flakes which tend to weaken the casting. The formation of graphite flakes may be decreased or entirely eliminated by keeping the silicon or nickel low, or by raising the manganese content, or by chill-casting the metal, or by a combination of these or other expedients, whereby there is produced a mottled or white casting. However, mottled or white cast iron so produced is brittle, hard, and unmachinable, and must be malleableized or annealed. The malleableizing or annealing treatment renders the casting malleable and machinable.
It is an object of the invention to provide a method of making annealed iron castings having improved hardness and strength.
This and other objects are attained by alloying cast iron with a carbide stabilizing element and subsequently annealing the casting so treated. This is in direct conflict with the usual idea prevalent in malleable foundries that the accidental presence of carbide forming elements results in an inferior iron. n the contrary, in the present invention it has been found possible by proper control of the analysis and annealing temperature satisfactorily to anneal or partly malleableize a cast iron containing an appreciable amount of a carbide forming element such as chromium and that such an iron will possess satisfactory ductility, high wear resistance and much greater strength than ordinary malleable iron.
Suitable carbide forming elements according to the invention include chromium, tungsten, and vanadium. The cast iron composition and casting procedure are chosen to give in known manner a white or mottled iron, and the casting is then annealed. The resultant product is ductile and workable, yet has a strong, heat resistant, wear resistant pearlitic or partly pearlitic ground mass structure. The improved strength of the ground mass probably results in part from the retention of the pearlitic structure, and in part from the strengthening and hardening efiect of the carbide forming element dissolved in the ferrite. The carbon is distributed as graphite and carbides of the carbide forming elements, and the distribution and form of the carbon issuch that it does'not tend materially to weaken the casting. At least a major part of the graphite is in the form of temper carbon.
The composition of the cast iron to which the carbide forming element is added. may suitably be substantially 1.5% to 4% carbon, 0.5% to 3.5% silicon and/or nickel, manganese 0.15% to 0.7%, phosphorus 0.05% to 1.5%, sulfur up to about 0.5%, and the remainder iron. A preferred composition comprises substantially 2% to 3% carbon, 0.6% to 2.5% silicon, 0.15% to 0.7% manganese, 0.05% to 0.2% phosphorus up to 0.1% sulfur, and the remainder iron.
The amount of carbide forming element to be added for the best results is governed to some extent by the percentage of total carbon and silicon in the cast iron, and by the casting conditions. Suflicient carbide forming element should be present so that a strong pearlitic ground mass is retained after annealing. In general, 0.10% to 5% of the carbide forming element will be willcient, and a preferred range under most circum stances is 0.10% to 0.75%.
The preferred range of annealing temperatures is between about 900 F. and about 1900 F., the most favorable annealing temperature, in general, being governed by the contentof the carbide forming element, and being higher with an increased content of the carbide forming element. The annealing treatment may comprise a single long treatment at an annealing temperature, or a series of short treatments alternately at 1700" F. to 1900 F. and at 900 F. to 1500 F. The annealed casting should'be cooled very slowly from the annealing temperature to room temperature.
The presence of elements other than those specifically mentioned herein is not precluded, and may under some circumstances be desirable.
I claim:
1. A strong, wear resistant, cast article consisting in its metallographic structure substantially of pearlite, chrome-ferrite, flake graphite, and temper carbon, and containing about 1.5% to 4% carbon, 0.5% to 3.5% silicon, 0.15% to 0.7% manganese, 0.05% to 0.3% phosphorus, up to about 0.5% sulfur, 0.10% to 5% of a carbide forming element of the group consisting of chromium, tungsten, and vanadium, the remainder iron; which article has been annealed at temperatures between about 900 F. and about 1900 F., and thereafter slowly cooled.
2. Method of producing strong, wear resistant, cast articles which comprises adding about 0.10% to about 5% of a carbide stabilizing element of the group consisting of chromium, tungsten, and vanadium, to a molten composition consisting substantially of 1.5% to 4% carbon, 0.5% to 3.5% silicon, 0.15% to 0.7% manganese, 0.05% to 0.3% phosphorus, up to about 0.5% sulfur, remainder iron; casting the mixture to give a mottled casting; annealing the casting at temperatures between about 900 F. and about 1900 F., and thereafter slowly cooling the casting.
- CHARLES O. BURGESS.
US682631A 1933-07-28 1933-07-28 Cast iron alloy articles Expired - Lifetime US1984458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US682631A US1984458A (en) 1933-07-28 1933-07-28 Cast iron alloy articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US682631A US1984458A (en) 1933-07-28 1933-07-28 Cast iron alloy articles

Publications (1)

Publication Number Publication Date
US1984458A true US1984458A (en) 1934-12-18

Family

ID=24740502

Family Applications (1)

Application Number Title Priority Date Filing Date
US682631A Expired - Lifetime US1984458A (en) 1933-07-28 1933-07-28 Cast iron alloy articles

Country Status (1)

Country Link
US (1) US1984458A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2835619A (en) * 1947-03-22 1958-05-20 Int Nickel Co Method of heat treating cast iron
US3360407A (en) * 1964-04-30 1967-12-26 Teves Thompson & Co G M B H Cast-iron composition of high refractoriness and strength and process for making same
US3780810A (en) * 1971-08-09 1973-12-25 Benjamin Baker Lye Ltd Horseshoes
EP0002555A1 (en) * 1977-12-08 1979-06-27 Hoogovens Groep B.V. Process of heat-treatment of articles of cast-iron containing nickel and chromium
RU2627713C2 (en) * 2015-11-09 2017-08-10 Открытое акционерное общество "Пашийский металлургическо-цементный завод" Cast iron for grinding bodies

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2835619A (en) * 1947-03-22 1958-05-20 Int Nickel Co Method of heat treating cast iron
US3360407A (en) * 1964-04-30 1967-12-26 Teves Thompson & Co G M B H Cast-iron composition of high refractoriness and strength and process for making same
US3780810A (en) * 1971-08-09 1973-12-25 Benjamin Baker Lye Ltd Horseshoes
EP0002555A1 (en) * 1977-12-08 1979-06-27 Hoogovens Groep B.V. Process of heat-treatment of articles of cast-iron containing nickel and chromium
RU2627713C2 (en) * 2015-11-09 2017-08-10 Открытое акционерное общество "Пашийский металлургическо-цементный завод" Cast iron for grinding bodies

Similar Documents

Publication Publication Date Title
US2331886A (en) Alloy malleable iron
US2370225A (en) Malleable iron
US1984458A (en) Cast iron alloy articles
JPS6338418B2 (en)
US3565698A (en) Fast-annealing malleable cast iron method
US2253502A (en) Malleable iron
US3375105A (en) Method for the production of fine grained steel
EP0272788B1 (en) A method of making wear resistant gray cast iron
US2610912A (en) Steel-like alloy containing spheroidal graphite
US5034069A (en) Low white cast iron grinding slug
US2501059A (en) Manufacture of black-heart malleable cast iron
US2578794A (en) Magnesium-treated malleable iron
US2105220A (en) Ferrous metal
US2192645A (en) Ferrous metal
RU2449043C2 (en) Method for cast iron heat treatment with spherical graphite
RU2250268C1 (en) Method of production of ingots made out of mottled cast iron with austenitic-bainite structure
US1542440A (en) Iron alloy
US2368418A (en) Heat treatment for steel alloys
US3125442A (en) Buctile iron casting
US2646375A (en) Process for hardening alloy gray cast iron
US2943932A (en) Boron-containing ferrous metal having as-cast compacted graphite
US2364922A (en) Method of manufacturing cast iron
US2219320A (en) Heat treating process for white cast iron
US2008452A (en) Heat treated cast iron and process of producing the same
US1707753A (en) Malleable iron alloy