US11731502B2 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
US11731502B2
US11731502B2 US17/695,924 US202217695924A US11731502B2 US 11731502 B2 US11731502 B2 US 11731502B2 US 202217695924 A US202217695924 A US 202217695924A US 11731502 B2 US11731502 B2 US 11731502B2
Authority
US
United States
Prior art keywords
gasket
cylinder
cylinder head
heat radiation
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US17/695,924
Other versions
US20220314784A1 (en
Inventor
Dai Kataoka
Wataru Nagata
Masashi Furuya
Yuichi Tawarada
Teruo Kihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Assigned to HONDA MOTOR CO., LTD. reassignment HONDA MOTOR CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Kataoka, Dai, NAGATA, WATARU, FURUYA, MASASHI, KIHARA, TERUO, TAWARADA, YUICHI
Publication of US20220314784A1 publication Critical patent/US20220314784A1/en
Application granted granted Critical
Publication of US11731502B2 publication Critical patent/US11731502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00028Constructional lay-out of the devices in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J17/00Weather guards for riders; Fairings or stream-lining parts not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J23/00Other protectors specially adapted for cycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J41/00Arrangements of radiators, coolant hoses or pipes on cycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/02Frames
    • B62K11/04Frames characterised by the engine being between front and rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K19/00Cycle frames
    • B62K19/48Fairings forming part of frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M7/00Motorcycles characterised by position of motor or engine
    • B62M7/02Motorcycles characterised by position of motor or engine with engine between front and rear wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P1/00Air cooling
    • F01P1/02Arrangements for cooling cylinders or cylinder heads, e.g. ducting cooling-air from its pressure source to cylinders or along cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P1/00Air cooling
    • F01P1/06Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/10Guiding or ducting cooling-air, to, or from, liquid-to-air heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/06Guiding or ducting air to, or from, ducted fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/12Motorcycles, Trikes; Quads; Scooters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K2202/00Motorised scooters

Definitions

  • the present invention relates to an internal combustion engine.
  • the present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide an internal combustion engine that can suppress the elevation of a temperature in a combustion chamber of a cylinder head.
  • An aspect of the present invention provides an internal combustion engine where a gasket is disposed between joining surfaces of a cylinder block and a cylinder head, and a heat radiation rib that extends in a cylinder axis direction is formed on the cylinder block or the cylinder head, the gasket includes: a portion to be sandwiched that is sandwiched between the joining surfaces; and an extending portion that protrudes toward an outside from the portion to be sandwiched as viewed in a cylinder axis direction.
  • the gasket includes the extending portion that protrudes toward the outside from the portion to be sandwiched as viewed in the cylinder axis direction. Accordingly, the extending portion is easily exposed to outside air and hence, the elevation of a temperature in a combustion chamber of the cylinder head can be suppressed.
  • FIG. 1 is a right side view of a saddle riding vehicle according to an embodiment of the present invention.
  • FIG. 2 is an enlarged right side view of a rear portion of the saddle riding vehicle.
  • FIG. 3 is a cross-sectional view of a power unit arm.
  • FIG. 4 is a perspective view of a cylinder block and a cylinder head
  • FIG. 5 is a perspective view of the cylinder head.
  • FIG. 6 is a plan view showing a joining surface of the cylinder head.
  • FIG. 1 is a side view of a saddle riding vehicle 10 according to the embodiment of the present invention.
  • the saddle riding vehicle 10 is a vehicle including a body frame 11 , a power unit 12 supported by the body frame 11 , a front fork 14 that steerably supports a front wheel 13 , a swing arm 16 that supports a rear wheel 15 , and a seat 17 for an occupant.
  • the saddle riding vehicle 10 is the vehicle on which the occupant straddles the seat 17 to ride.
  • the seat 17 is disposed above a rear portion of the body frame 11 .
  • the body frame 11 includes a head pipe 18 disposed at a front end portion of the body frame 11 , a front frame 19 positioned at a rear of the head pipe 18 , and a rear frame 20 positioned at a rear of the front frame 19 .
  • a front end portion of the front frame 19 is connected to the head pipe 18 .
  • the seat 17 is supported by the rear frame 20 .
  • the front fork 14 is supported by the head pipe 18 so as to be freely steerable in the right and left direction.
  • the front wheel 13 is supported by an axle 13 a disposed at a lower end portion of the front fork 14 .
  • a handlebar 21 for steering, which is gripped by the occupant, is mounted to an upper end portion of the front fork 14 .
  • the swing arm 16 is supported by a pivot shaft 22 that is supported by the body frame 11 .
  • the pivot shaft 22 is a shaft that extends horizontally in a vehicle width direction.
  • the pivot shaft 22 is inserted through a front end portion of the swing arm 16 .
  • the swing arm 16 swings in a vertical direction around the pivot shaft 22 .
  • the rear wheel 15 is supported by an axle 15 a disposed at a rear end portion of the swing arm 16 .
  • the power unit 12 is arranged between the front wheel 13 and the rear wheel 15 , and supported by the body frame 11 .
  • the power unit 12 is an internal combustion engine.
  • the power unit 12 includes a crankcase 23 and a cylinder portion 24 that houses a reciprocating piston.
  • the cylinder portion 24 has an exhaust port to which an exhaust device 25 is connected.
  • An output from the power unit 12 is transmitted to the rear wheel 15 by a driving force transmitting member that connects the power unit 12 to the rear wheel 15 .
  • the saddle riding vehicle 10 includes a front fender 26 that covers the front wheel 13 from above, a rear fender 27 that covers the rear wheel 15 from above, steps 28 on which the occupant places one's feet, and a fuel tank 29 to store fuel to be used by the power unit 12 .
  • the front fender 26 is mounted to the front fork 14 .
  • the rear fender 27 and the steps 28 are disposed below the seat 17 .
  • the fuel tank 29 is supported by the body frame 11 .
  • FIG. 2 is an enlarged right side view of a rear portion of the saddle riding vehicle 10 .
  • the power unit 12 that is the internal combustion engine, and the swing arm 16 that supports the rear wheel 3 are integrally formed with each other (such an integral body is also referred to as a power unit arm 80 ).
  • the power unit 12 includes a cylinder portion 24 that is continuously formed with a crankcase 23 .
  • the cylinder portion 24 includes a cylinder block 24 a , a cylinder head 24 b , and a cylinder head cover 24 c.
  • the vehicle body frame 11 includes a pair of left and right rear frames 20 that extend upward toward the rear in front of the crankcase 23 .
  • the cylinder portion 24 is positioned between the rear frames 20 .
  • the power unit arm 80 is swingably supported by the rear frame 20 by way of a link mechanism 81 .
  • the link mechanism 81 includes: a swing shaft 82 that is connected to an upper portion of the crankcase 23 ; a pair of left and right pivot shafts 22 that are connected to upper portions of the left and right rear frames 20 ; and a link member 83 that connects the swing shaft 82 and the pivot shafts 22 to each other.
  • the link member 83 includes: a pair of left and right first pivot portions 83 a that are connected to the rear frame 20 by way of the pivot shaft 22 ; a lateral connecting portion 83 b having a rod shape that connects the first pivot portions 83 a in a vehicle width direction; and a second pivot portion 83 c that extends downward from an intermediate portion of the lateral connecting portion 83 b in a vehicle width direction and is connected to the swing arm 82 .
  • the power unit arm 80 is swingable about the swing shaft 82 and the pivot shaft 22 .
  • FIG. 3 is a cross-sectional view of the power unit arm 80 .
  • the crankcase 23 includes a crank chamber 35 that houses a crankshaft 84 .
  • the crank chamber 35 includes support walls 35 a , 35 b disposed orthogonal to the crankshaft 84 .
  • crankshaft 84 is supported by the support walls 35 a , 35 b by way of bearings.
  • a piston 36 reciprocates in the cylinder block 24 a in an axial direction of a cylinder axis 24 d .
  • the piston 36 is connected to the crankshaft 84 by way of a connecting rod 37 and a crank pin 38 .
  • a valve gear is mounted on the cylinder head 24 b .
  • a cam shaft 39 of the valve gear is disposed parallel to the crankshaft 84 .
  • a gasket 75 is interposed between the cylinder block 24 a and the cylinder head 24 b .
  • a radially directional rib 77 is formed on an outer surface of the cylinder head 24 b in a state where the radially directional rib 77 extends parallel to the gasket 75 .
  • On surface of the radially directional rib 77 that faces the gasket 75 a plurality of heat radiation ribs 78 extending in a cylinder axis 24 d direction are formed. Cooling fins 79 are formed on an outer surface of the cylinder block 24 a.
  • a transmission case portion 40 is integrally formed with the crankcase 23 , the transmission case portion 40 extends rearward on a left side of the crank chamber 35 .
  • the transmission case portion 40 extends to a left side of the rear wheel 3 .
  • An opening portion formed on an outer side surface of the transmission case portion 40 is closed by a case cover 41 .
  • the swing arm 16 of the power unit arm 80 is formed of the transmission case portion 40 and the case cover 41 .
  • a transmission mechanism 43 that transmits power to the rear wheel 3 side while changing a speed of the rotation of the crankshaft 84 , a centrifugal clutch mechanism 44 , and a deceleration mechanism 45 that is formed of a plurality of gears are disposed.
  • a drive force of the crankshaft 84 is transmitted to a rear wheel axle 3 a by way of the transmission mechanism 43 , the clutch mechanism 44 and the deceleration mechanism 45 .
  • One end portion 84 a of the crankshaft 84 penetrates the support wall 35 a on a left side, and is positioned in the swing arm 16 .
  • the transmission mechanism 43 is a belt type continuously variable transmission.
  • the transmission mechanism 43 includes: a drive pulley 43 a mounted on one end portion 84 a , an output shaft 43 b mounted on a rear portion of the swing arm 16 , a driven pulley 43 c supported on the output shaft 43 b , and a V belt 43 d that connects the drive pulley 43 a and the driven pulley 43 c.
  • the clutch mechanism 44 is mounted on the output shaft 43 b .
  • the output shaft 43 b is connected to an axle 15 a by way of the deceleration mechanism 45 .
  • the other end portion 84 b of the crankshaft 84 penetrates the support wall 35 b on a right side, and extends toward the outside of the crankcase 23 .
  • a flywheel 47 which rotates integrally with the crankshaft 84 is fixed.
  • the generator 48 that generates electricity by the rotation of the crankshaft 84 is disposed inside of the flywheel 47 .
  • the generator 48 includes: magnets 48 a that are fixed to an inner periphery of the flywheel 47 ; and a coil 48 b disposed on a radially inner side of the flywheel 47 with respect to the magnets 48 a .
  • the coil 48 b is fixed to the crankcase 23 .
  • the power unit arm 80 includes an air supply device 50 for cooling the power unit 12 by air.
  • the air supply device 50 includes: the crankshaft 84 ; a fan 51 that is fixed to the crankshaft 84 and integrally rotates with the crankshaft 84 ; a fan cover 52 that covers the fan 51 from the outside; and a cylinder portion cover 53 that covers the cylinder portion 24 .
  • the cylinder portion cover 53 covers the cylinder block 24 a and the cylinder head 24 b over substantially the entire circumference.
  • a space formed between the cylinder portion cover 53 and the cylinder portion 24 forms an air passage 54 through which an air flow supplied by the fan 51 passes.
  • the cooling fins 79 are formed on an outer surface of the cylinder block 24 a .
  • the fan cover 52 is mounted on an outer side surface portion 23 a of the crankcase 23 .
  • the fan cover 52 covers an outer side surface portion 23 a and the fan 51 from the outside in the vehicle width direction.
  • a front edge portion of the fan cover 52 is connected to a rear edge portion of the cylinder portion cover 53 , and a space inside of the fan cover 52 communicates with the air passage 54 .
  • the fan 51 is fixed to a shaft end portion of the crankshaft 84 by way of the flywheel 47 .
  • the fan 51 rotates integrally with the crankshaft 84 , sucks air from the outside through the fan cover 52 , and blows off the sucked air toward the outside of the fan 51 in the radial direction.
  • An air flow that the fan 51 blows off passes through the air passage 54 , reaches a periphery of the cylinder block 24 a and a periphery of the cylinder head 24 b , and cools the cylinder block 24 a and the cylinder head 24 b .
  • the power unit 12 is forcibly cooled by air supplied from the fan 51 .
  • the air flow that passes through the air passage 54 is discharged to the outside from a discharge port (not shown in the drawing) formed in the cylinder portion cover 53 .
  • FIG. 4 is a perspective view of the cylinder block 24 a and the cylinder head 24 b
  • FIG. 5 is a perspective view of the cylinder head 24 b
  • FIG. 6 is a plan view showing a joining surface of the cylinder head 24 b.
  • a plurality of cooling fins 79 extending in a circumferential direction are formed.
  • a combustion chamber 70 is formed in the cylinder head 24 b , and an intake port 71 and an exhaust port 72 are formed in the combustion chamber 70 .
  • An intake valve and an exhaust valve are mounted (not shown in the drawing) in the intake port 71 and the exhaust port 72 respectively.
  • a joining surface 73 that is joined to the cylinder block 24 a is formed on the cylinder head 24 b.
  • a joining surface 74 that is joined to the cylinder head 24 b is formed on the cylinder block 24 a.
  • the gasket 75 made of metal is sandwiched between the joining surfaces 73 , 74 .
  • the gasket 75 is made of metal having a higher specific heat than the cylinder block 24 a and the cylinder head 24 b.
  • the gasket 75 is made of an iron-based metal, and the cylinder block 24 a and the cylinder head 24 b are made of aluminum.
  • the gasket 75 made of metal is sandwiched between the joining surfaces 73 , 74 .
  • the gasket 75 is made of metal having a higher specific heat than the cylinder block 24 a and the cylinder head 24 b , the gasket 75 contributes to cooling of the cylinder block 24 a.
  • the gasket 75 includes: a portion to be sandwiched 76 that is sandwiched between the joining surfaces 73 , 74 ; and extending portions 76 A, 76 B that protrude toward the outside from the portion to be sandwiched 76 as viewed in a cylinder axis direction.
  • Hutching is provided to the extending portions 76 A, 76 B.
  • the extending portions 76 A, 76 B of the gasket 75 are disposed over two sides 71 A, 71 B on a side where the intake port 71 is positioned (intake side).
  • the cylinder head 24 b includes the radially directional rib 77 that extends toward the outside of the extending portions 76 A, 76 B of the gasket 75 .
  • the radially directional rib 77 has a flat plate shape, and is disposed adjacently to the joining surface 73 .
  • the radially directional rib 77 extends parallel to the gasket 75 .
  • the plurality of heat radiation ribs 78 that extend in the direction of the cylinder axis 24 d are formed.
  • the plurality of heat radiation ribs 78 and the extending portions 76 A, 76 B of the gasket 75 are brought into contact with each other.
  • the extending portions 76 A, 76 B extend to outer edge portions 78 A of the heat radiation ribs 78 or to an area in front of the outer edge portions 78 A.
  • the extending portions 76 A, 76 B extend in a direction that the extending portions 76 A, 76 B traverse the heat radiation ribs 78 .
  • the extending portion of the gasket 75 is not limited to the configuration where the extending portion is formed on two sides 71 A, 71 B on an intake side.
  • the extending portion of the gasket 75 may be extended to a side on an exhaust side. It is desirable that the extending portion that is extended toward the side on the exhaust side (not shown in the drawing) be not brought into contact with the heat radiation ribs of the cylinder head 24 b on an exhaust side.
  • the air flow W also advances between the radial directional rib 77 of the cylinder head 24 b and the heat radiation fin 79 of the cylinder block 24 a disposed at an uppermost position in the drawing, and flows while being brought into contact with the extending portions 76 A, 76 B of the gasket 75 .
  • the air flow W that advances between the plurality of heat radiation ribs 78 is brought into contact with upper surfaces of the extending portions 76 A, 76 B in the drawing. Accordingly, the extending portions 76 A, 76 B are cooled by air and hence, the cylinder head 24 b is cooled.
  • the radially directional rib 77 receives air from the fan 51 and hence, the gasket 75 can be cooled from a cylinder head 24 b side.
  • a temperature of the combustion chamber 70 can be lowered.
  • the air flow W that flows into the air passage 54 advances also from a cylinder block 24 a side.
  • the air flow W advances between the heat radiation fin 79 of the cylinder block 24 a on an uppermost position in the drawing and the gasket 75 , and is brought into contact with lower surfaces in the drawing of the extending portions 76 A, 76 B of the gasket 75 . Accordingly, the extending portions 76 A, 76 B are further forcibly cooled by air and hence, the cylinder head 24 b is cooled.
  • a temperature of the combustion chamber 70 can be lowered.
  • the extending portions 76 A, 76 B of the gasket 75 and the plurality of heat radiation ribs 78 are brought into contact with each other in the direction of the cylinder axis 24 d . Accordingly, the gasket 75 can be cooled by the plurality of heat radiation ribs 78 .
  • the extending portions 76 A, 76 B of the gasket 75 extend to the outer edge portions 78 A of the heat radiation ribs 78 . Accordingly, it is possible to allow the gasket 75 to have the largest area while pressing the gasket 75 by the heat radiation ribs 78 .
  • the extending portions 76 A, 76 B of the gasket 75 extend in the direction that traverses the heat radiation ribs 78 and hence, it is possible to make traveling air of the saddle riding vehicle 10 efficiently impinge on the gasket 75 .
  • the extending portions 76 A, 76 B of the gasket 75 are brought into contact with the heat radiation ribs 78 of the cylinder head 24 b on an intake side, and are not brought into contact with heat radiation ribs of the cylinder head 24 b on an exhaust side.
  • the exhaust side of the cylinder head 24 b is hot and hence, even when the exhaust side of the cylinder head 24 b is brought into contact with the heat radiation ribs 78 , a cooling effect is low.
  • the intake side of the cylinder head 24 b is not hot and hence, a cooling effect can be enhanced.
  • the cylinder head 24 b has the radially directional rib 77 that extends more sideward than the extending portions 76 A, 76 B of the gasket 75 as viewed in a cylinder axis direction. Accordingly, the cylinder head 24 b receives the air flow W from the fan 51 of a forced air cooling type, and can cool the gasket 75 also from a cylinder head 24 b side.
  • the heat radiation ribs 78 are formed on the cylinder head 24 b .
  • the present invention is not limited to such a configuration.
  • Heat radiation ribs that extend in the cylinder axis direction may be formed on the cylinder block 24 a .
  • the gasket 75 and the plurality of heat radiation ribs formed on the cylinder block 24 a may be brought into contact with each other.
  • the saddle riding vehicle may be a three-wheeled saddle riding vehicle which includes two front wheels or two rear wheels, or a saddle riding vehicle which includes four or more wheels.
  • the gasket In the internal combustion engine where the gasket is disposed between the joining surfaces of the cylinder block and the cylinder head, and the heat radiation ribs that extend in the cylinder axis direction are formed on the cylinder block or the cylinder head, the gasket includes: the portion to be sandwiched that is sandwiched between the joining surfaces; and the extending portions protruding toward the outside from the portion to be sandwiched as viewed in the cylinder axis direction.
  • the gasket can be cooled by the heat radiation ribs.
  • the gasket is allowed to have the largest area while pressing the gasket by the heat radiation ribs.
  • the exhaust side of the cylinder head is hot and hence, a cooling effect is low.
  • the intake side of the cylinder head is not hot and hence, the cooling effect can be enhanced.
  • the radially directional rib receives air from the forced air cooling fan. Accordingly, the gasket can be cooled also from the cylinder head side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Gasket Seals (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

In an internal combustion engine, a gasket is disposed between joining surfaces of a cylinder block and a cylinder head, and a heat radiation rib that extends in a cylinder axis direction is formed on the cylinder block or the cylinder head. In such an internal combustion engine, the gasket includes: a portion to be sandwiched that is sandwiched between the joining surfaces; and an extending portion that protrudes toward an outside from the portion to be sandwiched as viewed in a cylinder axis direction.

Description

INCORPORATION BY REFERENCE
The present application claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2021-061499 filed on Mar. 31, 2021. The content of the application is incorporated herein by reference in its entirety.
TECHNICAL FIELD
The present invention relates to an internal combustion engine.
BACKGROUND ART
Conventionally, there has been known an internal combustion engine where a gasket is disposed between joining surfaces of a cylinder block and a cylinder head, and heat radiation ribs that extend in a cylinder axis direction are formed on the cylinder block or the cylinder head (for example, see patent literature 1).
CITATION LIST Patent Literature
  • [patent literature 1] JP-A No. 2019-43204
SUMMARY OF INVENTION Technical Problem
However, in the above-mentioned internal combustion engine, in a case where the cylinder block and the cylinder head are cooled by forced air cooling, for example, a temperature in a combustion chamber of the cylinder head becomes a high temperature and hence, there exists a drawback that the cylinder head and the cylinder block cannot be cooled sufficiently.
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide an internal combustion engine that can suppress the elevation of a temperature in a combustion chamber of a cylinder head.
Solution To Problem
An aspect of the present invention provides an internal combustion engine where a gasket is disposed between joining surfaces of a cylinder block and a cylinder head, and a heat radiation rib that extends in a cylinder axis direction is formed on the cylinder block or the cylinder head, the gasket includes: a portion to be sandwiched that is sandwiched between the joining surfaces; and an extending portion that protrudes toward an outside from the portion to be sandwiched as viewed in a cylinder axis direction.
Advantageous Effects Of Invention
According to the aspect of the present invention, the gasket includes the extending portion that protrudes toward the outside from the portion to be sandwiched as viewed in the cylinder axis direction. Accordingly, the extending portion is easily exposed to outside air and hence, the elevation of a temperature in a combustion chamber of the cylinder head can be suppressed.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a right side view of a saddle riding vehicle according to an embodiment of the present invention.
FIG. 2 is an enlarged right side view of a rear portion of the saddle riding vehicle.
FIG. 3 is a cross-sectional view of a power unit arm.
FIG. 4 is a perspective view of a cylinder block and a cylinder head;
FIG. 5 is a perspective view of the cylinder head.
FIG. 6 is a plan view showing a joining surface of the cylinder head.
DESCRIPTION OF EMBODIMENTS
The following describes an embodiment of the present invention with reference to the drawings. Note that, in the description, descriptions on directions such as front and rear, right and left, and upper and lower are identical to directions with respect to a vehicle body insofar as descriptions are not particularly given. Reference sign FR illustrated in each drawing indicates a front side of the vehicle body, reference sign UP indicates an upper side of the vehicle body, and reference sign LH indicates a left side of the vehicle body.
Embodiment
FIG. 1 is a side view of a saddle riding vehicle 10 according to the embodiment of the present invention.
The saddle riding vehicle 10 is a vehicle including a body frame 11, a power unit 12 supported by the body frame 11, a front fork 14 that steerably supports a front wheel 13, a swing arm 16 that supports a rear wheel 15, and a seat 17 for an occupant.
The saddle riding vehicle 10 is the vehicle on which the occupant straddles the seat 17 to ride. The seat 17 is disposed above a rear portion of the body frame 11.
The body frame 11 includes a head pipe 18 disposed at a front end portion of the body frame 11, a front frame 19 positioned at a rear of the head pipe 18, and a rear frame 20 positioned at a rear of the front frame 19. A front end portion of the front frame 19 is connected to the head pipe 18.
The seat 17 is supported by the rear frame 20.
The front fork 14 is supported by the head pipe 18 so as to be freely steerable in the right and left direction. The front wheel 13 is supported by an axle 13 a disposed at a lower end portion of the front fork 14. A handlebar 21 for steering, which is gripped by the occupant, is mounted to an upper end portion of the front fork 14.
The swing arm 16 is supported by a pivot shaft 22 that is supported by the body frame 11. The pivot shaft 22 is a shaft that extends horizontally in a vehicle width direction. The pivot shaft 22 is inserted through a front end portion of the swing arm 16. The swing arm 16 swings in a vertical direction around the pivot shaft 22.
The rear wheel 15 is supported by an axle 15 a disposed at a rear end portion of the swing arm 16.
The power unit 12 is arranged between the front wheel 13 and the rear wheel 15, and supported by the body frame 11.
The power unit 12 is an internal combustion engine. The power unit 12 includes a crankcase 23 and a cylinder portion 24 that houses a reciprocating piston. The cylinder portion 24 has an exhaust port to which an exhaust device 25 is connected.
An output from the power unit 12 is transmitted to the rear wheel 15 by a driving force transmitting member that connects the power unit 12 to the rear wheel 15.
The saddle riding vehicle 10 includes a front fender 26 that covers the front wheel 13 from above, a rear fender 27 that covers the rear wheel 15 from above, steps 28 on which the occupant places one's feet, and a fuel tank 29 to store fuel to be used by the power unit 12.
The front fender 26 is mounted to the front fork 14. The rear fender 27 and the steps 28 are disposed below the seat 17. The fuel tank 29 is supported by the body frame 11.
FIG. 2 is an enlarged right side view of a rear portion of the saddle riding vehicle 10.
In this embodiment, the power unit 12 that is the internal combustion engine, and the swing arm 16 that supports the rear wheel 3 are integrally formed with each other (such an integral body is also referred to as a power unit arm 80).
The power unit 12 includes a cylinder portion 24 that is continuously formed with a crankcase 23. The cylinder portion 24 includes a cylinder block 24 a, a cylinder head 24 b, and a cylinder head cover 24 c.
The vehicle body frame 11 includes a pair of left and right rear frames 20 that extend upward toward the rear in front of the crankcase 23.
The cylinder portion 24 is positioned between the rear frames 20.
The power unit arm 80 is swingably supported by the rear frame 20 by way of a link mechanism 81. The link mechanism 81 includes: a swing shaft 82 that is connected to an upper portion of the crankcase 23; a pair of left and right pivot shafts 22 that are connected to upper portions of the left and right rear frames 20; and a link member 83 that connects the swing shaft 82 and the pivot shafts 22 to each other.
The link member 83 includes: a pair of left and right first pivot portions 83 a that are connected to the rear frame 20 by way of the pivot shaft 22; a lateral connecting portion 83 b having a rod shape that connects the first pivot portions 83 a in a vehicle width direction; and a second pivot portion 83 c that extends downward from an intermediate portion of the lateral connecting portion 83 b in a vehicle width direction and is connected to the swing arm 82.
The power unit arm 80 is swingable about the swing shaft 82 and the pivot shaft 22.
FIG. 3 is a cross-sectional view of the power unit arm 80.
The crankcase 23 includes a crank chamber 35 that houses a crankshaft 84. The crank chamber 35 includes support walls 35 a, 35 b disposed orthogonal to the crankshaft 84.
The crankshaft 84 is supported by the support walls 35 a, 35 b by way of bearings.
A piston 36 reciprocates in the cylinder block 24 a in an axial direction of a cylinder axis 24 d. The piston 36 is connected to the crankshaft 84 by way of a connecting rod 37 and a crank pin 38.
A valve gear is mounted on the cylinder head 24 b. A cam shaft 39 of the valve gear is disposed parallel to the crankshaft 84.
A gasket 75 is interposed between the cylinder block 24 a and the cylinder head 24 b. A radially directional rib 77 is formed on an outer surface of the cylinder head 24 b in a state where the radially directional rib 77 extends parallel to the gasket 75. On surface of the radially directional rib 77 that faces the gasket 75, a plurality of heat radiation ribs 78 extending in a cylinder axis 24 d direction are formed. Cooling fins 79 are formed on an outer surface of the cylinder block 24 a.
A transmission case portion 40 is integrally formed with the crankcase 23, the transmission case portion 40 extends rearward on a left side of the crank chamber 35. The transmission case portion 40 extends to a left side of the rear wheel 3. An opening portion formed on an outer side surface of the transmission case portion 40 is closed by a case cover 41.
The swing arm 16 of the power unit arm 80 is formed of the transmission case portion 40 and the case cover 41. In the swing arm 16, a transmission mechanism 43 that transmits power to the rear wheel 3 side while changing a speed of the rotation of the crankshaft 84, a centrifugal clutch mechanism 44, and a deceleration mechanism 45 that is formed of a plurality of gears are disposed.
A drive force of the crankshaft 84 is transmitted to a rear wheel axle 3 a by way of the transmission mechanism 43, the clutch mechanism 44 and the deceleration mechanism 45.
One end portion 84 a of the crankshaft 84 penetrates the support wall 35 a on a left side, and is positioned in the swing arm 16.
The transmission mechanism 43 is a belt type continuously variable transmission.
The transmission mechanism 43 includes: a drive pulley 43 a mounted on one end portion 84 a, an output shaft 43 b mounted on a rear portion of the swing arm 16, a driven pulley 43 c supported on the output shaft 43 b, and a V belt 43 d that connects the drive pulley 43 a and the driven pulley 43 c.
The clutch mechanism 44 is mounted on the output shaft 43 b. The output shaft 43 b is connected to an axle 15 a by way of the deceleration mechanism 45.
The other end portion 84 b of the crankshaft 84 penetrates the support wall 35 b on a right side, and extends toward the outside of the crankcase 23. To the other end portion 84 b of the crankshaft 84, a flywheel 47 which rotates integrally with the crankshaft 84 is fixed.
Inside of the flywheel 47, a generator 48 that generates electricity by the rotation of the crankshaft 84 is disposed. The generator 48 includes: magnets 48 a that are fixed to an inner periphery of the flywheel 47; and a coil 48 b disposed on a radially inner side of the flywheel 47 with respect to the magnets 48 a. The coil 48 b is fixed to the crankcase 23.
The power unit arm 80 includes an air supply device 50 for cooling the power unit 12 by air. The air supply device 50 includes: the crankshaft 84; a fan 51 that is fixed to the crankshaft 84 and integrally rotates with the crankshaft 84; a fan cover 52 that covers the fan 51 from the outside; and a cylinder portion cover 53 that covers the cylinder portion 24. The cylinder portion cover 53 covers the cylinder block 24 a and the cylinder head 24 b over substantially the entire circumference.
A space formed between the cylinder portion cover 53 and the cylinder portion 24 forms an air passage 54 through which an air flow supplied by the fan 51 passes.
In the air passage 54, the cooling fins 79 are formed on an outer surface of the cylinder block 24 a. The fan cover 52 is mounted on an outer side surface portion 23 a of the crankcase 23. The fan cover 52 covers an outer side surface portion 23 a and the fan 51 from the outside in the vehicle width direction.
A front edge portion of the fan cover 52 is connected to a rear edge portion of the cylinder portion cover 53, and a space inside of the fan cover 52 communicates with the air passage 54.
The fan 51 is fixed to a shaft end portion of the crankshaft 84 by way of the flywheel 47. The fan 51 rotates integrally with the crankshaft 84, sucks air from the outside through the fan cover 52, and blows off the sucked air toward the outside of the fan 51 in the radial direction. An air flow that the fan 51 blows off passes through the air passage 54, reaches a periphery of the cylinder block 24 a and a periphery of the cylinder head 24 b, and cools the cylinder block 24 a and the cylinder head 24 b. The power unit 12 is forcibly cooled by air supplied from the fan 51.
The air flow that passes through the air passage 54 is discharged to the outside from a discharge port (not shown in the drawing) formed in the cylinder portion cover 53.
FIG. 4 is a perspective view of the cylinder block 24 a and the cylinder head 24 b, FIG. 5 is a perspective view of the cylinder head 24 b, and FIG. 6 is a plan view showing a joining surface of the cylinder head 24 b.
As shown in FIG. 4 , on an outer peripheral surface of the cylinder block 24 a, a plurality of cooling fins 79 extending in a circumferential direction are formed.
A combustion chamber 70 is formed in the cylinder head 24 b, and an intake port 71 and an exhaust port 72 are formed in the combustion chamber 70. An intake valve and an exhaust valve are mounted (not shown in the drawing) in the intake port 71 and the exhaust port 72 respectively.
As shown in FIG. 5 and FIG. 6 , a joining surface 73 that is joined to the cylinder block 24 a is formed on the cylinder head 24 b.
On the other hand, as shown in FIG. 4 , a joining surface 74 that is joined to the cylinder head 24 b is formed on the cylinder block 24 a.
The gasket 75 made of metal is sandwiched between the joining surfaces 73, 74.
The gasket 75 is made of metal having a higher specific heat than the cylinder block 24 a and the cylinder head 24 b.
The gasket 75 is made of an iron-based metal, and the cylinder block 24 a and the cylinder head 24 b are made of aluminum.
The gasket 75 made of metal is sandwiched between the joining surfaces 73, 74.
In a case the gasket 75 is made of metal having a higher specific heat than the cylinder block 24 a and the cylinder head 24 b, the gasket 75 contributes to cooling of the cylinder block 24 a.
As shown in FIG. 5 and FIG. 6 , the gasket 75 includes: a portion to be sandwiched 76 that is sandwiched between the joining surfaces 73, 74; and extending portions 76A, 76B that protrude toward the outside from the portion to be sandwiched 76 as viewed in a cylinder axis direction.
Hutching is provided to the extending portions 76A, 76B.
The extending portions 76A, 76B of the gasket 75 are disposed over two sides 71A, 71B on a side where the intake port 71 is positioned (intake side).
As shown in FIG. 4 , the cylinder head 24 b includes the radially directional rib 77 that extends toward the outside of the extending portions 76A, 76B of the gasket 75. The radially directional rib 77 has a flat plate shape, and is disposed adjacently to the joining surface 73.
The radially directional rib 77 extends parallel to the gasket 75. On a surface of the radially directional rib 77 that faces the gasket 75, the plurality of heat radiation ribs 78 that extend in the direction of the cylinder axis 24 d are formed. The plurality of heat radiation ribs 78 and the extending portions 76A, 76B of the gasket 75 are brought into contact with each other.
The extending portions 76A, 76B extend to outer edge portions 78A of the heat radiation ribs 78 or to an area in front of the outer edge portions 78A. The extending portions 76A, 76B extend in a direction that the extending portions 76A, 76B traverse the heat radiation ribs 78. With such a configuration, traveling air of the saddle riding vehicle and air that passes through between the heat radiation ribs 78 are made to efficiently impinge on the gasket 75.
The extending portion of the gasket 75 is not limited to the configuration where the extending portion is formed on two sides 71A, 71B on an intake side. The extending portion of the gasket 75 may be extended to a side on an exhaust side. It is desirable that the extending portion that is extended toward the side on the exhaust side (not shown in the drawing) be not brought into contact with the heat radiation ribs of the cylinder head 24 b on an exhaust side.
Next, the manner of operation of this embodiment is described.
With reference to FIG. 3 , an air flow W generated by air supplied from the air supply device 50 is described.
When the fan 51 integrally rotates with the crankshaft 84, air that is present outside the fan cover 52 flows toward the inside in the vehicle width direction as the air flow W, and is sucked into the fan 51. The air flow W sucked into the fan 51 is blown off toward the outside in the radial direction of the fan 51, and flows toward the air passage 54 in the cylinder portion cover 53 through the inside of the fan cover 52. With the air flow W that flows into the air passage 54, the cylinder portion 24 is forcibly cooled by air.
The air flow W also advances between the radial directional rib 77 of the cylinder head 24 b and the heat radiation fin 79 of the cylinder block 24 a disposed at an uppermost position in the drawing, and flows while being brought into contact with the extending portions 76A, 76B of the gasket 75.
As illustrated in FIG. 5 , the air flow W that advances between the plurality of heat radiation ribs 78 is brought into contact with upper surfaces of the extending portions 76A, 76B in the drawing. Accordingly, the extending portions 76A, 76B are cooled by air and hence, the cylinder head 24 b is cooled.
Further, the radially directional rib 77 receives air from the fan 51 and hence, the gasket 75 can be cooled from a cylinder head 24 b side.
By exposing the extending portions 76A, 76B of the gasket 75 to outside air, a temperature of the combustion chamber 70 can be lowered.
With reference to FIG. 4 , the air flow W that flows into the air passage 54 advances also from a cylinder block 24 a side. The air flow W advances between the heat radiation fin 79 of the cylinder block 24 a on an uppermost position in the drawing and the gasket 75, and is brought into contact with lower surfaces in the drawing of the extending portions 76A, 76B of the gasket 75. Accordingly, the extending portions 76A, 76B are further forcibly cooled by air and hence, the cylinder head 24 b is cooled.
By exposing the extending portions 76A, 76B of the gasket 75 to outside air, a temperature of the combustion chamber 70 can be lowered.
In this embodiment, the extending portions 76A, 76B of the gasket 75 and the plurality of heat radiation ribs 78 are brought into contact with each other in the direction of the cylinder axis 24 d. Accordingly, the gasket 75 can be cooled by the plurality of heat radiation ribs 78.
The extending portions 76A, 76B of the gasket 75 extend to the outer edge portions 78A of the heat radiation ribs 78. Accordingly, it is possible to allow the gasket 75 to have the largest area while pressing the gasket 75 by the heat radiation ribs 78. The extending portions 76A, 76B of the gasket 75 extend in the direction that traverses the heat radiation ribs 78 and hence, it is possible to make traveling air of the saddle riding vehicle 10 efficiently impinge on the gasket 75.
The extending portions 76A, 76B of the gasket 75 are brought into contact with the heat radiation ribs 78 of the cylinder head 24 b on an intake side, and are not brought into contact with heat radiation ribs of the cylinder head 24 b on an exhaust side. The exhaust side of the cylinder head 24 b is hot and hence, even when the exhaust side of the cylinder head 24 b is brought into contact with the heat radiation ribs 78, a cooling effect is low. On the other hand, the intake side of the cylinder head 24 b is not hot and hence, a cooling effect can be enhanced.
The cylinder head 24 b has the radially directional rib 77 that extends more sideward than the extending portions 76A, 76B of the gasket 75 as viewed in a cylinder axis direction. Accordingly, the cylinder head 24 b receives the air flow W from the fan 51 of a forced air cooling type, and can cool the gasket 75 also from a cylinder head 24 b side.
In the above-mentioned embodiment, the heat radiation ribs 78 are formed on the cylinder head 24 b. However, the present invention is not limited to such a configuration. Heat radiation ribs that extend in the cylinder axis direction may be formed on the cylinder block 24 a. In this case, the gasket 75 and the plurality of heat radiation ribs formed on the cylinder block 24 a may be brought into contact with each other.
In the above-mentioned embodiment, the description has been made by exemplifying the motorcycle as an example of a saddle riding vehicle. However, the saddle riding vehicle may be a three-wheeled saddle riding vehicle which includes two front wheels or two rear wheels, or a saddle riding vehicle which includes four or more wheels.
Configurations Supported By The Above-Mentioned Embodiment
The above-mentioned embodiment supports the following configurations.
Configuration 1
In the internal combustion engine where the gasket is disposed between the joining surfaces of the cylinder block and the cylinder head, and the heat radiation ribs that extend in the cylinder axis direction are formed on the cylinder block or the cylinder head, the gasket includes: the portion to be sandwiched that is sandwiched between the joining surfaces; and the extending portions protruding toward the outside from the portion to be sandwiched as viewed in the cylinder axis direction.
With such a configuration, by exposing the extending portions of the gasket to outside air, the elevation of a temperature of the combustion chamber can be suppressed.
Configuration 2
The internal combustion engine described in the configuration 1, in which the extending portion of the gasket and the heat radiation ribs are brought into contact with each other in the cylinder axis direction.
With such a configuration, the gasket can be cooled by the heat radiation ribs.
Configuration 3
The internal combustion engine described in the configuration 1 or 2, in which the extending portion of the gasket extends to the outer edge portions of the heat radiation ribs or the area in front of the outer edge portions.
With such a configuration, the gasket is allowed to have the largest area while pressing the gasket by the heat radiation ribs.
Configuration 4
The internal combustion engine described in any one of the configurations 1 to 3, in which the extending portion of the gasket extends in the direction that traverses the heat radiation ribs.
With such a configuration, it is possible to make traveling air of the saddle riding vehicle or air that passes through between the heat radiation ribs efficiently impinge on the gasket.
Configuration 5
The internal combustion engine described in any one of the configurations 1 to 4, in which the extending portion of the gasket is brought into contact with the heat radiation ribs of the cylinder head on the intake side, and the extending portion of the gasket is not brought into contact with the heat radiation ribs of the cylinder head on the exhaust side.
With such a configuration, the exhaust side of the cylinder head is hot and hence, a cooling effect is low. On the other hand, the intake side of the cylinder head is not hot and hence, the cooling effect can be enhanced.
Configuration 6
The internal combustion engine described in any one of the configurations 1 to 5, in which the cylinder head includes the radial directional rib that extends more sideward than the extending portion of the gasket as viewed in the cylinder axis direction.
With such a configuration, since the internal combustion engine has the forced air cooling fan, the radially directional rib receives air from the forced air cooling fan. Accordingly, the gasket can be cooled also from the cylinder head side.
Configuration 7
The internal combustion engine described in any one of the configurations 1 to 6, in which the gasket is made of metal having a higher specific heat than the cylinder block and the cylinder head.
With such a configuration, since the specific heat of the gasket including the extending portion is higher than the specific heat of the cylinder block and the cylinder head and hence, such a configuration contributes to cooling of the cylinder block.
REFERENCE SIGNS LIST
  • 10: saddle riding vehicle
  • 12: power unit
  • 23: crankcase
  • 24: cylinder portion
  • 24 a: cylinder block
  • 24 b: cylinder head
  • 24 c: cylinder head cover
  • 50: air supply device
  • 54: air passage
  • 70: combustion chamber
  • 75: gasket
  • 73, 74: joining surface
  • 76: portion to be sandwiched
  • 76A, 76B: extending portion
  • 77: radially directional rib
  • 78: heat radiation rib

Claims (8)

The invention claimed is:
1. An internal combustion engine where a gasket is disposed between joining surfaces of a cylinder block and a cylinder head, and a heat radiation rib that extends in a cylinder axis direction is formed on the cylinder block or the cylinder head, wherein
the gasket includes:
a portion to be sandwiched that is sandwiched between the joining surfaces; and
an extending portion that protrudes toward an outside from the portion to be sandwiched as viewed in the cylinder axis direction, and
the extending portion of the gasket and the heat radiation rib are brought into contact with each other in the cylinder axis direction.
2. The internal combustion engine according to claim 1, wherein the extending portion of the gasket extends to an outer edge portion of the heat radiation rib or an area in front of the outer edge portion.
3. The internal combustion engine according to claim 1, wherein the extending portion of the gasket extends in a direction that traverses the heat radiation rib.
4. The internal combustion engine according to claim 1, wherein the extending portion of the gasket is brought into contact with the heat radiation rib of the cylinder head on an intake side, and
the extending portion of the gasket is not brought into contact with the heat radiation rib of the cylinder head on an exhaust side.
5. The internal combustion engine according to claim 1, wherein the cylinder head includes a radial directional rib that extends more sideward than the extending portion of the gasket as viewed in the cylinder axis direction.
6. The internal combustion engine according to claim 1, wherein the gasket is made of metal having a higher specific heat than the cylinder block and the cylinder head.
7. An internal combustion engine where a gasket is disposed between joining surfaces of a cylinder block and a cylinder head, and a heat radiation rib that extends in a cylinder axis direction is formed on the cylinder block or the cylinder head, wherein
the gasket includes:
a portion to be sandwiched that is sandwiched between the joining surfaces; and
an extending portion that protrudes toward an outside from the portion to be sandwiched as viewed in the cylinder axis direction,
the extending portion of the gasket is brought into contact with the heat radiation rib of the cylinder head on an intake side, and
the extending portion of the gasket is not brought into contact with the heat radiation rib of the cylinder head on an exhaust side.
8. An internal combustion engine where a gasket is disposed between joining surfaces of a cylinder block and a cylinder head, and a heat radiation rib that extends in a cylinder axis direction is formed on the cylinder block or the cylinder head, wherein
the gasket includes:
a portion to be sandwiched that is sandwiched between the joining surfaces; and
an extending portion that protrudes toward an outside from the portion to be sandwiched as viewed in the cylinder axis direction,
the cylinder head includes a radial directional rib that extends more sideward than the extending portion of the gasket as viewed in the cylinder axis direction.
US17/695,924 2021-03-31 2022-03-16 Internal combustion engine Active US11731502B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021-061499 2021-03-31
JPJP2021-061499 2021-03-31
JP2021061499A JP7339293B2 (en) 2021-03-31 2021-03-31 internal combustion engine

Publications (2)

Publication Number Publication Date
US20220314784A1 US20220314784A1 (en) 2022-10-06
US11731502B2 true US11731502B2 (en) 2023-08-22

Family

ID=83448733

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/695,924 Active US11731502B2 (en) 2021-03-31 2022-03-16 Internal combustion engine

Country Status (2)

Country Link
US (1) US11731502B2 (en)
JP (1) JP7339293B2 (en)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1513170A (en) * 1919-11-01 1924-10-28 Harley Davidson Motor Co Inc Cooling means for internal-combustion engines
US1644731A (en) * 1922-04-17 1927-10-11 Gen Motors Res Corp Internal-combustion engine
JPS54161405U (en) 1978-04-28 1979-11-12
JPS58117335A (en) 1981-12-29 1983-07-12 Nippon Metal Gasket Kk Metallic gasket with radiator plate
US4515111A (en) * 1984-04-19 1985-05-07 Khd Canada Inc. Air-cooled, reciprocating piston, internal combustion engine with cylinder heads forming arcuate or S-shaped cooling ducts therebetween
JPH01277664A (en) 1988-04-30 1989-11-08 Suzuki Motor Co Ltd Cylinder head structure for small vehicle engine
EP0342360A2 (en) * 1988-05-20 1989-11-23 Tecumseh Products Company Metal head gasket with push rod guides
EP0189874B1 (en) * 1985-01-26 1990-03-07 Klöckner-Humboldt-Deutz Aktiengesellschaft Air-cooled internal-combustion engine
JPH0630454U (en) * 1992-09-21 1994-04-22 サンデン株式会社 Heat dissipation cylinder
JPH1054296A (en) * 1996-08-12 1998-02-24 Suzuki Motor Corp Four-cycle engine cooler
US6240828B1 (en) 1998-04-21 2001-06-05 Nissan Motor Co., Ltd. Piston of internal combustion engine
US6371489B1 (en) 1998-02-05 2002-04-16 Federal Mogul Sealing Systems Cylinder-head gasket for internal combustion engine
US20050109292A1 (en) * 2003-11-25 2005-05-26 Honda Motor Co., Ltd. Cooling unit for air-cooled internal combustion engine
JP2009235930A (en) 2008-03-26 2009-10-15 Honda Motor Co Ltd Cooling fin structure for vehicle-mounted internal combustion engine
JP2011127448A (en) * 2009-12-15 2011-06-30 Maruyama Mfg Co Ltd Method of manufacturing cylinder for engine, die of cylinder for engine and cylinder for engine
EP2580458B1 (en) * 2010-06-11 2014-10-08 Bernard Macarez Heat-exchanging cylinder head
JP2019043204A (en) 2017-08-30 2019-03-22 本田技研工業株式会社 Saddle-riding type vehicle

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1513170A (en) * 1919-11-01 1924-10-28 Harley Davidson Motor Co Inc Cooling means for internal-combustion engines
US1644731A (en) * 1922-04-17 1927-10-11 Gen Motors Res Corp Internal-combustion engine
JPS54161405U (en) 1978-04-28 1979-11-12
JPS58117335A (en) 1981-12-29 1983-07-12 Nippon Metal Gasket Kk Metallic gasket with radiator plate
US4515111A (en) * 1984-04-19 1985-05-07 Khd Canada Inc. Air-cooled, reciprocating piston, internal combustion engine with cylinder heads forming arcuate or S-shaped cooling ducts therebetween
EP0189874B1 (en) * 1985-01-26 1990-03-07 Klöckner-Humboldt-Deutz Aktiengesellschaft Air-cooled internal-combustion engine
JPH01277664A (en) 1988-04-30 1989-11-08 Suzuki Motor Co Ltd Cylinder head structure for small vehicle engine
US5105777A (en) 1988-05-20 1992-04-21 Tecumseh Products Company Metal head gasket with push rod guides
EP0342360A2 (en) * 1988-05-20 1989-11-23 Tecumseh Products Company Metal head gasket with push rod guides
JPH0630454U (en) * 1992-09-21 1994-04-22 サンデン株式会社 Heat dissipation cylinder
JPH1054296A (en) * 1996-08-12 1998-02-24 Suzuki Motor Corp Four-cycle engine cooler
US6371489B1 (en) 1998-02-05 2002-04-16 Federal Mogul Sealing Systems Cylinder-head gasket for internal combustion engine
US6240828B1 (en) 1998-04-21 2001-06-05 Nissan Motor Co., Ltd. Piston of internal combustion engine
US20050109292A1 (en) * 2003-11-25 2005-05-26 Honda Motor Co., Ltd. Cooling unit for air-cooled internal combustion engine
JP2009235930A (en) 2008-03-26 2009-10-15 Honda Motor Co Ltd Cooling fin structure for vehicle-mounted internal combustion engine
EP2314852A1 (en) 2008-03-26 2011-04-27 Honda Motor Co., Ltd. Cooling fin structure for vehicle-mounted internal combustion engine
JP2011127448A (en) * 2009-12-15 2011-06-30 Maruyama Mfg Co Ltd Method of manufacturing cylinder for engine, die of cylinder for engine and cylinder for engine
EP2580458B1 (en) * 2010-06-11 2014-10-08 Bernard Macarez Heat-exchanging cylinder head
JP2019043204A (en) 2017-08-30 2019-03-22 本田技研工業株式会社 Saddle-riding type vehicle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Indian Office Action dated Oct. 12, 2022 issued in corresponding Indian application No. 202244015688; English translation included (5 pages).
Japanese Office Action corresponding to Application No. 2021061499 A, dated Feb. 21, 2023, 9 pages.

Also Published As

Publication number Publication date
JP7339293B2 (en) 2023-09-05
JP2022157337A (en) 2022-10-14
US20220314784A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US6971438B2 (en) Vehicle radiator device
US6612391B2 (en) Engine unit for small-sized vehicle
US6578653B2 (en) Motorcycle
US11731502B2 (en) Internal combustion engine
JP2000203483A (en) Swing type power unit
CN101249871A (en) Striding type vehicle
TWI500849B (en) Internal combustion engine and straddle-type vehicle including the same
KR100367974B1 (en) Swing-typed power unit
JPH11278343A (en) Small-sized-vehicle power unit with water-cooled internal combustion engine
WO2021192274A1 (en) Internal combustion engine
JP4058874B2 (en) Scooter type motorcycle
CN102001413B (en) Torsional moment damper device of a straddle type vehicle
US11614049B2 (en) Internal combustion engine
JP5724357B2 (en) Engine breather equipment
JP4719778B2 (en) Swing type power unit
JP7022219B2 (en) Internal combustion engine
JP7019831B2 (en) Internal combustion engine
JP7498213B2 (en) Blower
JP2014070621A (en) Air-cooled internal combustion engine and saddle type vehicle with the same
JPH0722391Y2 (en) Saddle-type four-wheeled vehicle
JP2917258B2 (en) V-belt air-cooled structure of motorcycle transmission
JP2005238988A (en) Cooling structure for vehicular transmission
JP2018167685A (en) Straddle-type vehicle
JP2023147045A (en) Power generator structure
CN102562348B (en) Cooling structure for cylinder cap

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONDA MOTOR CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KATAOKA, DAI;NAGATA, WATARU;FURUYA, MASASHI;AND OTHERS;SIGNING DATES FROM 20220210 TO 20220211;REEL/FRAME:059278/0349

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STCF Information on status: patent grant

Free format text: PATENTED CASE