US10994541B2 - Molded fluid flow structure with saw cut channel - Google Patents

Molded fluid flow structure with saw cut channel Download PDF

Info

Publication number
US10994541B2
US10994541B2 US16/050,912 US201816050912A US10994541B2 US 10994541 B2 US10994541 B2 US 10994541B2 US 201816050912 A US201816050912 A US 201816050912A US 10994541 B2 US10994541 B2 US 10994541B2
Authority
US
United States
Prior art keywords
micro
saw
fluid
molded body
devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/050,912
Other versions
US20180333956A1 (en
Inventor
Chien-Hua Chen
Michael W. Cumbie
Arun K. Agarwal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2013/028207 external-priority patent/WO2014133516A1/en
Priority claimed from PCT/US2013/028216 external-priority patent/WO2014133517A1/en
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Priority to US16/050,912 priority Critical patent/US10994541B2/en
Assigned to HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. reassignment HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AGARWAL, ARUN K., CHEN, CHIEN-HUA, CUMBIE, MICHAEL W.
Publication of US20180333956A1 publication Critical patent/US20180333956A1/en
Application granted granted Critical
Publication of US10994541B2 publication Critical patent/US10994541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1632Manufacturing processes machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14032Structure of the pressure chamber
    • B41J2/1404Geometrical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1601Production of bubble jet print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/0033Moulds or cores; Details thereof or accessories therefor constructed for making articles provided with holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/26Moulds or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/36Removing moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/001Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore a shaping technique combined with cutting, e.g. in parts or slices combined with rearranging and joining the cut parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14145Structure of the manifold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/1433Structure of nozzle plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • B41J2/155Arrangement thereof for line printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1601Production of bubble jet print heads
    • B41J2/1603Production of bubble jet print heads of the front shooter type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1607Production of print heads with piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/162Manufacturing of the nozzle plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1623Manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1628Manufacturing processes etching dry etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1637Manufacturing processes molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1645Manufacturing processes thin film formation thin film formation by spincoating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/767Printing equipment or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14419Manifold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14491Electrical connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/19Assembling head units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/20Modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0228Cutting, sawing, milling or shearing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1316Moulded encapsulation of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49401Fluid pattern dispersing device making, e.g., ink jet

Definitions

  • a printhead die in an inkjet pen or print bar includes a plurality of fluid ejection elements on a surface of a silicon substrate. Fluid flows to the ejection elements through a fluid delivery slot formed in the substrate between opposing substrate surfaces. While fluid delivery slots adequately deliver fluid to fluid ejection elements, there are some disadvantages with such slots. From a cost perspective, for example, ink delivery slots occupy valuable silicon real estate and add significant slot processing cost. In addition, lower printhead die cost is achieved in part through die shrink, which is associated with tighter slot pitch and/or slot width in the silicon substrate. However, shrinking the slot pitch adds excessive assembly costs associated with integrating a small die into the inkjet pen.
  • removing material from the substrate to form an ink delivery slot weakens the printhead die.
  • the printhead die becomes increasingly fragile with the addition of each slot.
  • FIG. 1 is an elevation section view illustrating one example of a molded fluid flow structure implemented as a printhead structure
  • FIG. 2 is a block diagram illustrating an example system implementing a molded fluid flow structure such as the printhead structure of FIG. 1 ;
  • FIG. 3 is a block diagram illustrating an inkjet printer implementing one example of a fluid flow structure in a substrate wide print bar;
  • FIGS. 4-6 illustrate an inkjet print bar implementing one example of a molded fluid flow structure as a printhead structure suitable for use in printer;
  • FIGS. 7-9 illustrate an example process for defining a fluid channel within a molded body of a fluid flow structure using a rotary cutting saw
  • FIG. 10 illustrates an example of a molded fluid flow structure prior to the formation of a saw defined fluid channel
  • FIGS. 11-15 illustrate examples of differently shaped, saw defined fluid channels that can be cut into a molded body of a fluid flow structure
  • FIG. 16 illustrates an example process for making a printhead fluid flow structure having a saw defined fluid channel
  • FIG. 17 is a flow diagram of the example process for defining a fluid channel within a molded body of a fluid flow structure using a rotary cutting saw as illustrated in FIGS. 7-9 ;
  • FIG. 18 is a flow diagram of the example process for making a printhead fluid flow structure having a saw defined fluid channel as illustrated in FIG. 16 .
  • a fluid flow structure enables the use of smaller printhead dies and a simplified method of forming fluid delivery channels to deliver ink from a reservoir on one side of a printhead die to fluid ejection elements on another side of the die.
  • the fluid flow structure includes one or more printhead dies molded into a monolithic body of plastic, epoxy mold compound, or other moldable material.
  • a print bar implementing the new structure includes multiple printhead dies molded into an elongated, singular molded body.
  • the molding enables the use of smaller dies by offloading the fluid delivery channels (i.e., the ink delivery slots) from the die to the molded body of the structure.
  • the molded body effectively grows the size of each die for making external fluid connections and for attaching the dies to other structures.
  • Fluid delivery channels are formed in the fluid flow structure using a cutting saw to plunge cut through the molded body.
  • the described fluid flow structure is not limited to print bars or other types of printhead structures for inkjet printing, but may be implemented in other devices and for other fluid flow applications.
  • the new structure includes a micro device embedded in a molding having a channel or other path for fluid to flow directly into or onto the device.
  • the micro device for example, could be an electronic device, a mechanical device, or a microelectromechanical system (MEMS) device.
  • MEMS microelectromechanical system
  • the fluid flow for example, could be a cooling fluid flow into or onto the micro device or fluid flow into a printhead die or other fluid dispensing micro device.
  • a “micro device” means a device having one or more exterior dimensions less than or equal to 30 mm; “thin” means a thickness less than or equal to 650 ⁇ m; a “sliver” means a thin micro device having a ratio of length to width (L/VV) of at least three; a “printhead structure” and a “printhead die” mean that part of an inkjet printer or other inkjet type dispenser that dispenses fluid from one or more openings.
  • a printhead structure includes one or more printhead dies.
  • “Printhead structure” and “printhead die” are not limited to printing with ink and other printing fluids but also include inkjet type dispensing of other fluids for uses other than or in addition to printing.
  • FIG. 1 is an elevation section view illustrating one example of a molded fluid flow structure 100 implemented as a printhead structure 100 that is suitable for use in a print bar of an inkjet printer.
  • the printhead structure 100 includes a micro device 102 molded into a monolithic body 104 of plastic or other moldable material.
  • a molded body 104 may also be referred to herein as a molding 104 .
  • a micro device 102 could be, for example, an electronic device, a mechanical device, or a microelectromechanical system (MEMS) device.
  • MEMS microelectromechanical system
  • micro device 102 is implemented as a printhead die 102 .
  • Printhead die 102 includes a silicon die substrate 106 comprising a silicon sliver on the order of 100 microns in thickness.
  • the silicon substrate 106 includes fluid feed holes 108 dry etched or otherwise formed therein to enable fluid flow through the substrate 106 from a first exterior surface 110 to a second exterior surface 112 .
  • the silicon substrate 106 further includes a thin silicon cap 114 (i.e., a cap over the silicon substrate 106 ) adjacent to and covering the first exterior surface 110 .
  • the silicon cap 114 is on the order of 30 microns in thickness and can be formed of silicon or some other suitable material.
  • the fluidic architecture defined by layers 116 generally includes ejection chambers 118 having corresponding orifices 120 , a manifold (not shown), and other fluidic channels and structures.
  • the layer(s) 116 can include, for example, a chamber layer formed on the substrate 106 with a separately formed orifice layer over the chamber layer, or they can include a monolithic layer that combines the chamber and orifice layers.
  • Layer(s) 116 are typically formed of an SU8 epoxy or some other polyimide material.
  • the printhead die 102 includes integrated circuitry formed on the substrate 106 using thin film layers and elements not shown in FIG. 1 .
  • each ejection chamber 118 is a thermal ejector element or a piezoelectric ejector element formed on substrate 106 .
  • the ejection elements are actuated to eject drops or streams of ink or other printing fluid from chambers 118 through orifices 120 .
  • the printhead structure 100 also includes signal traces or other conductors 122 connected to printhead die 102 at electrical terminals 124 formed on substrate 106 .
  • Conductors 122 can be formed on structure 100 in various ways.
  • conductors 122 can be formed in an insulating layer 126 as shown in FIG. 1 , by a lamination or deposition process.
  • Insulating layer 126 is typically a polymer material that provides physical support and insulation for conductors 122 .
  • conductors 122 can be molded into molded body 104 .
  • a saw defined fluid channel 128 is formed through the molded body 104 and the thin silicon cap 114 , and connects with the printhead die substrate 106 at the exterior surface 110 .
  • the fluid channel 128 opens a pathway through the molded body and thin silicon cap 114 that enables fluid to flow directly into the silicon substrate 106 through the fluid feed holes 108 , and onto the silicon substrate 106 at exterior surface 110 .
  • the fluid channel 128 is formed through the molded body 104 using a cutting saw such as a rotary cutting saw.
  • FIG. 2 is a block diagram illustrating a system 200 implementing a molded fluid flow structure 100 such as the printhead structure 100 shown in FIG. 1 .
  • System 200 includes a fluid source 202 operatively connected to a fluid mover 204 configured to move fluid to a channel 128 in fluid flow structure 100 , such as a saw defined fluid channel 128 in a printhead structure 100 .
  • a fluid source 202 might include, for example, the atmosphere as a source of air to cool an electronic micro device 102 or a printing fluid supply for a printhead die 102 .
  • Fluid mover 204 represents a pump, a fan, gravity or any other suitable mechanism for moving fluid from source 202 to flow structure 100 .
  • FIG. 3 is a block diagram illustrating an inkjet printer 300 implementing one example of a fluid flow structure 100 in a substrate wide print bar 302 .
  • Printer 300 includes print bar 302 spanning the width of a print substrate 304 , flow regulators 306 associated with print bar 302 , a substrate transport mechanism 308 , ink or other printing fluid supplies 310 , and a printer controller 312 .
  • Controller 312 represents the programming, processor(s) and associated memories, and the electronic circuitry and components needed to control the operative elements of a printer 300 .
  • Print bar 302 includes an arrangement of printhead dies 102 for dispensing printing fluid on to a sheet or continuous web of paper or other print substrate 304 . Each printhead die 102 receives printing fluid through a flow path from supplies 310 into and through flow regulators 306 and fluid channels 128 in print bar 302 .
  • FIGS. 4-6 illustrate an inkjet print bar 302 implementing one example of a molded fluid flow structure 100 as a printhead structure 100 suitable for use in printer 300 of FIG. 3 .
  • printhead dies 102 are embedded in an elongated, monolithic molding 104 and arranged generally end to end in rows 400 in a staggered configuration in which the printhead dies 102 in each row overlap another printhead die in that same row.
  • each row 400 of printhead dies 102 receives printing fluid from a different saw defined fluid channel 128 (illustrated with dashed lines in FIG. 4 ).
  • FIG. 5 illustrates a perspective section view of the inkjet print bar 302 taken along line 5 - 5 in FIG. 4
  • FIG. 6 illustrates a section view of the inkjet print bar 302 taken along line 5 - 5 in FIG. 4 .
  • the section view of FIG. 6 shows various details of a printhead structure 100 as discussed above regarding FIG. 1 .
  • FIGS. 11-15 illustrate examples of differently shaped, saw defined fluid channels 128 that can be readily cut into a molded body 104 of a fluid flow structure 100 using cutting saws having differently shaped peripheral saw blade edges such as those shown in FIGS. 7-9 .
  • FIGS. 7-9 illustrate an example process for defining a fluid channel 128 within a molded body 104 of a fluid flow structure 100 using a rotary cutting saw 700 .
  • FIG. 17 is a flow diagram 1700 of the process illustrated in FIGS. 7-9 .
  • FIG. 7 shows a side elevation view illustrating an example method of forming a saw defined fluid channel 128 in a molded fluid flow structure 100 .
  • the side elevation view of FIG. 7 is taken along line 7 - 7 in both FIGS. 8 and 9 .
  • FIG. 8 shows an elevation section view illustrating an example method of forming a saw defined fluid channel 128 in a molded fluid flow structure 100 using a rotary cutting saw 700 having a generally squared peripheral saw blade edge 800 .
  • the generally squared peripheral saw blade edge 800 is characterized by the sides of the rotary saw 700 remaining parallel to one another all the way to the peripheral edge of the saw.
  • FIG. 9 shows an elevation section view illustrating an example method of forming a saw defined fluid channel 128 in a molded fluid flow structure 100 using a rotary cutting saw 700 having a generally tapered peripheral saw blade edge 900 .
  • the generally tapered peripheral saw blade edge 900 is characterized by the sides of the rotary saw 700 diverging inward toward one another near the peripheral edge of the saw.
  • the section views of FIGS. 8 and 9 are taken along lines 8 - 8 and 9 - 9 in FIG. 7 .
  • the rotary cutting saw 700 is activated to rotate, for example, in a clockwise direction 702 to begin cutting a fluid channel 128 in the structure 100 (step 1702 in FIG. 17 ).
  • the peripheral cutting edge (e.g., 800 , 900 ) of rotary cutting saw 700 can be jagged and/or have an abrasive material formed thereon in order to perform the cutting operation as the saw rotates.
  • the saw 700 can have a diamond encrusted cutting edge.
  • the rotary cutting saw 700 is lowered in a vertical direction to engage and plunge cut the molded body 104 (see dashed line representation 704 of the saw 700 ) (step 1704 in FIG. 17 ).
  • the rotary cutting saw 700 is moved in a first direction 706 perpendicular to the exterior surface 110 of silicon substrate 106 to partially form the fluid channel 128 in the molded body 104 and the silicon cap 114 . That is, the saw 700 is lowered through both the molded body 104 and the silicon cap 114 (see dashed line representation 708 of the saw 700 ) which partially forms the fluid channel 128 .
  • the rotary cutting saw 700 is then moved horizontally to drag cut the molded body 104 and silicon cap 114 (see dashed line representation 710 of the saw 700 ) (step 1706 in FIG. 17 ).
  • the rotary cutting saw 700 is moved in a second direction 712 parallel to the exterior surface 110 of silicon substrate 106 to complete formation of the fluid channel 128 .
  • the rotary cutting saw 700 can then be moved along horizontal direction 714 and vertical direction 716 back to its initial position (step 1708 in FIG. 17 ).
  • the variously shaped, saw defined fluid channels 128 shown in FIGS. 11-15 are formed in the same general manner as just discussed above regarding FIG. 7 .
  • rotary saw blades having differently shaped peripheral cutting edges e.g., FIG. 8, 800 ; FIG. 9, 900
  • the fluid channels 128 are formed such that they run generally parallel to the length of an elongated, monolithic molded body (see FIGS. 4-6 ), and in correspondence with the lengths of the printhead dies 102
  • channels can also be saw cut in different orientations, such as orientations that are perpendicular to those illustrated. Channels cut in such a manner can route fluid through the fluid flow structure 100 in different directions and for varying purposes. For example, channels cut perpendicular to those shown in FIGS. 4-6 , can serve to join two parallel channels with a perpendicular channel link.
  • a molded fluid flow structure 100 is shown prior to the formation of a saw defined fluid channel 128 .
  • the fluid flow structure 100 is configured in the same general manner as discussed above with regard to FIG. 1 , except that the conductors 22 are shown embedded within the molded body 104 rather than within a separate insulating layer 126 . This configuration is used throughout FIGS. 10-15 for the general purpose of simplifying the illustrations.
  • a saw defined fluid channel 128 has been formed with first and second side walls, S 1 and S 2 , that are substantially parallel to one another.
  • the parallel side walls S 1 and S 2 can be formed, for example, using a rotary cutting saw 700 as shown in FIG. 8 .
  • the rotary cutting saw 700 of FIG. 8 has a generally squared peripheral saw blade edge 800 characterized by parallel blade sides, which when plunged into the molded body 104 of fluid flow structure 100 removes molding material and silicon from the thin silicon cap 114 , leaving substantially parallel saw cut side walls, S 1 and S 2 .
  • FIG. 12 illustrates a saw defined fluid channel 128 formed with first and second side walls, S 1 and S 2 , that are tapered with respect to one another.
  • the tapered side walls taper toward one another as they get closer to the fluid feed holes 108 in substrate 106 , and away from one another as they recede from substrate 106 .
  • the tapered side walls S 1 and S 2 can be formed, for example, using a rotary cutting saw 700 as shown in FIG. 9 .
  • the rotary cutting saw 700 of FIG. 9 has a generally tapered peripheral saw blade edge 900 characterized by the sides of the rotary saw 700 diverging inward toward one another near the peripheral edge of the saw.
  • the saw with saw blade edge 900 removes molding material and silicon from the thin silicon cap 114 , leaving tapered, saw cut side walls, S 1 and S 2 .
  • FIGS. 13, 14, and 15 each illustrates a saw defined fluid channel 128 formed with first and second side walls, S 1 and S 2 , that are both substantially parallel and tapered with respect to one another.
  • the parallel sections of side walls S 1 and S 2 can be formed using a rotary cutting saw 700 as shown in FIG. 8
  • the tapered sections of side walls S 1 and S 2 can be formed using a rotary cutting saw 700 as shown in FIG. 9 .
  • Sidewall sections having different tapering angles are formed using cutting saws 700 as shown in FIG. 9 whose sides have varying angles of divergence inward toward one another as they near the peripheral edge of the saw.
  • the parallel sections of side walls S 1 and S 2 are adjacent to the sliver substrate 106 , and the tapered sections taper inward toward one another to meet the parallel sections.
  • the tapered sections of side walls S 1 and S 2 are adjacent to the sliver substrate 106 .
  • the tapered sections taper toward one another to meet the sliver substrate 106 and taper away from one another to meet the parallel side wall sections.
  • parallel sections of side walls S 1 and S 2 are adjacent to the sliver substrate 106 , and a first set of tapered sections taper inward toward one another to meet the parallel sections.
  • a second set of tapered sections taper inward to meet the first set of tapered sections.
  • the saw cut fluid channels 128 shown in FIGS. 11-15 have channel side walls, S 1 and S 2 , formed in various parallel and or tapered configurations.
  • Channel side walls that diverge or taper away from one another as they recede from the printhead sliver substrate 106 provide the benefit of helping air bubbles move away from the orifices 120 , ejection chambers 118 , and fluid feed holes 108 , where they may otherwise hinder or prevent the flow of fluid.
  • the fluid channels 128 shown in FIGS. 11-15 comprise side walls that are parallel and/or divergent as they recede from the sliver substrate 106 .
  • the illustrated channel side wall configurations are not intended to be a limitation as to other shapes and configurations of side walls within saw defined fluid channels 128 . Rather, this disclosure contemplates that other saw defined fluid channels are possible that have side walls shaped in various other configurations not specifically illustrated or discussed.
  • FIG. 16 illustrates an example process for making a printhead fluid flow structure 100 having a saw defined fluid channel 128 .
  • FIG. 18 is a flow diagram 1800 of the process illustrated in FIG. 16 .
  • a printhead die 102 is attached to a carrier 160 using a thermal release tape 162 (step 1802 in FIG. 18 ).
  • the printhead die 102 is placed with the orifice side down onto the carrier 160 .
  • the printhead die 102 is in a pre-processed state such that it already includes layer(s) 116 defining fluidic architectures (e.g., ejection chambers 118 , orifices 120 ), and electrical terminals 124 and ejection elements (not shown) formed on sliver substrate 106 .
  • Fluid feed holes 108 have also already been dry etched or otherwise formed in sliver substrate 106 .
  • the printhead die 102 is molded into a molded body 104 (step 1804 in FIG. 18 ).
  • the die 102 is compression molded using a mold top 164 .
  • the carrier 160 is released from the thermal tape 162 and the tape is removed (step 1806 in FIG. 18 ).
  • a polymer insulating layer 126 is laminate onto the orifice side of the printhead die 102 , and then patterned and cured (step 1808 in FIG. 18 ).
  • An SU8 firing chamber protection layer 166 is deposited over the fluidic architecture layer(s) 116 , as shown in FIG.
  • a metal layer (Cu/Au) is deposited onto the polymer insulating layer 126 and patterned into conductor traces 122 (step 1812 in FIG. 18 ).
  • a top polymer insulating layer 126 is then spin coated over the conductor traces 122 , and then patterned and cured as shown at part “G” of FIG. 16 (step 1814 in FIG. 18 ).
  • the firing chamber protect layer 166 is stripped off and a final cure of the polymer insulating layer 126 is performed (step 1816 in FIG. 18 ).
  • I of FIG.
  • a saw cut fluid channel 128 is then formed into the backside of the printhead fluid flow structure 100 .
  • the fluid channel 128 is formed as described above regarding the fluid channel forming process shown in FIGS. 7 and 17 .
  • the fluid channel 128 can be configured in various shapes such as those discussed above with reference to FIGS. 11-15 .

Abstract

In an embodiment, a fluid flow structure includes a micro device embedded in a molding. A fluid feed hole is formed through the micro device, and a saw defined fluid channel is cut through the molding to fluidically couple the fluid feed hole with the channel.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a Continuation Application of U.S. application Ser. No. 15/485,064, filed Apr. 11, 2017, which is a continuation of U.S. application Ser. No. 14/770,344, filed Aug. 25, 2015, which is a U.S. National Stage Application of International Application No. PCT/US2013/048214, filed Jun. 27, 2013, and which claims priority to International Application No. PCT/US2013/028207, filed Feb. 28, 2013, International Application No. PCT/US2013/028216, filed Feb. 28, 2013, International Application No. PCT/US2013/033046, filed Mar. 20, 2013, and International Application No. PCT/US2013/033865, filed Mar. 26, 2013, each of which is incorporated herein by reference.
BACKGROUND
A printhead die in an inkjet pen or print bar includes a plurality of fluid ejection elements on a surface of a silicon substrate. Fluid flows to the ejection elements through a fluid delivery slot formed in the substrate between opposing substrate surfaces. While fluid delivery slots adequately deliver fluid to fluid ejection elements, there are some disadvantages with such slots. From a cost perspective, for example, ink delivery slots occupy valuable silicon real estate and add significant slot processing cost. In addition, lower printhead die cost is achieved in part through die shrink, which is associated with tighter slot pitch and/or slot width in the silicon substrate. However, shrinking the slot pitch adds excessive assembly costs associated with integrating a small die into the inkjet pen. Structurally, removing material from the substrate to form an ink delivery slot weakens the printhead die. Thus, when a single printhead die has multiple slots (e.g., to improve print quality and speed in a single color printhead die, or to provide different colors in a multicolor printhead die), the printhead die becomes increasingly fragile with the addition of each slot.
BRIEF DESCRIPTION OF THE DRAWINGS
The present embodiments will now be described, by way of example, with reference to the accompanying drawings, in which:
FIG. 1 is an elevation section view illustrating one example of a molded fluid flow structure implemented as a printhead structure;
FIG. 2 is a block diagram illustrating an example system implementing a molded fluid flow structure such as the printhead structure of FIG. 1;
FIG. 3 is a block diagram illustrating an inkjet printer implementing one example of a fluid flow structure in a substrate wide print bar;
FIGS. 4-6 illustrate an inkjet print bar implementing one example of a molded fluid flow structure as a printhead structure suitable for use in printer;
FIGS. 7-9 illustrate an example process for defining a fluid channel within a molded body of a fluid flow structure using a rotary cutting saw;
FIG. 10 illustrates an example of a molded fluid flow structure prior to the formation of a saw defined fluid channel;
FIGS. 11-15 illustrate examples of differently shaped, saw defined fluid channels that can be cut into a molded body of a fluid flow structure;
FIG. 16 illustrates an example process for making a printhead fluid flow structure having a saw defined fluid channel;
FIG. 17 is a flow diagram of the example process for defining a fluid channel within a molded body of a fluid flow structure using a rotary cutting saw as illustrated in FIGS. 7-9;
FIG. 18 is a flow diagram of the example process for making a printhead fluid flow structure having a saw defined fluid channel as illustrated in FIG. 16.
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.
DETAILED DESCRIPTION
Overview
Reducing the cost of conventional inkjet printhead dies has been achieved in the past through shrinking the die size and reducing wafer costs. The die size depends significantly on the pitch of fluid delivery slots that deliver ink from a reservoir on one side of the die to fluid ejection elements on another side of the die. Therefore, prior methods used to shrink the die size have mostly involved reducing the slot pitch and size through a silicon slotting process that can include, for example, laser machining, anisotropic wet etching, dry etching, combinations thereof, and so on. Unfortunately, the silicon slotting process itself adds considerable cost to the printhead die. In addition, successful reductions in slot pitch are increasingly met with diminishing returns, as the costs associated with integrating the shrinking die (resulting from the tighter slot pitch) with an inkjet pen have become excessive.
A fluid flow structure enables the use of smaller printhead dies and a simplified method of forming fluid delivery channels to deliver ink from a reservoir on one side of a printhead die to fluid ejection elements on another side of the die. The fluid flow structure includes one or more printhead dies molded into a monolithic body of plastic, epoxy mold compound, or other moldable material. For example, a print bar implementing the new structure includes multiple printhead dies molded into an elongated, singular molded body. The molding enables the use of smaller dies by offloading the fluid delivery channels (i.e., the ink delivery slots) from the die to the molded body of the structure. Thus, the molded body effectively grows the size of each die for making external fluid connections and for attaching the dies to other structures. Fluid delivery channels are formed in the fluid flow structure using a cutting saw to plunge cut through the molded body.
The described fluid flow structure is not limited to print bars or other types of printhead structures for inkjet printing, but may be implemented in other devices and for other fluid flow applications. Thus, in one example, the new structure includes a micro device embedded in a molding having a channel or other path for fluid to flow directly into or onto the device. The micro device, for example, could be an electronic device, a mechanical device, or a microelectromechanical system (MEMS) device. The fluid flow, for example, could be a cooling fluid flow into or onto the micro device or fluid flow into a printhead die or other fluid dispensing micro device. These and other examples shown in the figures and described below illustrate but do not limit the invention, which is defined in the Claims following this Description.
As used in this document, a “micro device” means a device having one or more exterior dimensions less than or equal to 30 mm; “thin” means a thickness less than or equal to 650 μm; a “sliver” means a thin micro device having a ratio of length to width (L/VV) of at least three; a “printhead structure” and a “printhead die” mean that part of an inkjet printer or other inkjet type dispenser that dispenses fluid from one or more openings. A printhead structure includes one or more printhead dies. “Printhead structure” and “printhead die” are not limited to printing with ink and other printing fluids but also include inkjet type dispensing of other fluids for uses other than or in addition to printing.
Illustrative Embodiments
FIG. 1 is an elevation section view illustrating one example of a molded fluid flow structure 100 implemented as a printhead structure 100 that is suitable for use in a print bar of an inkjet printer. The printhead structure 100 includes a micro device 102 molded into a monolithic body 104 of plastic or other moldable material. A molded body 104 may also be referred to herein as a molding 104. In general, a micro device 102 could be, for example, an electronic device, a mechanical device, or a microelectromechanical system (MEMS) device. In the present printhead structure 100 of FIG. 1, micro device 102 is implemented as a printhead die 102. Printhead die 102 includes a silicon die substrate 106 comprising a silicon sliver on the order of 100 microns in thickness. The silicon substrate 106 includes fluid feed holes 108 dry etched or otherwise formed therein to enable fluid flow through the substrate 106 from a first exterior surface 110 to a second exterior surface 112. The silicon substrate 106 further includes a thin silicon cap 114 (i.e., a cap over the silicon substrate 106) adjacent to and covering the first exterior surface 110. The silicon cap 114 is on the order of 30 microns in thickness and can be formed of silicon or some other suitable material.
Formed on the second exterior surface 112 of substrate 106 are one or more layers 116 that define a fluidic architecture that facilitates the ejection of fluid drops from the printhead structure 100. The fluidic architecture defined by layers 116 generally includes ejection chambers 118 having corresponding orifices 120, a manifold (not shown), and other fluidic channels and structures. The layer(s) 116 can include, for example, a chamber layer formed on the substrate 106 with a separately formed orifice layer over the chamber layer, or they can include a monolithic layer that combines the chamber and orifice layers. Layer(s) 116 are typically formed of an SU8 epoxy or some other polyimide material.
In addition to the fluidic architecture defined by layer(s) 116 on silicon substrate 106, the printhead die 102 includes integrated circuitry formed on the substrate 106 using thin film layers and elements not shown in FIG. 1. For example, corresponding with each ejection chamber 118 is a thermal ejector element or a piezoelectric ejector element formed on substrate 106. The ejection elements are actuated to eject drops or streams of ink or other printing fluid from chambers 118 through orifices 120.
The printhead structure 100 also includes signal traces or other conductors 122 connected to printhead die 102 at electrical terminals 124 formed on substrate 106. Conductors 122 can be formed on structure 100 in various ways. For example, conductors 122 can be formed in an insulating layer 126 as shown in FIG. 1, by a lamination or deposition process. Insulating layer 126 is typically a polymer material that provides physical support and insulation for conductors 122. In other examples, conductors 122 can be molded into molded body 104.
A saw defined fluid channel 128 is formed through the molded body 104 and the thin silicon cap 114, and connects with the printhead die substrate 106 at the exterior surface 110. The fluid channel 128 opens a pathway through the molded body and thin silicon cap 114 that enables fluid to flow directly into the silicon substrate 106 through the fluid feed holes 108, and onto the silicon substrate 106 at exterior surface 110. As discussed in further detail below, the fluid channel 128 is formed through the molded body 104 using a cutting saw such as a rotary cutting saw.
FIG. 2 is a block diagram illustrating a system 200 implementing a molded fluid flow structure 100 such as the printhead structure 100 shown in FIG. 1. System 200 includes a fluid source 202 operatively connected to a fluid mover 204 configured to move fluid to a channel 128 in fluid flow structure 100, such as a saw defined fluid channel 128 in a printhead structure 100. A fluid source 202 might include, for example, the atmosphere as a source of air to cool an electronic micro device 102 or a printing fluid supply for a printhead die 102. Fluid mover 204 represents a pump, a fan, gravity or any other suitable mechanism for moving fluid from source 202 to flow structure 100.
FIG. 3 is a block diagram illustrating an inkjet printer 300 implementing one example of a fluid flow structure 100 in a substrate wide print bar 302. Printer 300 includes print bar 302 spanning the width of a print substrate 304, flow regulators 306 associated with print bar 302, a substrate transport mechanism 308, ink or other printing fluid supplies 310, and a printer controller 312. Controller 312 represents the programming, processor(s) and associated memories, and the electronic circuitry and components needed to control the operative elements of a printer 300. Print bar 302 includes an arrangement of printhead dies 102 for dispensing printing fluid on to a sheet or continuous web of paper or other print substrate 304. Each printhead die 102 receives printing fluid through a flow path from supplies 310 into and through flow regulators 306 and fluid channels 128 in print bar 302.
FIGS. 4-6 illustrate an inkjet print bar 302 implementing one example of a molded fluid flow structure 100 as a printhead structure 100 suitable for use in printer 300 of FIG. 3. Referring to the plan view of FIG. 4, printhead dies 102 are embedded in an elongated, monolithic molding 104 and arranged generally end to end in rows 400 in a staggered configuration in which the printhead dies 102 in each row overlap another printhead die in that same row. In this configuration, each row 400 of printhead dies 102 receives printing fluid from a different saw defined fluid channel 128 (illustrated with dashed lines in FIG. 4). Although four fluid channels 128 feeding four rows 400 of staggered printhead dies 102 is shown (e.g., for printing four different colors), other suitable configurations are possible. FIG. 5 illustrates a perspective section view of the inkjet print bar 302 taken along line 5-5 in FIG. 4, and FIG. 6 illustrates a section view of the inkjet print bar 302 taken along line 5-5 in FIG. 4. The section view of FIG. 6 shows various details of a printhead structure 100 as discussed above regarding FIG. 1.
While a particular shape or configuration of a saw defined fluid channel 128 has been generally illustrated and discussed with reference to FIGS. 1-6, a variety of differently configured fluid channels 128 are achievable using a cutting saw. As discussed below, FIGS. 11-15 illustrate examples of differently shaped, saw defined fluid channels 128 that can be readily cut into a molded body 104 of a fluid flow structure 100 using cutting saws having differently shaped peripheral saw blade edges such as those shown in FIGS. 7-9.
FIGS. 7-9 illustrate an example process for defining a fluid channel 128 within a molded body 104 of a fluid flow structure 100 using a rotary cutting saw 700. FIG. 17 is a flow diagram 1700 of the process illustrated in FIGS. 7-9. FIG. 7 shows a side elevation view illustrating an example method of forming a saw defined fluid channel 128 in a molded fluid flow structure 100. The side elevation view of FIG. 7 is taken along line 7-7 in both FIGS. 8 and 9. FIG. 8 shows an elevation section view illustrating an example method of forming a saw defined fluid channel 128 in a molded fluid flow structure 100 using a rotary cutting saw 700 having a generally squared peripheral saw blade edge 800. The generally squared peripheral saw blade edge 800 is characterized by the sides of the rotary saw 700 remaining parallel to one another all the way to the peripheral edge of the saw. FIG. 9 shows an elevation section view illustrating an example method of forming a saw defined fluid channel 128 in a molded fluid flow structure 100 using a rotary cutting saw 700 having a generally tapered peripheral saw blade edge 900. The generally tapered peripheral saw blade edge 900 is characterized by the sides of the rotary saw 700 diverging inward toward one another near the peripheral edge of the saw. The section views of FIGS. 8 and 9 are taken along lines 8-8 and 9-9 in FIG. 7.
Referring now primarily to FIG. 700 and FIG. 17, while the molded fluid flow structure 100 is held in a fixed position, the rotary cutting saw 700 is activated to rotate, for example, in a clockwise direction 702 to begin cutting a fluid channel 128 in the structure 100 (step 1702 in FIG. 17). The peripheral cutting edge (e.g., 800, 900) of rotary cutting saw 700 can be jagged and/or have an abrasive material formed thereon in order to perform the cutting operation as the saw rotates. For example, the saw 700 can have a diamond encrusted cutting edge. The rotary cutting saw 700 is lowered in a vertical direction to engage and plunge cut the molded body 104 (see dashed line representation 704 of the saw 700) (step 1704 in FIG. 17). In particular, the rotary cutting saw 700 is moved in a first direction 706 perpendicular to the exterior surface 110 of silicon substrate 106 to partially form the fluid channel 128 in the molded body 104 and the silicon cap 114. That is, the saw 700 is lowered through both the molded body 104 and the silicon cap 114 (see dashed line representation 708 of the saw 700) which partially forms the fluid channel 128. The rotary cutting saw 700 is then moved horizontally to drag cut the molded body 104 and silicon cap 114 (see dashed line representation 710 of the saw 700) (step 1706 in FIG. 17). In particular, the rotary cutting saw 700 is moved in a second direction 712 parallel to the exterior surface 110 of silicon substrate 106 to complete formation of the fluid channel 128. The rotary cutting saw 700 can then be moved along horizontal direction 714 and vertical direction 716 back to its initial position (step 1708 in FIG. 17).
The variously shaped, saw defined fluid channels 128 shown in FIGS. 11-15 are formed in the same general manner as just discussed above regarding FIG. 7. However, in forming different shaped channels 128, rotary saw blades having differently shaped peripheral cutting edges (e.g., FIG. 8, 800; FIG. 9, 900) can be used separately or in combination, and in varying orders of application to the molded fluid flow structure 100. Furthermore, while the fluid channels 128 are formed such that they run generally parallel to the length of an elongated, monolithic molded body (see FIGS. 4-6), and in correspondence with the lengths of the printhead dies 102, channels can also be saw cut in different orientations, such as orientations that are perpendicular to those illustrated. Channels cut in such a manner can route fluid through the fluid flow structure 100 in different directions and for varying purposes. For example, channels cut perpendicular to those shown in FIGS. 4-6, can serve to join two parallel channels with a perpendicular channel link.
Referring now to FIG. 10, a molded fluid flow structure 100 is shown prior to the formation of a saw defined fluid channel 128. The fluid flow structure 100 is configured in the same general manner as discussed above with regard to FIG. 1, except that the conductors 22 are shown embedded within the molded body 104 rather than within a separate insulating layer 126. This configuration is used throughout FIGS. 10-15 for the general purpose of simplifying the illustrations.
Referring now to FIG. 11, a saw defined fluid channel 128 has been formed with first and second side walls, S1 and S2, that are substantially parallel to one another. The parallel side walls S1 and S2, can be formed, for example, using a rotary cutting saw 700 as shown in FIG. 8. The rotary cutting saw 700 of FIG. 8 has a generally squared peripheral saw blade edge 800 characterized by parallel blade sides, which when plunged into the molded body 104 of fluid flow structure 100 removes molding material and silicon from the thin silicon cap 114, leaving substantially parallel saw cut side walls, S1 and S2.
FIG. 12 illustrates a saw defined fluid channel 128 formed with first and second side walls, S1 and S2, that are tapered with respect to one another. The tapered side walls taper toward one another as they get closer to the fluid feed holes 108 in substrate 106, and away from one another as they recede from substrate 106. The tapered side walls S1 and S2, can be formed, for example, using a rotary cutting saw 700 as shown in FIG. 9. The rotary cutting saw 700 of FIG. 9 has a generally tapered peripheral saw blade edge 900 characterized by the sides of the rotary saw 700 diverging inward toward one another near the peripheral edge of the saw. When plunged into the molded body 104 of fluid flow structure 100 the saw with saw blade edge 900 removes molding material and silicon from the thin silicon cap 114, leaving tapered, saw cut side walls, S1 and S2.
FIGS. 13, 14, and 15, each illustrates a saw defined fluid channel 128 formed with first and second side walls, S1 and S2, that are both substantially parallel and tapered with respect to one another. The parallel sections of side walls S1 and S2, can be formed using a rotary cutting saw 700 as shown in FIG. 8, and the tapered sections of side walls S1 and S2, can be formed using a rotary cutting saw 700 as shown in FIG. 9. Sidewall sections having different tapering angles are formed using cutting saws 700 as shown in FIG. 9 whose sides have varying angles of divergence inward toward one another as they near the peripheral edge of the saw.
In FIG. 13, the parallel sections of side walls S1 and S2 are adjacent to the sliver substrate 106, and the tapered sections taper inward toward one another to meet the parallel sections. In FIG. 14, the tapered sections of side walls S1 and S2 are adjacent to the sliver substrate 106. The tapered sections taper toward one another to meet the sliver substrate 106 and taper away from one another to meet the parallel side wall sections. In FIG. 15, parallel sections of side walls S1 and S2 are adjacent to the sliver substrate 106, and a first set of tapered sections taper inward toward one another to meet the parallel sections. A second set of tapered sections taper inward to meet the first set of tapered sections.
In general, the saw cut fluid channels 128 shown in FIGS. 11-15 have channel side walls, S1 and S2, formed in various parallel and or tapered configurations. Channel side walls that diverge or taper away from one another as they recede from the printhead sliver substrate 106 provide the benefit of helping air bubbles move away from the orifices 120, ejection chambers 118, and fluid feed holes 108, where they may otherwise hinder or prevent the flow of fluid. Accordingly, the fluid channels 128 shown in FIGS. 11-15 comprise side walls that are parallel and/or divergent as they recede from the sliver substrate 106. However, the illustrated channel side wall configurations are not intended to be a limitation as to other shapes and configurations of side walls within saw defined fluid channels 128. Rather, this disclosure contemplates that other saw defined fluid channels are possible that have side walls shaped in various other configurations not specifically illustrated or discussed.
FIG. 16 illustrates an example process for making a printhead fluid flow structure 100 having a saw defined fluid channel 128. FIG. 18 is a flow diagram 1800 of the process illustrated in FIG. 16. As shown in FIG. 16 at part “A”, a printhead die 102 is attached to a carrier 160 using a thermal release tape 162 (step 1802 in FIG. 18). The printhead die 102 is placed with the orifice side down onto the carrier 160. The printhead die 102 is in a pre-processed state such that it already includes layer(s) 116 defining fluidic architectures (e.g., ejection chambers 118, orifices 120), and electrical terminals 124 and ejection elements (not shown) formed on sliver substrate 106. Fluid feed holes 108 have also already been dry etched or otherwise formed in sliver substrate 106.
As shown at part “B” of FIG. 16, the printhead die 102 is molded into a molded body 104 (step 1804 in FIG. 18). In one example, the die 102 is compression molded using a mold top 164. As shown at part “C” of FIG. 16, the carrier 160 is released from the thermal tape 162 and the tape is removed (step 1806 in FIG. 18). At part “D” of FIG. 16, a polymer insulating layer 126 is laminate onto the orifice side of the printhead die 102, and then patterned and cured (step 1808 in FIG. 18). An SU8 firing chamber protection layer 166 is deposited over the fluidic architecture layer(s) 116, as shown in FIG. 16 at part “E” (step 1810 in FIG. 18). At part “F” as shown in FIG. 16, a metal layer (Cu/Au) is deposited onto the polymer insulating layer 126 and patterned into conductor traces 122 (step 1812 in FIG. 18). A top polymer insulating layer 126 is then spin coated over the conductor traces 122, and then patterned and cured as shown at part “G” of FIG. 16 (step 1814 in FIG. 18). At part “H” of FIG. 16, the firing chamber protect layer 166 is stripped off and a final cure of the polymer insulating layer 126 is performed (step 1816 in FIG. 18). As shown at part “I” of FIG. 16, a saw cut fluid channel 128 is then formed into the backside of the printhead fluid flow structure 100. The fluid channel 128 is formed as described above regarding the fluid channel forming process shown in FIGS. 7 and 17. The fluid channel 128 can be configured in various shapes such as those discussed above with reference to FIGS. 11-15.

Claims (20)

What is claimed is:
1. A micro-device structure comprising:
a plurality of micro-devices;
a molded body of molded plastic or epoxy in which the plurality of micro-devices are embedded; and
conductors coupled to the micro-devices, the conductors formed in an insulating layer disposed on the molded body.
2. The micro-device structure of claim 1, wherein the insulating layer comprises a polymer material to both physically support and electrically insulate the conductors.
3. The structure of claim 1, wherein the micro-devices comprise a microelectromechanical system (MEMS) or electronic micro-device device.
4. The micro-device structure of claim 1, further comprising a saw-defined fluid channel cut into nd through the molded body to provide a fluid flow to each of the micro-devices.
5. The structure of claim 4, further comprising a system to supply a cooling fluid through the saw-defined fluid channel to the micro-devices.
6. The structure of claim 4, wherein each micro-device further comprises a cap that covers a fluid input of that micro-device, the saw-defined fluid channel being cut to extend through the cap so as to fluidically couple with the fluid input of that micro-device.
7. The structure of claim 4, wherein the saw-defined fluid channel comprises first and second tapered side walls along a length of the fluid channel.
8. The structure of claim 7, wherein the tapered side walls taper inward toward a fluid input of each micro-device.
9. The structure of claim 4, wherein the saw-defined fluid channel comprises first and second side walls that include both tapered side wall sections and parallel side wall sections, wherein each of the first and second side walls respectively comprise a tapered section and a parallel section.
10. The structure of claim 4, wherein the printhead dies are arranged in a first row in an end-to-end staggered configuration and a second plurality of printhead dies arranged in a second row in an end-to-end staggered configuration, and wherein the saw-defined fluid channel includes a first saw-defined common fluid channel cut through the molded body to fluid feed holes of the first plurality of printhead dies and a second saw-defined fluid channel cut through the molded body to fluid feed holes of the second plurality of printhead dies.
11. A micro-device structure comprising:
a plurality of micro-devices;
a molded body in which the plurality of micro-devices are embedded, the molded body being molded around the embedded micro-devices; and
conductors coupled to the micro-devices, the conductors formed in an insulating layer disposed on the molded body;
wherein each of the micro-devices comprises a separate printhead die as a fluid dispensing micro device.
12. A method of making the micro-device structure of claim 1, the method comprising:
embedding the plurality of micro-devices in the molded body by forming molded material into the molded body around, above and below the plurality of micro-devices; and
forming a number of the conductors connected to the micro-devices, the conductors being disposed inside the insulating layer that is formed on the molded body.
13. The method of claim 12, further comprising both physically supporting and electrically insulating the conductors with the insulating layer.
14. The method of claim 12, wherein the insulating layer comprises a polymer material.
15. The method of claim 12, wherein the conductors are completely embedded in the insulating layer.
16. The method of claim 12, further comprising using lamination or successive deposition to embed the conductors in the insulating layer.
17. The method of claim 12, further comprising spin coating the insulating layer over the conductors.
18. The method of claim 12, further comprising, with a saw, cutting a saw-defined fluid flow channel cut into and through the molded body to provide a fluid flow channel to each of the micro-devices.
19. The method of claim 18, wherein each micro-device comprises a cap covering a fluid input of that micro-device, the method further comprises, with the saw. cutting through the cap of each micro-device to fluidically couple the fluid input of that micro-device with the fluid flow channel through the molded body.
20. The method of claim 18, wherein cutting the saw-defined fluid channel comprises:
plunge cutting with a rotary cutting saw into the molded body; and,
then, drag cutting a length of the saw-defined fluid flow channel in the molded body.
US16/050,912 2013-02-28 2018-07-31 Molded fluid flow structure with saw cut channel Active US10994541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/050,912 US10994541B2 (en) 2013-02-28 2018-07-31 Molded fluid flow structure with saw cut channel

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
WOPCT/US2013/02820 2013-02-28
PCT/US2013/028207 WO2014133516A1 (en) 2013-02-28 2013-02-28 Molded fluid flow structure
USPCT/US2013/028207 2013-02-28
USPCT/US2013/028216 2013-02-28
PCT/US2013/028216 WO2014133517A1 (en) 2013-02-28 2013-02-28 Molded print bar
WOPCT/US2013/02821 2013-02-28
PCT/US2013/033046 WO2014133561A1 (en) 2013-02-28 2013-03-20 Molding a fluid flow structure
WOPCT/US2013/03304 2013-03-20
USPCT/US2013/033865 2013-03-26
PCT/US2013/033865 WO2014133563A1 (en) 2013-02-28 2013-03-26 Printed circuit board fluid flow structure and method for making a printed circuit board fluid flow structure
WOPCT/US2013/03386 2013-03-26
PCT/US2013/048214 WO2014133576A1 (en) 2013-02-28 2013-06-27 Molded fluid flow structure with saw cut channel
USPCT/US2013/033046 2015-03-20
US201514770344A 2015-08-25 2015-08-25
US15/485,064 US10081188B2 (en) 2013-02-28 2017-04-11 Molded fluid flow structure with saw cut channel
US16/050,912 US10994541B2 (en) 2013-02-28 2018-07-31 Molded fluid flow structure with saw cut channel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/485,064 Continuation US10081188B2 (en) 2013-02-28 2017-04-11 Molded fluid flow structure with saw cut channel

Publications (2)

Publication Number Publication Date
US20180333956A1 US20180333956A1 (en) 2018-11-22
US10994541B2 true US10994541B2 (en) 2021-05-04

Family

ID=51428662

Family Applications (5)

Application Number Title Priority Date Filing Date
US14/770,198 Active 2038-02-15 US11426900B2 (en) 2013-02-28 2013-03-20 Molding a fluid flow structure
US15/308,562 Active 2034-10-10 US10232621B2 (en) 2013-02-28 2014-05-12 Process for making a molded device assembly and printhead assembly
US15/485,064 Active US10081188B2 (en) 2013-02-28 2017-04-11 Molded fluid flow structure with saw cut channel
US15/654,084 Expired - Fee Related US10603916B2 (en) 2013-02-28 2017-07-19 Method of making a fluid structure having compression molded fluid channel
US16/050,912 Active US10994541B2 (en) 2013-02-28 2018-07-31 Molded fluid flow structure with saw cut channel

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US14/770,198 Active 2038-02-15 US11426900B2 (en) 2013-02-28 2013-03-20 Molding a fluid flow structure
US15/308,562 Active 2034-10-10 US10232621B2 (en) 2013-02-28 2014-05-12 Process for making a molded device assembly and printhead assembly
US15/485,064 Active US10081188B2 (en) 2013-02-28 2017-04-11 Molded fluid flow structure with saw cut channel
US15/654,084 Expired - Fee Related US10603916B2 (en) 2013-02-28 2017-07-19 Method of making a fluid structure having compression molded fluid channel

Country Status (7)

Country Link
US (5) US11426900B2 (en)
EP (4) EP2961612B1 (en)
JP (2) JP6068684B2 (en)
KR (2) KR101827070B1 (en)
CN (4) CN105142916B (en)
SG (2) SG11201506770XA (en)
WO (4) WO2014133561A1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105121171B (en) 2013-02-28 2017-11-03 惠普发展公司,有限责任合伙企业 Molding printing rod
US10821729B2 (en) 2013-02-28 2020-11-03 Hewlett-Packard Development Company, L.P. Transfer molded fluid flow structure
KR101827070B1 (en) 2013-02-28 2018-02-07 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Molding a fluid flow structure
CN105189122B (en) 2013-03-20 2017-05-10 惠普发展公司,有限责任合伙企业 Molded die slivers with exposed front and back surfaces
CN105555539B (en) * 2013-09-20 2017-08-15 惠普发展公司,有限责任合伙企业 Print bar and the method for forming print bar
US9889664B2 (en) 2013-09-20 2018-02-13 Hewlett-Packard Development Company, L.P. Molded printhead structure
WO2015116073A1 (en) 2014-01-30 2015-08-06 Hewlett-Packard Development Company, L.P. Printhead dies molded with nozzle health sensor
BR112016024662B1 (en) 2014-04-22 2022-02-01 Hewlett-Packard Development Company, L.P Fluid flow structure and print head
CN107531052B (en) * 2015-05-15 2019-10-11 惠普发展公司有限责任合伙企业 Fluid ejection device
EP3271182B1 (en) * 2015-08-21 2021-12-29 Hewlett-Packard Development Company, L.P. Printing apparatus with an emission device to expose printing material
CN108349254B (en) * 2015-10-12 2020-10-30 惠普发展公司,有限责任合伙企业 Printing head
WO2017065744A1 (en) * 2015-10-13 2017-04-20 Hewlett-Packard Development Company, L.P. Printhead with non-epoxy mold compound
WO2017065772A1 (en) 2015-10-15 2017-04-20 Hewlett-Packard Development Company, L.P. Print head interposers
WO2017078661A1 (en) * 2015-11-02 2017-05-11 Hewlett-Packard Development Company, L.P. Fluid ejection die and plastic-based substrate
KR102115149B1 (en) 2016-02-24 2020-05-26 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Fluid draining device including integrated circuit
JP6639671B2 (en) * 2016-02-29 2020-02-05 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Fluid propulsion device including heat sink
JP6750669B2 (en) 2016-03-29 2020-09-02 富士フイルム和光純薬株式会社 Polyfunctional polymerizable compound and coloring composition
EP3463902A4 (en) * 2016-11-01 2020-06-03 Hewlett-Packard Development Company, L.P. Fluid ejection device
US10549985B2 (en) * 2016-11-25 2020-02-04 Infineon Technologies Ag Semiconductor package with a through port for sensor applications
US10780697B2 (en) 2017-03-15 2020-09-22 Hewlett-Packard Development Company, L.P. Fluid ejection dies
JP2018163017A (en) * 2017-03-24 2018-10-18 東芝テック株式会社 Droplet dispensing device
CN110325372B (en) * 2017-04-05 2022-02-18 惠普发展公司,有限责任合伙企业 Fluid ejection device, print bar, and fluid flow structure
CN110461575B (en) * 2017-05-01 2021-10-01 惠普发展公司,有限责任合伙企业 Method for forming mold sheet and fluid ejection apparatus
CN110461612B (en) * 2017-05-08 2021-06-08 惠普发展公司,有限责任合伙企业 Fluid ejection device and method of operating a fluid ejection device
CN110650846B (en) * 2017-07-17 2021-04-09 惠普发展公司,有限责任合伙企业 Fluidic cartridge and replaceable printhead
WO2019022735A1 (en) * 2017-07-26 2019-01-31 Hewlett-Packard Development Company, L.P. Die contact formations
JP6971377B2 (en) * 2017-07-31 2021-11-24 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Fluid discharge device with built-in cross-passage
US11059291B2 (en) 2017-07-31 2021-07-13 Hewlett-Packard Development Company, L.P. Fluidic ejection dies with enclosed cross-channels
CN110154544B (en) * 2018-02-12 2020-11-24 海德堡印刷机械股份公司 Print bar for ink jet
US11034151B2 (en) 2018-03-12 2021-06-15 Hewlett-Packard Development Company, L.P. Nozzle arrangements
CN111542437B (en) * 2018-03-12 2021-12-28 惠普发展公司,有限责任合伙企业 Fluid ejection apparatus
JP2021514876A (en) 2018-03-12 2021-06-17 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Nozzle array and supply hole
US11020966B2 (en) 2018-04-27 2021-06-01 Canon Kabushiki Kaisha Liquid ejection head substrate, method of manufacturing liquid ejection head substrate, and liquid ejection head
WO2020162925A1 (en) 2019-02-06 2020-08-13 Hewlett-Packard Development Company, L.P. Movable mold insert adjuster
CA3126726C (en) * 2019-02-06 2023-12-05 Hewlett-Packard Development Company, L.P. Fluid ejection devices including electrical interconnect elements for fluid ejection dies
CN113382878B (en) * 2019-02-06 2023-02-03 惠普发展公司,有限责任合伙企业 Applying a chase structure to an end portion of a fluid ejection die
WO2020222736A1 (en) * 2019-04-29 2020-11-05 Hewlett-Packard Development Company, L.P. Fluid ejection device with break(s) in cover layer
US11780227B2 (en) 2019-06-25 2023-10-10 Hewlett-Packard Development Company, L.P. Molded structures with channels
US20220126577A1 (en) * 2019-06-25 2022-04-28 Hewlett-Packard Development Company, L.P. Molded structures with channels
US11975468B2 (en) 2019-07-26 2024-05-07 Hewlett-Packard Development Company, L.P. Coplanar modular printbars
EP3999345A4 (en) * 2019-09-06 2023-03-29 Hewlett-Packard Development Company, L.P. Unsupported top hat layers in printhead dies

Citations (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4224627A (en) * 1979-06-28 1980-09-23 International Business Machines Corporation Seal glass for nozzle assemblies of an ink jet printer
US4460537A (en) 1982-07-26 1984-07-17 Motorola, Inc. Slot transfer molding apparatus and methods
JPS60262649A (en) 1984-06-11 1985-12-26 Canon Inc Liquid injection recording head
JPS61125852A (en) 1984-11-22 1986-06-13 Canon Inc Ink jet recording head
US4633274A (en) 1984-03-30 1986-12-30 Canon Kabushiki Kaisha Liquid ejection recording apparatus
JPS62240562A (en) 1986-04-14 1987-10-21 Matsushita Electric Works Ltd Preparation of wire guide for dot printer
US4881318A (en) 1984-06-11 1989-11-21 Canon Kabushiki Kaisha Method of manufacturing a liquid jet recording head
US4973622A (en) 1989-03-27 1990-11-27 Ppg Industries, Inc. Vinyl chloride-olefin copolymers having good color stability and flexibility for container coatings
JPH04292950A (en) 1990-12-06 1992-10-16 Xerox Corp Ink jet print head with integral filter
JPH0615824A (en) 1992-06-30 1994-01-25 Ricoh Co Ltd Ink jet recording head
JPH06226977A (en) 1993-02-01 1994-08-16 Ricoh Co Ltd Ink jet head
US5387314A (en) 1993-01-25 1995-02-07 Hewlett-Packard Company Fabrication of ink fill slots in thermal ink-jet printheads utilizing chemical micromachining
JPH07227970A (en) 1993-12-22 1995-08-29 Canon Inc Liquid jet head, liquid jet head cartridge and liquid jet device
JPH091812A (en) 1995-06-21 1997-01-07 Canon Inc Manufacture of liquid ejection recording head and manufacturing machine
JPH0929970A (en) 1995-07-19 1997-02-04 Canon Inc Ink jet recording head and manufacture thereof
JPH09131871A (en) 1995-11-08 1997-05-20 Canon Inc Ink jet head and its manufacture and ink jet apparatus
CN1175506A (en) 1996-07-31 1998-03-11 佳能株式会社 Ink jet recording head
CN1197732A (en) 1997-03-28 1998-11-04 莱克斯马克国际公司 Ink jet printer nozzle plates having improved flow feature design
US5841452A (en) 1991-01-30 1998-11-24 Canon Information Systems Research Australia Pty Ltd Method of fabricating bubblejet print devices using semiconductor fabrication techniques
JPH1191108A (en) 1997-09-24 1999-04-06 Fuji Xerox Co Ltd Ink-jet recording head and its manufacture
US5894108A (en) 1997-02-11 1999-04-13 National Semiconductor Corporation Plastic package with exposed die
JPH11208000A (en) 1997-10-30 1999-08-03 Hewlett Packard Co <Hp> Printing method
JP2000108360A (en) 1998-10-02 2000-04-18 Sony Corp Manufacture for print head
EP1027991A2 (en) 1999-02-10 2000-08-16 Canon Kabushiki Kaisha Method for producing liquid discharge head, liquid discharge head produced thereby, head cartridge and liquid discharge apparatus
US6123410A (en) 1997-10-28 2000-09-26 Hewlett-Packard Company Scalable wide-array inkjet printhead and method for fabricating same
US6132028A (en) 1998-05-14 2000-10-17 Hewlett-Packard Company Contoured orifice plate of thermal ink jet print head
US6145965A (en) 1995-06-20 2000-11-14 Canon Kabushiki Kaisha Method for manufacturing an ink jet head, and an ink jet head
US6188414B1 (en) 1998-04-30 2001-02-13 Hewlett-Packard Company Inkjet printhead with preformed substrate
JP2001071490A (en) 1999-09-02 2001-03-21 Ricoh Co Ltd Ink-jet recording device
EP1095773A1 (en) 1999-10-29 2001-05-02 Hewlett-Packard Company, A Delaware Corporation Inkjet printhead having improved reliability
US6227651B1 (en) 1998-09-25 2001-05-08 Hewlett-Packard Company Lead frame-mounted ink jet print head module
US6250738B1 (en) 1997-10-28 2001-06-26 Hewlett-Packard Company Inkjet printing apparatus with ink manifold
US6254819B1 (en) 1999-07-16 2001-07-03 Eastman Kodak Company Forming channel members for ink jet printheads
JP2001246748A (en) 1999-12-27 2001-09-11 Seiko Epson Corp Ink-jet type recording head
US6291317B1 (en) 2000-12-06 2001-09-18 Xerox Corporation Method for dicing of micro devices
CN1314244A (en) 2000-03-21 2001-09-26 惠普公司 Semiconductor base with reinforced anti-breaking strength and its forming method
US6305790B1 (en) 1996-02-07 2001-10-23 Hewlett-Packard Company Fully integrated thermal inkjet printhead having multiple ink feed holes per nozzle
US20010037808A1 (en) 2000-03-04 2001-11-08 Deem Mark E. Methods and devices for use in performing pulmonary procedures
US20020024569A1 (en) 1998-10-16 2002-02-28 Kia Silverbrook Ink supply arrangement for a portable ink jet printer
US20020033867A1 (en) 1999-10-19 2002-03-21 Kia Silverbrook Adhesive-based ink jet print head assembly
US6379988B1 (en) 2000-05-16 2002-04-30 Sandia Corporation Pre-release plastic packaging of MEMS and IMEMS devices
US20020051036A1 (en) 2000-08-25 2002-05-02 Scheffelin Joseph E. Electrical connection for wide-array inkjet printhead assembly with hybrid carrier for printhead dies
US6402301B1 (en) 2000-10-27 2002-06-11 Lexmark International, Inc Ink jet printheads and methods therefor
US6454955B1 (en) 1999-10-29 2002-09-24 Hewlett-Packard Company Electrical interconnect for an inkjet die
US6464333B1 (en) 1998-12-17 2002-10-15 Hewlett-Packard Company Inkjet printhead assembly with hybrid carrier for printhead dies
US20020180846A1 (en) 2000-03-06 2002-12-05 Kia Silverbrook Thermal expansion compensation for printhead assemblies
US20020180825A1 (en) * 2001-06-01 2002-12-05 Shen Buswell Method of forming a fluid delivery slot
JP2003011365A (en) 2001-07-04 2003-01-15 Ricoh Co Ltd Ink jet head and its manufacturing method
JP2003063020A (en) 2001-08-30 2003-03-05 Ricoh Co Ltd Liquid drop ejection head and its manufacturing method
JP2003063010A (en) 2002-08-15 2003-03-05 Seiko Epson Corp Ink jet printing head and ink jet printer
US20030052944A1 (en) 1997-10-28 2003-03-20 Scheffelin Joseph E. Fluid manifold for printhead assembly
US6543879B1 (en) 2001-10-31 2003-04-08 Hewlett-Packard Company Inkjet printhead assembly having very high nozzle packing density
US6554399B2 (en) 2001-02-27 2003-04-29 Hewlett-Packard Development Company, L.P. Interconnected printhead die and carrier substrate system
US20030090558A1 (en) * 2001-11-15 2003-05-15 Coyle Anthony L. Package for printhead chip
US20030140496A1 (en) 2002-01-31 2003-07-31 Shen Buswell Methods and systems for forming slots in a semiconductor substrate
US20030186474A1 (en) 2001-10-31 2003-10-02 Haluzak Charles C. Drop generator for ultra-small droplets
EP1386740A1 (en) 2002-07-31 2004-02-04 Hewlett-Packard Company Slotted substrate
US20040032468A1 (en) 2002-08-13 2004-02-19 Killmeier Eric Louis Printhead corrosion protection
US20040055145A1 (en) 2002-01-31 2004-03-25 Shen Buswell Substrate slot formation
US20040084404A1 (en) 2002-10-30 2004-05-06 Jeremy Donaldson Slotted substrate and method of making
US20040095422A1 (en) 2001-12-18 2004-05-20 Takeo Eguchi Print Head
JP2004148827A (en) 2002-10-30 2004-05-27 Hewlett-Packard Development Co Lp Print head assembly and method of forming the same
US20040119774A1 (en) 2000-08-23 2004-06-24 Telecom Italia S.P.A. Monolithic printhead with self-aligned groove and relative manufacturing process
CN1512936A (en) 2001-06-05 2004-07-14 Nozzle plate for droplet deposition apparatus
CN1530229A (en) 2003-03-17 2004-09-22 ������������ʽ���� Recorder and recording method thereof
US20040196334A1 (en) 2003-04-02 2004-10-07 Cornell Robert Wilson Thin film heater resistor for an ink jet printer
CN1541839A (en) 2003-05-01 2004-11-03 三星电子株式会社 Ink-jet printhead package
KR20040097848A (en) 2003-05-13 2004-11-18 삼성전자주식회사 Method of manufacturing Monolithic inkjet printhead
US20040233254A1 (en) 2002-10-11 2004-11-25 Samsung Electronics Co., Ltd. Ink-jet printhead and method of manufacturing the ink-jet printhead
US20050018016A1 (en) 1997-07-15 2005-01-27 Silverbrook Research Pty Ltd Inkjet nozzle array with individual feed channel for each nozzle
US20050024444A1 (en) 2000-04-10 2005-02-03 Olivetti Tecnost S.P.A. Monolithic printhead with multiple ink feeder channels and relative manufacturing process
US20050030358A1 (en) 2003-08-06 2005-02-10 Mark Haines Filter for printhead assembly
CN1593924A (en) 2003-09-10 2005-03-16 财团法人工业技术研究院 Ink jetting head assembly and production method thereof
US20050116995A1 (en) 2003-10-24 2005-06-02 Toru Tanikawa Head module, liquid jetting head, liquid jetting apparatus, method of manufacturing head module, and method of manufacturing liquid jetting head
US20050122378A1 (en) 2003-12-03 2005-06-09 Canon Kabushiki Kaisha Ink jet recording head and manufacturing method thereof
US20050162466A1 (en) 1999-06-30 2005-07-28 Kia Silverbrook Inkjet printhead assembly having aligned printhead segments
JP2005212134A (en) 2004-01-27 2005-08-11 Fuji Xerox Co Ltd Ink jet recording head and ink jet recorder
US6930055B1 (en) 2004-05-26 2005-08-16 Hewlett-Packard Development Company, L.P. Substrates having features formed therein and methods of forming
US20060022273A1 (en) 2004-07-30 2006-02-02 David Halk System and method for assembly of semiconductor dies to flexible circuits
US20060028510A1 (en) 2004-08-05 2006-02-09 Park Byung-Ha Method of fabricating an inkjet print head using a photo-curable resin composition
US20060066674A1 (en) 2004-09-24 2006-03-30 Brother Kogyo Kabushiki Kaisha Liquid-jetting apparatus and method for producing the same
US20060132543A1 (en) 2004-12-20 2006-06-22 Palo Alto Research Center Incorporated Low cost piezo printhead based on microfluidics in printed circuit board and screen-printed piezoelectrics
US20060256162A1 (en) 2005-05-10 2006-11-16 Canon Kabushiki Kaisha Liquid jet head and method for producing the same
JP2006315321A (en) 2005-05-13 2006-11-24 Canon Inc Method for manufacturing ink-jet recording head
JP2006321222A (en) 2005-04-18 2006-11-30 Canon Inc Liquid ejection head
CN1872554A (en) 2005-06-03 2006-12-06 佳能株式会社 Ink jet printing apparatus, ink jet printing method and method of setting print control mode
US20070139470A1 (en) 2005-12-21 2007-06-21 Samsung Electronics Co., Ltd. Array printhead and inkjet image forming apparatus having the same
US20070188561A1 (en) 2006-02-02 2007-08-16 Takeo Eguchi Liquid ejecting head and liquid ejecting apparatus
JP2007531645A (en) 2004-03-31 2007-11-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Features in a substrate and method for forming the same
US20080061393A1 (en) 2006-09-08 2008-03-13 Lingsen Precision Industries, Ltd. Photosensitive chip molding package
US20080079781A1 (en) 2006-10-02 2008-04-03 Samsung Electronics Co., Ltd. Inkjet printhead and method of manufacturing the same
US20080149024A1 (en) 2006-12-21 2008-06-26 Petruchik Dwight J Insert molded printhead substrate
US20080174636A1 (en) 2007-01-18 2008-07-24 Samsung Electronics Co., Ltd. Inkjet printer and inkjet printer head-chip assembly thereof
CN101274523A (en) 2007-03-28 2008-10-01 施乐公司 Self aligned port hole opening process for ink jet print heads
US20080259125A1 (en) 2007-04-23 2008-10-23 Haluzak Charles C Microfluidic device and a fluid ejection device incorporating the same
US20080292986A1 (en) 2007-05-22 2008-11-27 Samsung Electronics Co., Ltd. Inkjet printhead and method of manufacturing the same
US20080297564A1 (en) 2007-05-29 2008-12-04 Samsung Electronics Co., Ltd. Inkjet printhead
WO2008151216A1 (en) 2007-06-04 2008-12-11 Lexmark International, Inc. Composite ceramic substrate for micro-fluid ejection head
US20090009559A1 (en) 2007-05-08 2009-01-08 Canon Kabushiki Kaisha Liquid ejection head and method for manufacturing liquid ejection head
US20090022199A1 (en) * 2005-11-30 2009-01-22 Naoto Jikutani Surface light emitting laser element, surface light emitting laser array provided with it, electro-photographic system and optical communication system
CN101372172A (en) 2007-08-26 2009-02-25 索尼株式会社 Ejection condition adjustment apparatus, droplet ejecting apparatus, and ejection condition adjustment method and program
US20090086449A1 (en) 2007-09-27 2009-04-02 Masanori Minamio Optical device and manufacturing method thereof
US20090225131A1 (en) 2008-03-10 2009-09-10 Chien-Hua Chen Fluid Ejector Structure and Fabrication Method
US7591535B2 (en) 2007-08-13 2009-09-22 Xerox Corporation Maintainable coplanar front face for silicon die array printhead
JP2009255448A (en) 2008-04-18 2009-11-05 Canon Inc Inkjet recording head
CN101607477A (en) 2008-06-06 2009-12-23 佳能株式会社 The manufacture method of ink jet-print head and ink jet-print head
WO2010005434A1 (en) 2008-07-09 2010-01-14 Hewlett-Packard Development Company, L.P. Print head slot ribs
JP2010023341A (en) 2008-07-18 2010-02-04 Canon Inc Inkjet recording head
US7658470B1 (en) 2005-04-28 2010-02-09 Hewlett-Packard Development Company, L.P. Method of using a flexible circuit
US20100035373A1 (en) 2008-08-11 2010-02-11 Werner Hunziker Method for manufacturing a sensor device with a stress relief layer
JP2010137460A (en) 2008-12-12 2010-06-24 Canon Inc Method for manufacturing inkjet recording head
US20100224983A1 (en) 2009-03-03 2010-09-09 Min-Lung Huang Semiconductor package structure and manufacturing method thereof
US20100271445A1 (en) 2008-01-09 2010-10-28 Alok Sharan Fluid Ejection Cartridge And Method
US7824013B2 (en) 2007-09-25 2010-11-02 Silverbrook Research Pty Ltd Integrated circuit support for low profile wire bond
US20110019210A1 (en) 2008-05-06 2011-01-27 Chung Bradley D Printhead feed slot ribs
US7877875B2 (en) 2008-08-19 2011-02-01 Silverbrook Research Pty Ltd Method for connecting a flexible printed circuit board (PCB) to a printhead assembly
US20110037808A1 (en) 2009-08-11 2011-02-17 Ciminelli Mario J Metalized printhead substrate overmolded with plastic
US20110080450A1 (en) 2009-10-05 2011-04-07 Ciminelli Mario J Fluid ejection assembly having a mounting substrate
WO2011058719A1 (en) 2009-11-11 2011-05-19 Canon Kabushiki Kaisha Method for manufacturing liquid ejection head
US20110141691A1 (en) 2009-12-11 2011-06-16 Slaton David S Systems and methods for manufacturing synthetic jets
US20110222239A1 (en) 2010-03-10 2011-09-15 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling devices, power modules, and vehicles incorporating the same
US20110292124A1 (en) 2010-05-27 2011-12-01 Frank Edward Anderson Laminate constructs for micro-fluid ejection devices
US20110292121A1 (en) * 2009-07-27 2011-12-01 Silverbrook Research Pty Ltd Mems integrated circuit having backside connections to drive circuitry via mems roof layer
JP2011240516A (en) 2010-05-14 2011-12-01 Canon Inc Element substrate and printed wiring board
US20110292126A1 (en) 2010-05-27 2011-12-01 Xerox Corporation Molded nozzle plate with alignment features for simplified assembly
US20110298868A1 (en) 2010-06-07 2011-12-08 Silverbrook Research Pty Ltd Inkjet printhead having hydrophilic ink pathways
TW201144081A (en) 2010-06-07 2011-12-16 Silverbrook Res Pty Ltd Inkjet printhead having hydrophilic ink pathways
US20120000595A1 (en) 2010-06-04 2012-01-05 Ngk Insulators, Ltd. Method for manufacturing a droplet discharge head
US20120019593A1 (en) 2010-07-20 2012-01-26 Scheffelin Joseph E Print bar structure
US8163463B2 (en) 2007-08-07 2012-04-24 Samsung Electronics Co., Ltd. Photoresist composition, method of forming pattern using the photoresist composition and inkjet print head
US20120124835A1 (en) 2010-11-24 2012-05-24 Canon Kabushiki Kaisha Liquid ejection head manufacturing method
US20120154486A1 (en) * 2010-12-21 2012-06-21 Frank Anderson Micro-Fluid Ejection Head
US20120186079A1 (en) 2011-01-26 2012-07-26 Ciminelli Mario J Method of protecting printhead die face
US8235500B2 (en) 2007-03-30 2012-08-07 Xerox Corporation Cast-in place ink feed structure using encapsulant
WO2012106661A2 (en) 2011-02-04 2012-08-09 Kateeva, Inc. Low-profile mems thermal printhead die having backside electrical connections
US20120212540A1 (en) 2011-02-23 2012-08-23 Dietl Steven J Printhead assembly and fluidic connection of die
JP2012158150A (en) 2011-02-02 2012-08-23 Canon Inc Inkjet recording head and method of manufacturing the same
US20120210580A1 (en) 2011-02-23 2012-08-23 Dietl Steven J Method of assembling an inkjet printhead
CN102673155A (en) 2011-03-10 2012-09-19 佳能株式会社 Liquid ejection head
US20120242752A1 (en) 2011-03-23 2012-09-27 Mou Hao Jan Inkjet printhead
WO2012134480A1 (en) 2011-03-31 2012-10-04 Hewlett-Packard Development Company, L.P. Printhead assembly
US8287104B2 (en) 2009-11-19 2012-10-16 Hewlett-Packard Development Company, L.P. Inkjet printhead with graded die carrier
WO2012168121A1 (en) 2011-06-06 2012-12-13 Olivetti S.P.A. Ink jet print head comprising a layer made by a curable resin composition
DE102011078906A1 (en) 2011-07-11 2013-01-17 Osram Opto Semiconductors Gmbh METHOD FOR PRODUCING AN OPTOELECTRONIC SEMICONDUCTOR COMPONENT BY MEANS OF SPRAYING
US20130029056A1 (en) 2011-07-26 2013-01-31 Canon Kabushiki Kaisha Method for manufacturing liquid ejecting head
US20130027466A1 (en) 2011-07-27 2013-01-31 Petruchik Dwight J Inkjet printhead with layered ceramic mounting substrate
US8405232B2 (en) 2010-06-11 2013-03-26 Advanced Semiconductor Engineering, Inc. Chip package structure
US8429820B2 (en) 2010-09-01 2013-04-30 Canon Kabushiki Kaisha Method of manufacturing liquid discharge head
US20160001552A1 (en) 2013-02-28 2016-01-07 Hewlett-Packard Development Company, L.P. Molded print bar
US20160009085A1 (en) 2013-02-28 2016-01-14 Hewlett-Packard Development Company, L.P. Transfer molded fluid flow structure
US20160009084A1 (en) 2013-02-28 2016-01-14 Hewlett-Packard Development Company, L.P. Molded fluid flow structure
US20180326724A1 (en) 2014-01-28 2018-11-15 Hewlett-Packard Development Company, L.P. Flexible carrier for fluid flow structure

Family Cites Families (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112754A (en) 1981-12-26 1983-07-05 Konishiroku Photo Ind Co Ltd Recording head for ink jet recorder
US5016023A (en) 1989-10-06 1991-05-14 Hewlett-Packard Company Large expandable array thermal ink jet pen and method of manufacturing same
US5160945A (en) 1991-05-10 1992-11-03 Xerox Corporation Pagewidth thermal ink jet printhead
US5565900A (en) 1994-02-04 1996-10-15 Hewlett-Packard Company Unit print head assembly for ink-jet printing
JP3268937B2 (en) 1994-04-14 2002-03-25 キヤノン株式会社 Substrate for inkjet recording head and head using the same
US5538586A (en) 1994-10-04 1996-07-23 Hewlett-Packard Company Adhesiveless encapsulation of tab circuit traces for ink-jet pen
EP0755793B1 (en) 1995-07-26 2001-04-04 Sony Corporation Printer apparatus and method of production of same
US5745131A (en) 1995-08-03 1998-04-28 Xerox Corporation Gray scale ink jet printer
US6179410B1 (en) 1996-03-22 2001-01-30 Sony Corporation Printer
US6281914B1 (en) 1996-11-13 2001-08-28 Brother Kogyo Kabushiki Kaisa Ink jet-type printer device with printer head on circuit board
US5719605A (en) 1996-11-20 1998-02-17 Lexmark International, Inc. Large array heater chips for thermal ink jet printheads
US7708372B2 (en) 1997-07-15 2010-05-04 Silverbrook Research Pty Ltd Inkjet nozzle with ink feed channels etched from back of wafer
US6918654B2 (en) 1997-07-15 2005-07-19 Silverbrook Research Pty Ltd Ink distribution assembly for an ink jet printhead
US5847725A (en) 1997-07-28 1998-12-08 Hewlett-Packard Company Expansion relief for orifice plate of thermal ink jet print head
US6022482A (en) 1997-08-04 2000-02-08 Xerox Corporation Monolithic ink jet printhead
US20020041308A1 (en) 1998-08-05 2002-04-11 Cleland Todd A. Method of manufacturing an orifice plate having a plurality of slits
US6705705B2 (en) 1998-12-17 2004-03-16 Hewlett-Packard Development Company, L.P. Substrate for fluid ejection devices
CN1286172A (en) 1999-08-25 2001-03-07 美商·惠普公司 Method for mfg. film ink-jet print head
US6190002B1 (en) 1999-10-27 2001-02-20 Lexmark International, Inc. Ink jet pen
JP4533522B2 (en) 1999-10-29 2010-09-01 ヒューレット・パッカード・カンパニー Electrical interconnect for inkjet die
US6786658B2 (en) 2000-05-23 2004-09-07 Silverbrook Research Pty. Ltd. Printer for accommodating varying page thicknesses
JP4557386B2 (en) 2000-07-10 2010-10-06 キヤノン株式会社 Manufacturing method for recording head substrate
US6398348B1 (en) 2000-09-05 2002-06-04 Hewlett-Packard Company Printing structure with insulator layer
US6896359B1 (en) 2000-09-06 2005-05-24 Canon Kabushiki Kaisha Ink jet recording head and method for manufacturing ink jet recording head
JP4672840B2 (en) 2000-09-06 2011-04-20 キヤノン株式会社 Liquid discharge head
KR100677752B1 (en) 2000-09-29 2007-02-05 삼성전자주식회사 Ink-jet printer head and method of manufacturing thereof
JP2002291262A (en) 2001-03-27 2002-10-04 Hitachi Metals Ltd Piezoelectric actuator and liquid eject head using it
JP2002326117A (en) * 2001-04-25 2002-11-12 Nakamura Seisakusho Kk Cavity forming method in metal plate
US6561632B2 (en) 2001-06-06 2003-05-13 Hewlett-Packard Development Company, L.P. Printhead with high nozzle packing density
US6805432B1 (en) 2001-07-31 2004-10-19 Hewlett-Packard Development Company, L.P. Fluid ejecting device with fluid feed slot
US6595619B2 (en) 2001-10-30 2003-07-22 Hewlett-Packard Development Company, L.P. Printing mechanism service station for a printbar assembly
JP4274513B2 (en) 2002-02-15 2009-06-10 キヤノン株式会社 Liquid jet recording head
US6705697B2 (en) 2002-03-06 2004-03-16 Xerox Corporation Serial data input full width array print bar method and apparatus
US6869166B2 (en) 2003-04-09 2005-03-22 Joaquim Brugue Multi-die fluid ejection apparatus and method
JP3673266B2 (en) * 2003-08-22 2005-07-20 株式会社東芝 Method for manufacturing mover for electrostatic actuator
JP3952048B2 (en) 2003-09-29 2007-08-01 ブラザー工業株式会社 Liquid transfer device and method for manufacturing liquid transfer device
US7524016B2 (en) 2004-01-21 2009-04-28 Silverbrook Research Pty Ltd Cartridge unit having negatively pressurized ink storage
US7240991B2 (en) 2004-03-09 2007-07-10 Hewlett-Packard Development Company, L.P. Fluid ejection device and manufacturing method
US7597424B2 (en) 2004-05-27 2009-10-06 Canon Kabushiki Kaisha Printhead substrate, printhead, head cartridge, and printing apparatus
US7475964B2 (en) 2004-08-06 2009-01-13 Hewlett-Packard Development Company, L.P. Electrical contact encapsulation
US7498666B2 (en) 2004-09-27 2009-03-03 Nokia Corporation Stacked integrated circuit
JP4290154B2 (en) 2004-12-08 2009-07-01 キヤノン株式会社 Liquid discharge recording head and ink jet recording apparatus
TWI295632B (en) 2005-01-21 2008-04-11 Canon Kk Ink jet recording head, producing method therefor and composition for ink jet recording head
JP2006212984A (en) 2005-02-04 2006-08-17 Fuji Photo Film Co Ltd Liquid discharging port forming method
JP2006224624A (en) 2005-02-21 2006-08-31 Fuji Xerox Co Ltd Laminated nozzle plate, liquid droplet discharge head and method for manufacturing laminated nozzle plate
US7249817B2 (en) 2005-03-17 2007-07-31 Hewlett-Packard Development Company, L.P. Printer having image dividing modes
KR100601725B1 (en) 2005-06-10 2006-07-18 삼성전자주식회사 Thermal printer
CN100393519C (en) 2005-07-27 2008-06-11 国际联合科技股份有限公司 Method for making through-hole and jetting plate of ink-jetting printing head device
CN100463801C (en) 2005-07-27 2009-02-25 国际联合科技股份有限公司 Method for making through-hole and jetting plate of ink-jetting printing head device
JP4854336B2 (en) 2006-03-07 2012-01-18 キヤノン株式会社 Manufacturing method of substrate for inkjet head
JP2008012911A (en) 2006-06-07 2008-01-24 Canon Inc Liquid ejection head and its manufacturing method
JP2008009149A (en) 2006-06-29 2008-01-17 Canon Inc Image forming apparatus
US7898093B1 (en) 2006-11-02 2011-03-01 Amkor Technology, Inc. Exposed die overmolded flip chip package and fabrication method
US20080186187A1 (en) 2007-02-06 2008-08-07 Christopher Alan Adkins Ink tank having integrated rfid tag
JP2008238485A (en) 2007-03-26 2008-10-09 Fujifilm Corp Inkjet recording method and inkjet recording apparatus
CN101663591A (en) 2007-03-26 2010-03-03 株式会社爱德万测试 Connecting board, probe card and electronic component testing apparatus provided with the probe card
CN101274514B (en) 2007-03-29 2013-03-27 研能科技股份有限公司 Color ink gun structure
CN101274515B (en) 2007-03-29 2013-04-24 研能科技股份有限公司 Monochrome ink gun structure
US7862160B2 (en) 2007-03-30 2011-01-04 Xerox Corporation Hybrid manifold for an ink jet printhead
JP2008273183A (en) 2007-04-03 2008-11-13 Canon Inc Ink-jet recording head, ink-jet recording head manufacturing method, and recording device
JP5037214B2 (en) 2007-05-01 2012-09-26 Jx日鉱日石エネルギー株式会社 Reformer system, fuel cell system, and operation method thereof
US8047156B2 (en) 2007-07-02 2011-11-01 Hewlett-Packard Development Company, L.P. Dice with polymer ribs
US7571970B2 (en) 2007-07-13 2009-08-11 Xerox Corporation Self-aligned precision datums for array die placement
JP5219439B2 (en) 2007-09-06 2013-06-26 キヤノン株式会社 Manufacturing method of substrate for ink jet recording head
US8063318B2 (en) 2007-09-25 2011-11-22 Silverbrook Research Pty Ltd Electronic component with wire bonds in low modulus fill encapsulant
TWI347666B (en) 2007-12-12 2011-08-21 Techwin Opto Electronics Co Ltd Led leadframe manufacturing method
US7938513B2 (en) 2008-04-11 2011-05-10 Lexmark International, Inc. Heater chips with silicon die bonded on silicon substrate and methods of fabricating the heater chips
WO2009143025A1 (en) 2008-05-22 2009-11-26 Fujifilm Corporation Actuatable device with die and integrated circuit element
US7862147B2 (en) 2008-09-30 2011-01-04 Eastman Kodak Company Inclined feature to protect printhead face
US8251497B2 (en) 2008-12-18 2012-08-28 Eastman Kodak Company Injection molded mounting substrate
US8197031B2 (en) 2009-05-22 2012-06-12 Xerox Corporation Fluid dispensing subassembly with polymer layer
US8096640B2 (en) 2009-05-27 2012-01-17 Hewlett-Packard Development Company, L.P. Print bar
JPWO2011001502A1 (en) 2009-06-30 2012-12-10 株式会社永木精機 Grabber
JP2009266251A (en) 2009-07-01 2009-11-12 Shigeo Nakaishi Methods for displaying electronic function graph and acquiring coordinate, device for displaying electronic function graph and acquiring coordinate, and program
US8287095B2 (en) 2009-07-27 2012-10-16 Zamtec Limited Printhead integrated comprising through-silicon connectors
US8101438B2 (en) 2009-07-27 2012-01-24 Silverbrook Research Pty Ltd Method of fabricating printhead integrated circuit with backside electrical connections
JP4897023B2 (en) 2009-09-18 2012-03-14 富士フイルム株式会社 Ink composition, ink set, and inkjet image forming method
JP5717527B2 (en) 2010-05-19 2015-05-13 キヤノン株式会社 Liquid discharge head
US8430474B2 (en) 2010-06-10 2013-04-30 Eastman Kodak Company Die mounting assembly formed of dissimilar materials
JP5627307B2 (en) 2010-06-18 2014-11-19 キヤノン株式会社 Substrate for liquid discharge head and liquid discharge head
KR101192307B1 (en) 2010-07-15 2012-10-17 (주)라이스텍 Novel Strain of Lactic Acid Bacteria Capable of Producing Gamma-Amino Butyric Acid and Preparing Method for Gamma-Amino Butyric Acid Using the Same
CN103052507B (en) 2010-08-19 2015-01-07 惠普发展公司,有限责任合伙企业 Wide-array inkjet printhead assembly with a shroud
WO2012023941A1 (en) 2010-08-19 2012-02-23 Hewlett-Packard Development Company, L.P. Wide-array inkjet printhead assembly
US8753926B2 (en) 2010-09-14 2014-06-17 Qualcomm Incorporated Electronic packaging with a variable thickness mold cap
US20120098114A1 (en) 2010-10-21 2012-04-26 Nokia Corporation Device with mold cap and method thereof
JP5843444B2 (en) 2011-01-07 2016-01-13 キヤノン株式会社 Method for manufacturing liquid discharge head and liquid discharge head
US20120188307A1 (en) 2011-01-26 2012-07-26 Ciminelli Mario J Inkjet printhead with protective spacer
US8485637B2 (en) 2011-01-27 2013-07-16 Eastman Kodak Company Carriage with capping surface for inkjet printhead
CN102689511B (en) 2011-03-23 2015-02-18 研能科技股份有限公司 Ink gun structure
CN102689512B (en) 2011-03-23 2015-03-11 研能科技股份有限公司 Ink gun structure
US8556611B2 (en) 2011-06-21 2013-10-15 Xerox Corporation Method for interstitial polymer planarization using a flexible flat plate
WO2013016048A1 (en) 2011-07-27 2013-01-31 Eastman Kodak Company Inkjet printhead with layered ceramic mounting substrate
JP5762200B2 (en) 2011-07-29 2015-08-12 キヤノン株式会社 Manufacturing method of substrate for liquid discharge head
JP5861815B2 (en) 2011-08-10 2016-02-16 セイコーエプソン株式会社 Ink composition, recording unit and ink jet recording apparatus using the same, and recorded matter
DE102011084582B3 (en) 2011-10-17 2013-02-21 Robert Bosch Gmbh Micromechanical sensor device, particularly micromechanical pressure sensors, microphones, acceleration sensors or optical sensors, has substrate, circuit chip fixed on substrate and mold package, in which circuit chip is packaged
US8887393B2 (en) 2012-01-27 2014-11-18 Eastman Kodak Company Fabrication of an inkjet printhead mounting substrate
US8690296B2 (en) 2012-01-27 2014-04-08 Eastman Kodak Company Inkjet printhead with multi-layer mounting substrate
US8876256B2 (en) 2012-02-03 2014-11-04 Hewlett-Packard Development Company, L.P. Print head die
US9308726B2 (en) 2012-02-16 2016-04-12 Xerox Corporation Printhead fluid paths formed with sacrificial material patterned using additive manufacturing processes
US20140028768A1 (en) 2012-05-18 2014-01-30 Meijet Coating and Inks, Inc. Method and system for printing untreated textile in an inkjet printer
US8890269B2 (en) 2012-05-31 2014-11-18 Stmicroelectronics Pte Ltd. Optical sensor package with through vias
KR102011450B1 (en) 2012-06-21 2019-08-19 삼성디스플레이 주식회사 Inkjet print head and method for manufacturing the same
EP2834998A4 (en) 2012-07-18 2015-11-18 Viber Media S A R L Messaging service active device
JP5580874B2 (en) 2012-12-25 2014-08-27 京セラドキュメントソリューションズ株式会社 Recording liquid and image forming apparatus using the same
KR101827070B1 (en) 2013-02-28 2018-02-07 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Molding a fluid flow structure
US9517626B2 (en) 2013-02-28 2016-12-13 Hewlett-Packard Development Company, L.P. Printed circuit board fluid ejection apparatus
US9731509B2 (en) 2013-02-28 2017-08-15 Hewlett-Packard Development Company, L.P. Fluid structure with compression molded fluid channel
US9446587B2 (en) 2013-02-28 2016-09-20 Hewlett-Packard Development Company, L.P. Molded printhead
US9539814B2 (en) 2013-02-28 2017-01-10 Hewlett-Packard Development Company, L.P. Molded printhead
WO2014153305A1 (en) 2013-03-20 2014-09-25 Hewlett-Packard Development Company, L.P. Molded die slivers with exposed front and back surfaces
CN105189122B (en) 2013-03-20 2017-05-10 惠普发展公司,有限责任合伙企业 Molded die slivers with exposed front and back surfaces
US10421274B2 (en) 2014-01-28 2019-09-24 Hewlett-Packard Devleopment Company. L.P. Printbars and methods of forming printbars
US9550358B2 (en) 2014-05-13 2017-01-24 Xerox Corporation Printhead with narrow aspect ratio

Patent Citations (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4224627A (en) * 1979-06-28 1980-09-23 International Business Machines Corporation Seal glass for nozzle assemblies of an ink jet printer
US4460537A (en) 1982-07-26 1984-07-17 Motorola, Inc. Slot transfer molding apparatus and methods
US4633274A (en) 1984-03-30 1986-12-30 Canon Kabushiki Kaisha Liquid ejection recording apparatus
JPS60262649A (en) 1984-06-11 1985-12-26 Canon Inc Liquid injection recording head
US4873622A (en) 1984-06-11 1989-10-10 Canon Kabushiki Kaisha Liquid jet recording head
US4881318A (en) 1984-06-11 1989-11-21 Canon Kabushiki Kaisha Method of manufacturing a liquid jet recording head
JPS61125852A (en) 1984-11-22 1986-06-13 Canon Inc Ink jet recording head
JPS62240562A (en) 1986-04-14 1987-10-21 Matsushita Electric Works Ltd Preparation of wire guide for dot printer
US4973622A (en) 1989-03-27 1990-11-27 Ppg Industries, Inc. Vinyl chloride-olefin copolymers having good color stability and flexibility for container coatings
JPH04292950A (en) 1990-12-06 1992-10-16 Xerox Corp Ink jet print head with integral filter
US5841452A (en) 1991-01-30 1998-11-24 Canon Information Systems Research Australia Pty Ltd Method of fabricating bubblejet print devices using semiconductor fabrication techniques
JPH0615824A (en) 1992-06-30 1994-01-25 Ricoh Co Ltd Ink jet recording head
US5387314A (en) 1993-01-25 1995-02-07 Hewlett-Packard Company Fabrication of ink fill slots in thermal ink-jet printheads utilizing chemical micromachining
JPH06226977A (en) 1993-02-01 1994-08-16 Ricoh Co Ltd Ink jet head
JPH07227970A (en) 1993-12-22 1995-08-29 Canon Inc Liquid jet head, liquid jet head cartridge and liquid jet device
US6145965A (en) 1995-06-20 2000-11-14 Canon Kabushiki Kaisha Method for manufacturing an ink jet head, and an ink jet head
JPH091812A (en) 1995-06-21 1997-01-07 Canon Inc Manufacture of liquid ejection recording head and manufacturing machine
JPH0929970A (en) 1995-07-19 1997-02-04 Canon Inc Ink jet recording head and manufacture thereof
JPH09131871A (en) 1995-11-08 1997-05-20 Canon Inc Ink jet head and its manufacture and ink jet apparatus
US6305790B1 (en) 1996-02-07 2001-10-23 Hewlett-Packard Company Fully integrated thermal inkjet printhead having multiple ink feed holes per nozzle
CN1175506A (en) 1996-07-31 1998-03-11 佳能株式会社 Ink jet recording head
US5894108A (en) 1997-02-11 1999-04-13 National Semiconductor Corporation Plastic package with exposed die
CN1197732A (en) 1997-03-28 1998-11-04 莱克斯马克国际公司 Ink jet printer nozzle plates having improved flow feature design
US20050018016A1 (en) 1997-07-15 2005-01-27 Silverbrook Research Pty Ltd Inkjet nozzle array with individual feed channel for each nozzle
JPH1191108A (en) 1997-09-24 1999-04-06 Fuji Xerox Co Ltd Ink-jet recording head and its manufacture
US6123410A (en) 1997-10-28 2000-09-26 Hewlett-Packard Company Scalable wide-array inkjet printhead and method for fabricating same
US20030052944A1 (en) 1997-10-28 2003-03-20 Scheffelin Joseph E. Fluid manifold for printhead assembly
US6250738B1 (en) 1997-10-28 2001-06-26 Hewlett-Packard Company Inkjet printing apparatus with ink manifold
JPH11208000A (en) 1997-10-30 1999-08-03 Hewlett Packard Co <Hp> Printing method
US6188414B1 (en) 1998-04-30 2001-02-13 Hewlett-Packard Company Inkjet printhead with preformed substrate
US6132028A (en) 1998-05-14 2000-10-17 Hewlett-Packard Company Contoured orifice plate of thermal ink jet print head
US6227651B1 (en) 1998-09-25 2001-05-08 Hewlett-Packard Company Lead frame-mounted ink jet print head module
JP2000108360A (en) 1998-10-02 2000-04-18 Sony Corp Manufacture for print head
US20020024569A1 (en) 1998-10-16 2002-02-28 Kia Silverbrook Ink supply arrangement for a portable ink jet printer
US6464333B1 (en) 1998-12-17 2002-10-15 Hewlett-Packard Company Inkjet printhead assembly with hybrid carrier for printhead dies
EP1027991A2 (en) 1999-02-10 2000-08-16 Canon Kabushiki Kaisha Method for producing liquid discharge head, liquid discharge head produced thereby, head cartridge and liquid discharge apparatus
US20050162466A1 (en) 1999-06-30 2005-07-28 Kia Silverbrook Inkjet printhead assembly having aligned printhead segments
US6254819B1 (en) 1999-07-16 2001-07-03 Eastman Kodak Company Forming channel members for ink jet printheads
JP2001071490A (en) 1999-09-02 2001-03-21 Ricoh Co Ltd Ink-jet recording device
US20020033867A1 (en) 1999-10-19 2002-03-21 Kia Silverbrook Adhesive-based ink jet print head assembly
US20020030720A1 (en) 1999-10-29 2002-03-14 Naoto Kawamura Fluid ejection device and method of fluid ejection
US6454955B1 (en) 1999-10-29 2002-09-24 Hewlett-Packard Company Electrical interconnect for an inkjet die
EP1095773A1 (en) 1999-10-29 2001-05-02 Hewlett-Packard Company, A Delaware Corporation Inkjet printhead having improved reliability
CN1297815A (en) 1999-10-29 2001-06-06 惠普公司 Ink-jet printing head with high reliability
US6962406B2 (en) 1999-10-29 2005-11-08 Hewlett-Packard Development Company, L.P. Fluid ejection device and method of manufacture
JP2001246748A (en) 1999-12-27 2001-09-11 Seiko Epson Corp Ink-jet type recording head
US20010037808A1 (en) 2000-03-04 2001-11-08 Deem Mark E. Methods and devices for use in performing pulmonary procedures
US6676245B2 (en) 2000-03-06 2004-01-13 Silverbrook Research Pty Ltd. Thermal expansion compensation for printhead assemblies
US20020180846A1 (en) 2000-03-06 2002-12-05 Kia Silverbrook Thermal expansion compensation for printhead assemblies
CN1314244A (en) 2000-03-21 2001-09-26 惠普公司 Semiconductor base with reinforced anti-breaking strength and its forming method
US6560871B1 (en) 2000-03-21 2003-05-13 Hewlett-Packard Development Company, L.P. Semiconductor substrate having increased facture strength and method of forming the same
US20050024444A1 (en) 2000-04-10 2005-02-03 Olivetti Tecnost S.P.A. Monolithic printhead with multiple ink feeder channels and relative manufacturing process
US6379988B1 (en) 2000-05-16 2002-04-30 Sandia Corporation Pre-release plastic packaging of MEMS and IMEMS devices
US20040119774A1 (en) 2000-08-23 2004-06-24 Telecom Italia S.P.A. Monolithic printhead with self-aligned groove and relative manufacturing process
US20020051036A1 (en) 2000-08-25 2002-05-02 Scheffelin Joseph E. Electrical connection for wide-array inkjet printhead assembly with hybrid carrier for printhead dies
US6402301B1 (en) 2000-10-27 2002-06-11 Lexmark International, Inc Ink jet printheads and methods therefor
JP2004517755A (en) 2000-10-27 2004-06-17 レックスマーク・インターナショナル・インコーポレーテツド Improved inkjet printhead and method of manufacturing the same
US6291317B1 (en) 2000-12-06 2001-09-18 Xerox Corporation Method for dicing of micro devices
US6554399B2 (en) 2001-02-27 2003-04-29 Hewlett-Packard Development Company, L.P. Interconnected printhead die and carrier substrate system
US20020180825A1 (en) * 2001-06-01 2002-12-05 Shen Buswell Method of forming a fluid delivery slot
US6767089B2 (en) 2001-06-01 2004-07-27 Hewlett-Packard Development Company, L.P. Slotted semiconductor substrate having microelectronics integrated thereon
CN1512936A (en) 2001-06-05 2004-07-14 Nozzle plate for droplet deposition apparatus
JP2003011365A (en) 2001-07-04 2003-01-15 Ricoh Co Ltd Ink jet head and its manufacturing method
JP2003063020A (en) 2001-08-30 2003-03-05 Ricoh Co Ltd Liquid drop ejection head and its manufacturing method
US20060243387A1 (en) 2001-10-31 2006-11-02 Haluzak Charles C Drop generator for ultra-small droplets
US6543879B1 (en) 2001-10-31 2003-04-08 Hewlett-Packard Company Inkjet printhead assembly having very high nozzle packing density
US7490924B2 (en) 2001-10-31 2009-02-17 Hewlett-Packard Development Company, L.P. Drop generator for ultra-small droplets
US20030186474A1 (en) 2001-10-31 2003-10-02 Haluzak Charles C. Drop generator for ultra-small droplets
US20030090558A1 (en) * 2001-11-15 2003-05-15 Coyle Anthony L. Package for printhead chip
US20040095422A1 (en) 2001-12-18 2004-05-20 Takeo Eguchi Print Head
CN1622881A (en) 2001-12-18 2005-06-01 索尼公司 Print head
US20030140496A1 (en) 2002-01-31 2003-07-31 Shen Buswell Methods and systems for forming slots in a semiconductor substrate
US20040055145A1 (en) 2002-01-31 2004-03-25 Shen Buswell Substrate slot formation
US7051426B2 (en) 2002-01-31 2006-05-30 Hewlett-Packard Development Company, L.P. Method making a cutting disk into of a substrate
EP1386740A1 (en) 2002-07-31 2004-02-04 Hewlett-Packard Company Slotted substrate
US20040032468A1 (en) 2002-08-13 2004-02-19 Killmeier Eric Louis Printhead corrosion protection
JP2003063010A (en) 2002-08-15 2003-03-05 Seiko Epson Corp Ink jet printing head and ink jet printer
US20040233254A1 (en) 2002-10-11 2004-11-25 Samsung Electronics Co., Ltd. Ink-jet printhead and method of manufacturing the ink-jet printhead
US20040084404A1 (en) 2002-10-30 2004-05-06 Jeremy Donaldson Slotted substrate and method of making
JP2004148827A (en) 2002-10-30 2004-05-27 Hewlett-Packard Development Co Lp Print head assembly and method of forming the same
CN1530229A (en) 2003-03-17 2004-09-22 ������������ʽ���� Recorder and recording method thereof
US20040196334A1 (en) 2003-04-02 2004-10-07 Cornell Robert Wilson Thin film heater resistor for an ink jet printer
CN1541839A (en) 2003-05-01 2004-11-03 三星电子株式会社 Ink-jet printhead package
KR20040097848A (en) 2003-05-13 2004-11-18 삼성전자주식회사 Method of manufacturing Monolithic inkjet printhead
US20050030358A1 (en) 2003-08-06 2005-02-10 Mark Haines Filter for printhead assembly
US20070153070A1 (en) 2003-08-06 2007-07-05 Mark Haines Filter for printhead assembly
US7614733B2 (en) 2003-08-06 2009-11-10 Hewlett-Packard Development Company, L.P. Filter for printhead assembly
US7188942B2 (en) 2003-08-06 2007-03-13 Hewlett-Packard Development Company, L.P. Filter for printhead assembly
CN1593924A (en) 2003-09-10 2005-03-16 财团法人工业技术研究院 Ink jetting head assembly and production method thereof
JP2005088587A (en) 2003-09-12 2005-04-07 Hewlett-Packard Development Co Lp Substrate slot formation
US20050116995A1 (en) 2003-10-24 2005-06-02 Toru Tanikawa Head module, liquid jetting head, liquid jetting apparatus, method of manufacturing head module, and method of manufacturing liquid jetting head
JP2005161710A (en) 2003-12-03 2005-06-23 Canon Inc Inkjet recording head
US20050122378A1 (en) 2003-12-03 2005-06-09 Canon Kabushiki Kaisha Ink jet recording head and manufacturing method thereof
JP2005212134A (en) 2004-01-27 2005-08-11 Fuji Xerox Co Ltd Ink jet recording head and ink jet recorder
JP2007531645A (en) 2004-03-31 2007-11-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Features in a substrate and method for forming the same
JP2006009149A (en) 2004-05-26 2006-01-12 Hewlett-Packard Development Co Lp Microdevice substrate and method of forming the same
US6930055B1 (en) 2004-05-26 2005-08-16 Hewlett-Packard Development Company, L.P. Substrates having features formed therein and methods of forming
US20060022273A1 (en) 2004-07-30 2006-02-02 David Halk System and method for assembly of semiconductor dies to flexible circuits
US20060028510A1 (en) 2004-08-05 2006-02-09 Park Byung-Ha Method of fabricating an inkjet print head using a photo-curable resin composition
US20060066674A1 (en) 2004-09-24 2006-03-30 Brother Kogyo Kabushiki Kaisha Liquid-jetting apparatus and method for producing the same
US20060132543A1 (en) 2004-12-20 2006-06-22 Palo Alto Research Center Incorporated Low cost piezo printhead based on microfluidics in printed circuit board and screen-printed piezoelectrics
JP2006321222A (en) 2005-04-18 2006-11-30 Canon Inc Liquid ejection head
US8177330B2 (en) 2005-04-18 2012-05-15 Canon Kabushiki Kaisha Liquid discharge head, ink jet recording head and ink jet recording apparatus
CN101163591A (en) 2005-04-18 2008-04-16 佳能株式会社 Liquid discharge head, ink jet recording head and ink jet recording apparatus
US20090267994A1 (en) 2005-04-18 2009-10-29 Canon Kabushiki Kaisha Liquid discharge head, ink jet recording head and ink jet recording apparatus
US7658470B1 (en) 2005-04-28 2010-02-09 Hewlett-Packard Development Company, L.P. Method of using a flexible circuit
US20060256162A1 (en) 2005-05-10 2006-11-16 Canon Kabushiki Kaisha Liquid jet head and method for producing the same
JP2006315321A (en) 2005-05-13 2006-11-24 Canon Inc Method for manufacturing ink-jet recording head
CN1872554A (en) 2005-06-03 2006-12-06 佳能株式会社 Ink jet printing apparatus, ink jet printing method and method of setting print control mode
US20090022199A1 (en) * 2005-11-30 2009-01-22 Naoto Jikutani Surface light emitting laser element, surface light emitting laser array provided with it, electro-photographic system and optical communication system
US20070139470A1 (en) 2005-12-21 2007-06-21 Samsung Electronics Co., Ltd. Array printhead and inkjet image forming apparatus having the same
CN101020389A (en) 2006-02-02 2007-08-22 索尼株式会社 Liquid ejecting head and liquid ejecting apparatus
US20070188561A1 (en) 2006-02-02 2007-08-16 Takeo Eguchi Liquid ejecting head and liquid ejecting apparatus
US20080061393A1 (en) 2006-09-08 2008-03-13 Lingsen Precision Industries, Ltd. Photosensitive chip molding package
US20080079781A1 (en) 2006-10-02 2008-04-03 Samsung Electronics Co., Ltd. Inkjet printhead and method of manufacturing the same
JP2008087478A (en) 2006-10-02 2008-04-17 Samsung Electronics Co Ltd Ink jet printhead and its manufacturing method
EP1908593A1 (en) 2006-10-02 2008-04-09 Samsung Electronics Co., Ltd. Inkjet printhead and method of manufaturing the same
US8246141B2 (en) 2006-12-21 2012-08-21 Eastman Kodak Company Insert molded printhead substrate
US20080149024A1 (en) 2006-12-21 2008-06-26 Petruchik Dwight J Insert molded printhead substrate
US20080174636A1 (en) 2007-01-18 2008-07-24 Samsung Electronics Co., Ltd. Inkjet printer and inkjet printer head-chip assembly thereof
CN101274523A (en) 2007-03-28 2008-10-01 施乐公司 Self aligned port hole opening process for ink jet print heads
US8235500B2 (en) 2007-03-30 2012-08-07 Xerox Corporation Cast-in place ink feed structure using encapsulant
US7828417B2 (en) 2007-04-23 2010-11-09 Hewlett-Packard Development Company, L.P. Microfluidic device and a fluid ejection device incorporating the same
JP2010524713A (en) 2007-04-23 2010-07-22 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Microfluidic device and fluid ejection device incorporating microfluidic device
CN101668696A (en) 2007-04-23 2010-03-10 惠普开发有限公司 Microfluidic device and comprise the fluid ejection device of this microfluidic device
WO2008134202A1 (en) 2007-04-23 2008-11-06 Hewlett-Packard Development Company, L.P. A microfluidic device and a fluid ejection device incorporating the same
US20080259125A1 (en) 2007-04-23 2008-10-23 Haluzak Charles C Microfluidic device and a fluid ejection device incorporating the same
US20090009559A1 (en) 2007-05-08 2009-01-08 Canon Kabushiki Kaisha Liquid ejection head and method for manufacturing liquid ejection head
US20080292986A1 (en) 2007-05-22 2008-11-27 Samsung Electronics Co., Ltd. Inkjet printhead and method of manufacturing the same
US20080297564A1 (en) 2007-05-29 2008-12-04 Samsung Electronics Co., Ltd. Inkjet printhead
WO2008151216A1 (en) 2007-06-04 2008-12-11 Lexmark International, Inc. Composite ceramic substrate for micro-fluid ejection head
US8163463B2 (en) 2007-08-07 2012-04-24 Samsung Electronics Co., Ltd. Photoresist composition, method of forming pattern using the photoresist composition and inkjet print head
US7591535B2 (en) 2007-08-13 2009-09-22 Xerox Corporation Maintainable coplanar front face for silicon die array printhead
CN101372172A (en) 2007-08-26 2009-02-25 索尼株式会社 Ejection condition adjustment apparatus, droplet ejecting apparatus, and ejection condition adjustment method and program
US7824013B2 (en) 2007-09-25 2010-11-02 Silverbrook Research Pty Ltd Integrated circuit support for low profile wire bond
US20090086449A1 (en) 2007-09-27 2009-04-02 Masanori Minamio Optical device and manufacturing method thereof
US20100271445A1 (en) 2008-01-09 2010-10-28 Alok Sharan Fluid Ejection Cartridge And Method
CN101909893A (en) 2008-01-09 2010-12-08 惠普开发有限公司 Fluid ejection cartridge and method
US20090225131A1 (en) 2008-03-10 2009-09-10 Chien-Hua Chen Fluid Ejector Structure and Fabrication Method
JP2009255448A (en) 2008-04-18 2009-11-05 Canon Inc Inkjet recording head
US20110019210A1 (en) 2008-05-06 2011-01-27 Chung Bradley D Printhead feed slot ribs
CN101607477A (en) 2008-06-06 2009-12-23 佳能株式会社 The manufacture method of ink jet-print head and ink jet-print head
US8272130B2 (en) 2008-06-06 2012-09-25 Canon Kabushiki Kaisha Method of manufacturing an ink jet print head
WO2010005434A1 (en) 2008-07-09 2010-01-14 Hewlett-Packard Development Company, L.P. Print head slot ribs
JP2010023341A (en) 2008-07-18 2010-02-04 Canon Inc Inkjet recording head
US20100035373A1 (en) 2008-08-11 2010-02-11 Werner Hunziker Method for manufacturing a sensor device with a stress relief layer
JP2010050452A (en) 2008-08-11 2010-03-04 Sensirion Ag Method for manufacturing sensor device with stress relief layer
US7877875B2 (en) 2008-08-19 2011-02-01 Silverbrook Research Pty Ltd Method for connecting a flexible printed circuit board (PCB) to a printhead assembly
JP2010137460A (en) 2008-12-12 2010-06-24 Canon Inc Method for manufacturing inkjet recording head
US20100224983A1 (en) 2009-03-03 2010-09-09 Min-Lung Huang Semiconductor package structure and manufacturing method thereof
US20110292121A1 (en) * 2009-07-27 2011-12-01 Silverbrook Research Pty Ltd Mems integrated circuit having backside connections to drive circuitry via mems roof layer
WO2011019529A1 (en) 2009-08-11 2011-02-17 Eastman Kodak Company Metalized printhead substrate overmolded with plastic
JP2013501655A (en) 2009-08-11 2013-01-17 イーストマン コダック カンパニー Metallized printhead substrate overmolded with plastic
US20110037808A1 (en) 2009-08-11 2011-02-17 Ciminelli Mario J Metalized printhead substrate overmolded with plastic
CN102470672A (en) 2009-08-11 2012-05-23 伊斯曼柯达公司 Metalized printhead substrate overmolded with plastic
US20110080450A1 (en) 2009-10-05 2011-04-07 Ciminelli Mario J Fluid ejection assembly having a mounting substrate
WO2011058719A1 (en) 2009-11-11 2011-05-19 Canon Kabushiki Kaisha Method for manufacturing liquid ejection head
CN102596575A (en) 2009-11-11 2012-07-18 佳能株式会社 Method for manufacturing liquid ejection head
US8287104B2 (en) 2009-11-19 2012-10-16 Hewlett-Packard Development Company, L.P. Inkjet printhead with graded die carrier
US20110141691A1 (en) 2009-12-11 2011-06-16 Slaton David S Systems and methods for manufacturing synthetic jets
US20110222239A1 (en) 2010-03-10 2011-09-15 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling devices, power modules, and vehicles incorporating the same
JP2011240516A (en) 2010-05-14 2011-12-01 Canon Inc Element substrate and printed wiring board
US20110292126A1 (en) 2010-05-27 2011-12-01 Xerox Corporation Molded nozzle plate with alignment features for simplified assembly
US8342652B2 (en) 2010-05-27 2013-01-01 Xerox Corporation Molded nozzle plate with alignment features for simplified assembly
US20110292124A1 (en) 2010-05-27 2011-12-01 Frank Edward Anderson Laminate constructs for micro-fluid ejection devices
US20120000595A1 (en) 2010-06-04 2012-01-05 Ngk Insulators, Ltd. Method for manufacturing a droplet discharge head
TW201144081A (en) 2010-06-07 2011-12-16 Silverbrook Res Pty Ltd Inkjet printhead having hydrophilic ink pathways
US20110298868A1 (en) 2010-06-07 2011-12-08 Silverbrook Research Pty Ltd Inkjet printhead having hydrophilic ink pathways
US8405232B2 (en) 2010-06-11 2013-03-26 Advanced Semiconductor Engineering, Inc. Chip package structure
WO2012011972A1 (en) 2010-07-20 2012-01-26 Hewlett-Packard Development Company, L.P. Print bar structure
US20120019593A1 (en) 2010-07-20 2012-01-26 Scheffelin Joseph E Print bar structure
US8429820B2 (en) 2010-09-01 2013-04-30 Canon Kabushiki Kaisha Method of manufacturing liquid discharge head
US20120124835A1 (en) 2010-11-24 2012-05-24 Canon Kabushiki Kaisha Liquid ejection head manufacturing method
US20120154486A1 (en) * 2010-12-21 2012-06-21 Frank Anderson Micro-Fluid Ejection Head
US20120186079A1 (en) 2011-01-26 2012-07-26 Ciminelli Mario J Method of protecting printhead die face
JP2012158150A (en) 2011-02-02 2012-08-23 Canon Inc Inkjet recording head and method of manufacturing the same
WO2012106661A2 (en) 2011-02-04 2012-08-09 Kateeva, Inc. Low-profile mems thermal printhead die having backside electrical connections
US20120212540A1 (en) 2011-02-23 2012-08-23 Dietl Steven J Printhead assembly and fluidic connection of die
US20120210580A1 (en) 2011-02-23 2012-08-23 Dietl Steven J Method of assembling an inkjet printhead
CN102673155A (en) 2011-03-10 2012-09-19 佳能株式会社 Liquid ejection head
US20120242752A1 (en) 2011-03-23 2012-09-27 Mou Hao Jan Inkjet printhead
WO2012134480A1 (en) 2011-03-31 2012-10-04 Hewlett-Packard Development Company, L.P. Printhead assembly
WO2012168121A1 (en) 2011-06-06 2012-12-13 Olivetti S.P.A. Ink jet print head comprising a layer made by a curable resin composition
DE102011078906A1 (en) 2011-07-11 2013-01-17 Osram Opto Semiconductors Gmbh METHOD FOR PRODUCING AN OPTOELECTRONIC SEMICONDUCTOR COMPONENT BY MEANS OF SPRAYING
US20130029056A1 (en) 2011-07-26 2013-01-31 Canon Kabushiki Kaisha Method for manufacturing liquid ejecting head
US20130027466A1 (en) 2011-07-27 2013-01-31 Petruchik Dwight J Inkjet printhead with layered ceramic mounting substrate
US20160001552A1 (en) 2013-02-28 2016-01-07 Hewlett-Packard Development Company, L.P. Molded print bar
US20160009085A1 (en) 2013-02-28 2016-01-14 Hewlett-Packard Development Company, L.P. Transfer molded fluid flow structure
US20160009084A1 (en) 2013-02-28 2016-01-14 Hewlett-Packard Development Company, L.P. Molded fluid flow structure
US9944080B2 (en) 2013-02-28 2018-04-17 Hewlett-Packard Development Company, L.P. Molded fluid flow structure
US20180141337A1 (en) 2013-02-28 2018-05-24 Hewlett-Packard Development Company, L.P. Molded fluid flow structure
US20180326724A1 (en) 2014-01-28 2018-11-15 Hewlett-Packard Development Company, L.P. Flexible carrier for fluid flow structure

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Kumar et al; "Wafer Level Embedding Technology for 30 Wafer Level Embedded Package"; 2009 Electronic Components and Technology Conference.
Lee et al; "A Thermal Inkjet Printhead with a Monolithically Fabricated Nozzle Plate and Self-Aligned Ink Feed Hole"; Journal of Mioroeleotromechanical Systems, vol. 8, No. 3, Sep. 1999.
Lindemann et al.; "One Inch Thermal Bubble Jet Printhead with Laser Structured Integrated Polyimide Nozzle Plate"; Journal of Microelecytromechanical Systems; vol. 16, No. 2; Apr. 2007; pp. 420-428.
Miettinen; "Molded Substrates for Inkjet Printed Modules"; IEEE Transactions on Components and Packaging Technologies, vol. 32, No. 2, Jun. 2009.

Also Published As

Publication number Publication date
WO2014133561A1 (en) 2014-09-04
CN105142912A (en) 2015-12-09
JP2016515952A (en) 2016-06-02
WO2014133577A1 (en) 2014-09-04
US10081188B2 (en) 2018-09-25
SG11201506769TA (en) 2015-09-29
KR101827070B1 (en) 2018-02-07
CN105142912B (en) 2017-10-13
CN105142916A (en) 2015-12-09
CN105142915A (en) 2015-12-09
EP2961611B1 (en) 2019-05-01
US20170313079A1 (en) 2017-11-02
SG11201506770XA (en) 2015-09-29
CN105121166B (en) 2017-05-24
CN105142916B (en) 2017-09-12
KR20150110802A (en) 2015-10-02
CN105142915B (en) 2017-08-08
EP2961608B1 (en) 2020-03-18
KR20150110789A (en) 2015-10-02
EP2961613A1 (en) 2016-01-06
US20170217184A1 (en) 2017-08-03
EP2961612A4 (en) 2017-06-21
US20170066242A1 (en) 2017-03-09
US11426900B2 (en) 2022-08-30
US20160001465A1 (en) 2016-01-07
US10232621B2 (en) 2019-03-19
JP6068684B2 (en) 2017-01-25
KR101811509B1 (en) 2017-12-26
WO2014133578A1 (en) 2014-09-04
US20180333956A1 (en) 2018-11-22
EP2961611B8 (en) 2019-06-19
EP2961613A4 (en) 2017-05-31
US10603916B2 (en) 2020-03-31
EP2961608A4 (en) 2017-08-02
CN105121166A (en) 2015-12-02
EP2961612A1 (en) 2016-01-06
WO2014133576A1 (en) 2014-09-04
JP6208776B2 (en) 2017-10-04
EP2961613B1 (en) 2020-10-14
EP2961611A4 (en) 2017-06-14
EP2961612B1 (en) 2019-08-07
JP2016515055A (en) 2016-05-26
EP2961608A1 (en) 2016-01-06
EP2961611A1 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
US10994541B2 (en) Molded fluid flow structure with saw cut channel
US9656469B2 (en) Molded fluid flow structure with saw cut channel
US11292257B2 (en) Molded die slivers with exposed front and back surfaces
US10994539B2 (en) Fluid flow structure forming method
EP3296113B1 (en) Molded print bar
EP2825386B1 (en) Molded fluid flow structure
US9731509B2 (en) Fluid structure with compression molded fluid channel
EP3046768B1 (en) Printbar and method of forming same
EP2976221B1 (en) Molded die slivers with exposed front and back surfaces
US11186090B2 (en) Fluid ejection device
TWI547382B (en) Method of making a fluid channel in a printhead structure, and fluid flow structure

Legal Events

Date Code Title Description
AS Assignment

Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, CHIEN-HUA;CUMBIE, MICHAEL W.;AGARWAL, ARUN K.;REEL/FRAME:046516/0229

Effective date: 20130627

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: WITHDRAW FROM ISSUE AWAITING ACTION

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE