US10323379B2 - Quick coupler with independent locking element and securing element - Google Patents

Quick coupler with independent locking element and securing element Download PDF

Info

Publication number
US10323379B2
US10323379B2 US15/640,693 US201715640693A US10323379B2 US 10323379 B2 US10323379 B2 US 10323379B2 US 201715640693 A US201715640693 A US 201715640693A US 10323379 B2 US10323379 B2 US 10323379B2
Authority
US
United States
Prior art keywords
locking
quick coupler
electric drive
locking element
adjustment actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/640,693
Other languages
English (en)
Other versions
US20180010318A1 (en
Inventor
Thomas Friedrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinshofer GmbH
Original Assignee
Kinshofer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinshofer GmbH filed Critical Kinshofer GmbH
Assigned to KINSHOFER GMBH reassignment KINSHOFER GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRIEDRICH, THOMAS
Publication of US20180010318A1 publication Critical patent/US20180010318A1/en
Application granted granted Critical
Publication of US10323379B2 publication Critical patent/US10323379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3609Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat
    • E02F3/3622Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat with a hook and a locking element acting on a pin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3609Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat
    • E02F3/3627Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat with a hook and a longitudinal locking element
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3609Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat
    • E02F3/365Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat with redundant latching means, e.g. for safety purposes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3609Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat
    • E02F3/3659Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat electrically-operated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3609Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat
    • E02F3/3663Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat hydraulically-operated
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B59/00Devices specially adapted for connection between animals or tractors and agricultural machines or implements
    • A01B59/06Devices specially adapted for connection between animals or tractors and agricultural machines or implements for machines mounted on tractors
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B59/00Devices specially adapted for connection between animals or tractors and agricultural machines or implements
    • A01B59/06Devices specially adapted for connection between animals or tractors and agricultural machines or implements for machines mounted on tractors
    • A01B59/064Devices specially adapted for connection between animals or tractors and agricultural machines or implements for machines mounted on tractors for connection to the front of the tractor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes

Definitions

  • the present invention relates to a quick coupler for coupling a tool such as an excavator bucket, a clamshell grapple or demolition shears to a tool operator such as an excavator arm or the like, comprising a coupling mount for receiving a first locking part and a locking mount for receiving a second locking part, wherein a locking element for locking the second locking part in the locking mount is at least associated with the locking mount, with the locking element being actuable by an adjustment actuator.
  • Quick couplers are frequently used with construction machines such as hydraulic excavators or articulated grippers such as wood handling machines or demolition units or similar material transfer machinery for coupling different tools such as rakers, clamshell grapples or demolition shears to an excavator arm or similar tool operators such as articulated arm booms in order to be able to use different tools without long changeover times.
  • Such quick couplers can in particular have two mutually spaced apart locking axles as locking elements at a coupling part, whereas the other coupling part, in particular the coupling part at the excavator arm side, can have a preferably hook-shaped coupling mount for hooking at a first one of the two locking axles and a locking mount for locking at the second locking axle.
  • the two coupling parts can be pivoted with respect to one another, wherein the locking axle seated in the coupling mount forms the pivot axle so that the second locking axle moves or is pivoted into the locking mount where the second locking axle can then be locked by a locking element such as an extendable wedge so that it is simultaneously also no longer possible to move the first locking axle out of the coupling mount.
  • An adjustment actuator that is actuated by outside energy and that can, for example, be configured as a hydraulic cylinder and can typically be actuated by hydraulic pressure from the unit is provided to move the locking element.
  • the locking axles at the one coupling part can in this respect be formed by locking pins which can extend at the corresponding coupling part, in particular in parallel with one another, with optionally instead of such pins also other structural parts of the coupling part such as projecting noses, axle pivots, engagement stubs in the form of projections or recesses, for example in the form of pockets, being able to serve as the locking part, however, and being shape-matched to the coupling mount or to the locking mount of the other coupling part.
  • this securing element can be released again by a further adjustment actuator or can be moved into its releasing position again.
  • This can take place with pressure medium actuation, for example by a simply acting pressure medium cylinder which can move the securing element back into the releasing position against its spring pre-loading into the locking or blocking position. A climbing down of the machine operator or a manual actuation can hereby be avoided.
  • the present invention comprises a quick coupler for coupling a tool to an excavator arm or the like of a carrier unit/tool operator, comprising a coupling mount for receiving a first locking part and a locking mount for receiving a second locking part, wherein a locking element for locking the second locking part in the locking mount is associated with at least the locking mount, and wherein the locking element is actuable by a locking element adjustment actuator, wherein the quick coupler is electrically controllable and actuable and has an electric drive for actuating the locking element adjustment actuator.
  • the quick coupler is electrically controllable, with the quick coupler having an electric drive for actuating the locking element adjustment actuator for the locking element.
  • Complex and/or expensive hydraulic installations at the excavator arm or at the tool operator can be dispensed with due to the electric control of the quick coupler and its drive system, nor are any interventions in the hydraulic system of the carrier unit necessary since the electric drive of the quick coupler works independently of the hydraulic system of the carrier unit.
  • the electric drive can advantageously be attached to or integrated in the quick coupler itself so that the quick coupler, including its drive, forms a separate independent assembly that can be attached to and dismantled from an excavator arm or a similar tool operator as a whole. It would, however, generally also be possible to attach the electric drive to the excavator arm or at another component disposed in the vicinity of the quick coupler and to connect it to the quick coupler.
  • the electric drive can, however, be specifically provided for the quick coupler independently of its positioning without having to take over other tasks or having to drive units other than the quick coupler.
  • the electric drive can form an assembly only provided for the quick coupler and can be provided only for the actuation of quick coupler functions.
  • the quick coupler advantageously has a power connector, for example in the form of a power coupling, that can be connected to a power coupling at the carrier unit so that the electric drive of the quick coupler can be supplied with electrical energy from the carrier unit side. It would generally also be conceivable to provide a battery or a rechargeable battery from which the electric drive can be fed for the energy supply of the quick coupler. Such an electrical energy store can optionally also be provided in addition to the power connector or to the power coupling to be able to release the quick coupler on a failure of the power supply of the carrier unit.
  • the electric drive can in this respect be part of an electric/hydraulic hybrid system by means of which the at least one adjustment actuator of the quick coupler can be driven.
  • the electric drive can in particular comprise a pump that is driven by an electric motor and provides pressure medium by means of which at least one adjustment actuator of the quick coupler can be actuated.
  • the adjustment actuator is in this case then configured as a pressure medium actuator, in particular a hydraulic cylinder or a compressed air cylinder, but with other configurations of the pressure medium actuator also being able to be considered, for example in the form of a hydraulic motor.
  • Pressure in particular hydraulic pressure
  • the quick coupler can remain configured in a known manner with respect to its adjustment actuators per se due to the pressure medium actuation of the adjustment actuator and already existing quick couplers can in particular also be retrofitted.
  • an independence from the hydraulic system of the carrier unit results due to the electric energy supply and the control of the quick coupler can be made easier.
  • only a corresponding electric switch at the driver's cabin of the carrier unit is required by means of which the energy supply of the electric drive at the quick coupler can be switched on and off or the drive can be electrically controlled.
  • the electric drive of the adjustment actuator of the quick coupler can, however, also be affected in another manner, which is without the conversion of the electric drive energy into pressure medium energy.
  • a mechanical conversion of the electric drive energy can take place, for example by means of a spindle drive that converts a drive movement of an electric motor into an adjustment movement of the adjustment actuator.
  • a tank can also be provided at the quick coupler that is in flow connection with the pump or that can be in flow connection via a valve arrangement.
  • a tank at the quick coupler makes the pressure system at the quick coupler completely autonomous and independent of the pressure system of the carrier unit.
  • the electrically driven pump of the quick coupler can suck in fluid from the tank and/or pressure fluid displaced from the adjustment actuator can flow back into the tank without the quick coupler requiring hydraulic connectors for connection to the tank of the carrier unit for this purpose.
  • a closed design of the pressure medium system at the quick coupler is generally also conceivable without such a tank, in particular when a dual-action pressure medium cylinder is used as the adjustment actuator, so that the pump or a corresponding pressure generator displaces the pressure medium to and fro only between the two pressure chambers of the pressure medium cylinder, that is it urges or conveys pressure medium out of the one pressure chamber into the other pressure chamber, whereby a corresponding adjustment movement of the pressure medium cylinder results.
  • the provision of a tank increases the design freedom of the system, in particular with respect to the pressure medium actuator.
  • Single-action pressure medium cylinders can also hereby be used, for example, by means of which self-locking locking and/or securing elements can be opened, for example, in connection pre-loading devices and/or spring devices.
  • the electric drive in particular its pump and a tank that may be present, can form a pre-installed assembly that can have fastening means for a retroactive attachment to a quick coupler in order also to be able to retrofit already existing quick couplers that were previously connected to the hydraulic system of the carrier unit.
  • the electric drive in particular its pump and a tank that may be present, can be configured as a retrofit kit in order also to electrically drive quick couplers previously hydraulically connected to the carrier unit and drive them autonomously, that is independently of the hydraulic system of the carrier unit.
  • the electric drive including the pump, can, however, also be integrated in the quick coupler and/or can form a fixed component of the quick coupler.
  • the quick coupler can manage without hydraulic connectors.
  • the quick coupler can in particular only have a power connector as the energy connector.
  • a common electric drive can be provided for the locking element and for the securing element, for example such that a pump that is provided at the quick coupler and that is electrically drivable provides pressure medium both for the locking element and for the securing element. It can be achieved in this respect by a suitable valve arrangement that the securing element and the locking element can be actuated independently from one another or after one another in time.
  • a respective separate pump is associated with the two elements so that the locking element and the securing element can be actuated independently of one another by an electrical actuation of the respective pump.
  • the present invention is a quick coupler for coupling a first tool of a tool operator to a second tool of the tool operator, the tool operator having a tool operator actuation system to actuate one or both of the first and second tools, the quick coupler comprising a quick coupler actuation system to operate a locking element of the quick coupler, the quick coupler actuation system being configured to be separate of and independent from the tool operator actuation system.
  • the quick coupler actuation system can comprise a pre-assembled assembly of an electric drive assembly and fastening means for retroactive attachment to a quick coupler body of the quick coupler to facilitate the quick coupler actuation system to be separate of and independent from the tool operator actuation system.
  • the quick coupler can further comprise a coupling mount for receiving a first locking part, a locking mount for receiving a second locking part, and the locking element for locking the second locking part in the locking mount, wherein the quick coupler actuation system comprises a locking element adjustment actuator for actuating the locking element, and a drive assembly for actuating the locking element adjustment actuator.
  • the drive assembly can comprises an electric drive assembly, and the tool operator actuation system can be a hydraulic system.
  • the present invention is a quick coupler for coupling a tool to an excavator arm comprising a coupling mount for receiving a first locking part and a locking mount for receiving a second locking part, wherein a locking element for locking the second locking part in the locking mount is associated with at least the locking mount, and wherein the locking element is actuable by a locking element adjustment actuator, and wherein the quick coupler is electrically controllable and actuable and has an electric drive for actuating the locking element adjustment actuator.
  • the electric drive can have a pump that provides pressure medium to actuate the locking element adjustment actuator configured as a pressure medium actuator.
  • the present invention is a quick coupler for coupling a first tool of a tool operator to a second tool of the tool operator, the quick coupler comprising a coupling mount for receiving a first locking part, a locking mount for receiving a second locking part, a locking element for locking the second locking part in the locking mount, a locking element adjustment actuator for actuating the locking element, and an electric drive assembly for actuating the locking element adjustment actuator.
  • the quick coupler can be an electrically controllable and actuable quick coupler, wherein at least one of the tools of the tool operator is actuated by a hydraulic system, and the electric drive assembly of the quick coupler can be separate of and independent from the hydraulic system of the excavator.
  • the tool operator can be an excavator
  • the first tool can be a tool
  • the second tool can an excavator arm
  • the electric drive can comprise a pump that provides pressure medium to actuate the locking element adjustment actuator.
  • the quick coupler can further comprise a securing element for securing the first locking part in the coupling mount, and the tool operator can be an excavator, and one of the tools can be an excavator arm.
  • the electric drive can further comprise a tank in flow connection with the pump.
  • the locking element adjustment actuator can comprises a dual action pressure medium cylinder having two pressure chambers, and the pump can in flow connection to both pressure chambers of the pressure medium cylinder.
  • the quick coupler can further comprising a securing element adjustment actuator for actuating the securing element.
  • the securing element adjustment actuator can comprise a pressure medium actuator.
  • the electric drive can comprise a pump that provides pressure medium to actuate the securing element adjustment actuator.
  • the quick coupler can further comprise a securing element for securing the first locking part in the coupling mount, and a securing element adjustment actuator for actuating the securing element, wherein the electric drive actuates both the locking element adjustment actuator and the securing element adjustment actuator.
  • the electric drive can comprise a pump that provides pressure medium to actuate both the locking element adjustment actuator and the securing element adjustment.
  • FIG. 1 is a schematic side view of a quick coupler in accordance with an advantageous embodiment of the invention which is attached to a boom arm of an excavator and couples an excavator bucket as an installation tool;
  • FIG. 2 is a perspective representation of the quick coupler of FIG. 1 in a decoupled position in which the two mutually couplable coupling parts are shown just before the hooking in at the hook section;
  • FIG. 3 is a schematic representation of the electric/hydraulic drive system of the quick coupler from the preceding Figures in accordance with an advantageous embodiment of the invention
  • FIGS. 4-5 are perspective views of the quick coupler in accordance with an advantageous embodiment of the invention which is attached to the boom arm, and shows the electric drive of the electric drive assembly attached to or integrated in the quick coupler itself;
  • FIG. 6 is a side view of FIG. 5 , with a cut-away view of an exemplary embodiment of the electric drive;
  • FIG. 7 is a top view of FIG. 5 , illustrating an exemplary way that the drive unit is attached;
  • FIG. 8 is a front view of FIG. 5 ;
  • FIGS. 9-10 illustrate the quick coupler of FIG. 4 in a decoupled position (perspective view FIG. 9 , and side view FIG. 10 );
  • FIG. 11 is a perspective view of the quick coupler of FIG. 4 illustrated in greater detail.
  • Ranges may be expressed herein as from “about” or “approximately” or “substantially” one particular value and/or to “about” or “approximately” or “substantially” another particular value. When such a range is expressed, other exemplary embodiments include from the one particular value and/or to the other particular value.
  • substantially free of something can include both being “at least substantially free” of something, or “at least substantially pure”, and being “completely free” of something, or “completely pure”.
  • a quick coupler 1 for coupling a tool 4 to an excavator arm 5 or the like, and comprises a coupling mount 6 for receiving a first locking part 13 and a locking mount 10 for receiving a second locking part 14 , wherein a locking element 11 for locking the second locking part 14 in the locking mount 10 is associated with at least the locking mount 10 , wherein the locking element 11 is actuable by a locking element adjustment actuator 12 , wherein the quick coupler 1 is electrically controllable and actuable and has an electric drive 15 for actuating the adjustment actuator 12 .
  • the electric drive 15 can have a pump 16 that provides pressure medium to actuate the adjustment actuator 12 configured as a pressure medium actuator.
  • a tank 19 can be included that is in flow connection with the pump 16 or is connectable flow-wise by a valve arrangement is provided at the fast coupler 1 .
  • the adjustment actuator 12 can be configured as a dual action pressure medium cylinder and the pump 16 can be connected or is connectable via a valve arrangement to both pressure chambers of the pressure medium cylinder.
  • the quick coupler 1 has only a power connector 18 as the energy connector.
  • the electric drive 15 in particular its pump 16 and an optionally present tank 19 , can form a pre-assembled assembly that has fastening means for a retroactive attachment to a quick coupler body and for retrofitting a quick coupler with an electric drive.
  • the electric drive 15 in particular its pump 16 and an optionally present tank 19 , can be integrated into a quick coupler base body and/or is a fixed component of the quick coupler 1 .
  • a securing element 7 for catching and/or securing the first locking part 13 in the coupling mount 6 can be associated with the coupling mount 6 , wherein the securing element 7 is actuable by a securing element adjustment actuator 8 , and wherein the adjustment actuator 8 of the securing element 7 is actuable by the electric drive 15 or by a further electric drive 22 .
  • the adjustment actuator 8 of the securing element 7 can be configured as a pressure medium actuator that can be acted on by pressure medium from the pump 16 of the electric drive 15 or from a further pump 24 that is provided at the quick coupler 1 .
  • the electric drive 15 can be configured such that the locking element 11 and the securing element 7 can be actuated independently of one another and/or in a manner offset in time from one another.
  • the quick coupler 1 can be installed between the free end of the boom arm 5 of an excavator 30 and the tool 4 to be installed thereat, wherein the installation tool 4 is configured as an excavation bucket in FIG. 1 , but which can naturally also comprise other corresponding construction tools, handling tools or demolition tools, for example in the form of clamshell grapples, demolition shears, shears or similar in a usual manner known per se.
  • the quick coupler 1 is in this respect, on the one hand, able to be mounted to the boom arm 5 by means of a coupler part 2 at the arm side pivotable about a lying pivot axis aligned transversely to the longitudinal axis of the boom arm 5 so that the quick coupler 1 can be pivoted together with the tool 4 installed thereat, for example by means of a pressure medium cylinder 36 and an interposed pivot piece 37 , with respect to the boom arm 5 .
  • the quick coupler can, on the other hand, be installed by means of a tool-side coupler part 3 —cf. FIG. 2 —to the installation tool 4 and/or to an interposed rotational drive.
  • one of the two coupler parts 2 and 3 respectively, preferably the coupler part 2 at the arm side can comprise a coupling mount 6 , on the one hand, and a locking mount 10 , on the other hand, which can be hooked in or brought into engagement with two locking parts, for example in the form of locking axles 13 and 14 , at the other coupler part 3 , preferably at the tool side.
  • a locking axle and a mount at one coupler part and in turn to provide a locking axle and a mount at the other coupler part, with the embodiment shown with two mounts, i.e. a locking mount and a coupling mount at the one coupler part and two locking axles corresponding thereto at the other coupler part, being preferred, however, since the associated securing elements and locking elements and their actuation can then be combined at one coupler part.
  • the coupling mount 6 and the locking mount 10 each form a mouth-shaped mount which is open toward a side and into which the locking axles 13 and 14 can move which can be formed by cross-pins or locking pints, cf. FIG. 2 .
  • the coupling mount 6 and the locking mount 10 are advantageously arranged and configured such that when a first locking axle 13 of the one coupler part 3 has moved into or is hooked into the preferably hook-shaped coupling mount 6 of the other coupler part 2 , the two coupler parts can be pivoted with respect to one another, and indeed such that the coupling mount 6 and the locking axle 13 received therein form the axis of rotation and the second locking axle 14 can move into the locking mount 10 by the corresponding pivot movement so that the two coupler parts 2 and 3 can be coupled to one another in a two-stage coupling process.
  • the coupling mount 6 is first hooked at the first locking axle 13 so that then the locking mount 10 can be brought into engagement with the second locking axle 14 by pivoting the two coupler parts 2 and 3 relative to one another—which can take place, for example, by actuating the aforesaid pivot cylinder 36 .
  • a locking element 11 is provided, for example in the form of a locking wedge, which can be moved on the opening side of the locking mount 10 in front of the locking axle 14 received therein, cf. FIG. 3 .
  • a hydraulically actuable locking element adjustment actuator 12 is advantageously provided in this respect which is connected directly or indirectly to the locking element 11 and is advantageously configured in dual action so that it can be moved forward and backward.
  • the second locking axle 14 is in this respect held in the locking mount 10 by locking the locking element 11 , but the two coupler parts 2 and 3 are also locked to one another since the coupling mount 6 is configured such that the first locking axle 13 received therein cannot move out of the coupling mount 6 when the second locking axle 14 is captured in the locking mount 10 .
  • the coupling mount 6 nevertheless can have a securing element 7 associated with it by means of which the first locking axle 13 or a suitable locking part can be captured or can be secured or can be blocked in the coupling mount 6 so that the first locking axle 13 cannot unintentionally slip out of the coupling mount 6 .
  • a securing element 7 primarily serves to prevent an unintentional sliding of the first locking axle 13 out of the coupling mount 6 during the aforesaid pivot movement on the coupling process as long as the two coupler parts 2 and 3 are still not locked to one another by closing the locking element 11 .
  • the securing element 7 can likewise be a wedge-shaped slider or also, as FIG. 3 shows, a pivotably supported locking lever which tapers or blocks the opening of the coupling mount 6 so much in its locked position that the first locking axle 13 cannot slide out.
  • the securing element 7 can in this respect, for example, be hydraulically pre-loaded into the locking position to be urged back against the hydraulic pressure and/or while switching off the hydraulic pressure, advantageously automatically, on the moving of the first locking axle 13 into the coupling mount 6 . If the locking axle 13 is moved completely or sufficiently far into the coupling mount 6 , the securing element 7 can move into the locking position, driven by the pre-loading device, so that the locking axle 13 is captured.
  • a securing element adjustment actuator 8 is associated with the securing element 7 in this respect, for example in the form of a single-action or dual action or bidirectionally acting hydraulic cylinder by means of which the securing element 7 can be moved or pivoted into its releasing position and, optionally, also into its locking position.
  • the quick coupler 1 comprises an electric drive system 20 via which the quick coupler 1 is electrically controllable so that it is independent of the hydraulic system of the carrier unit.
  • the electric drive system 20 in this respect comprises an energy converter that converts electrical energy into pressure medium energy, in particular hydraulic energy, by means of which the adjustment actuators 8 and 12 can then be actuated.
  • an electric drive 15 can be provided at the quick coupler 1 that can in particular have at least one pump 16 or another pressure generator that can be driven by an electric motor 17 .
  • an electric coupling 18 can be provided at the quick coupler 1 , for example in the form of an outlet or of another power connector, by means of which the electric drive system 20 can be connected to a power supply, in particular to an electrical energy supply of the carrier unit.
  • the at least one pump 16 can be connected to a tank 19 or can be connectable thereto via a valve arrangement to be able to allow a suitable medium, in particular hydraulic oil, to be sucked in and/or to be able to allow pressure medium to flow back from the adjustment actuators 8 or 12 .
  • the pump 16 can provide pressure medium by means of which the locking element adjustment actuator 12 and/or the securing element adjustment actuator 8 of the locking element 11 or of the securing element 7 respectively can be actuated.
  • both adjustment actuators 8 and 12 can be acted on by pressure fluid from the same pump 16 , with here suitable valves, in particular switch valves and/or shut-off valves, being able to be provided to be able to space the actuation of the adjustment actuators 8 and 12 apart from one another in time.
  • Such a valve arrangement for controlling the pressure application onto the at least one adjustment actuator 8 or 12 by the pump 16 can advantageously be electrically controlled, for which purpose a control connector can be provided at the quick coupler 1 to be able to give control commands to the quick coupler 1 from the driver's cabin of the carrier unit. It would, however, generally also be possible to provide a valve arrangement that works independently of pressure so that a time-offset actuation of the adjustment actuators 8 and 12 is possible solely by the control of the pump 16 .
  • the pump 16 can, for example, provide different pressure levels in dependence on which the one and/or the other adjustment actuator 8 and 12 respectively is then acted on.
  • FIGS. 4-11 illustrate exemplary embodiments where the electric drive 15 of the electric drive assembly 20 is attached to or integrated in the quick coupler 1 itself so that the quick coupler, including the electric drive, forms a separate independent assembly that can be attached to and dismantled from the tool operator as a whole.
  • the electric drive 15 includes the electric motor 17 , the pump 16 and the tank 19 , which elements form a preassembled unit. As shown particularly in FIGS. 5 and 7 , the electric drive 15 can be attached to a horizontal cross plate by means of four screw bolts 32 going through the pump 16 casing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Shovels (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)
US15/640,693 2016-07-05 2017-07-03 Quick coupler with independent locking element and securing element Active US10323379B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE202016004202U 2016-07-05
DE202016004202.6 2016-07-05
DE202016004202.6U DE202016004202U1 (de) 2016-07-05 2016-07-05 Schnellkuppler

Publications (2)

Publication Number Publication Date
US20180010318A1 US20180010318A1 (en) 2018-01-11
US10323379B2 true US10323379B2 (en) 2019-06-18

Family

ID=58428076

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/640,693 Active US10323379B2 (en) 2016-07-05 2017-07-03 Quick coupler with independent locking element and securing element

Country Status (5)

Country Link
US (1) US10323379B2 (de)
EP (1) EP3266940B1 (de)
AU (1) AU2017204421A1 (de)
CA (1) CA2972320A1 (de)
DE (1) DE202016004202U1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023096788A1 (en) 2021-11-23 2023-06-01 Caterpillar Inc. Quick coupler automatic locking mechanism and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3818217B1 (de) * 2018-07-02 2023-12-13 Stanley Black & Decker, Inc. An einem baggerausleger montierbares hochdruckhydraulikwerkzeug mit einem von einem hydraulischen motor angetriebenen generator
US10550541B1 (en) * 2019-04-25 2020-02-04 Deere & Company Connection system for connecting an implement to a work vehicle
US11536009B2 (en) 2019-07-26 2022-12-27 Deere & Company System for detecting locking pin engagement of an implement
USD931909S1 (en) 2020-02-04 2021-09-28 Deere & Company Implement connection system
EP4121604A4 (de) * 2020-03-17 2023-11-15 Volvo Construction Equipment AB Schnellkupplung mit frontstiftsicherungssystem
CN113863407B (zh) * 2021-10-28 2023-05-02 龙岩市易力特机械制造有限公司 一种挖掘机万向快速连接器

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049027A (en) 1990-02-21 1991-09-17 Komatsu Dresser Company Hydro-electric tool lock
US6058633A (en) * 1997-10-22 2000-05-09 Barden; William Mark Quick coupling device and method utilizing an over-center spring
DE20012390U1 (de) 2000-07-17 2000-10-05 Mieger, Rolf, Ing. (grad.), 88457 Kirchdorf Hydraulisch schwenkbarer Löffel, insbesondere Grabenräumlöffel
US20050000122A1 (en) * 2003-06-11 2005-01-06 Compagnie Du Sol Cutting tool for digging trenches, and enabling the cutter head to be changed quickly
US7047866B2 (en) * 2003-01-31 2006-05-23 Jrb Attachments, Llc Electrical and hydraulic control system for attachment coupling system
EP1852555A2 (de) 2006-05-02 2007-11-07 Wedgelock Equipment Limited Sicherheitsverriegelung für einen Schnellkuppler
WO2008138932A2 (en) 2007-05-14 2008-11-20 Geith Patents Limited A coupler for the working arm(s) of an excavator or the like
JP2010133142A (ja) 2008-12-04 2010-06-17 Kana Yasuda パワーショベルのアタッチメント取付け具
US20110091267A1 (en) 2009-10-16 2011-04-21 Ian Hill Coupler
US8622645B2 (en) 2008-09-08 2014-01-07 Ian Hill Coupler with gravity operated safety device
AT513586A2 (de) 2012-10-15 2014-05-15 Catoma Kg Schnellwechsler
DE202014001328U1 (de) 2014-02-13 2015-05-15 Kinshofer Gmbh Schnellkuppler
US20180230667A1 (en) * 2015-08-05 2018-08-16 Soletanche Freyssinet Excavation system with interchangeable tools

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193545A (ja) * 1997-12-26 1999-07-21 Komatsu Ltd カプラ
WO2014098618A1 (en) * 2012-12-18 2014-06-26 Wedgelock Equipment Limited A control system
WO2014098616A1 (en) * 2012-12-18 2014-06-26 Jb Attachments Limited A coupler

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049027A (en) 1990-02-21 1991-09-17 Komatsu Dresser Company Hydro-electric tool lock
US6058633A (en) * 1997-10-22 2000-05-09 Barden; William Mark Quick coupling device and method utilizing an over-center spring
DE20012390U1 (de) 2000-07-17 2000-10-05 Mieger, Rolf, Ing. (grad.), 88457 Kirchdorf Hydraulisch schwenkbarer Löffel, insbesondere Grabenräumlöffel
US7047866B2 (en) * 2003-01-31 2006-05-23 Jrb Attachments, Llc Electrical and hydraulic control system for attachment coupling system
US20050000122A1 (en) * 2003-06-11 2005-01-06 Compagnie Du Sol Cutting tool for digging trenches, and enabling the cutter head to be changed quickly
EP1852555A2 (de) 2006-05-02 2007-11-07 Wedgelock Equipment Limited Sicherheitsverriegelung für einen Schnellkuppler
WO2008138932A2 (en) 2007-05-14 2008-11-20 Geith Patents Limited A coupler for the working arm(s) of an excavator or the like
US8622645B2 (en) 2008-09-08 2014-01-07 Ian Hill Coupler with gravity operated safety device
JP2010133142A (ja) 2008-12-04 2010-06-17 Kana Yasuda パワーショベルのアタッチメント取付け具
US20110091267A1 (en) 2009-10-16 2011-04-21 Ian Hill Coupler
AT513586A2 (de) 2012-10-15 2014-05-15 Catoma Kg Schnellwechsler
DE202014001328U1 (de) 2014-02-13 2015-05-15 Kinshofer Gmbh Schnellkuppler
US20180230667A1 (en) * 2015-08-05 2018-08-16 Soletanche Freyssinet Excavation system with interchangeable tools

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Search Report issued by the German Patent and Trade Mark Office (DPMA) for related German Patent Application No. 202016004202.6 dated Jun. 1, 2017.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023096788A1 (en) 2021-11-23 2023-06-01 Caterpillar Inc. Quick coupler automatic locking mechanism and method

Also Published As

Publication number Publication date
AU2017204421A1 (en) 2018-01-25
DE202016004202U1 (de) 2017-10-06
EP3266940B1 (de) 2020-09-30
CA2972320A1 (en) 2018-01-05
EP3266940A1 (de) 2018-01-10
US20180010318A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US10323379B2 (en) Quick coupler with independent locking element and securing element
US9382686B2 (en) Quick coupler
CN101379248B (zh) 用于附件安装装置的控制回路
US9689139B2 (en) Quick coupler
US8752373B2 (en) Slewing type working machine
US9388549B2 (en) Quick-coupler
US9285023B2 (en) Hydraulic drive of operating machine
US9334623B2 (en) Implement coupling system for a power machine
EP3093398B1 (de) Steuerschaltung und steuerungsverfahren für auslegerenergierückgewinnung
US20160244939A1 (en) Implement interface
NO331628B1 (no) Verktoyholder med hydrauisk koblingsinnretning
EP3052706A1 (de) Geräteschnittstelle
JP6493916B2 (ja) 流体圧回路および作業機械
CN116209812A (zh) I型锁定联接器
WO2023188593A1 (ja) 建設機械
JP2005265015A (ja) 建設機械

Legal Events

Date Code Title Description
AS Assignment

Owner name: KINSHOFER GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FRIEDRICH, THOMAS;REEL/FRAME:043188/0943

Effective date: 20170628

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4