UA87177C2 - способ получения наночастиц для магнитных жидкостей электронно-лучевым испарением и конденсацией в вакууме, способ получения магнитной жидкости и магнитная жидкость, полученная этим способом - Google Patents

способ получения наночастиц для магнитных жидкостей электронно-лучевым испарением и конденсацией в вакууме, способ получения магнитной жидкости и магнитная жидкость, полученная этим способом Download PDF

Info

Publication number
UA87177C2
UA87177C2 UAA200707529A UAA200707529A UA87177C2 UA 87177 C2 UA87177 C2 UA 87177C2 UA A200707529 A UAA200707529 A UA A200707529A UA A200707529 A UAA200707529 A UA A200707529A UA 87177 C2 UA87177 C2 UA 87177C2
Authority
UA
Ukraine
Prior art keywords
nanoparticles
magnetic
liquid
carrier
substrate
Prior art date
Application number
UAA200707529A
Other languages
English (en)
Ukrainian (uk)
Inventor
Борис Евгеньевич Патон
Борис Алексеевич Мовчан
Юрий Анатольевич Курапов
Original Assignee
Государственное Предприятие "Международный Центр Электронно-Лучевых Технологий Института Электросварки Им. Е.О.Патона Национальной Академии Наук Украины"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное Предприятие "Международный Центр Электронно-Лучевых Технологий Института Электросварки Им. Е.О.Патона Национальной Академии Наук Украины" filed Critical Государственное Предприятие "Международный Центр Электронно-Лучевых Технологий Института Электросварки Им. Е.О.Патона Национальной Академии Наук Украины"
Priority to UAA200707529A priority Critical patent/UA87177C2/ru
Priority to EP07835637A priority patent/EP2168739A4/en
Priority to US12/667,472 priority patent/US8137459B2/en
Priority to PCT/UA2007/000048 priority patent/WO2009005484A1/ru
Publication of UA87177C2 publication Critical patent/UA87177C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/445Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids the magnetic component being a compound, e.g. Fe3O4
UAA200707529A 2007-07-04 2007-07-04 способ получения наночастиц для магнитных жидкостей электронно-лучевым испарением и конденсацией в вакууме, способ получения магнитной жидкости и магнитная жидкость, полученная этим способом UA87177C2 (ru)

Priority Applications (4)

Application Number Priority Date Filing Date Title
UAA200707529A UA87177C2 (ru) 2007-07-04 2007-07-04 способ получения наночастиц для магнитных жидкостей электронно-лучевым испарением и конденсацией в вакууме, способ получения магнитной жидкости и магнитная жидкость, полученная этим способом
EP07835637A EP2168739A4 (en) 2007-07-04 2007-08-22 METHOD FOR THE PRODUCTION OF NANOTEHUIDS FOR FERROFLUIDS BY ELECTRON BEAM EVAPORATION AND CONDENSATION IN VACUUM, METHOD FOR THE PRODUCTION OF A FERROFLUID AND FERROFLUID PRODUCED BY THE PROCESS
US12/667,472 US8137459B2 (en) 2007-07-04 2007-08-22 Method for producing nanoparticles for magnetic fluids by electron-beam evaporation and condensation in vacuum, a magnetic fluid producing method and magnetic fluid produced according to said method
PCT/UA2007/000048 WO2009005484A1 (fr) 2007-07-04 2007-08-22 Procédé de fabrication de nanoparticules destinées aux ferrofluides au moyen de l'évaporation par faisceau d'électrons et par condensation dans le vide, procédé de fabrication de ferrofluide et ferrofluide ainsi obtenu

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
UAA200707529A UA87177C2 (ru) 2007-07-04 2007-07-04 способ получения наночастиц для магнитных жидкостей электронно-лучевым испарением и конденсацией в вакууме, способ получения магнитной жидкости и магнитная жидкость, полученная этим способом

Publications (1)

Publication Number Publication Date
UA87177C2 true UA87177C2 (ru) 2009-06-25

Family

ID=40226348

Family Applications (1)

Application Number Title Priority Date Filing Date
UAA200707529A UA87177C2 (ru) 2007-07-04 2007-07-04 способ получения наночастиц для магнитных жидкостей электронно-лучевым испарением и конденсацией в вакууме, способ получения магнитной жидкости и магнитная жидкость, полученная этим способом

Country Status (4)

Country Link
US (1) US8137459B2 (ru)
EP (1) EP2168739A4 (ru)
UA (1) UA87177C2 (ru)
WO (1) WO2009005484A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986780B2 (en) * 2004-11-19 2015-03-24 Massachusetts Institute Of Technology Method and apparatus for depositing LED organic film
US10213836B2 (en) 2014-08-07 2019-02-26 Okinawa Institute Of Science And Technology School Corporation Gas phase synthesis of stable soft magnetic alloy nanoparticles
CN108352235B (zh) * 2015-08-28 2021-04-13 湖南博海新材料股份有限公司 纳米磁流变流体及其制备设备和方法
RU2665055C1 (ru) * 2017-04-07 2018-08-28 Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН) Магнитный наноматериал на основе ферроценсодержащих полихалконов и способ его получения
CN110863179A (zh) * 2019-11-27 2020-03-06 中国航空制造技术研究院 一种大面积均匀沉积热障涂层的电子束物理气相沉积方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665080A (en) 1979-10-31 1981-06-02 Nitto Chem Ind Co Ltd Stabilization of ground
JPS6338572A (ja) 1986-08-04 1988-02-19 Nippon Kokan Kk <Nkk> Pvd法
JPH0683780B2 (ja) 1986-08-05 1994-10-26 新技術事業団 有機物微粒子の製造方法
JP2808734B2 (ja) 1989-10-23 1998-10-08 松下電器産業株式会社 微粒子膜の製造装置
US5472749A (en) 1994-10-27 1995-12-05 Northwestern University Graphite encapsulated nanophase particles produced by a tungsten arc method
DE19758350C1 (de) 1997-12-22 1999-03-11 Mediport Kardiotechnik Gmbh Magnetische Flüssigkeit und Verfahren und Vorrichtung zur Herstellung
RU2182579C2 (ru) 2000-05-06 2002-05-20 Общество с ограниченной ответственностью "Перспективные магнитные технологии и консультации" Магнитные пены (варианты)
US6688494B2 (en) * 2001-12-20 2004-02-10 Cima Nanotech, Inc. Process for the manufacture of metal nanoparticle
JP4155031B2 (ja) 2002-03-15 2008-09-24 株式会社豊田中央研究所 基材の表面改質方法及び改質された基材、並びに装置
US7338711B1 (en) * 2002-08-12 2008-03-04 Quantum Logic Devices, Inc. Enhanced nanocomposite combustion accelerant and methods for making the same
US7807217B2 (en) * 2006-07-05 2010-10-05 Seagate Technology Llc Method of producing self-assembled cubic FePt nanoparticles and apparatus using same
US20080075975A1 (en) * 2006-09-26 2008-03-27 General Electric Company Magnetic cores for inductors and transformers and method of manufacture

Also Published As

Publication number Publication date
EP2168739A1 (en) 2010-03-31
US8137459B2 (en) 2012-03-20
WO2009005484A1 (fr) 2009-01-08
EP2168739A4 (en) 2010-11-10
US20110001079A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
Li et al. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in-situ metal matrix composites prepared via selective laser melting
Dahle et al. Eutectic modification and microstructure development in Al–Si Alloys
CN102791628B (zh) 碳材料及其制造方法
UA87177C2 (ru) способ получения наночастиц для магнитных жидкостей электронно-лучевым испарением и конденсацией в вакууме, способ получения магнитной жидкости и магнитная жидкость, полученная этим способом
Kertis et al. Heterogeneous nucleation of protein crystals using nanoporous gold nucleants
Albu et al. Microstructure evolution during in-situ heating of AlSi10Mg alloy powders and additive manufactured parts
Li et al. Controlled synthesis of different morphologies of TiB2 microcrystals by aluminum melt reaction method
Lefebvre et al. Nano-precipitates made of atomic pillars revealed by single atom detection in a Mg-Nd alloy
Lu et al. Equilibrium Cu-Ag nanoalloy structure formation revealed by in situ scanning transmission electron microscopy heating experiments
Jiang et al. Simultaneous refinement and modification of the eutectic Si in hypoeutectic Al–Si alloys achieved via the addition of SiC nanoparticles
Zhang et al. Mechanisms of structural evolutions associated with the high current pulsed electron beam treatment of a NiTi shape memory alloy
Nam et al. Facile synthesis of powder-based processing of porous aluminum nitride
Alshataif et al. Synthesis, microstructures and mechanical behaviour of Cr 0.21 Fe 0.20 Al 0.41 Cu 0.18 and Cr 0.14 Fe 0.13 Al 0.26 Cu 0.11 Si 0.25 Zn 0.11 nanocrystallite entropy alloys prepared by mechanical alloying and hot-pressing
Jung et al. Bulk nanostructured AlCoCrFeMnNi chemically complex alloy synthesized by laser-powder bed fusion
Wu et al. Growth of single crystalline boron nanotubes in a Cu alloy
Bian et al. Growth mechanism and magnetic properties of monodisperse L1 0-Co (Fe) Pt@ C core–shell nanoparticles by one-step solid-phase synthesis
Mao et al. Real time observation on the solidification of strontium-modified zinc–aluminum–silicon alloys by synchrotron microradiography
Chen et al. Using positive pressure to produce a sub-micron single-crystal column of cesium iodide (CsI) for scintillator formation
Bogatyrenko Formation of the solid solutions in the Au-Ni film system: In situ TEM study
Jia et al. Microstructure and thermal conductivity of hypereutectic Al-high Si produced by casting and spray deposition
Li et al. A microstructural and crystallographic investigation of the precipitation behaviour of a primary Al3Zr phase under a high magnetic field
Wang et al. Morphology‐controlled CaMoO4 nanorods via a facile microwave‐assisted EDTA chelating agent process
Hono et al. Microstructure of a rapidly solidified Al–4V–2Fe ultrahigh strength aluminum alloy
Wang et al. Seaweed pattern formation in the non-axially directional solidification of 2D-like and 3D Al-3 wt.% Mg single crystal
Zeng et al. Preparation of in situ TiCP/LY12 composite and its microstructure and mechanical properties