RU2665055C1 - Магнитный наноматериал на основе ферроценсодержащих полихалконов и способ его получения - Google Patents

Магнитный наноматериал на основе ферроценсодержащих полихалконов и способ его получения Download PDF

Info

Publication number
RU2665055C1
RU2665055C1 RU2017111895A RU2017111895A RU2665055C1 RU 2665055 C1 RU2665055 C1 RU 2665055C1 RU 2017111895 A RU2017111895 A RU 2017111895A RU 2017111895 A RU2017111895 A RU 2017111895A RU 2665055 C1 RU2665055 C1 RU 2665055C1
Authority
RU
Russia
Prior art keywords
nanomaterial
magnetic
ferrocene
iron
nanoparticles
Prior art date
Application number
RU2017111895A
Other languages
English (en)
Inventor
Раиса Алексеевна Дворикова
Юрий Васильевич Коршак
Лев Николаевич Никитин
Михаил Игоревич Бузин
Александр Александрович Корлюков
Зинаида Сергеевна Клеменкова
Сергей Савельевич Абрамчук
Инеса Васильевна Благодатских
Валерий Александрович Васнёв
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН)
Priority to RU2017111895A priority Critical patent/RU2665055C1/ru
Application granted granted Critical
Publication of RU2665055C1 publication Critical patent/RU2665055C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/02Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F232/06Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having two or more carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G6/00Condensation polymers of aldehydes or ketones only
    • C08G6/02Condensation polymers of aldehydes or ketones only of aldehydes with ketones

Abstract

Изобретение относится к магнитному наноматериалу, включающему железосодержащие наночастицы, распределенные в матрице пиролизованного ферроценсодержащего полимера. Материал характеризуется тем, что указанные наночастицы включают железо в нульвалентном состоянии Feи покрыты оболочкой из графита, а ферроценсодержащим полимером является полихалкон, получаемый взаимодействием диацетилферроцена с терефталевым или изофталевым альдегидом, при этом массовое содержание железа в наноматериале составляет 43,27-56,20%, а намагниченность насыщения равна 1-43 Гс см/г. Также изобретение относится к способу получения наноматериала, согласно которому осуществляют взаимодействие диацетилферроцена с терефталевым или изофталевым альдегидом в этиловом спирте в присутствии NaOH при перемешивании и температуре 20-70°С с образованием ферроценсодержащего полихалкона, который далее нагревают при 500-1000°С в атмосфере аргона. Предложенный наноматериал обладает высокой намагниченностью. 2 н. и 1 з.п. ф-лы, 13 ил., 8 табл., 7 пр.

Description

Изобретение относится к области наноматериалов, а именно к созданию нового магнитного наноматериала, включающего железосодержащие наночастицы, получаемого из ферроценсодержащего полихалкона.
Изобретение наиболее эффективно может быть использовано в радиоэлектронике, фотонике и медицине для создания средств защиты информации, магнитных жидкостей, контрастных веществ, носителей для адресной доставки лекарственных препаратов и др.
Повышенный интерес к наноматериалам (материалам, содержащим структурные элементы размером от 1 до 100 нм) обусловлен существенным улучшением или появлением у таких материалов качественно новых физических, химических, биологических и других свойств, в частности магнитных. Основные способы получения магнитных наночастиц и наноматериалов и экспериментальные данные об их свойствах систематизированы и проанализированы в обзоре [Губин С.П., Кокшаров Ю.А., Хомутов Г.Б., Юрков Г.Ю. Успехи химии, 2005, 74, 539-574].
Одним из перспективных способов создания магнитных наноматериалов является стабилизация наночастиц в органических полимерных матрицах [Помогайло A.Д., Розенберг А.С., Уфлянд И.Е. Наночастицы металлов в полимерах. М: Химия, 2000. - 672 с]. В качестве матриц использовали различные полимеры: ионообменные смолы (при этом для получения наночастиц обрабатывали смолы солями металлов и далее окисляли или восстанавливали металл) [Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. Наночастицы металлов в полимерах. М.: Химия, 2000. - 672 с.]; полибутадиен, полистирол, сополимеры стирола с бутадиеном, 4-винилпиридином и другими мономерами (а наночастицы получали разложением металлоорганических соединений в растворе полимера) [Ziolo R.F., Giannelis Т.Р., Weinstein В.А.,
Figure 00000001
М.Р., Ganguly B.N., Mehrotra V., Russell M.W., Huffman D.R. Science, 1992, 257 (5067), 219-223]; карбоцепные полимеры, такие как полиэтилен и полипропилен (а наночастицы получали механохимическим диспергированием металла, образующегося при диспропорционировании низшего оксида, в полимер) [Leslie-Pelecky D.L., Zhang X.Q., Rieke R.D. J. Appl. Phys., 1996, 79 (8), 5312-5314].
Во всех рассмотренных случаях получение металлсодержащих магнитных материалов осуществляли путем введения металлоорганических соединений, солей или оксидов металлов в готовую полимерную матрицу с последующим образованием магнитных наночастиц.
Известно лишь небольшое число работ, в которых сообщается об образовании ферромагнитных наночастиц непосредственно в ходе синтеза полимера.
Известен магнитный наноматериал, получаемый при нагревании диацетилферроцена и ε-капролактама в течение 24 ч при 160°С в вакууме, который характеризуется намагниченностью насыщения 18,5 Гс⋅см3/г при 20°С и 16,7 Гс⋅см3/г при 250°С [Авт. свид. СССР №1767545, Б.И. №37 (1992); Антипов Б.Г., Белавцева Е.М., Волкова Т.В., Филатова А.Г. Заводская лаборатория, 2005, 71 (2), 34-37]. При температуре синтеза 160°С выявляются наночастицы размером 3-10 нм, при температуре 210°С фиксируются как мелкие (~10 нм), так и более крупные наночастицы (50-100 нм), при еще более высокой температуре наблюдаются только наночастицы размером свыше 50 нм.
Недостатки вышеуказанного материала - неоднородность наночастиц по размеру и невысокие значения удельной намагниченности.
Известны магнитные наноматериалы, получаемые структурированием ферроценсодержащих полимеров (полифениленов) с концевыми реакционно-способными группами в процессе термической обработки при 200-300°С с удельной намагниченностью насыщения до 18 Гс⋅см3/г. При одновременном воздействии на полученный продукт повышенной температуры ~400°С и давления ~200 МПа удельная намагниченность насыщения возрастает до 22,6 Гс⋅см3/г. Полученный таким образец представляет собой узкозонный проводник с удельным сопротивлением 2×107 Ом/см и энергией активации проводимости 0,45 эВ. Удельная намагниченность насыщения для образцов, отпрессованных при 300°С и дополнительно термообработанных при 700°С составляет 35,3 Гс⋅см3/г, температура Кюри - 545°С [Дворикова Р.А., Антипов Б.Г., Клеменкова З.С., Шандицев В.А., Прокофьев А.И., Петровский П.В., Русанов А.Л., Коршак Ю.В. Высокомолек. соед. Сер. А, 2005, 47 (11), 1925-1931].
Известны магнитные наноматериалы на основе высокоразветвленных ферроценсодержащих полифениленов, полученные в жидком и сверхкритическом диоксиде углерода (СК СО2) с намагниченностью до 13 Гс⋅см3/г в магнитном поле напряженностью 2,5 кЭ и среднестатистическими размерами железосодержащих частиц от 10 до 41 нм. Размеры наночастиц, образующихся в матрице ферроценсодержащих полифениленов, зависят от химического строения используемого катализатора. Так, в случае применения в качестве катализатора n-толуолсульфокислоты среднестатистический размер наночастиц составляет около 13 нм, а в случае использования SiCl4/C2H5OH преимущественно образуются более крупные наночастицы, которые имеют среднестатистический размер порядка 41 нм.
Анализ дифрактограмм полученных образцов показал, что основной магнитной фазой в наночастицах является является магнетит (Fe3O4). По данным термогравиметрических испытаний образцов, прогретых в инертной атмосфере, при температуре около 400°С происходит 5%-ная потеря массы, а при 1000°С масса карбонизованного остатка составляет около 80% [Дворикова Р.А., Никитин Л.Н., Коршак Ю.В., Шандицев В.А., Русанов А.Л., Абрамчук С.С., Хохлов А.Р. Доклады Академии наук. 422, №3, 334-338, 2008].
Недостаток вышеуказанного наноматериала - относительно низкие значения намагниченности насыщения.
Наиболее близким к заявляемому наноматериалу по совокупности существенных признаков является магнитный наноматериал, представляющий собой карбонизованную матрицу полифенилена, содержащую наночастицы магнетита, с намагниченностью насыщения до 32 Гс⋅см3/г в магнитном поле 2,5 кЭ [Дворикова Р.А., Никитин Л.Н., Коршак Ю.В., Бузин М.И., Шандицев В.А., Корлюков А.А., Бушмаринов И.С., Абрамчук С.С, Русанов А.Л., Хохлов А.Р. Российские нанотехнологии, 5, №9-10, 52-58, 2010], который был выбран в качестве прототипа.
Магнитный наноматериал-прототип получают из ферроценсодержащих полифениленов, синтезированных полициклоконденсацией 1,1'-диацетилферроцена и триэтилортоформиата в присутствии каталитических количеств п-толуолсульфокислоты при температуре 70-140°С при атмосферном давлении на воздухе с выходами 16-66 % и в среде СК-СО2 при 20-200°С (с выходами 18-98%). Прогрев ферроценсодержащих полифениленов при температурах от 200 до 750°С приводит к образованию карбонизованной полимерной матрицы и возникновению внутри нее кристаллических железосодержащих магнитных наночастиц. Намагниченность полученных наноматериалов достигает 32 Гс⋅см3/г в магнитном поле 2,5 кЭ. Среднестатистические размеры магнитных наночастиц по данным просвечивающей электронной микроскопии (ПЭМ) составляют от 6 до 22 нм. Рентгенодифракционное исследование образцов, полученных после прогрева в аргоне при 250, 300 и 500°С показало, что железо в образцах присутствует исключительно в форме Fe3O4, тогда как кристаллическая фаза образца, синтезированного в СК-СО2, после прогрева в ячейке магнитометра при 300°С в течение 5 ч характеризуется достаточно сложным составом: 14,6% Fe3C, 43,3% Fe3O4, 36,6% графита 2Н и 5,5% элементного железа. При повышении температуры прогрева вышеуказанных полимеров в ячейке магнитометра до 600-675°С магнитные частицы теряют однородность по составу, представляя собой в основном магнетит, цементит (Fe3C) и вьюстит (Fe0⋅97O) [Дворикова Р.А., Никитин Л.Н., Коршак Ю.В., Бузин М.И., Шандицев В.А., Корлюков А.А., Бушмаринов И.С., Абрамчук С.С., Русанов А.Л., Хохлов А.Р. Российские нанотехнологии, 5, №9-10, 52-58, 2010].
Недостатками магнитного наноматериала-прототипа являются невысокая величина намагниченности насыщения, невысокий выход и необходимость применения высокой температуры для синтеза полимера-прекурсора.
Способ получения нанокомпозита-прототипа аналогичен к заявляемому способу и включает получение ферроценсодержащих полимеров-прекурсоров (полифениленов) магнитных наноматериалов и последующее термическое воздействие на них при температурах 200-750°С, что приводит к образованию железосодержащих магнитных наночастиц в карбонизованной матрице полимера. Недостатками способа являются сложная процедура получения материала, неоднородность структуры карбонизованной оболочки и низкие значения намагниченности насыщения [Дворикова Р.А., Никитин Л.Н., Коршак Ю.В., Бузин М.И., Шандицев В.А., Корлюков А.А., Бушмаринов И.С., Абрамчук С.С., Русанов А.Л., Хохлов А.Р. Российские нанотехнологии, 5, №9-10, 52-58, 2010].
До сих пор не были известны железо-углеродные магнитные наноматериалы на основе ферроценсодержащих полифениленов, которые содержали бы наночастицы с преобладанием железа в нульвалентном состоянии.
Известен только один пример магнитного нанокомпозита, содержащий наночастицы с преобладанием железа в нульвалентном состоянии, который получен из ферроценсодержащего полиакрилата (поли(1-трифторметил-1-ферроценил-2,2,2-трифторэтилметакрила) в результате его нагревания в атмосфере аргона при при температуре 500-1000°С в течение 6-7 часов. [Патент РФ № RU 2565677, Бюл. №29, 2015]. Содержание Fe° составляет 31,01-38,25% по отношению к массе нанокомпозита. Наличие железа в нульвалентном состоянии, как правило, улучшает магнитные свойства материалов.
Известно ограниченное число ферроценсодержащих полимеров, на основе которых могут быть получены магнитные наноматериалы, причем свойства материалов зависят от структуры полимера-прекурсора, поэтому существует потребность в поиске новых ферроценсодержащих полимеров-прекурсоров, способных привести к созданию новых магнитных наноматериалов, в которых металлические наночастицы внедрены в немагнитные матрицы (например углерод).
Задачей изобретения является создание термостойкого магнитного наноматериала с высокой намагниченностью насыщения и разработка нового полимера прекурсора.
Задача решается магнитным наноматериалом, включающим железосодержащие наночастицы, распределенные в матрице пиролизованного ферроценсодержащего полимера, причем указанные наночастицы содержат железо в нульвалентном состоянии Fe° и покрыты оболочкой из графита, а ферроценсодержащим полимером является полихалкон, получаемый взаимодействием диацетилферроцена с терефталевым или изофталевым альдегидом, при этом массовое содержание железа в наноматериале составляет 43,27-56,20%, а намагниченность насыщения - от 1 до 43 Гс⋅см3/г, железосодержащие наночастицы содержат 43,27-74,07% железа в нульвалентном состоянии Fe°, а также способом получения магнитного наноматериала, включающим взаимодействие диацетилферроцена с терефталевым или изофталевым альдегидом в этиловом спирте в присутствии NaOH при перемешивании и температуре 20-70°С с образованием ферроценсодержащего полихалкона, который далее подвергают термическому воздействию при 500-1000°С в атмосфере аргона.
Полимеры-прекурсоры представляют собой ферроценсодержащие полихалконы, получаемые по известной методике [Oleinek Н., Zugravescu I. Makromol. Chem., 1910, 131, 265-272] взаимодействием 1,1'-диацетилферроцена с тере- или изофталевым альдегидом в спиртовом растворе в присутствии щелочи при температуре 20-70°С по следующей схеме:
Figure 00000002
В табл. 1 приведены условия синтеза, выход и качественные данные по растворимости ферроценсодержащих полихалконов, а также удельная намагниченность насыщения с полученных из них в результате нагрева в атмосфере аргона при 1000°С в течение 1 ч магнитных материалов.
Таблица 1
Figure 00000003
*Рассчитано для звена C22H16O2Fe, %: С 71,76; Н 4,38; Fe 15,17.
**Обозначения: «+» - растворим; «±» - частично растворим; «-» - нерастворим.
***Синтез проведен в СК-СО2 при 150 атм.
Из таблицы видно, что при поликонденсации 1,1'-диацетилферроцена с изо- или терефталевым альдегидом в спиртовом растворе на воздухе при атмосферном давлении («обычные» условия) выход полихалконов близок к количественному (89-95%), тогда как в СО2 при 40°С и 150 атм (суперкритические условия) выход составляет только 22%. Полученные продукты представляют собой порошки бордового цвета, которые не плавятся до 300°С и ограниченно растворимы или совсем нерастворимы в органических растворителях, что обусловлено содержанием в продуктах поликонденсации значительных количеств сшитых полимеров. (Отметим, что образование из полихалконов сшитых полимеров в процессе конденсации не имеет негативной коннотации в настоящем изобретении, поскольку эти полимеры также выступают в роли прекурсоров заявляемых магнитных наноматериалов.) Хорошей растворимостью обладает лишь синтезированный при 20°С полихалкон 4, который характеризуется молекулярной массой Mw=1040 Да и Mn=740 Да.
В ИК-спектрах полихалконов наблюдаются следующие полосы поглощения (см-1): 3090 сл. - валентные колебания СН-связей Ср-колец; 1670 о.с. - валентные колебания сопряженных групп С=O; 1700 с. - валентные колебания концевых групп С=O; 1597 о.с. - симметричные валентные колебания СС-связей замещенных бензольных колец; 1454 с, 1375 ср. - несимметричные валентные колебания СС-связей замещенных бензольных колец; 1242 ср. - валентные колебания СС-связей замещенных Ср-колец; 1079 с. - деформационные плоскостные колебания СН-связей; 824 с. - деформационные внеплоскостные колебания СН-связей; 549 сл., 488 ср. - скелетные колебания ферроценовых фрагментов Fe-Cp.
Заявляемый магнитный материал получают при нагревании полученных твердых полихалконов при температуре 600-1000°С в инертной атмосфере. Его образование включает деметаллизацию ферроценовых фрагментов, сшивание макромолекул, превращение Ср-лигандов с возникновением кристаллических железосодержащих магнитных наночастиц в карбонизованной матрице полимера.
Заявляемый магнитный наноматериал представляет собой черный порошок (с металлическим блеском), нерастворимый в воде и органических растворителях, термически устойчивый до 1000°С в инертной атмосфере и до 500°С на воздухе, с намагниченностью насыщения 9-43 Гс⋅см3/г в магнитном поле напряженностью 2,5 кЭ.
Заявляемый магнитный наноматериал охарактеризован данными, показанными на фиг. 1-13 и приведенными в табл. 2-8.
На фиг. 1 приведена электронная микрофотография наночастицы железа в оболочке из уплотненного графита в матрице из терморасширенного графита для образца, полученного после прогрева полихалкона 2 при 800°С в течение 1 ч.
На фиг. 2 представлена электронная микродифракционная картина локального участка (оболочка из графита размером 10-15 нм) образца, полученного после прогрева полихалкона 2 при 800°С в течение 1 ч.
На фиг. 3 приведена рентгеновская дифрактограмма образца, полученного после прогрева полихалкона 2 при 700°С в ячейке магнитометра в течение 1 ч.
На фиг. 4 приведена рентгеновская дифрактограмма образца, полученного после прогрева полихалкона 7 при 1000°С в ячейке магнитометра в течение 1 ч.
На фиг. 5 представлена электронная микрофотография образца, полученного после прогрева полихалкона 1 при 500°С в среде аргона в течение 1 ч; минимальный размер частиц - 4,76 нм, максимальный - 10,41 нм, среднестатистический - 6,86 нм.
На фиг. 6 представлена электронная микрофотография образца, полученного после прогрева полихалкона 2 при 700°С в течение 1 ч в ячейке магнитометра; среднестатистический размер частиц - 7,79 нм.
На фиг. 7 представлена электронная микрофотография образца, полученного после прогрева полихалкона 2 при 1000°С в течение 1 ч в ячейке магнитометра; среднестатистический размер частиц - 41,47 нм.
На фиг. 8 приведены кривые ТГА в аргоне (кривая 1) и на воздухе (кривая 2) для образца с намагниченностью 26,5 Гс см3/г, полученного путем прогрева полихалкона 2 в ячейке магнитометра при 800°С в течение 1 ч.
На фиг. 9 представлена электронная микрофотография образца, полученного после прогрева полихалкона 5 при 500°С в среде аргона в течение 1 ч; минимальный размер частиц - 2,34 нм, максимальный - 5,21 нм, среднестатистический - 3,68 нм.
На фиг. 10 представлена электронная микрофотография образца, полученного после прогрева полихалкона 5 при 1000°С в течение 1 ч в ячейке магнитометра; среднестатистический размер частиц - 31,51 нм.
На фиг. 11 представлена электронная микрофотография образца, полученного после прогрева полихалкона 7 при 700°С в течение 1 ч в ячейке магнитометра; среднестатистический размер частиц - 25,45 нм.
На фиг. 12 представлена электронная микрофотография образца, полученного после прогрева полихалкона 7 при 800°С в течение 1 ч в ячейке магнитометра; среднестатистический размер частиц - 42,79 нм.
На фиг. 13 представлена электронная микрофотография образца, полученного после прогрева полихалкона 7 при 1000°С в течение 1 ч в ячейке магнитометра; среднестатистический размер частиц - 75,00 нм.
Заявляемый наноматериал имеет структуру «ядро-оболочка-матрица» (фиг. 1), где ядром являются железосодержащие наночастицы, в которых преобладает железо в нульвалентном состоянии Fe° (фиг. 4), оболочкой, покрывающей наночастицы, является уплотненный графит, а матрицей - терморасширенный графит, что подтверждено данными электронной дифракции (фиг. 2) и ИК-спектроскопии: после прогрева полихалконов выше 500°С, с появлением наночастиц, в ИК-спектрах наблюдается лишь широкая полоса при 1597 см-1 - характеристичная полоса поглощения графита.
С помощью просвечивающей электронной микроскопии (ПЭМ) показано, что формирование железосодержащих наночастиц размером 3-7 нм начинается при прогреве ферроценового полимерного прекурсора при 500°С, причем кристаллические зародыши равномерно распределяются в полимерной матрице (фиг. 5 и 9), но полученный наноматериал еще не обладает магнитными свойствами (табл. 2 и 6). Он начинает проявлять магнитные свойства только при температуре прогрева выше 600°С (табл. 2 и 6), причем с увеличением температуры одновременно возрастает и размер наночастиц, и намагниченность наноматериала (фиг. 6, 7 и табл. 3, фиг. 9, 10 и табл. 4, фиг. 11-13 и табл. 6).
Среднестатистический размер железосодержащих наночастиц в наноматериалах, по данным ПЭМ, составляет 5,27 нм при 500°С (образцы еще не магнитны), 16,62 нм при 700°С, 42,79 нм при 800°С и 53,25 нм при 1000°С.
Среднестатистический размер наночастиц в сформированном магнитном наноматериале составляет 34 нм с разбросом частиц по размерам от 26 до 43 нм.
Ренгенодифракционное исследование (подтвержденное данными рентгенофлуоресцентного анализа) показало, что магнитный наноматериал, полученный из полихалкона 2 при 700°С, состоит из 43,27 масс% нульвалентного железа Fe° и 56,72 масс% графита (фиг. 3). В магнитном наноматериале, полученном при прогреве полихалкона 7 при 1000°С, содержание нульвалентного железа Fe° в сумме всех железосодержащих включений составляет 74,07%. Данный образец также содержит 4,67% гематита, 16,36% магнетита и 10,03% графита (фиг. 4).
Таким образом, общее содержание железа в заявляемом магнитном наноматериале составляет 43,27-56,20 масс%.
Термическая и термоокислительная стабильность заявляемого наноматериала изучена методом термогравиметрического анализа (ТГА) на примере образца с намагниченностью 26,5 Гс см3/г, полученного путем прогрева полихалкона 2 в ячейке магнитометра при 800°С в течение 1 ч.
Разложение такого образца на воздухе (фиг. 8, кривая 2) проходит через стадию окисления, сопровождающуюся набором массы в области 400°С за счет присоединения молекул кислорода. Термоокислительная деструкция заканчивается вблизи 700°С, при этом масса твердого остатка составляет порядка 33% первоначальной. При нагревании в аргоне (фиг. 8, кривая 1) образец характеризуется гораздо более высокой термической стабильностью: он начинает терять массу лишь в области 700°С и при 1000°С масса твердого остатка близка к первоначальной - составляет от нее 95%.
За возникновением и развитием магнитного порядка в процессах термообработки полимеров наблюдали с помощью вибрационного магнитометра типа Фонера.
Электронные микрофотографии образцов наноматериалов получали методом просвечивающей электронной микроскопии на приборе LEO 912АВ OMEGA. В каждом случае для установления распределения наночастиц по размерам статистическим методом обрабатывали данные по 50-100 частицам.
Состав наноматериалов определяли методом порошковой рентгеновской дифракции на дифрактометре Bruker D8 Advance, оборудованном никелевым β-фильтром с системой управляемых щелей для монохроматизации (λ[CuKα]=1.5418
Figure 00000004
) и позиционно-чувствительным детектором LynxEye, в угловом диапазоне 2-80° с шагом 0,01° по углу 2θ, и методом рентгенофлуоресцентного анализа, проведенного на спектрометре VRA (Carl Zeiss, Германия).
Исследование термостойкости образцов наноматериалов проводили методом термогравиметрического анализа на приборе Derivatograph-C (MOM, Венгрия) на образцах массой около 15 мг при скорости нагревания 10°С/мин в атмосфере аргона и на воздухе.
Изобретение иллюстрируется следующими примерами. Пример 1. Получение полихалкона 1 (табл. 1). В одногорлой колбе, снабженной обратным холодильником, на магнитной мешалке перемешивают 2 г (0,0074 моль) диацетилферроцена и 1 г (0,0074 моль) терефталевого альдегида в 36 мл абсолютированного этилового спирта до полного растворения исходных реагентов. Затем к реакционной смеси при перемешивании через холодильник приливают раствор 0,37 г NaOH в 3 мл этилового спирта. После добавления NaOH выпадает осадок красно-бурого цвета. Перемешивание продолжают при комнатной (20°С) температуре в течение 2,5 ч. Полученный осадок полимера отфильтровывают, промывают этиловым спиртом, дистиллированной водой до нейтральной реакции, вновь этиловым спиртом и сушат. Выход 2,69 г (94%).
Получение магнитного наноматериала в ячейке магнитометра. В кварцевую ампулу диаметром 3 мм и длиной 15 см загружают 100 мг полимера 1. Ампулу помещают в ячейку вибрационного магнитометра типа Фонера в магнитном поле 2,5 кЭ, нагревают до 1000°С и выдерживают при этой температуре в течение 1 ч. Изменение массы полимера и намагниченности в зависимости от температуры во время формирования магнитного наноматериала приведено в табл. 2.
Таблица 2
Figure 00000005
Пример 2. Получение полихалкона 2 (табл. 1). В условиях примера 1 нагревают 1 г (0,0037 моль) диацетилферроцена и 0,5 г (0,0037 моль) терефталевого альдегида в 18 мл абсолютированного этилового спирта до 40°С. Затем к реакционной смеси при перемешивании через холодильник приливают раствор 0,18 г NaOH в 2 мл этилового спирта и продолжают перемешивание при 40°С в течение 2 ч. Полимер выделяют аналогично примеру 1. Выход 1,275 г (89%).
Получение магнитного наноматериала проводят аналогично примеру 1. Изменение массы полимера и намагниченности в зависимости от температуры во время формирования магнитного наноматериала приведено в табл. 3
Таблица 3
Figure 00000006
Пример 3. Получение полихалкона 3 (табл. 1). В условиях примера 1 на магнитной мешалке нагревают 2 г (0,0074 моль) диацетилферроцена и 1 г (0,0074 моль) терефталевого альдегида в 40 мл абсолютированного этилового спирта до 70°С до полного растворения исходных реагентов. Затем к реакционной смеси при перемешивании через холодильник приливают раствор 0,37 г NaOH в 3 мл этилового спирта и продолжают перемешивание при 70°С в течение 2,5 ч. Полимер выделяют аналогично примеру 1. Выход 2,53 г (89%).
Получение магнитного наноматериала проводят аналогично примеру 1. Изменение массы полимера и намагниченности в зависимости от температуры во время формирования магнитного наноматериала приведено в табл. 4.
Таблица 4
Figure 00000007
Пример 4. Получение полихалкона 4 (табл. 1). В условиях примера 1 перемешивают 1 г (0,0037 моль) диацетилферроцена и 0,329 г (0,0025 моль) изофталевого альдегида в 15 мл абсолютированного этилового спирта при 20°С. Затем к реакционной смеси при перемешивании через холодильник приливают раствор 0,106 г NaOH в 5 мл этилового спирта и продолжают перемешивание при 20°С в течение 2 ч. Полимер выделяют аналогично примеру 1. Выход 0,863 г (91%).
Получение магнитного наноматериала проводят аналогично примеру 1. Изменение массы полимера и намагниченности в зависимости от температуры во время формирования магнитного наноматериала приведено в табл. 5.
Таблица 5
Figure 00000008
Пример 5. Получение полихалкона 5 (табл. 1). В условиях примера 1 нагревают 2 г (0,0074 моль) диацетилферроцена и 1 г (0,0074 моль) изофталевого альдегида в 39 мл абсолютированного этилового спирта до 40°С. Затем к реакционной смеси при перемешивании через холодильник приливают раствор 0,27 г NaOH в 4 мл этилового спирта и продолжают перемешивание при 40°С в течение 2 ч. Полимер выделяют аналогично примеру 1. Выход 2,7 г (95%).
Получение магнитного наноматериала проводят аналогично примеру 1. Изменение массы полимера и намагниченности в зависимости от температуры во время формирования магнитного наноматериала приведено в табл. 6.
Таблица 6
Figure 00000009
Пример 6. Получение полихалкона 6 (табл. 1). В условиях примера 4 проводят реакцию при 70°С в течение 2 ч. Полимер выделяют аналогично примеру 1. Выход 2,6 г (91%).
Получение магнитного наноматериала проводят аналогично примеру 1. Изменение массы полимера и намагниченности в зависимости от температуры во время формирования магнитного наноматериала приведено в табл. 7.
Таблица 7
Figure 00000010
Пример 7. Получение полихалкона 7 (табл. 1) в среде СК-СО2. В реактор высокого давления внутренним объемом 10 см3 загружают 0,5 г (0,00185 моль) диацетилферроцена, 0,247 г (0,00185 моль) терефталевого альдегида, 0,597 г NaOH и 10 мл абсолютированного этилового спирта, затем продувают реактор СО2. Подачу жидкого СО2 в реактор и создание необходимого давления (150 атм) осуществляют поршневым прессом (High Pressure Equipment), после чего перемешивают реакционную смесь на магнитной мешалке при 40°С в течение 2 ч. После завершения реакции и охлаждения реактора перемешивание прекращают, давление стравливают. Полученный полимер выделяют, как в примере 1. Выход 0,155 г (22%).
Получение магнитного наноматериала проводят аналогично примеру 1. Изменение массы полимера и намагниченности в зависимости от температуры во время формирования магнитного наноматериала приведено в табл. 8.
Таблица 8
Figure 00000011
Таким образом, по сравнению с прототипом, заявляемый магнитный наноматериал обладает более высокой намагниченностью насыщения (максимальное значение 43 Гс⋅см3/г, тогда как у материала-прототипа - 32 Гс⋅см3/г) и лучшей термостабильностью на воздухе (отсутствие потерь массы при нагревании до 400°С, у материала-прототипа - 30%-ная потеря массы) и в инертной среде (5%-ная потеря массы при 800-1000°С составляет 5%, у прототипа - 30%). Кроме того, получение ферроценсодержащих полимерных прекурсоров магнитного наноматериала по настоящему изобретению осуществляется в более мягких температурных условиях (20-70°С), чем получение прекурсоров прототипа (70-140°С) и с большими выходами (89-95%), выходы прекурсоров прототипа 16-71%.
Технический результат настоящего изобретения состоит в создании нового термостойкого магнитного наноматериала, обладающего высокой намагниченностью насыщения, на основе ферроценсодержащих полихалконов, а также в разработке способа его получения.

Claims (3)

1. Магнитный наноматериал, включающий железосодержащие наночастицы, распределенные в матрице пиролизованного ферроценсодержащего полимера, отличающийся тем, что указанные наночастицы включают железо в нульвалентном состоянии Fe0 и покрыты оболочкой из графита, а ферроценсодержащим полимером является полихалкон, получаемый взаимодействием диацетилферроцена с терефталевым или изофталевым альдегидом, при этом массовое содержание железа в наноматериале составляет 43,27-56,20%, а намагниченность насыщения равна 1-43 Гс см3/г.
2. Материал по п. 1, отличающийся тем, что железосодержащие наночастицы включают 43,27-74,07% железа в нульвалентном состоянии Fe0.
3. Способ получения магнитного наноматериала по п. 1, включающий взаимодействие диацетилферроцена с терефталевым или изофталевым альдегидом в этиловом спирте в присутствии NaOH при перемешивании и температуре 20-70°С с образованием ферроценсодержащего полихалкона, который далее нагревают при 500-1000°С в атмосфере аргона.
RU2017111895A 2017-04-07 2017-04-07 Магнитный наноматериал на основе ферроценсодержащих полихалконов и способ его получения RU2665055C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017111895A RU2665055C1 (ru) 2017-04-07 2017-04-07 Магнитный наноматериал на основе ферроценсодержащих полихалконов и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017111895A RU2665055C1 (ru) 2017-04-07 2017-04-07 Магнитный наноматериал на основе ферроценсодержащих полихалконов и способ его получения

Publications (1)

Publication Number Publication Date
RU2665055C1 true RU2665055C1 (ru) 2018-08-28

Family

ID=63459551

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017111895A RU2665055C1 (ru) 2017-04-07 2017-04-07 Магнитный наноматериал на основе ферроценсодержащих полихалконов и способ его получения

Country Status (1)

Country Link
RU (1) RU2665055C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU429072A1 (ru) * 1972-06-09 1974-05-25 Способ антистатической обработки термопластичных полимеров
US4947065A (en) * 1989-09-22 1990-08-07 General Motors Corporation Stator assembly for an alternating current generator
US6309748B1 (en) * 1997-12-16 2001-10-30 David S. Lashmore Ferromagnetic powder for low core loss parts
WO2009005484A1 (fr) * 2007-07-04 2009-01-08 State Enterprise 'international Center For Electron Beam Technologies Of E.O. Paton Electric Welding Institute Of National Academy Of Sciences Of Ukraine' Procédé de fabrication de nanoparticules destinées aux ferrofluides au moyen de l'évaporation par faisceau d'électrons et par condensation dans le vide, procédé de fabrication de ferrofluide et ferrofluide ainsi obtenu
CN102978728A (zh) * 2012-12-04 2013-03-20 东华大学 一种磁性纳米复合粒子及其磁性纤维的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU429072A1 (ru) * 1972-06-09 1974-05-25 Способ антистатической обработки термопластичных полимеров
US4947065A (en) * 1989-09-22 1990-08-07 General Motors Corporation Stator assembly for an alternating current generator
US6309748B1 (en) * 1997-12-16 2001-10-30 David S. Lashmore Ferromagnetic powder for low core loss parts
WO2009005484A1 (fr) * 2007-07-04 2009-01-08 State Enterprise 'international Center For Electron Beam Technologies Of E.O. Paton Electric Welding Institute Of National Academy Of Sciences Of Ukraine' Procédé de fabrication de nanoparticules destinées aux ferrofluides au moyen de l'évaporation par faisceau d'électrons et par condensation dans le vide, procédé de fabrication de ferrofluide et ferrofluide ainsi obtenu
CN102978728A (zh) * 2012-12-04 2013-03-20 东华大学 一种磁性纳米复合粒子及其磁性纤维的制备方法

Similar Documents

Publication Publication Date Title
Maleki et al. Facile in situ synthesis and characterization of a novel PANI/Fe 3 O 4/Ag nanocomposite and investigation of catalytic applications
Ghotbinejad et al. SPIONs-bis (NHC)-palladium (II): A novel, powerful and efficient catalyst for Mizoroki–Heck and Suzuki–Miyaura C–C coupling reactions
Zhou et al. Pd immobilized on magnetic chitosan as a heterogeneous catalyst for acetalization and hydrogenation reactions
Safajoo et al. Fe 3 O 4@ nano-cellulose/Cu (ii): a bio-based and magnetically recoverable nano-catalyst for the synthesis of 4 H-pyrimido [2, 1-b] benzothiazole derivatives
Tamoradi et al. Synthesis of a new Pd (0)-complex supported on magnetic nanoparticles and study of its catalytic activity for Suzuki and Stille reactions and synthesis of 2, 3-dihydroquinazolin-4 (1H)-one derivatives
Tamoradi et al. Synthesis of a new Ni complex supported on CoFe 2 O 4 and its application as an efficient and green catalyst for the synthesis of bis (pyrazolyl) methane and polyhydroquinoline derivatives
Sadeghzadeh et al. Sonochemical synthesis and characterization of nano-belt lead (II) coordination polymer: new precursor to produce pure phase nano-sized lead (II) oxide
Banan et al. Copper immobilized onto polymer‐coated magnetic nanoparticles as recoverable catalyst for ‘click’reaction
Hawkins et al. A study of the effects of acid on the polymerisation of pyrrole, on the oxidative polymerisation of pyrrole and on polypyrrole
Sadjadi et al. Preparation of Ag‐doped g‐C3N4 Nano Sheet Decorated Magnetic γ‐Fe2O3@ SiO2 Core–Shell Hollow Spheres through a Novel Hydrothermal Procedure: Investigation of the Catalytic activity for A3, KA2 Coupling Reactions and [3+ 2] Cycloaddition
Clemente et al. Porphyrin synthesized from cashew nut shell liquid as part of a novel superparamagnetic fluorescence nanosystem
Saeedi et al. MNP–cellulose–OSO 3 H as an efficient and biodegradable heterogeneous catalyst for green synthesis of trisubstituted imidazoles
Kooti et al. A novel copper complex supported on magnetic reduced graphene oxide: an efficient and green nanocatalyst for the synthesis of 1-amidoalkyl-2-naphthol derivatives
Monadi et al. A molybdenum (VI) Schiff base complex immobilized on functionalized Fe 3 O 4 nanoparticles as a recoverable nanocatalyst for synthesis of 2-amino-4 H-benzo [h] chromenes
Hussein et al. Polybenzoxazine/Mg–Zn nano-ferrite composites: preparation, identification, and magnetic properties
Durmus et al. Synthesis and characterization of poly (1-vinyl-1, 2, 4-triazole)(PVTri)–barium hexaferrite nanocomposite
Kazemi et al. Magnetically Separable and Reusable CuFe 2 O 4 Spinel Nanocatalyst for the O-Arylation of Phenol with Aryl Halide Under Ligand-Free Condition
Hasan et al. Development of magnetic Fe3O4-chitosan immobilized Cu (II) Schiff base catalyst: An efficient and reusable catalyst for microwave assisted one-pot synthesis of propargylamines via A3 coupling
Abd-El-Aziz et al. Tunable room-temperature soft ferromagnetism in magnetoceramics of organometallic dendrimers
RU2665055C1 (ru) Магнитный наноматериал на основе ферроценсодержащих полихалконов и способ его получения
Eidi et al. β-Enaminones over recyclable nano-CoFe 2 O 4: a highly efficient solvent-free green protocol
Aghaei-Hashjin et al. Mo@ GAA-Fe 3 O 4 MNPs: a highly efficient and environmentally friendly heterogeneous magnetic nanocatalyst for the synthesis of polyhydroquinoline derivatives
Atta et al. Synthesis and spectroscopic investigations of iron oxide nano-particles for biomedical applications in the treatment of cancer cells
Khodaei et al. A simple synthesis of magnetic nanoparticles-supported 4-aminomethylbenzoic acid as a highly efficient and reusable catalyst for synthesis of 2-amino-4 H-chromene derivatives
Nezhad et al. Magnetic poly (1, 8-diaminonaphthalene)-nickel nanocatalyst for the synthesis of antioxidant and antibacterial isoxazole-5 (4H)-ones derivatives