TWM432136U - Probe card - Google Patents

Probe card Download PDF

Info

Publication number
TWM432136U
TWM432136U TW101203407U TW101203407U TWM432136U TW M432136 U TWM432136 U TW M432136U TW 101203407 U TW101203407 U TW 101203407U TW 101203407 U TW101203407 U TW 101203407U TW M432136 U TWM432136 U TW M432136U
Authority
TW
Taiwan
Prior art keywords
circuit module
high frequency
probe
probe card
module
Prior art date
Application number
TW101203407U
Other languages
Chinese (zh)
Inventor
Jung-Tang Huang
Jian-Ming Lin
Kuo-Yu Lee
Gao-Ting Cheng
Original Assignee
Jung-Tang Huang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jung-Tang Huang filed Critical Jung-Tang Huang
Priority to TW101203407U priority Critical patent/TWM432136U/en
Publication of TWM432136U publication Critical patent/TWM432136U/en

Links

Abstract

The present disclosure provides a probe card which includes a glass carrier board, a probe assembly, at least a micro controller module, at least a high frequency circuit module and at least a detection circuit module. The glass carrier board has a plurality of vias and fillers which are respectively filled in the vias. The probe assembly is disposed on the glass carrier board. The micro controller module is electrically connected to the high frequency circuit module and the detection circuit module. The high frequency circuit module and the detection circuit module are electrically connected to each other and also electrically connected to the micro controller module and the probe assembly. The high frequency circuit module generates a high frequency signal and transmits the high frequency signal to the probe assembly. The detection circuit module can receive high frequency feedback signals measured by the probe assembly and transform the measured high frequency feedback signals into low frequency signals or direct current analog signals.

Description

M432136 五、新型說明: 【新型所屬之技術領域】 本創作是·於-觀針卡及其製作雜,_是有關於一内 含尚頻訊號源的探針卡及其製作方法。 【先前技術】 在-般的晶圓測試步驟中,為了將測試訊號輸入到待測物 (device她咖,贿)的積體電路中,通常會先利用探針卡㈣以 card)上的多個微小探針來接觸待測物的接塾或凸塊。之後,測試 訊號即會從職㈣魏龍針卡的部分探針,麟制與接藝 或凸塊電性連接的龍電路中。當戦訊號經過積體電路的運算 =後’則武機口再從其餘的探針讀取回饋訊號,並藉由測試 機口上的微處職分析_訊號,以達制試之目的。 真K式機口到積體電路的中間傳導路徑頗長,測試訊號 ::。1:的傳導:徑傳送到積體電路後,常會出現訊_減的 此將導致㈣針對__試峨,峨衰減的情況更嚴重。如 此將¥致測辦果不正 針卡及此探料/此,摘倾心有骸結構的探 【新型内容】方法,以解決上述的問題。 有鑑於此,本創作 探針卡。 <目的是提供一種避免測試訊號衰減之 本創作之另—目的 造出能準確量測待剩物 是提供一種探針卡的製作方法,以便製 特性之探針卡。 4 M432136 上核其他目的,本創作提出—種探針卡,其包括一破 璃載板、-探針組、至少—微控制器模組、至少一高頻電路模组M432136 V. New description: [New technical field] This creation is based on the observation card and its production, _ is a probe card containing a frequency signal source and its manufacturing method. [Prior Art] In the general wafer test step, in order to input the test signal into the integrated circuit of the device (device, coffee, bribe), the probe card (four) is usually used first. A small probe contacts the junction or bump of the object to be tested. After that, the test signal will be part of the (4) Weilong needle card part of the probe, the dragon and the relay or the bump is electrically connected to the dragon circuit. When the signal passes through the operation of the integrated circuit = then the engine port reads the feedback signal from the remaining probes, and uses the micro-service analysis signal on the test machine port to achieve the purpose of the test. The middle conduction path of the true K-type machine to the integrated circuit is quite long, and the test signal is ::. 1: Conduction: After the path is transmitted to the integrated circuit, the signal will often appear. This will cause (4) to test for __, and the attenuation is more serious. Therefore, if you want to solve the problem mentioned above, you will find the problem of the needle card and the probe/this. In view of this, this creation probe card. <The purpose of the present invention is to provide an alternative to the creation of a test signal to achieve accurate measurement of the remnant. A probe card is provided for the purpose of making a probe card. 4 M432136 For other purposes, this proposal proposes a probe card comprising a broken glass carrier, a probe set, at least a microcontroller module, and at least one high frequency circuit module.

Γ至少—檢波料路馳。玻璃触具有多個貫孔與分別位於 貝孔中的多個導電填充材。探針組配置於玻璃載板上。微控制器 拉組電性連接高頻電路模組與檢波器電路模組。高頻電路模組電 性連接微控制ϋ模組、探針組與檢波器電路模組。此高頻電路模 組可產生-高頻峨並將高頻訊號傳遞至探針組。檢波器電路模 組電性連接微控制器模組、高頻電路模組與探針組,可接收探針 組所測得之高頻_訊號’將檢測到的高頻回饋訊號處理成低頻 汛號或直流類比訊號並傳遞至微控制器模組。 依照本創作-實_所述,探針卡更包括一銲墊重佈層,其 配置於玻璃餘與微控織模組之間,賴玻璃載板與該高頻電 路模組之間,或該玻璃載板與該檢波ϋ電路模組之間。在另一實 把例中’探針卡更包括—積層H,其配置於玻璃載板上方,並 且接觸微控制賴組、高頻電賴組、檢波^電路触以及鮮塾 重佈層。 依照本創作一實施例所述之探針卡,其中微控制器模組接收 來自測°式機台的一參數,並根據參數控制高頻電路模組產生高 頻訊號。 依照本創作一實施例所述之探針卡,其中探針組包括多個 探針與多個凸塊,探針配置於凸塊上,凸塊則結合至玻璃載板。 探針呈陣列排’探針之材質為金屬、合金、碳、碳化合物或碳合 5 M432136 金。 模組 依…、本創作-實施例所述之探針卡,其中探針組透過導 填充材電性連接至微㈣輯組、賴電路模㈣及檢波器電路 依…、本創作-實施例所述之探針卡,其巾檢波器電路模板 係接收高頻電路模組產生之高頻訊號’將高頻訊號轉換成參考信 唬以及將參考信號回傳至微控制器模組。 本創作另提出-種探針卡之製造方法,其包括下列步驟。首 先’提供-德板,並於此錄板上形成—遮罩層,其中遮翠層 具有一遮罩開口。然後’於遮罩開口處非等向祕财基板,^ 形成-針尖模穴。接著’於針尖模穴以及遮罩開口中形成一晶種 層。之後,於晶種層上形成一第—光阻開口,其中第一光阻開口 之孔徑大於遮罩開σ之孔徑,且第—光阻開口與針越穴相通。 利用電鑄製程於晶種層上形成—電極材料層。對電㈣料層進行 平土-化裝私’以形成一探針。另一方面,提供一玻璃載板,並 於此玻璃載板上形成-金材料層。於玻_板上形成—第二光阻 門於第一光阻開口中形成一鎳材料層,並在錄材料層上形成 -錫材料層。隨後’對錫材料層進行—平坦化製程,以形成一凸 塊。最後,接合凸塊與探針。 依照本創作-實_,探針卡的製作方法更包括在接合凸塊 與探針之後移除未與凸塊制之部份金材制。在另—實施例 中’未與凸塊制之部份金㈣層是在接合凸塊與探針之前移除 6 影M2136 的。 依據上述’在本創作提出的探針卡中具有—高頻電路模植。 此高頻電賴減赵高頻域,並航高頻贼雜從高頻電 路极組傳送到制財’故大幅地驗了高頻賴料到待測物 的距離。因此,避免了測試訊號經較長傳導路徑傳輸後的訊號衰 減的現象。 b 為讓本創作之上述和其他目的、特徵和優點能更鴨易懂, φ下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 圖1A為本創作-較佳實施例之探針卡的結構示意圖。圖ΐβ 為圖1A之探針卡中的訊號傳遞示意圖。請先參考圖认,本創作 的探針卡100包括一玻璃載板110、一探針組12〇、至少一微控制 器模組130、至少一高頻電路模、组140以及至少一檢》皮器電路模組 141。探針組120配置於玻璃載板110的一表面u〇a上。微控制 • 器模組13〇配置於玻璃載板u〇的另一表面uob上方’並電性連 - 接探針組120、高頻電路模組140以及檢波器電路模組141。高頻 ' 電路模組140配置於表面110b上方,電性連接微控制器模組130、 探針組120與檢波器電路模組14卜檢波器電路模組141相同配置 於表面ii〇b上方,其是電性連接微控制器模組13〇、探針組12〇 與尚頻電路模組140。高頻電路模組140例如是射頻積體電路 (RFIC)或其他能產生南頻说5虎之電路。高頻電路模組14〇組可產 生一高頻訊號Sg,而高頻訊號Sg係傳遞至探針組12〇。另一檢波 7 M432136 $ — 141 的高_饋訊號&處理成為低頻訊號或 直流類比訊號(在S 1B中標示為st),通常騎值或功率檢測電路 权組’接續地低頻訊號或直流·訊號st再傳遞至微控制器模組 130。 承上述,探針卡100财括一銲墊重佈層150,其配置於玻璃 載板no與微控制器模組B0、高頻電路模組m〇或檢波器電路模 組141之間。微控制器模組13〇、高頻電路模組刚或檢波器電路 •模組141例如是以覆晶接合的方式接合至銲墊重佈層⑼上,而 接合時例如是採用迴銲(refl〇w)的技術。 詳細而言’探針組12〇包括多個探針122與多個凸塊124。這 些探針122分別配置於凸塊124上,而凸塊124則接合至玻璃載 板1 ίο。在本實施例中,探針122呈陣列排,探針122之材質例如 為金屬、合金、碳、碳化合物或碳合金,探針122與凸塊丨24的 接合例如是採用迴銲的技術。 _ 另外,玻璃載板110上具有多個玻璃貫孔(thr〇ugh glass via, TGV)112與多個導電填充材114。導電填充材114分別位於這些 貝孔112中,彳米針組120透過導電填充材Π4電性連接至微控制 器模組130、高頻電路模組ho以及檢波器電路模組141。而鲜墊 重佈層150、玻璃載板1】〇、貫孔n2以及導電填充材114共同組 成一空間轉換模組(space transformer),使微控制器模組130與探針 組120之間的佈線依照不同檢測需求、探針位置或探針卡之尺寸 來設計。 8 M432136 值得一提的是’上述玻璃載板110之材質為玻璃,而利用具 有多個玻璃貫礼(through glass via,TGV)112的玻璃載板110承栽 高頻電路模組140、檢波器電路模組141、微控制器模組130與探 針組120 ’則可以進一步降低測試訊號反射的程度。圖2為載板材 質與測試訊號反射損失(return loss)的關係曲線圖。從圖2中可以 清楚的看出,以玻璃基板作為載板,可以大幅降低測試訊號反射, • 進而提高測量結果的準確度且玻璃基板表面平整可以進行薄膜製 • 程加工’電路佈線的線寬與線距可在微米等級;而陶瓷基板傳統 上主要作為厚膜製程之用,表面粗糖度較高,也可能是多孔性, 電路佈線的線寬與線距在數十微米到數百微米等級,另外玻璃基 板具有透明性。 在本實施例中,探針卡100還包括一積層陶瓷(multi_layer ceramic)i60,其配置於玻璃載板11〇上方,並且接觸到微控制器 模組130、高頻電路模組14〇、檢波器電路模組141以及銲墊重佈 籲層150(即空間轉換模組)。另外,積層陶莞16〇上方還連接著一印 刷電路板(未繪示於圖中)。由於積層陶竞⑽具有硬度高以及表面 平整的特性’可使相互連接的材料或元件(微控制器模組13〇、高 頻電路模組14G、檢波||電路模組141以及銲塾重佈層15Q)維持極 佳的,、平面度。另外,積層陶莞16〇可耐高溫,使整個探針卡謂 在後續製程承受不同高溫時’材料仍可保持穩定的特性。 另一方面’如圖所示,探針卡⑽包括高頻電路模組刚。 為了說明探針卡100中的訊號傳遞,請接著同時參考圖1A與圖 9 M432136 π>頻電路彳歧140產生的而頻訊號Sg係直接傳送到探針植 ⑽後再輸人至待測物D1G中。為了透過探針組12G傳遞測試訊 號至待測物DK)中的積體電路Dl4,微控模組13G會先接收 來f-測試機台的-參數,並根據參數控制高頻電路模組14〇產 生向頻訊號sg。高頻訊號Sg再經由部分的探針122、接塾〇12 傳送到積體電路D14。之後’經積體電路m4處理過後所產生的 =頻回饋訊號Sr則再經由其餘的探針122、接塾m2回傳到檢波 盗電路核組141處軸為簡峨或錢類比峨&,再傳送給 微控制冰組13()巾的紐/餘轉換離阳來轉換成數位訊 :虎。最後微控制器模、组130計算上述轉換出_位訊號後再將計 算結果回傳_試機台。值得注意的是,相較於習知技術,高頻 汛唬Sg或是高頻回饋訊號Sr的傳遞路徑都大幅地被縮短了,因 此可避免訊號衰減的現象。 另外,兩頻電路模組140產生的高頻訊號Sg也會直接傳遞到 檢波器電路模組141。檢波器電路模組141將高頻訊號Sg轉換成 低頻或直流參考信號Sf,並將此參考信號Sf回傳給微控制器模組 130。因此,微控制器模組13〇除了收到低頻訊號或直流類比訊號 st,並且也會收到參考信號Sf。而微控制器模組13〇會將低頻訊 唬或直流類比訊號St與參考信號Sf進行比對,藉以量測待測物 D10中的主動或被動高頻元件的訊號大小與相位及增益之特性。 除此以外,由於探針卡的體積較小,容易更換。若是在不同 的探針卡上分別搭載能產生不同訊號的高頻電路模組,當要測試 M432136 不同種_待_或積體電路時,只需直接更換探針卡,無須更 換測試機台。射之’ _更換探針卡的柳卩可峨速測試系 統早晶片(system onchip ’ S〇c)之類的多工積體電路。 要特別說_是’在以上的較佳實施财,探針卡⑽内口 包括一個高頻電路模組刚。然而,本創作並未限制一個探針卡 100中只能包含-個高頻電路模組⑽或一個檢波器電路模组 ⑷。在另-實施例中’也可以在單一探針卡⑽中設置數個不同 •高頻電路模組140或數個檢波器電路模組⑷,以使探針卡100 具有多工模式的功能。亦即,能在同—時間量測待測物上的多個 不同元件’並同時接收所有待測元件的訊號,於同—時間可完成 所咖牛量測。如此一來,探針卡100可達到晶圓級(wafer•丨㈣ 測試之效果,進而節省可觀的量測時間與金錢。 為了製作上述實施例之探針卡100,以下將詳細描述探針卡 100的裝ie方法。圖3A至圖3L為圖1A中之探針卡1〇〇的製作方 •法之流程示意圖,以下將分別對各圖詳細說明製作步驟。 ’請先參考圖3A。首先,先提供一石夕基板22〇,並在此石夕基板 220上形成-二氧化秒材料層23〇。形成二氧化稽料層现的方 法例如是將矽基板220放置在爐管中通氧加熱。 5月參考圖3B。接著,接著彻微影製程與侧$程於二氧化 石夕材料層230上形成—遮罩開口 232。微影製程例如是利用光罩在 正光阻上做局㈣光並峨影液去除曝光的部分光阻,而姓刻製 私貝]例士疋先用氣化物钱刻缓衝液(buffer etchant,β〇ε) M432136 餘刻二氧化矽材料層230。 請參考圖3C。隨後,以二氧化石夕材料層23〇作為遮軍,並利 用祕刻製程於遮罩開口 232處餘刻石夕基板DO,以形成—針尖模 八=22。祕職程例如是_氫氧化鉀(κ〇聯液非等向性地钱 刻單晶結構的石夕基板220,以形成倒金字塔形狀的針尖模穴222。 • “請參相犯。在形成似歡议後製程於針尖 松八222以及遮罩開口 232中形成一晶種層24〇。薄膜製程例如是 • 利用物理氣相沈積⑽ysical V叩or deposition,PVD)、化學氣相沈 積(chemica! vapor d_sit〇n ’ CVD)、塗佈或印刷的技術來形成晶 種層240。 〃請參考目3E。之後,再利用微影製程於晶種層24〇上形成一 第-光阻層250,並定義一第一光阻開口攻。其甲第一光阻開口 252之孔徑大於遮罩開口 232之孔徑,且第一光阻開口况與針尖 模穴222相通。 .請參考® 3F。在形成晶種層24〇、第一光阻層25〇以及第一 光阻開口 252之後’利用電鑄製程於晶種層24〇上形成一電極材 料層260。 請參考圖3G。對電極材料層26〇進行一平坦化製程,使電極 材料層260上緣不超出第一光阻層25〇的表面,並且利用麵製 程移除第-光阻層250,以形成一探針122。平坦化製程例如是化 學機械研磨(chemical mechanical po丨ishing,CMp)製程。 明參考圖3H。另-方面’提供一破璃載板11〇,並利用薄膜 12 製_玻璃載板110上形成-金材料層310。 。月 > 考圖31。之後’姻微影製程於玻璃載板iig上形成— 第二光阻層320,並定義—第二光阻開口切。 圖J所示^後,利用薄臈製程於第二光阻開口 322中形 成錄材料層330,亚在鎳材料層33〇上形成一錫材料層⑽。形 成錫材料層340後’觸材料層進行—平坦化製程,使錫材 料層340上緣不超出第二光阻層32〇的表面。 ❾考圖3K。利用剝職程移除第二光阻層挪,以便形成 —凸塊124。 π參考圖3L。最後,接合凸塊124與探針122,並且移除未 與凸塊124接觸之部份金材料層“ο。 透過重複上蘭步毅可以製作多悔針122,或者是在上述 的步驟中也可直接形成多個針尖模穴222來製作多個探針⑵。春 探針⑵ ' 微控制器模組13〇、高頻電路模組14〇以及檢波器^ 极組141都接合至玻璃載板11〇上之後,便可完成探針卡1 製作。 要特別說明暇,上述的製作方法並_來限制部份金材料 層3K)移除的順序。在其他實施例中,未與凸塊以接觸之部份 金材料層細也可以在接合凸塊以與探針⑵之前先行移除。刀 综上所述,本創作之探針卡至少具有下列優點: 一、在本創作提出的探針卡中具有—高頻電路模組,此高頻 電路模組產生之高頻訊號係透過較短的傳導路徑傳送到待二物 M432136 中,因此避免了訊號衰減的現象。 θ二^在本創作提出的探針切,騎與凸_接合是採用迴 銲的技術,因此探針的共面度(c〇planari⑺較佳,因此 探針與待測物之間的接觸不良情況。 ▲三、在摘作—較佳實_之探針卡巾,積層喊具有硬卢 向以及表面平磐的特性,可使微控制器模組、高頻電路模%、檢 波轉路模組以及銲墊重佈層維持極佳的共平面度。另外 物賴繼^溫時,仍^ 四二本_提_探針卡可搭載能產生砰職的高頻電路 核,、且不關_制物或雜f路時,只需直接更換 探針卡,無須更換測試機台。 ' 五、在本創作提出的探針卡中也可設置數個不同高頻電路模 ^檢波器電频^同日㈣高獅辑有制元件,並同 細饋_ ’同_時間内可完成 =測/酬切㈣私魏,她 測試之效果。 7 _本創作已以較佳實施例揭露如上1其細以限定本 何抑此技藝者,在不脫離本創作之精神和範圍内,當 卷^图之更動與潤飾,因此本創作之保護朗當視後附之申請 專利蛇圍所界定者為準。 M432136 【圖式簡單說明】 圖1A為本_ —缝實施例之探針卡的結構示意圖。 圖1B為圖1A之探針卡中的訊號傳遞示意圖。 圖2為載板材質與測試訊號反射損失的關係曲線圖。 圖3A至圖3L為圖ία中之探針卡的製作方法之流程示意圖 【主要元件符號說明】 100 :探針卡 110 :玻璃載板Γ At least - the detector material is rushed. The glass contact has a plurality of through holes and a plurality of conductive fillers respectively located in the holes. The probe set is disposed on a glass carrier. The microcontroller is electrically connected to the high frequency circuit module and the detector circuit module. The high frequency circuit module is electrically connected to the micro control module, the probe set and the detector circuit module. This high frequency circuit module produces - high frequency chirp and transmits high frequency signals to the probe set. The detector circuit module is electrically connected to the microcontroller module, the high frequency circuit module and the probe set, and can receive the high frequency signal generated by the probe set to process the detected high frequency feedback signal into a low frequency. Signal or DC analog signal is passed to the microcontroller module. According to the present invention, the probe card further includes a solder pad redistribution layer disposed between the glass rest and the micro control woven module, between the glass carrier board and the high frequency circuit module, or The glass carrier is interposed between the glass carrier and the detection circuit module. In another embodiment, the probe card further includes a build-up layer H disposed over the glass carrier and in contact with the micro-control group, the high-frequency power-on group, the detection circuit, and the fresh-strip layer. According to the probe card of the embodiment of the present invention, the microcontroller module receives a parameter from the measuring machine and controls the high frequency circuit module to generate a high frequency signal according to the parameter. The probe card according to the embodiment of the present invention, wherein the probe set comprises a plurality of probes and a plurality of bumps, the probes are disposed on the bumps, and the bumps are coupled to the glass carrier. The probe is in the array. The probe is made of metal, alloy, carbon, carbon compound or carbon 5 M432136 gold. The probe card of the present invention, wherein the probe set is electrically connected to the micro (four) set, the circuit module (4), and the detector circuit through the conductive filler, the present invention is In the probe card, the towel detector circuit template receives the high frequency signal generated by the high frequency circuit module, converts the high frequency signal into a reference signal, and transmits the reference signal back to the microcontroller module. The present invention further proposes a method of manufacturing a probe card comprising the following steps. First, the board is provided with a mask layer, and the mask layer has a mask opening. Then, at the opening of the mask, the non-isotropic substrate is formed, and the needle tip cavity is formed. A seed layer is then formed in the tip cavity and the mask opening. Thereafter, a first photoresist opening is formed on the seed layer, wherein the aperture of the first photoresist opening is larger than the aperture of the mask opening σ, and the first photoresist opening is in communication with the needle hole. An electrode material layer is formed on the seed layer by an electroforming process. The electric (four) layer is flattened to form a probe. In another aspect, a glass carrier is provided and a layer of gold material is formed on the glass carrier. Formed on the glass plate - the second photoresist gate forms a layer of nickel material in the first photoresist opening and forms a layer of tin material on the layer of recorded material. The tin material layer is then subjected to a planarization process to form a bump. Finally, the bumps and probes are bonded. According to the present invention, the method of fabricating the probe card further includes removing a portion of the gold material that is not made of the bump after bonding the bump and the probe. In another embodiment, the portion of the gold (four) layer that is not formed with the bumps is removed from the shadow M2136 before the bumps and probes are bonded. According to the above-mentioned probe card proposed in the present invention, there is a high frequency circuit molding. This high-frequency power relies on the high-frequency field of Zhao, and the high-frequency thief is transmitted from the high-frequency circuit group to the bank of wealth. Therefore, the distance from the high-frequency material to the object to be tested is greatly examined. Therefore, the signal attenuation after the test signal is transmitted over the longer conduction path is avoided. b In order to make the above and other objects, features and advantages of the present invention more comprehensible, the preferred embodiment will be described below with reference to the accompanying drawings. [Embodiment] FIG. 1A is a schematic structural view of a probe card of the creation-preferred embodiment. Figure ΐβ is a schematic diagram of signal transmission in the probe card of Figure 1A. Please refer to the figure first, the probe card 100 of the present invention comprises a glass carrier 110, a probe set 12〇, at least one microcontroller module 130, at least one high frequency circuit module, a group 140 and at least one test. Leather circuit module 141. The probe set 120 is disposed on a surface u〇a of the glass carrier 110. The micro-controller module 13 is disposed above the other surface uob of the glass carrier 〇 and electrically connected to the probe set 120, the high-frequency circuit module 140, and the detector circuit module 141. The high-frequency circuit module 140 is disposed above the surface 110b, and is electrically connected to the microcontroller module 130, and the probe set 120 is disposed on the surface ii〇b in the same manner as the detector circuit module 14 and the detector circuit module 141. It is electrically connected to the microcontroller module 13〇, the probe set 12〇 and the frequency-frequency circuit module 140. The high frequency circuit module 140 is, for example, a radio frequency integrated circuit (RFIC) or other circuit capable of generating a south frequency. The high frequency circuit module 14 sets a high frequency signal Sg, and the high frequency signal Sg is transmitted to the probe set 12A. Another detection 7 M432136 $ - 141 high _ feed & processing becomes a low frequency signal or DC analog signal (marked st in S 1B), usually riding value or power detection circuit right group 'continuous low frequency signal or DC · The signal st is passed to the microcontroller module 130. In view of the above, the probe card 100 includes a pad redistribution layer 150 disposed between the glass carrier board no and the microcontroller module B0, the high frequency circuit module m〇 or the detector circuit module 141. The microcontroller module 13〇, the high-frequency circuit module or the detector circuit/module 141 is bonded to the solder re-layer (9), for example, by flip-chip bonding, and is reflowed, for example, by reflow. 〇w) technology. In detail, the probe set 12A includes a plurality of probes 122 and a plurality of bumps 124. These probes 122 are respectively disposed on the bumps 124, and the bumps 124 are bonded to the glass carrier 1 ίο. In the present embodiment, the probes 122 are arranged in an array, and the material of the probe 122 is, for example, a metal, an alloy, a carbon, a carbon compound or a carbon alloy, and the bonding of the probe 122 to the bump 24 is, for example, a technique using reflow. In addition, the glass carrier 110 has a plurality of glass through holes (TGV) 112 and a plurality of conductive fillers 114. The conductive fillers 114 are respectively located in the via holes 112. The ohmic solder pins 120 are electrically connected to the micro controller module 130, the high frequency circuit module ho, and the detector circuit module 141 through the conductive filler Π4. The fresh pad re-lay layer 150, the glass carrier board 1 , the through hole n2 and the conductive filler 114 together form a space transformer, so that the microcontroller module 130 and the probe set 120 are Wiring is designed for different inspection needs, probe position or probe card size. 8 M432136 It is worth mentioning that 'the glass carrier 110 is made of glass, and the high frequency circuit module 140 and the detector are supported by a glass carrier 110 having a plurality of through glass vias (TGV) 112. The circuit module 141, the microcontroller module 130 and the probe set 120' can further reduce the degree of reflection of the test signal. Figure 2 is a graph showing the relationship between the loading of the plate material and the return loss of the test signal. It can be clearly seen from Fig. 2 that with the glass substrate as the carrier plate, the test signal reflection can be greatly reduced, and the accuracy of the measurement result can be improved, and the surface of the glass substrate can be flattened to perform the film processing. The wire pitch can be on the micron scale; while the ceramic substrate is traditionally used mainly as a thick film process, the surface has a high degree of coarse sugar content, and may also be porous. The line width and line pitch of the circuit wiring are on the order of tens of microns to hundreds of microns. In addition, the glass substrate has transparency. In this embodiment, the probe card 100 further includes a multi-layer ceramic i60 disposed above the glass carrier 11 , and contacting the microcontroller module 130, the high-frequency circuit module 14 , and detecting The circuit module 141 and the pad re-layout layer 150 (ie, the space conversion module). In addition, a printed circuit board (not shown) is connected above the laminated ceramics. Due to the high hardness and smooth surface characteristics of the laminated pottery (10), the interconnected materials or components (microcontroller module 13〇, high frequency circuit module 14G, detection || circuit module 141, and solder rework) Layer 15Q) maintains excellent, flatness. In addition, the laminated ceramics can withstand high temperatures, so that the entire probe card can be maintained in a stable state when the subsequent process is subjected to different high temperatures. On the other hand, as shown, the probe card (10) includes a high frequency circuit module. In order to explain the signal transmission in the probe card 100, please refer to FIG. 1A and FIG. 9 simultaneously, and the frequency signal Sg is directly transmitted to the probe implant (10) and then input to the object to be tested. In D1G. In order to transmit the test signal to the integrated circuit D14 in the test object DK) through the probe set 12G, the micro control module 13G first receives the -parameter of the f-test machine, and controls the high frequency circuit module 14 according to the parameters. 〇 Generates a frequency signal sg. The high frequency signal Sg is further transmitted to the integrated circuit D14 via a portion of the probe 122 and the interface 12. Then, the =frequency feedback signal Sr generated after the processing of the integrated circuit m4 is transmitted back to the core of the detection and stealing circuit core group 141 via the remaining probes 122 and m2, which is a simple or money analogy & Then transferred to the micro-control ice group 13 () towel New / surplus conversion sun to convert into digital information: tiger. Finally, the microcontroller module and group 130 calculate the above-mentioned converted_bit signal and then return the calculation result to the test machine. It is worth noting that the transmission path of the high frequency 汛唬Sg or the high frequency feedback signal Sr is greatly shortened compared to the conventional technique, so that signal attenuation can be avoided. In addition, the high frequency signal Sg generated by the two-frequency circuit module 140 is also directly transmitted to the detector circuit module 141. The detector circuit module 141 converts the high frequency signal Sg into a low frequency or DC reference signal Sf and transmits the reference signal Sf back to the microcontroller module 130. Therefore, the microcontroller module 13 receives the low frequency signal or the DC analog signal st and also receives the reference signal Sf. The microcontroller module 13 compares the low frequency signal or the DC analog signal St with the reference signal Sf to measure the signal size and phase and gain characteristics of the active or passive high frequency component in the D10. . In addition, since the probe card is small in size, it is easy to replace. If high-frequency circuit modules capable of generating different signals are respectively mounted on different probe cards, when testing different types of M432136, the probe card needs to be directly replaced, and the test machine is not required to be replaced.射的' _ Replace the probe card's 多 卩 测试 测试 测试 测试 测试 早 早 早 早 早 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 In particular, _ is the preferred implementation of the above, the probe card (10) inner port includes a high frequency circuit module just. However, this creation does not limit that only one high frequency circuit module (10) or one detector circuit module (4) can be included in one probe card 100. In another embodiment, a plurality of different high frequency circuit modules 140 or a plurality of detector circuit modules (4) may be provided in a single probe card (10) to enable the probe card 100 to function in a multiplex mode. That is, it is possible to measure a plurality of different elements on the object to be tested at the same time and receive signals of all the elements to be tested at the same time, and the same time can be measured. In this way, the probe card 100 can achieve the wafer level (wafer•丨(4) test effect, thereby saving considerable measurement time and money. To make the probe card 100 of the above embodiment, the probe card will be described in detail below. Fig. 3A to Fig. 3L are schematic diagrams showing the flow of the method for making the probe card 1 of Fig. 1A, and the steps of the steps will be described in detail below. 'Please refer to Fig. 3A first. First, a stone substrate 22 is provided, and a layer of the second oxidation material layer 23 is formed on the stone substrate 220. The method for forming the dioxide layer is, for example, placing the germanium substrate 220 in the furnace tube through oxygen heating. Referring to Fig. 3B in May, the lithography process and the side pass are then formed on the layer 2 of the dioxide dioxide material layer to form a mask opening 232. The lithography process is, for example, using a photomask to make a local (four) light on the positive photoresist. And the smear liquid removes part of the exposed photoresist, and the surname is engraved.] The sputum first uses the buffer etchant (β〇ε) M432136 to engrave the cerium oxide material layer 230. Please refer to the figure. 3C. Subsequently, the layer of ruthenium dioxide material is used as a cover And using the secret engraving process at the mask opening 232 to engrave the stone substrate DO to form - the tip of the die eight = 22. The secret course is, for example, _ potassium hydroxide (κ 〇 〇 liquid non-isotropic money engraving The crystal structure of the stone substrate 220 to form the inverted pyramid shape of the needle tip cavity 222. • "Please participate in the accomplice. After forming a like-like process, a seed layer 24 is formed in the needle tip 182 and the mask opening 232. The film process is, for example, a seed layer 240 formed by physical vapor deposition (PVD), chemical vapor deposition (chema! vapor d_sit〇n ' CVD), coating or printing. Please refer to item 3E. Thereafter, a first photoresist layer 250 is formed on the seed layer 24A by using a lithography process, and a first photoresist opening is defined. The aperture of the first photoresist opening 252 is larger than the mask. The aperture of the cover opening 232, and the first photoresist opening condition is in communication with the tip cavity 222. Please refer to ® 3F. After forming the seed layer 24, the first photoresist layer 25 and the first photoresist opening 252' An electrode material layer 260 is formed on the seed layer 24A by an electroforming process. 3G. Perform a planarization process on the electrode material layer 26〇 so that the upper edge of the electrode material layer 260 does not exceed the surface of the first photoresist layer 25〇, and the first photoresist layer 250 is removed by a surface process to form a probe. Needle 122. The flattening process is, for example, a chemical mechanical po丨ishing (CMp) process. Referring to FIG. 3H, another aspect provides a glass carrier 11〇 and uses a film 12 to form a glass carrier 110. A gold material layer 310 is formed thereon. . Month > Test Figure 31. Thereafter, the lithography process is formed on the glass carrier iig to form a second photoresist layer 320, and defines a second photoresist opening. After the film shown in Fig. J, a layer of recording material 330 is formed in the second photoresist opening 322 by a thin tantalum process, and a layer of tin material (10) is formed on the layer of nickel material 33. After the formation of the tin material layer 340, the contact material layer is subjected to a planarization process so that the upper edge of the tin material layer 340 does not exceed the surface of the second photoresist layer 32. Refer to Figure 3K. The second photoresist layer is removed by a stripping process to form a bump 124. π refers to Figure 3L. Finally, the bumps 124 are bonded to the probes 122, and a portion of the gold material layer that is not in contact with the bumps 124 is removed. ο. The repeating step can be made by repeating the stepping step 122, or in the above steps. A plurality of probe holes 222 can be directly formed to form a plurality of probes (2). Spring probes (2) 'micro controller module 13 〇, high frequency circuit module 14 〇, and detector group 141 are all bonded to the glass carrier After 11 〇, the probe card 1 can be completed. To specifically illustrate 暇, the above manufacturing method _ to limit the order of removal of the partial gold material layer 3K). In other embodiments, the bumps are not The thin layer of gold material in contact may also be removed before the bonding bump is removed from the probe (2). As described above, the probe card of the present invention has at least the following advantages: 1. The probe proposed in the present creation The card has a high-frequency circuit module, and the high-frequency signal generated by the high-frequency circuit module is transmitted to the standby object M432136 through a short conduction path, thereby avoiding signal attenuation. θ二^ In this creation Proposed probe cutting, riding and convex _ joint is reflow soldering Therefore, the coplanarity of the probe (c〇planari (7) is better, so the contact between the probe and the test object is poor. ▲ Third, in the extract - better _ probe card towel, the layer shout has The hard-to-find and flat-surface characteristics allow the microcontroller module, high-frequency circuit modulo %, detection transfer module, and pad re-layer to maintain excellent coplanarity. , still ^ 42 two _ _ probe card can be equipped with a high-frequency circuit core that can produce dereliction of duty, and does not close _ production or mis-f road, just need to directly replace the probe card, no need to replace the test machine '5. In the probe card proposed by this creation, several different high-frequency circuit modules can also be set up. The frequency of the detector is the same as that of the day (4) high-lion series, and the same as the fine feedback _ 'the same _ time can be completed = test / reward cut (four) private Wei, the effect of her test. 7 _ This creation has been disclosed in the preferred embodiment as above to define the details of the artist, without departing from the spirit and scope of the creation, when The change and retouching of the volume ^ map, therefore the protection of this creation is subject to the definition of the patent pending snakes. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a schematic view showing the structure of a probe card of the embodiment of Fig. 1A. Fig. 1B is a schematic diagram of signal transmission in the probe card of Fig. 1A. Fig. 2 is a relationship between the material of the carrier and the reflection loss of the test signal. Figure 3A to Figure 3L are flow diagrams of the method for fabricating the probe card in Figure ί [Description of main components] 100: Probe card 110: Glass carrier

110a、11 〇b :表面 112 :貫孔 114 :導電填充材 120 :探針組 122 :探針 124 :凸塊 130 :微控制器模組110a, 11 〇b: surface 112: through hole 114: conductive filler 120: probe set 122: probe 124: bump 130: microcontroller module

140 ·面頻電路模組 141 :檢波器電路模組 150 :銲墊重佈層 160 .積層陶兗 220 :矽基板 222 :針尖模穴 230 :二氧化石夕材料層 M432136 232 :遮罩開口 240 :晶種層 250 :第一光阻層 252 :第一光阻開口 260 :電極材料層 310 :金材料層 320 :第二光阻層 322 :第二光阻開口 330 :鎳材料層 340 :錫材料層 D10 :待測物 D12 :接墊 D14 :積體電路140 · surface frequency circuit module 141 : detector circuit module 150 : solder pad red layer 160 . laminated ceramic 220 : 矽 substrate 222 : needle tip cavity 230 : dioxide dioxide material layer M432136 232 : mask opening 240 : seed layer 250 : first photoresist layer 252 : first photoresist opening 260 : electrode material layer 310 : gold material layer 320 : second photoresist layer 322 : second photoresist opening 330 : nickel material layer 340 : tin Material layer D10: DUT D12: Pad D14: Integrated circuit

Sf :參考信號Sf: reference signal

Sg :高頻訊號Sg: high frequency signal

Sr :高頻回饋訊號Sr : high frequency feedback signal

St :低頻訊號或直流類比訊號 16St : low frequency signal or DC analog signal 16

Claims (1)

M432136 六、申請專利範圍: 1· 一種探針卡,包括: 導 電填2璃紐,具有多個貫孔與相位_㈣孔中的多個 一探針組,配置於該玻璃載板上; 至少一微控制器模組; #⑯H一高頻電路模組,電性連接該微控制器模組與該探針 至少-檢波器電路模組,電性連接該高頻電路模組、該微控 制器模組與該探針組,其中該高頻電路模組係產生—高頻訊缝 將該南頻訊號傳遞至該檢波器電路模組,又該檢波器電路模誕係 接收該探針組所測得之高頻_峨,並驗_該高頻回饋訊 號處理成低頻訊號或直流類比訊號。 2. 如申請專利範圍第!項所述之探針卡,更包括一鮮墊重佈 •層,絲置於該玻璃载板與該微控制器模組之間,或該玻璃載板 與如頻電路模組之間’或該玻璃載板與該檢波器電路模組之間。 3. 如申5月專利耗圍帛2項所述之探針卡,更包括一積層陶 究’其配置於該玻璃载板上方,並且接觸該微控制賴組、該高 頻電路模組、該檢波器電路模㈣及該重佈層。 4. 如申5月專利範圍第!項所述之探針卡,其令該微控制器模 、’且接收來自K機台的—參數,並根據該參數控制該高頻電路 模組產生該向頻訊號。 M432136 夕5.如申請專利範圍第1項所述之探針卡,其令該探針組包括 夕個探針細_,爾_些凸塊 結合至該玻璃載板。 一凸塊則 列排6。·如申請專利範圍第5項所述之探針卡’其中該些探針呈陣 編:::專侧第5項所述之探針卡’其中該些探針之材 8.如㈣專利顧第5項所述之探針卡,射該些探針之材 質為碳、碳化合物或碳合金。 ▲ 9.如申請專利範圍第】項所述之探針卡,其中該探針組透過 為些導電填紐賴連接至職模組、該高_路模組以 及該檢波器電路模組。 10.如申請專利範圍第i項所述之探針卡,其中該檢波器電路 模組係接收該高頻電路模組產生之該高頻訊號,將該高頻訊號轉 換成-參考錄以及觸參考信號回傳至該微控制器模組。 18M432136 VI. Patent Application Range: 1. A probe card comprising: a conductive filled 2 glass core, having a plurality of through holes and a plurality of phase probes in a phase _(four) hole, disposed on the glass carrier plate; a microcontroller module; a 1616H high frequency circuit module electrically connected to the microcontroller module and the probe at least a detector circuit module, electrically connected to the high frequency circuit module, the micro control And the probe set, wherein the high frequency circuit module generates a high frequency signal to transmit the south frequency signal to the detector circuit module, and the detector circuit module receives the probe set The measured high frequency _ 峨, and the _ high frequency feedback signal is processed into a low frequency signal or a DC analog signal. 2. If you apply for a patent scope! The probe card of the present invention further includes a fresh mat re-laying layer, the wire is placed between the glass carrier and the microcontroller module, or between the glass carrier and the RF circuit module or The glass carrier is interposed between the glass carrier and the detector circuit module. 3. If the probe card described in the patent of the May 2 is included in the patent, it also includes a laminated ceramic layer, which is disposed above the glass carrier and contacts the micro control group, the high frequency circuit module, The detector circuit module (4) and the redistribution layer. 4. If you apply for the May patent scope! The probe card of the present invention, the microcontroller is modulo, and receives a parameter from the K-machine, and controls the high-frequency circuit module to generate the directional signal according to the parameter. The probe card of claim 1, wherein the probe set includes a plurality of probes, and the bumps are coupled to the glass carrier. A bump is arranged in row 6. The probe card of claim 5, wherein the probes are in a matrix::: the probe card described in item 5 of the 'the side of the probe', wherein the probe material is as follows: (4) The probe card according to Item 5, wherein the probes are made of carbon, a carbon compound or a carbon alloy. ▲ 9. The probe card of claim 1, wherein the probe set is connected to the service module, the high-channel module, and the detector circuit module by using the conductive connection. 10. The probe card of claim i, wherein the detector circuit module receives the high frequency signal generated by the high frequency circuit module, and converts the high frequency signal into a reference recording and touch The reference signal is passed back to the microcontroller module. 18
TW101203407U 2012-02-24 2012-02-24 Probe card TWM432136U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101203407U TWM432136U (en) 2012-02-24 2012-02-24 Probe card

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101203407U TWM432136U (en) 2012-02-24 2012-02-24 Probe card

Publications (1)

Publication Number Publication Date
TWM432136U true TWM432136U (en) 2012-06-21

Family

ID=46723935

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101203407U TWM432136U (en) 2012-02-24 2012-02-24 Probe card

Country Status (1)

Country Link
TW (1) TWM432136U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692802B (en) * 2019-04-30 2020-05-01 欣興電子股份有限公司 Circuit carrier structure, manufacturing method thereof and chip package structure
TWI719895B (en) * 2020-05-11 2021-02-21 中華精測科技股份有限公司 Thin-film probe card with array type and test module thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692802B (en) * 2019-04-30 2020-05-01 欣興電子股份有限公司 Circuit carrier structure, manufacturing method thereof and chip package structure
TWI719895B (en) * 2020-05-11 2021-02-21 中華精測科技股份有限公司 Thin-film probe card with array type and test module thereof

Similar Documents

Publication Publication Date Title
JP4786679B2 (en) Probe card and manufacturing method thereof
US7459399B2 (en) Method for manufacturing probe structure of probe card
TWI276805B (en) Probe of probe card and manufacturing method thereof
TW201039396A (en) Silicon wafer having a testing pad and method for testing the same
JP2008089461A (en) Prober for inspecting semiconductor integrated circuit
TW201109672A (en) Thin-film probe sheet and method of manufacturing the same, probe card, and semiconductor chip inspection apparatus
CN103412164B (en) The MEMS (micro electro mechanical system) probe gone between based on elastic substrates and the back side and preparation method
JP5408602B2 (en) Multilayer wiring board
TW201224462A (en) Reinforcing plate, manufacturing method thereof and space transformer using the same
US7759165B1 (en) Nanospring
KR20040083726A (en) Microprobe and Method for Manufacturing the Same Using MEMS and Electroplating Technology
TWM432136U (en) Probe card
TW432136B (en) Base structure of turnout
KR100703043B1 (en) Probe substrate for test and manufacturing method thereof
CN102288793B (en) Probe card, method for manufacturing thereof and method for testing semiconductor member
KR101133407B1 (en) A method of manufacturing for a probe and a probe device
TW201335600A (en) Probe card and manufacturing method thereof
US7723143B2 (en) Method for manufacturing cantilever structure of probe card
TW201904014A (en) Semiconductor device, laminated body, method of manufacturing semiconductor device, and method of manufacturing laminated body
TWI261890B (en) Micro contact device and fabricating method thereof
JP6028887B2 (en) Wiring board, infrared sensor, and through electrode forming method
CN105308732B (en) Method and corresponding electronic structure including the manufacture electronic structure by planarization reduction welded gasket topological variation
JP2003207521A (en) Probe unit, manufacturing method thereof, and energization inspection device
KR100947916B1 (en) Printed circuit board for probe card
TWI532998B (en) Vertical probe card and menufacturing method thereof

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees