TWM429116U - One-piece backlight module made of conductive chemical tempered glass - Google Patents

One-piece backlight module made of conductive chemical tempered glass Download PDF

Info

Publication number
TWM429116U
TWM429116U TW100222986U TW100222986U TWM429116U TW M429116 U TWM429116 U TW M429116U TW 100222986 U TW100222986 U TW 100222986U TW 100222986 U TW100222986 U TW 100222986U TW M429116 U TWM429116 U TW M429116U
Authority
TW
Taiwan
Prior art keywords
light
layer
conductive
transparent
backlight module
Prior art date
Application number
TW100222986U
Other languages
Chinese (zh)
Inventor
Shuai-Long Chen
Original Assignee
Shuai-Long Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shuai-Long Chen filed Critical Shuai-Long Chen
Priority to TW100222986U priority Critical patent/TWM429116U/en
Publication of TWM429116U publication Critical patent/TWM429116U/en

Links

Landscapes

  • Planar Illumination Modules (AREA)

Description

M429116 五、新型說明: 【新型所屬之技術領域】 本創作係有關一種導電化學強化玻璃一體成型背 光模组’特別是運用微影光化學蝕刻法製造光學微結構 及運用超音波熱壓熔接技術將發光源電極導電散熱模 組熱壓貼附在一體成型背光模組導電化學強化玻璃電 極線路上形成的背光模組。 【先前技術】 隨著科技的進步液晶顯示器被廣泛的使用在移動 電話、筆記型電腦、平板電腦、數位相機與液晶電視等 電子產品中’但因液晶顯示器並不是自主發光元件僅有 控制光開關特性’故其需要借助背光模組之面型光源才 能產生顯示功能。 如圓1所示,係為習知背光模組之立體分解示意 圖,如圖所示’習知背光模組10的結構,目前可區分 為直下式背光模組1〇與側入光式背光模組10,但無論 是哪一類型的背光模組10其組成結構大多類似,主要 是以上擴散片12、上稜鏡片13、下稜鏡片14、下擴散 片15、導光板18、反射片19、膠框17、鐵框20與燈 條16疊加組立而成,再貼附緩衝膠u,故其製造過程 均需耗費大量人工完成组立。 同時隨著電子產品的輕、薄、短、小之設計方向 3 M429116 發展,習知技術中導光板18、膠框π與鐵框20的設 計尺寸越大則越難薄型化,上擴散片12、上稜鏡片13、 下稜鏡片14與下擴散片15係分別製備在其基材上,亦 有其基材需求厚度,因此,隨著電子產品的輕、薄、短、 小之設計方向,超薄型化、高效能製造與提高背光模組 輝度為現階段非自主發光顯示器產業必須解決之重要 問題。 # 因此’鑒於上訴狀況本創作的主要目的在於提供 種一體成型之背光模组,以解決先前技術中無法超薄 型化、輝度較難提高、製造光學元件成本高及生產效能 較難提升等問題。本創作之導電化學強化玻璃一體成型 背光模組,使整體製程簡化,整體結構更加輕薄,不僅 並能縮短工時,更能提昇產品良率,此即本創作最重要 精神所在及所欲積極揭露之處。 鲁 【新型内容】 本創作之目的為提供一種導電化學強化玻璃一體 成型背光模組,係以導電化學強化玻璃為基材整合為一 體成型背光模組,整體結構組成包含有擴散層、導光 層、導電電極線路、光學微結構層、透明通光層、反射 層與發光源電極導電散熱模組。 為達上述目的,本創作係提供一種導電化學強化 玻璃一體成型背光模組,包含:一導光層透明基材、一 4 M429116 導電膜、一擴散層、一光學微結構層、一透明通光層、 一反射層以及一發光源電極導電散熱模組。導光層透明 基材,呈薄板狀且為化學強化玻璃材質,其化學強化玻 璃厚度範圍為0.1毫米至5毫米;導電膜呈透明且可導 電材質,以微影光化學钮刻法或雷射加工法在該導光層 透明基材上形成導電電極線路預定囷像,其面電阻值範 圍為4.5Ω/□至650Ω/匚1 ;擴散層用於使出光面光線 • 擴散均勻呈面型光源且可調整面型光源之色溫,可由透 明樹脂、擴散粒子與顏料依不同比例調配,其光穿透率 範圍為30%至98%;光學微結構層在導光層透明基材上 以高折射率的材質依微影光化學蝕刻法或印刷塗佈法 在該導光層基材上形成預定光學微結構層圖像,用於使 入射光線因其預定光學微結構層圖像攔光折射,可調整 預定圖像來調,入射光於面型光源模組之光線分佈;透 鲁明通光層以透明材質樹脂依印刷塗佈法塗佈在導光層 透明基材與光學微結構層之反射面上,主要作用於使未 經光學微结構層攔光折射之光線通過至反射層;反射層 主要作用於使通過透明通光層之光線,反射通過至導光 層,再經光學微結構層攔光折射至擴散層;發光源電極 導電散熱模組在導電膜的預定囷像上之導電電極線路 以導電材料透過超音波熱壓熔接法將多數發光二極 體、散熱板、軟性電路板等元件,與導電膜的預定圊像 5 M429116 上之導電電極線路熱壓貼附連接,主要作用為提供入射 光源於一體成型之背光模组與連接照明或自非發光性 之顯示器。 【實施方式】 以下係藉由特定的具體實施例說明本創作之實施 方式,熟習此技藝之人士可由本說明書所揭示之内容輕 易地瞭解本創作之其他優點與功效。M429116 V. New Description: [New Technology Field] This creation is about a conductive chemical tempered glass integrated backlight module', especially using micro-photochemical etching to fabricate optical microstructures and using ultrasonic thermo-compression welding technology. The light source electrode conductive heat dissipation module is heat-pressed and attached to the backlight module formed on the conductive chemically strengthened glass electrode line of the integrated backlight module. [Prior Art] With the advancement of technology, liquid crystal displays are widely used in electronic products such as mobile phones, notebook computers, tablet computers, digital cameras, and LCD TVs. However, since liquid crystal displays are not autonomous light-emitting elements, only optical switches are controlled. The characteristic 'so that it needs to use the surface light source of the backlight module to generate the display function. As shown in the circle 1, it is a three-dimensional exploded view of a conventional backlight module. As shown in the figure, the structure of the conventional backlight module 10 can be divided into a direct-lit backlight module and a side-in-light backlight module. Group 10, but whichever type of backlight module 10 is mostly similar in composition, mainly the above diffusion sheet 12, upper gusset 13, lower gusset 14, lower diffusion sheet 15, light guide plate 18, reflection sheet 19, The plastic frame 17, the iron frame 20 and the light bar 16 are stacked and assembled, and then the buffer rubber u is attached, so that the manufacturing process requires a large amount of manual completion. At the same time, with the development of the light, thin, short and small design direction of the electronic product 3 M429116, the larger the design size of the light guide plate 18, the plastic frame π and the iron frame 20 in the conventional technology, the more difficult it is to be thinned, the upper diffusion sheet 12 The upper cymbal sheet 13, the lower cymbal sheet 14 and the lower diffusion sheet 15 are respectively prepared on the substrate thereof, and the thickness of the substrate is required. Therefore, with the light, thin, short and small design direction of the electronic product, Ultra-thin, high-efficiency manufacturing and improved backlight module brightness are important issues that must be solved in the non-autonomous light-emitting display industry at this stage. # Therefore'In view of the appeal situation, the main purpose of this creation is to provide a one-piece integrated backlight module to solve the problems of the prior art that it is not ultra-thin, the brightness is difficult to improve, the cost of manufacturing optical components is high, and the production efficiency is difficult to improve. . The conductive chemical tempered glass integrated backlight module of the present invention simplifies the overall process, and the overall structure is lighter and thinner, which not only shortens the working hours, but also improves the product yield. This is the most important spirit of the creation and the active disclosure of the desire. Where. Lu [new content] The purpose of this creation is to provide a conductive chemical tempered glass integrated backlight module, which is integrated with a conductive chemical tempered glass as a substrate to form a backlight module. The overall structure includes a diffusion layer and a light guiding layer. Conductive electrode circuit, optical microstructure layer, transparent light-transmitting layer, reflective layer and light-emitting source electrode conductive heat-dissipating module. To achieve the above objectives, the present invention provides a conductive chemically strengthened glass integrated backlight module comprising: a light guiding layer transparent substrate, a 4 M429116 conductive film, a diffusion layer, an optical microstructure layer, and a transparent light. a layer, a reflective layer and a light source electrode conductive heat dissipation module. The transparent substrate of the light guiding layer is in the form of a thin plate and is made of chemically strengthened glass. The thickness of the chemically strengthened glass ranges from 0.1 mm to 5 mm. The conductive film is transparent and electrically conductive, and is photolithographically patterned or laser. The processing method forms a predetermined image of the conductive electrode line on the transparent substrate of the light guiding layer, and the surface resistance value ranges from 4.5 Ω/□ to 650 Ω/匚1; the diffusion layer is used to make the light surface illuminate and diffuse uniformly into a surface light source. The color temperature of the surface light source can be adjusted, and the transparent resin, the diffusion particles and the pigment can be adjusted in different proportions, and the light transmittance ranges from 30% to 98%; the optical microstructure layer has high refraction on the transparent substrate of the light guiding layer. The material of the rate is formed on the light guiding layer substrate by a lithography photochemical etching method or a printing coating method to form an image of the predetermined optical microstructure layer for refracting the incident light due to the image of the predetermined optical microstructure layer. The predetermined image can be adjusted to adjust the light distribution of the incident light to the surface light source module; the transparent light resin layer is coated on the transparent substrate of the light guiding layer and the optical microstructure layer by a transparent coating resin according to the printing method. Reflective surface Acting on the light that is not refracted by the optical microstructure layer to the reflective layer; the reflective layer mainly acts to reflect the light passing through the transparent light-transmitting layer, to the light-guiding layer, and then refract light through the optical microstructure layer to Diffusion layer; the conductive electrode of the illuminating source electrode is arranged on the predetermined 囷 image of the conductive film, and the conductive material is electrically connected to the components of the plurality of illuminating diodes, the heat dissipating plate, the flexible circuit board and the like by the ultrasonic material. The predetermined image of the film is a thermocompression bonding connection of the conductive electrode line on the M429116, and the main function is to provide an incident light source in the integrally formed backlight module and the connection illumination or self-illumination display. [Embodiment] The following describes the implementation of the present invention by way of specific embodiments, and those skilled in the art can easily understand other advantages and effects of the present invention by the contents disclosed in the present specification.

以下參照圖式說明本創作之實施例,應注意的 是’以下圖式係為簡化之不意圖式,而僅以示意方气 明本創作之基本構想’遂圖式中僅例示與本創作有關 結構而非按照實際實施時之元件數目、形狀及尺寸紛 製,其實際實施時各元件之型態、數量及比例並非以囫 示為限’可依實際設計需要作變化,合先敘明。The embodiments of the present invention are described below with reference to the drawings, and it should be noted that 'the following drawings are simplified and not intended, and only the basic concept of the creation of the original text is illustrated. The number, shape and size of the components are not in accordance with the actual implementation. In the actual implementation, the types, quantities and proportions of the components are not limited to the limits of the actual design, and can be changed according to the actual design requirements.

請一併參見圖2至圖7’導電化學強化玻璃一趙成 型背光模組40包括一體成型之擴散層41、導光層42、 光學微結構層43、透明通光層44、反射層45、發光诼 電極導電散熱模組46、導電電極線路47。 由導電化學強化玻璃基材30中的化學強化坡續 31做為導電化學強化玻璃一體成型背光模組40的導光 層42,基材中的導電膜32再以微影光化學蝕刻或雷射 蝕刻法在光學無效區471内製作導電電極線路47,巳 製作好的導電電極線路47經短斷路檢查與雷射修整後 6 再以微影化學蝕刻法或印刷塗佈法製作先學微結構唐 43 ’導電電極線路47與光學微結構層43均是製作在導 先層42及導電膜32纟射面422,但製作時須以其功能 性製作在各自功能區域,導電電極線路47製作在光學 無致區471,光學微結構層43製作在先學有效區幻卜 請參見圖6與圖7即可清楚的呈現。 並以印刷塗佈法將透明樹脂印刷在導電電極線路 47除了需與發光源電極導電散熱模組46形成電路連结 的電極點外之區域與光學微結構層43上製作成透明通 光層44。 再以印刷塗佈法將具有高反射特性的鏡面銀油墨 或添加二氧化鈦、銀微、奈米粒子之丙稀暖樹脂、環氧 樹脂中之一種或一種以上之混合物的油墨,印刷在透明 通光層44層面上,以及導光層42與透明通光層44非 入光的三個側面上,請參見第5圖即可清楚的呈現。 然後以印刷塗佈法將添加顏料與二氧化鈦、丙婦 酸樹脂和二氧化矽微、奈米粒子之丙稀酸樹脂、環氧樹 脂中之一種或一種以上之混合物的油墨,印刷在導光層 42的出光面421上。 最後將發光源電極導電散熱模組46以超音波熱壓 熔接法貼附在導電化學強化玻璃30的導電電極線路47 上即完成導電化學強化玻璃一體成型背光模組4〇。 7 M429116 具體而言,擴散層41包含透明樹脂與分散於該透 明樹脂内之擴散微粒;導光層42為導電化學強化玻璃 30材質之基板並具有全通光之特性,其表面有導電膜 32,主要作用於背光模組光學無效區471内製造導電電 極線路47,後續再以超音波熱壓熔接技術熱壓貼附連 接發光源電極導電散熱模組46於導電化學強化玻璃一 體成型背光模組40。導電化學強化玻璃一體成型背光 模組光學有效區431内之導電膜32無需製造導電電極 線路47須全面蝕刻至導光層42,接著在導光層42反 射面422已無導電膜32之光學有效區431内,以微影 光化學蝕刻法或印刷塗佈法製造成光學有效區431内 光學微結構層43,光學微結構層43與導光層42反射 面422上再印刷塗佈透明樹脂形成透明通光層44,接 著在透明通光層44層面上及導光層42、透明通光層44 非入光的三個側面上印刷塗佈反射層45。 使用時光線首先進入導光層42,光線經導光層42 發散再通過光學微結構層43攔光折射通過導光層42至 擴散層41,未經光學微結構層43攔光折射之光線再通 過透明通光層44經反射層45反射通過透明通光層44、 導光層42,再經由光學微結構層43攔光折射通過導光 層42至擴散層41,再被擴散層41擴散均勻成面型光 源。如此,光線從導光層42入射至出射,其間光線無 8 M429116 須再經過空氣層,從而讓光線傳導損耗降低。故,上述 之導電化學強化玻璃一體成型背光模組40具有高輝 度、超薄型化、光學元件低成本、易於提高生產效能及 光線利用率之優點。 雖然前述的描述及圓式已揭示本創作之較佳實施 例’必須瞭解到各種增添、許多修改和取代可能使用於 本創作較佳實施例,而不會脫離如所附申請專利範園所 • 界定的本創作原理之精神及範圍。熟悉本創作所屬技術 領域之一般技藝者將可體會,本創作可使用於許多形 式、結構、佈置、比例、材料、元件和組件的修改。因 此’本文於此所揭示的實施例應被視為用以說明本創 作,而非用以限制本創作。本創作的範圍應由後附申請 專利範圍所界定,並涵蓋其合法均等物,並不限於先前 的描述。 【圖式簡單說明】 圖1係為習知之背光m艘分解示意圖。 圖2係為本創作之導電化學強化玻璃剖面示意圖。 圓3係為本創作之導電化學強化玻璃製造一艘成 型背光模組一較佳實施例之立體示意圖。 圏4係為圓3之A部分放大圖。 圖5係為本創作之導電化學強化玻璃製造一艘成 9 M429116 型背光模組一較佳實施例之分解示意圖。 圖6係為圖5之光學有效區與光學無效區之俯視 圖。 圖7係為圖5之出光面與反射面剖面示意圖。 【主要元件符號說明】Referring to FIG. 2 to FIG. 7 together, the conductive chemical tempered glass-based backlight module 40 includes an integrally formed diffusion layer 41, a light guiding layer 42, an optical microstructure layer 43, a transparent light-transmitting layer 44, and a reflective layer 45. The illuminating 诼 electrode conductive heat dissipation module 46 and the conductive electrode line 47. The chemically strengthened slab 31 in the conductive chemically strengthened glass substrate 30 is used as the light guiding layer 42 of the conductive chemical tempered glass integrated backlight module 40, and the conductive film 32 in the substrate is etched by photolithography or laser. The etching method forms the conductive electrode line 47 in the optical ineffective area 471, and the prepared conductive electrode line 47 is subjected to short-circuit inspection and laser trimming, and then the micro-structure chemical etching method or the printing coating method is used to fabricate the pre-study micro-structure Tang. 43 'The conductive electrode line 47 and the optical microstructure layer 43 are both formed on the lead layer 42 and the conductive surface 32 of the conductive film 32, but they must be fabricated in their respective functional areas during fabrication, and the conductive electrode line 47 is made in the optical The non-existing region 471, the optical microstructure layer 43 is made in the prior learning effective region. Please refer to FIG. 6 and FIG. 7 for a clear presentation. The transparent resin is printed on the conductive electrode line 47 by a printing coating method, and a transparent light-transmitting layer 44 is formed on the optical microstructure layer 43 except for the electrode point to be electrically connected to the light-emitting source electrode conductive heat-dissipating module 46. Further, a mirror silver ink having high reflection characteristics or an ink containing a mixture of one or more of titanium oxide, silver micro, nano particles, acrylic resin and epoxy resin is printed by a printing coating method in transparent light. On the layer 44 layer, and on the three sides of the light-guiding layer 42 and the transparent light-transmitting layer 44 that are not incident on light, please refer to FIG. 5 for a clear presentation. Then, an ink containing a mixture of a pigment and titanium oxide, a propylene oxide resin, and a cerium oxide microparticle, an acryl resin, or an epoxy resin, or a mixture of one or more, is printed on the light guiding layer by a printing coating method. 42 on the light-emitting surface 421. Finally, the illuminating source electrode conductive heat dissipating module 46 is attached to the conductive electrode line 47 of the conductive chemical tempered glass 30 by ultrasonic hot-melt welding, that is, the conductive chemical tempered glass integrated backlight module 4 is completed. 7 M429116 Specifically, the diffusion layer 41 includes a transparent resin and diffusion particles dispersed in the transparent resin; the light guiding layer 42 is a substrate made of a conductive chemically strengthened glass 30 and has all-passing characteristics, and has a conductive film 32 on its surface. The main function is to manufacture the conductive electrode line 47 in the optical invalid area 471 of the backlight module, and then heat-press and attach the conductive source electrode conductive heat-dissipating module 46 to the conductive chemical strengthening glass integrated forming backlight module by ultrasonic hot-melt welding technology. 40. The conductive film 32 in the optical effective area 431 of the conductive chemically strengthened glass integrated backlight module is not required to be fabricated. The conductive electrode line 47 must be completely etched to the light guiding layer 42. Then, the reflective surface 422 of the light guiding layer 42 has no optical effect of the conductive film 32. In the region 431, the optical microstructure layer 43 in the optical effective region 431 is fabricated by photolithography or printing coating, and the optical microstructure layer 43 and the reflective surface 422 of the light guiding layer 42 are printed and coated with a transparent resin. The transparent light-transmitting layer 44 is then printed on the transparent light-transmitting layer 44 and on the three sides of the light-guiding layer 42 and the transparent light-transmitting layer 44 that are not incident on the light. In use, the light first enters the light guiding layer 42. The light is diverged by the light guiding layer 42 and then refracted through the optical microstructure layer 43 to refract through the light guiding layer 42 to the diffusion layer 41. The light is not reflected by the optical microstructure layer 43. The transparent light-transmitting layer 44 is reflected by the reflective layer 45 through the transparent light-transmitting layer 44 and the light-guiding layer 42 and then refracted through the light-guiding layer 42 to the diffusion layer 41 via the optical microstructure layer 43 and diffused uniformly by the diffusion layer 41. Faceted light source. In this way, light is incident from the light guiding layer 42 to the exit, and the light in the absence of 8 M429116 has to pass through the air layer, thereby reducing the light conduction loss. Therefore, the above-mentioned conductive chemically strengthened glass integrated backlight module 40 has the advantages of high luminance, ultra-thinness, low cost of optical components, and easy improvement of production efficiency and light utilization efficiency. While the foregoing description and the drawings have disclosed the preferred embodiments of the present invention, it is understood that various additions, many modifications and substitutions may be used in the preferred embodiments of the present invention without departing from the scope of the appended claims. Defining the spirit and scope of this creative principle. It will be appreciated by those of ordinary skill in the art to which the present invention pertains. The present invention can be modified in many forms, structures, arrangements, ratios, materials, components and components. Therefore, the embodiments disclosed herein are to be considered as illustrative of the present invention and are not intended to limit the present invention. The scope of this creation shall be defined by the scope of the appended patent application and covers its legal equivalents and is not limited to the previous description. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic exploded view of a conventional backlight m. Figure 2 is a schematic cross-sectional view of the conductive chemically strengthened glass of the present invention. Round 3 is a perspective view of a preferred embodiment of a molded backlight module made from the conductive electro-strengthened glass of the present invention.圏4 is an enlarged view of part A of circle 3. FIG. 5 is an exploded perspective view showing a preferred embodiment of a 9 M429116 type backlight module manufactured by the conductive electro-strengthened glass of the present invention. Figure 6 is a plan view of the optically active area and the optically inactive area of Figure 5. Fig. 7 is a schematic cross-sectional view showing the light emitting surface and the reflecting surface of Fig. 5. [Main component symbol description]

(習知) 背光模組 10 緩衝膠 11 上擴散片 12 上稜鏡片 13 下棱鏡片 14 下擴散片 15 燈條 16 膠框 17 導光板 18 反射片 19 鐵框 20 (本發明) 導電化學強化玻璃一體成型背光模組 40 擴散層 41 導光層 42、31 光學微結構層 43 透明通光層 反射層 發光源電極導電散熱模組 導電電極線路 光學有效區 光學無效區 出光面 反射面 導電化學強化玻璃 化學強化玻璃 導電膜 11(Conventional) Backlight module 10 Buffer rubber 11 Upper diffusion sheet 12 Upper sheet 13 Lower prism sheet 14 Lower diffusion sheet 15 Light strip 16 Plastic frame 17 Light guide plate 18 Reflecting sheet 19 Iron frame 20 (Invention) Conductive chemically strengthened glass Integrated molding backlight module 40 Diffusion layer 41 Light guiding layer 42, 31 Optical microstructure layer 43 Transparent light-transmitting layer Reflective layer Light-emitting source electrode Conductive heat-dissipation module Conductive electrode line Optical effective area Optical ineffective area Light-emitting surface Reflecting surface Conductive chemical strengthening glass Chemically strengthened glass conductive film 11

Claims (1)

M429116 六、申請專利範圍: 1.一種導電化學強化玻璃製造一雜成型背光模組,包含: 一導光層透明基材,呈薄板狀且為化學強化玻璃 材質,其化學強化玻璃厚度範圍為毫米至5毫米; 一導電膜,呈透明且可導電材質,以微影光化學 蝕刻法或雷射加工法在該導光層透明基材上形成導電電 極線路預定圓像,其面電阻值範圍為4 5Ω/□至65〇Ω/ □; 一擴散層’用於使出光面光線擴散均勻呈面型光 源且可調整面型光源之色溫,可由透明樹脂、擴散粒子 與顏料依不同比例調配,其光穿透率範圍為3〇%至98〇/〇; 一光學微結構層’在該導光層透明基材上以高折 射率的材質依微影光化學蝕刻法或印刷塗佈法在該導光 層基材上形成預定光學微結構層圖像,用於使入射光線 因其預定光學微結構層囷像攔光折射,可調整預定圖像 來調整入射光於面型光源模組之光線分佈; 一透明通光層’以透明材質樹脂依印刷塗佈法塗 佈在導光層透明基材與光學微結構層之反射面上,主要 作用於使未經光學微結構層攔光折射之光線通過至反射 層; 一反射層’主要作用於使通過透明通光層之光 線’反射通過至導光層,再經光學微結構層攔光折射至 12 M429116 擴散層; 一發光源電極導電散熱模组,在該導電膜的預定 圖像上之導電電極線路以導電材料透過超音波熱壓熔接 法將多數發光二極體、散熱板、軟性電路板等元件’與 導電膜的預定圖像上之導電電極線路熱麈貼附連接,主 要作用為提供入射光源於一體成型之背光模組與連接照 明或自非發光性之顯示器。 2.如申請專利範圍第1項所述之導電化學強化玻璃製造 一體成型背光模組,其中該光學微結構層之單點結構範 圍以微影光化學蝕刻法製造為0.028微米至200微米’ 以印刷塗钸法製造為10微米至200微米。 3·如申請專利範圍第2項所述之導電化學強化玻璃製造 一體成型背光模組,其中該微影光化學蝕刻法所用材質 為添加二氧化鈦之光阻,經微影光化學蝕刻光阻成光學 微結構層或在導光層反射面光學有欵區内先鍍銀後塗佈 光阻,再以微影光化學蝕刻法將鍍銀蝕刻成光學微結構 層。 4. 如申請專利範圍第2項所述之導電化學強化玻璃製造 一體成型背光模組,其中該印刷塗佈法所用材質為鏡面 銀油墨或添加二氧化鈦、銀微、奈米粒子之丙烯酸樹脂、 環氧樹脂中之一種或一種以上之混合物。 5. 如申請專利範圍第1項所述之導電化學強化玻璃製造 13 〜體成型背光模組,其中該導電膜是選自由下列所構成 的群組形成:銦錫氧化物、氧化鋅、摻雜鎵之氧化鋅、 導電高分子。 6. 如申請專利範圍第1項所述之導電化學強化玻璃製造 一體成型背光模組,其中該發光源電極導電散熱模組所 用之導電材料是選自由下列所構成的群組形成:金、銀、 銅、鈦、錫、鉑、鎳中之一種或一種以上之組合,使用 時可以單體材料使用或添加樹脂成膏、膠狀物使用。 7. 如申請專利範圍第1項所述之導電化學強化玻璃製造 一體成型背光模組,其中該擴散層的透明樹脂可由丙烯 酸樹脂、環氧樹脂中之一種或一種以上之混合物,擴散 粒子可由二氧化鈦、丙烯酸樹脂和二氧化矽之微、奈米 粒子中的一種或一種以上之混合物,顏料主要作用為色 溫補償需求時調整面塑光源之色溫。 8. 如申請專利範圍第1項所述之導電化學強化玻璃製造 一體成型背光模組,其中該透明通光層的材質可由丙稀 酸樹脂、環氧樹脂中之一種或一種以上之混合物。 9. 如申請專利範圍第1項所述之導電化學強化玻璃製造 一醴成型背光模組,其中該反射層的材質可由二氧化欽 或銀之微、奈米粒子與丙烯酸樹脂、環氧樹脂中之一種 或一種以上之混合物。M429116 VI. Scope of Application: 1. A conductive chemical tempered glass to manufacture a miscellaneous molded backlight module, comprising: a light guiding layer transparent substrate, which is in the form of a thin plate and chemically strengthened glass, and the thickness of the chemically strengthened glass is in the range of millimeters. Up to 5 mm; a conductive film, which is transparent and electrically conductive, forms a predetermined circular image of the conductive electrode line on the transparent substrate of the light guiding layer by microphotochemical etching or laser processing, and the surface resistance value ranges from 4 5 Ω / □ to 65 〇 Ω / □; a diffusion layer 'is used to make the light surface diffuse evenly into a surface light source and can adjust the color temperature of the surface light source, which can be formulated by transparent resin, diffusion particles and pigments. The light transmittance ranges from 3〇% to 98〇/〇; an optical microstructure layer is formed on the transparent substrate of the light guiding layer by a high refractive index material by photolithography or printing coating method. Forming a predetermined optical microstructure layer image on the light guiding layer substrate, wherein the incident light is refracted by the predetermined optical microstructure layer, and the predetermined image is adjusted to adjust the light of the incident light to the surface light source module. Distribution; a transparent light-transmitting layer is coated on the reflective surface of the light-guiding layer transparent substrate and the optical microstructure layer by a transparent coating resin by a transparent coating resin, and mainly acts to block light from being refracted by the optical microstructure layer. The light passes through to the reflective layer; a reflective layer 'mainly acts to reflect the light passing through the transparent light-transmitting layer' to the light-guiding layer, and then refracts the light through the optical microstructure layer to the 12 M429116 diffusion layer; The module, the conductive electrode line on the predetermined image of the conductive film is irradiated by a conductive material to the predetermined image of the plurality of light-emitting diodes, the heat dissipation plate, the flexible circuit board and the like by the ultrasonic material. The conductive electrode line is affixed and attached, and the main function is to provide an incident light source in an integrally formed backlight module and a display for connecting illumination or self-illumination. 2. The integrally formed backlight module for conductive chemically strengthened glass according to claim 1, wherein the single-point structure of the optical microstructure layer is made by microphotochemical etching to be 0.028 micrometers to 200 micrometers. The printing coating method is manufactured to be 10 micrometers to 200 micrometers. 3. The conductive chemical tempered glass manufacturing integrated backlight module according to claim 2, wherein the material used in the lithography chemical etching method is a photoresist added with titanium dioxide, and photolithographically etched by photolithography. The microstructure layer is coated with a photoresist after being silver-plated in the optically-coated region of the light-conducting layer, and the silver plating is etched into an optical microstructure layer by micro-photochemical etching. 4. The conductive chemical tempered glass manufacturing integrated backlight module according to claim 2, wherein the printing coating method is a mirror silver ink or an acrylic resin added with titanium dioxide, silver micro, and nano particles, and a ring. a mixture of one or more of oxygen resins. 5. The electroconductive chemically strengthened glass according to claim 1, wherein the conductive film is formed from the group consisting of indium tin oxide, zinc oxide, and doping. Gallium zinc oxide, conductive polymer. 6. The conductive chemical tempered glass manufacturing integrated backlight module according to claim 1, wherein the conductive material used for the conductive source electrode heat dissipation module is selected from the group consisting of gold and silver. A combination of one or more of copper, titanium, tin, platinum, and nickel may be used as a monomer material or a resin to form a paste or a gel. 7. The conductive chemical tempered glass manufacturing integrated backlight module according to claim 1, wherein the transparent resin of the diffusion layer may be one or a mixture of one or more of an acrylic resin and an epoxy resin, and the diffusion particles may be titanium dioxide. A mixture of one or more of acrylic resin and cerium oxide, nano particles, the pigment mainly acts to adjust the color temperature of the surface plastic light source when the color temperature compensation demand is required. 8. The electroconductive tempered glass according to claim 1, wherein the transparent light-transmitting layer is made of a mixture of one or more of an acrylic resin and an epoxy resin. 9. A conductive backlight reinforced glass according to claim 1 of the patent application, wherein the reflective layer is made of oxidized or silver micro, nano particles and acrylic resin, epoxy resin. a mixture of one or more of them.
TW100222986U 2011-12-06 2011-12-06 One-piece backlight module made of conductive chemical tempered glass TWM429116U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100222986U TWM429116U (en) 2011-12-06 2011-12-06 One-piece backlight module made of conductive chemical tempered glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100222986U TWM429116U (en) 2011-12-06 2011-12-06 One-piece backlight module made of conductive chemical tempered glass

Publications (1)

Publication Number Publication Date
TWM429116U true TWM429116U (en) 2012-05-11

Family

ID=46550277

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100222986U TWM429116U (en) 2011-12-06 2011-12-06 One-piece backlight module made of conductive chemical tempered glass

Country Status (1)

Country Link
TW (1) TWM429116U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9798061B2 (en) 2012-07-26 2017-10-24 Young Lighting Technology Inc. Hybrid light guide plate and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9798061B2 (en) 2012-07-26 2017-10-24 Young Lighting Technology Inc. Hybrid light guide plate and display device

Similar Documents

Publication Publication Date Title
TW201323218A (en) Backlight module manufactured integrally in one piece by conductive chemical reinforced glass and manufacturing method thereof
CN102081177B (en) Optical diffusion film and liquid crystal display (LCD) backlight using optical diffusion film
US9010979B2 (en) Composite optical film and backlight module using the same
US9645299B2 (en) Light unit and display apparatus having the same
US10816853B2 (en) Backlight module and liquid crystal display device
US9140931B2 (en) Backlight module and liquid crystal display device
JP2008020889A (en) Light adjusting assembly, its manufacturing method, and liquid crystal display device including light adjusting assembly
CN104698678A (en) Luminous flux control member, light emitting device, and display device
CN103162169A (en) Conductive chemical tempered glass integrally formed backlight module and manufacturing method thereof
CN104456412A (en) Optical film, backlight and display device
CN114089561A (en) Display device
TW201037416A (en) Backlight module
CN111665664B (en) Flexible display device
CN101131498A (en) Backlight module unit and LCD device
JP2023524417A (en) Backlight with patterned reflector
CN112993188A (en) Display panel and display device
TWM429116U (en) One-piece backlight module made of conductive chemical tempered glass
CN111933626A (en) Flexible mini-LED backlight lamp plate and flexible electronic equipment thereof
CN202452281U (en) Integrated backlight module made of conductive chemically toughened glass
JP2009109828A (en) Optical sheet, backlight unit, and display device
CN111308781A (en) Direct type backlight module and display equipment
CN113138496B (en) Backlight module and display device
WO2017133129A1 (en) Backlight module and display device
CN209460448U (en) A kind of light element, backlight module and display
TW202215128A (en) Integrated lcd backlight units with glass circuit boards

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees